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Localization-driven correlated states of two isolated interacting helical edges
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We study the localization-driven correlated states among two isolated dirty interacting helical edges as realized
at the boundaries of two-dimensional Z2 topological insulators. We show that an interplay of time-reversal
symmetric disorder and strong interedge interactions generically drives the entire system to a gapless localized
state, preempting all other intraedge instabilities. For weaker interactions, an antisymmetric interlocked fluid,
causing a negative perfect drag, can emerge from dirty edges with different densities. We also find that the
interlocked fluid states of helical edges are stable against the leading intraedge perturbation down to zero
temperature. The corresponding experimental signatures including zero-temperature and finite-temperature
transport are discussed.
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I. INTRODUCTION

Quenched randomness (disorder) can drastically suppress
the electronic transport by inducing Anderson localization
[1], a phenomena that is known to be prominent in low
dimensions. Cooperations of interaction and disorder can in-
duce many-body localization [2–4] which exhibits ergodicity
breaking and enables unexpected orders [5]. As a striking out-
come, a combination of time-reversal (TR) symmetric disor-
der and interparticle interactions can drive a two-dimensional
(2D) topological insulator [6–11] (TI) edge, conducting bal-
listically in the absence of interaction [6,12], to a gapless
insulating edge [13]. In this work, we further explore the new
correlated states due to a similar localizing mechanism among
two isolated interacting Z2 TI edges with quenched disorder.

A 2D TR symmetric TI [6–11] is a fully gapped bulk
insulator whose edge is described by counterpropagating elec-
trons forming Kramers pairs. The TR symmetry prevents the
edge electrons from Anderson localization which generically
ceases conductions in the conventional one-dimensional sys-
tems. Such a topological protected state emerges a helical
Luttinger liquid description [14,15] and exhibits a quantized
e2/h edge conductance at zero temperature. The possibility of
realizing 2D TR symmetric TI motivates various experimen-
tal studies [16–30], which might pave the way for creating
Majorana and Z4 parafermion zero modes, enabling topolog-
ical quantum computations [31–34].

Contrary to the well-studied single-edge problems (see
recent reviews [35,36] and the references therein), the physics
of two interacting TI edges [37–43] has not been explored
systematically, the effect due to simultaneous appearance of
disorder and interactions especially. In this work, we focus on
the low-temperature regimes of two isolated dirty interacting
TI edges with different densities. We show that the combi-
nations of interedge interactions and disorder can generate
new types of localization-driven correlated states: A gapless
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insulating state with both edges being spontaneously TR
symmetry broken, and an antisymmetric interlocked fluid with
edges carrying opposite currents. The former represents an
interedge instability that preempts all other phases driven by
TR symmetric intraedge perturbations. The latter corresponds
to a zero-temperature perfect negative drag in striking contrast
with the well known perfect positive drag among quantum
wires [44,45]. These regimes are summarized in Fig. 1. We
also discuss the stability of the negative drag state against
intraedge perturbation. Both of the interedge correlated states
can be measured via a specific Coulomb drag [46,47] related
experimental setup [39] as illustrated in Fig. 2(a). Concomi-
tantly, we predict the two terminal conductance at zero tem-
perature (Fig. 3) and finite temperatures (Fig. 4).

II. MODEL

We consider two isolated TR symmetric Z2 TI edges
that interact via Coulomb force [37–39,42] but do not allow
interedge electron tunnelings. For each isolated edge, there
are counterpropagating right (R) and left (L) mover fermions
forming Kramers pairs. In the low energy limit, the kinetic
term is given by

Ĥ0 = −i
∑
a=1,2

vFa

∫
dx[R†

a (x)∂xRa (x) − L†
a (x)∂xLa (x)],

(1)

where a = 1, 2 is the edge index and vFa is the Fermi velocity
of the ath edge band. Time-reversal operation is encoded
by Ra (x) → La (x), La (x) → −Ra (x), and i → −i. There-
fore, the conventional backscattering (e.g., R†L + L†R in the
spinless Luttinger liquid) is prohibited [6]. The time-reversal
symmetric disorder is the chemical potential fluctuation (pure
forward scattering) given by

ĤV =
∑
a=1,2

∫
dx Va (x)[R†

a (x)Ra (x)+L†
a (x)La (x)], (2)
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where Va (x) is the disordered potential in the ath edge. We
assume that the disordered potentials are zero-mean Gaussian
random variables and satisfy Va (x)Vb(y) = �δabδ(x − y),
where O denotes a disorder average of O.

The interaction between the two helical edges is primar-
ily due to Coulomb interaction. Instead of studying specific
microscopic models, we construct the interedge perturbations
via symmetry and relevance in the renormalization group
analysis. The leading TR symmetric backscattering terms are
the interedge umklapp interactions [37,39] given by

ĤU,+ = U+
∫

dx[e−iδQ+xL
†
1R1L

†
2R2 + H.c.], (3)

ĤU,− = U−
∫

dx[e−iδQ−xL
†
1R1R

†
2L2 + H.c.]. (4)

In the above equations, δQ± = Q± − 2(kF1 ± kF2) measures
the lack of commensuration, Q± = 2π/d is the commensura-
tion wave vector (d is the lattice constant of the 2D bulk), and
kF1 (kF2) indicates the Fermi wave vector in the first (second)
edge. Generically, both ĤU,− and ĤU,+ are irrelevant due
to incommensuration. We ignore the intraedge backscattering
terms since they are subleading [39,48,49].

To include Luttinger liquid effects (arising from both intra-
and interedge interactions), we use standard Bosonization
[50,51]. The density (na) and current (Ia) can be expressed
in terms of the phonon-like field (θa). na = ∂xθa/π and
Ia = −∂tθa/π . The two helical Luttinger liquids problem can
be decomposed into symmetric and antisymmetric interedge
degrees of freedom. In the imaginary time path integral, the
Bosonic action [37,39,45] is given by S± = S0,± + SV,± +
SU,±, where

S0,± = 1

2πv±K±

∫
dτdx [(∂τ�±)2 + v2

±(∂x�±)2], (5a)

SV,± =
∫

dτdx V±(x)
1

π
∂x�±, (5b)

SU,± = U±
2π2α2

∫
dτdx cos[2

√
2�± − δQ±x], (5c)

where �± = 1√
2
[θ1 ± θ2] encodes the symmetric (+) and

antisymmetric (−) collective modes, K± (v±) is the Luttinger
parameter (velocity), V±(x) = 1√

2
[V1(x) ± V2(x)] is the dis-

order potential, and α is an ultraviolet length scale.
The interedge Luttinger interaction is given by

(∂xθ1)(∂xθ2) ∝ (∂x�+)(∂x�+) − (∂x�−)(∂x�−). As a
consequence, repulsive interedge interactions tend to decrease
K+ and increase K−. [Note that K± < 1 (K± > 1) for overall
repulsive (attractive) interactions.] Importantly, the intraedge
Luttinger interactions still dominate and drive K± < 1 [45].
We therefore assume that 1 > K− > K+ holds generically.

Lastly, we discuss the disorder terms. V±(x) is a Gaus-
sian random field which obeys V±(x) = 0, V±(x)V±(y) =
�δ(x − y), and V+(x)V−(y) = 0. The above conditions en-
sure that the symmetric and antisymmetric sectors are com-
pletely decoupled. The intraedge perturbation will hybridize
the two sectors. We will discuss the validity of our model in
the end of the next section.

III. LOCALIZATION-DRIVEN CORRELATED STATE

We now discuss the zero-temperature states in the simul-
taneously appearance of the interedge backscattering and the
TR symmetric disorder. We will first review the mechanism
that drives interedge collective modes into localization. Two
new states (interedge localized and interlocked fluid states)
can be inferred from the localization physics. We finally
discuss the stability of the interlocked fluid states against
intraedge perturbations.

A. Interplay of disorder and interaction

The two helical Lutinger liquids problem can be viewed
as two decoupled problems of a disordered interacting helical
edge [13] with proper rescaling of parameters. We briefly
review the ideas in Ref. [13] and discuss the localization
physics in this subsection.

We first discuss the stability of the Luttinger liquid phase.
The disorder potential SV,± [given by Eq. (5b)] generates
chemical potential spatial fluctuations but does not induce
backscattering. However, the interedge umklapp backscatter-
ing interaction SU,± [given by Eq. (5c)] alone cannot gap
out �± unless |δQ±| � δQc [52] (where δQc is the criti-
cal value in the commensurate-incommensurate transition).
Therefore, the Luttinger liquid phase is generically stable with
only disorder or interaction. Nevertheless, the fluctuations of
chemical potentials (equivalent to the fluctuations of kF1 and
kF2) compensate the missing momenta (δQ±) in a random
fashion. As a result, the backscattering is enhanced due to
“local commensuration” [13,39,49,53]. Both the symmetric
and antisymmetric sectors in Eq. (5) can be mapped to the lo-
calization problem studied in Ref. [13] with a rescaling K →
K±/2. The critical value K± = 3/4 [54] (less interacting than
the single edge critical value K = 3/8 [13–15]) separates a
Luttinger liquid phase and a gapless localized phase.

For sufficiently strong interactions (K± < 3/4), the in-
teredge �± sector is driven to a localized state [13,55,56] as
the full gapped state (due to SU,±) is not stable against the
random field disorder given by SV,± [13,57]. In addition, the
Bosonized theory at K± = 1/2 can be mapped to a theory
of massive Luther-Emery fermion with a chemical potential
disorder [13], known to be Anderson localized for all the
eigenstates [58]. It can be further inferred that the physical
state is a gapless insulator due to the structures of density
and current operators in Bosonization/refermionization [13].
Away from K± = 1/2, the refermionized theory becomes
interacting and is no longer exactly solvable. For K± < 1/2,
the backscattering is enhanced due to the additional repulsive
interaction [59–61] so the localization is stable. For K± >

1/2, the localization grows less stable as increasing K±, and
the critical point (K± = 3/4) is obtained from Bosonization
analysis. The localizing mechanism here gives a nonmono-
tonic dependence in � with the strongest localization when �

is comparable to δQ± [13].

B. Interedge localized state

When both the symmetric and antisymmetric sectors are
localized (K+,K− < 3/4), the edge state breaks TR symme-
try spontaneously. We can define pseudospin operators for
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FIG. 1. Zero-temperature phase diagram of two dirty TI edges
with different densities. We assume 1 > K− > K+ due to the repul-
sive interactions. For K− > K+ > 3/4, the two helical Luttinger liq-
uids are decoupled. The symmetric interedge mode is localized when
K− > 3/4 > K+. An antisymmetric interlocked fluid is developed.
For 3/4 > K− > K+, the a gapless localized insulator is predicted.

each edge [13,14] whose finite expectation values indicate
TR breaking of the localized states. The pseudospin expec-
tation values in the localized state are random in space and
uncorrelated among the two isolated edges. The localized state
here can be viewed two localized edges carrying half-charge
[13]. The Luther-Emery fermions at K+ = K− = 1/2 corre-
spond to symmetric or the antisymmetric collective modes
of the half-charge excitations among two edges. Importantly,
this interedge instability (K+,K− < 3/4) dominates over
the leading intraedge instability (K < 3/8) [14,15] because
the critical interaction strength is weaker (larger Luttinger
parameter).

C. Interlocked fluid state

For weaker interactions, there might exist a region such
that only one of the interedge degrees of freedom is lo-
calized. The correlation among two edges is determined by
the remaining delocalized collective mode. Such correlated
states are called interlocked fluids in the studies of one-
dimensional Coulomb drag and reflect the Luttinger liquid
behavior [44,45,62]. Here, we focus on the Coulomb drag
physics among two generically unequal TI edges. This case
was not considered in the existing literature.

For two isolated dirty TI edges with different electron
densities, both the symmetric and antisymmetric sectors are
similar except 1 < K− < K+ (due to the repulsive interedge
Luttinger interactions). A negative interlocked fluid can arise
when K+ < 3/4 and K− > 3/4 since the symmetric sector
is localized. Such a correlated state is described by an anti-
symmetric interedge collective mode, corresponding to a per-
fect “negative drag.” In two-dimensional electronic systems,
a perfect negative drag can arise due to interlayer exciton
formation [63,64]. Similarly, a negative drag between two
clean one-dimensional systems can also take place when
the commensurate condition |δQ+| < δQc (kF1 ≈ −kF2) is
finely tuned [39,65]. Here, the interlocked antisymmetric state
is not induced by gapping at commensuration but by localiz-
ing the collective degrees of freedom. This localization-driven
antisymmetric interlocked fluid is also complementary to the
early study for incommensurate clean quantum wires [66].
The phase diagram of the two dirty TI edges with different
densities is summarized in Fig. 1.

As a comparison, for two clean TI edges with the same
electron density (kF1 = kF2), the interedge interaction SU,−
[given by Eq. (5c)] becomes to a commensurate backscatter-
ing term (δQ− = 0) that gaps out the antisymmetric mode
for K− < 1 [44,45] at zero temperature. The system therefore
develops a symmetric interlocked fluid dictating a perfect
positive drag [39,44,45]. In the presence of disorder, the
symmetric interlocked fluid remains stable as long as K+ >

3/4. The fully gapped antisymmetric mode becomes to a
gapless localized state because the long range order is unstable
against random field disorder in one dimension [13,57]. For
K+ < 3/4, the system develops an interedge fully localized
state that halts conduction at all.

D. Stability of interlocked fluid states

In Ref. [67], the stability of a perfect drag against the
single-particle impurity scattering was investigated. The im-
purity scattering within a quantum wire can hybridize the
symmetric and antisymmetric collective modes. As a conse-
quence, the perfect drag is only stable above certain tempera-
ture scale set by disorder scattering [67]. Here, we repeat the
same analysis for drags among two helical Luttinger liquids.

Due to the TR symmetry, the single-particle backscattering
(e.g., L

†
1R1) is not allowed. Therefore, we consider the TR

symmetric impurity two-particle backscattering interaction
[14,68] as follows:

Ĥimp =
∑
a=1,2

Wa[L†
a (0 + α)L†

a (0)Ra (0)Ra (0 + α) + H.c.],

(6)

where W is the strength of impurity interaction and a point
splitting with the ultraviolet length α is performed. The corre-
sponding Bosonic action is

SW =
∑
a=1,2

W̃a

∫
dτ cos [4θa (τ, x = 0)]

= W̃1

∫
dτ cos[2

√
2(�+ + �−)]

+ W̃2

∫
dτ cos[2

√
2(�+ − �−)], (7)

where W̃a = Wa/(2π2α2). Based on the scaling dimensions
[14,68], W̃1 and W̃2 become relevant when K+ + K− < 1/2.
These intraedge interactions are the subleading perturbations
because the interedge localizaiton happens when K± < 3/4.
(As a comparison, the clean helical Luttinger liquid drag
happens when K− < 1 [39].)

To further investigate the stability of the interlocked fluid
states, we follow the treatment in Ref. [67]. We focus on the
antisymmetric interlocked fluid (negative drag) for K+ < 3/4
and K− > 3/4. Then, we assume the symmetric sector is in
the semicalssical limit (K+ → 0+). In such an approximation,
the �+(τ, x) can be replaced by a time-independent function
γ+(x), and all the contributions from instanton tunnelings be-
tween degenerate vacuums are ignored. Enabling the instanton
tunneling will make the impurity scattering less relevant, so
the semiclassical treatment here can be viewed as “the worst
case scenario.” The impurity two-particle backscattering
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FIG. 2. (a) The proposed experimental setup [39] (“edge gear”)
for studying the interedge correlated states. The top TI is attached to
two external electrodes which result in two separated edges carrying
current I1 and I ′

1; the bottom TI forms a close edge loop with a
current I2 (but without a voltage drop). The two proximate edge
states (carrying currents I1 and I2) interact via interedge Coulomb
interactions. As discussed in the main text, the two terminal con-
ductance on the top TI encodes the information of the interedge
correlated states. (b) The standard Coulomb drag experiment in the
lateral geometry as a comparison.

interaction is approximated by cos(2
√

2�− + C), where C is
an unimportant constant. As a consequence, Eq. (7) becomes
relevant when K− < 1/2. This analysis confirms that the
antisymmetric interlocked fluid (K+ < 3/4 < K−) remains
stable when the symmetric mode is fully localized. The same
stability also applies to the symmetric interlocked fluid due to
two helical liquids with the same density for K+ > 1/2.

In conclusion, the intraedge perturbations do not sabotage
the interlocked fluid states among two helical Luttinger liquid,
in contrast to the conventional Coulomb drag [44,45], where
the stability against the impurity backscattering is only valid
for temperatures higher than the scale set by disorder [67]. The
stability of drag among helical liquids is a manifestation of the
topological protection in the topological insulator edges.

IV. PROPOSED EXPERIMENTAL SETUP

The physics of two isolated TI edges is related to the
Coulomb drag experiments [46,47,62,69] in one-dimensional
systems. We focus on the “edge gear” setup [39] [in Fig. 2(a)]
that detects all the interedge correlated states discussed above.
We will first focus on infinitely long edges at zero tempera-
ture. The corrections due to finite sizes and/or finite tempera-
tures are discussed via existing well-known properties of the
localized insulator and Luttinger liquid analysis.

A. Edge gear setup: Results with an infinite-long
size at zero temperature

The edge gear setup [39] in Fig. 2(a) contains two isolated
TI systems in the lateral geometry. Two TIs are separated via
a gap such that two proximate edges can interact via Coulomb
force, but the electron tunneling is prohibited. The top TI is
connected to two external leads while the bottom TI forms a
close edge loop. The two terminal conductance is measured
in the top TI system whose value generically encodes the
interedge correlation.

First, in the absence of any interedge interaction, the con-
ductance is 2 e2

h
(due to two edge channels) independent of

the Luttinger parameter [70–72]. For both K+,K− < 3/4, the

FIG. 3. The two terminal conductance at zero temperature as
a function of interaction in the edge gear setup [Fig. 2 (a)]. For
sufficiently weak interedge interactions, the conductance (in the unit
of e2/h) is 2 as the absence of the bottom close loop TI. In the
perfect drag regime, the conductance follows Eq. (8) with an upper
bound 3/2 and a lower bound 14/11 (red dotted lines). These bounds
guarantee discontinuities of the conductance. For sufficiently strong
interactions, two TI edge states become localized insulators. The
conductance becomes to 1.

interedge localized state takes place and makes I1 = I2 = 0.
The conductance is therefore reduced to e2

h
as only the edge

with current I ′
1 is conducting. For the interlocked fluids, the

interedge interactions induce I1 = ±I2 where the positive or
negative sign corresponds to the perfect positive or negative
drag. The conductance (for both the positive and negative
drags) [39] is

G = I ′
1 + I1

V
= e2

h

[
1 + 1

1 + 1/K

]
, (8)

which encodes the Luttinger parameter K [73] of the close
loop TI edge state. The nonuniversal conductance varies
from 3

2
e2

h
(K = 1, noninteracting limit) to 14

11
e2

h
(K = 3/8, in-

traedge instability [14,15]). As plotted in Fig. 3, those bounds
ensure two stage conductance “transitions” (discontinuities)
when tuning the interaction. We note that Eq. (8) is based on
the “Luttinger liquid lead” approximation [39]. For an ideal
close loop (infinite coherence time) in the perfect drag regime
[74], the conductance is predicted to be 2e2/h as if the close
loop was absent.

The only missing ingredient from the edge gear setup
is the “sign” (positive/negative) of the perfect drag since
the two terminal conductance in Eq. (8) only encodes the
electron correlation. A separate measurement (e.g., imaging
edge currents via SQUID [75,76]) is required for revealing the
parallel and antiparallel nature of the interlocked fluid states.

B. Edge gear setup: Finite-size
and finite-temperature corrections

Now, we discuss the finite-size and the finite-temperature
corrections. All the localization-driven correlated states pre-
dicted in this work require the edge length L � ξloc, where
ξloc is the localization length. The drag conductance (Gdrag =
I1/V ) can be expressed by Gdrag = G+ + G−, where G+ and
G− are the conductance contributions due to the symmetric
and antisymmetric sectors, respectively.
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For delocalized modes (K± > 3/4), the primary sources
of perturbations come from the inelastic scattering due to
ĤU,±. The leading conductance correction is given by δG± =
G± − G±,0 ∝ −T 4K±−2 for T � �/v [39], where G±,0 is the
conductance at zero temperature. At sufficiently high temper-
ature, we can deduce the conductance via the conductivity
of the Luttinger liquid analysis [39]. For T � v|δQ±|, the
conductance is given by G± = σ±

L
∝ T −4K±+3 [39], where σ±

is the conductivity of the symmetric/antisymmetric sector.
For K+ < 3/4 (K− < 3/4), the symmetric (antisymmet-

ric) mode becomes localized. In a finite-length localized
insulator there exist multiple temperature regimes [78]. For
sufficiently high temperatures, the thermal length is smaller
than the localization length so the Luttinger liquid analysis
can be applied [39,44,45,53]. We summarize the temperature
dependence as follows:

Gloc
± ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−2L/ξloc,± , for T � T ′
±

e−const
√

T0,±/T , for T ′
± � T � T0,±

e−T0,±/T , for T0,± � T < δEm,±,

T −4K±+2, for δEm,± � T � �/v

T −4K±+3, for T � δEm,±, v|δQ±|

(9)

where ξloc,± is the localization length in the symmetric or
antisymmetric sector, T ′

± and T0,± correspond to the lower
and upper bounds of the variable range hopping mechanism
[77,78], and δEm,± indicates the distance between mobility
edge energy and the fermi energy in a finite-size 1D insulator.
T ′

± ≡ vξloc,±/L2 is determined by setting the optimal hopping
length to be the same as the finite edge length L; T0,± ≡
v/ξloc,± corresponds to the typical energy separation in a
localized length ξloc,±. For T � δEm,±, the localized state is
no longer sharply defined. We can treat the backscattering in-
teractions as perturbations with the Luttinger liquid analysis.
The standard drag conductivity predicts two high temperature
regimes [39,53] similar to the results for K± > 3/4. The
regime yields T −4K±+2 will disappear if δEm,± � �/v. We
note that the conductance Gloc

± is at most 1
2e2/h.

Combining the results above, we summarize the tem-
perature dependence in the three regimes. All the results
are summarized in Fig. 4. In the decoupled helical liquids
regime (K+,K− > 3/4), the measured two-terminal conduc-
tance (GL) is given by [39]

GL(T )=
{

2 e2

h
−A1T

4K+−2−A2T
4K−−2, for T � �/v,

e2

h
+B1T

−4K++3+B2T
−4K−+3, for T � v|δQ±|,

(10)

where A1,2 and B1,2 are temperature-independent constants.
The conductance is monotonically decreasing as increasing T

in this regime. The size dependence is absorbed into A1,2 and
B1,2.

In the interedge localized regime (K+,K− < 3/4), the
conductance is GL(T ) = e2

h
+ Gloc

+ + Gloc
− where Gloc

+ and
Gloc

− are given by Eq. (9). The highest temperature regime
gives a temperature enhancing conductance behavior because
−4K± + 3 > 0. The conductance is essentially a monotoni-
cally increasing function of temperature. The potential non-
monotonicity is in the vicinity of T ∼ �/v when 1/2 <

K± < 3/4.

FIG. 4. The sketched temperature dependence of drag conduc-
tance in various regimes. Gdrag = G − e2

h
where G is the two-

terminal conductance of edge gear setup. The yellow solid line
indicates the two helical liquids regime (K+, K− > 3/4); the blue
dot-dashed line indicates the negative drag (K+ < 3/4 < K−); the
red dashed line indicates the localized regime (K+, K− < 3/4).
The detail features of each curve are explained qualitatively in the
main text.

In the negative drag regime (K+ < 3/4,K− > 3/4), the
zero-temperature conductance of a finite-size system is
GL(0) = G + C e2

h
e2L/ξloc,+ , where G is given by Eq. (8) and

C is a constant. The temperature-dependent conductance is
given by

GL(T )=
{
GL(0) − D1T

4K−−2, for T � �/v,
e2

h
+ D2

T 4K+−3 + D3

T 4K−−3 , forT � v|δQ+|, δEm,±,

(11)

where D1, D2, and D3 are constants. At high temperatures, the
D2 term wins over D3 term because 4K+ − 3 < 0 < 4K− −
3. The conductance in the negative drag regime is a nonmono-
tonic function in temperature. The nonmonotonicity can be
understood by the interplay of the localized symmetric mode
(monotonically increasing conductance) and delocalized anti-
symmetric mode (monotonically decreasing conductance).

C. Drag resistivity setup

As a comparison, we discuss the standard “drag resistivity”
setup [46,47] as illustrated in Fig. 2(b). The drag resistance is
defined by RD = −V2/I1. V2 is the generated voltage cancel-
ing the electromotive force due to the interedge interaction.
Both the interedge localized and the interlocked fluid states
tend to develop infinite zero-temperature drag resistivity ρD =
RD/L (where L is the length of edge). The sign of the perfect
drag can be measured in principle. Meanwhile, the interedge
localized state also contributes a nonuniversal sign which
is determined by the weaker localized interedge collective
mode. We therefore conclude that there is no simple way to
separate interedge localized and interlocked fluid states from
the standard setup in the zero-temperature limit. In addition to
the above mentioned issues, the edge 3 in the bottom TI [of
Fig. 2(b)] most likely shorts the system.

V. SUMMARY AND DISCUSSION

We have studied the zero-temperature phases in two iso-
lated dirty interacting TI edges. We showed that an interedge
localized state can generically take place due to an interplay
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of TR symmetric disorder and interedge interactions. We
also predicted that an antisymmetric interlocked fluid state,
producing a negative drag, can arise among two dirty TI
edges with different densities. The antisymmetric interlocked
fluid is a consequence of localized symmetric collective mode
and delocalized antisymmetric collective mode. Moreover, the
interlocked fluids states among two TI edges is found to be
stable down to zero temperature, in contrast to the quan-
tum wire systems where the drag is only valid above some
temperature corresponding to disorder scattering [67]. Our
study explicitly shows that nontrivial interedge correlations
can still arise even without commensuration. The zero- and
finite-temperature transport signatures of the edge gear setup
[39] are discussed.

We comment on the negative drag between two generically
unequal TI edges. This scenario is specific to TI edge states
where single particle backscattering is absent, so the negative
drag can be viewed as a signature of Coulomb drag among
helical Luttinger liquids. The condition of different densities
is reminiscent of the experimental observation of negative
drag among asymmetric quantum wires [69] whose mecha-
nism has not been concluded yet. Our results might provide
a new perspective for understanding the negative drag in one
dimensional systems.

In this work, we merely consider sufficiently long TI
edges within the standard Luttinger liquid analysis and the
linear response theory. The effect of dispersion nonlinearity
[79] and the finite electric field response [80] are interest-
ing future directions. The finite close edge loop correction
in the edge gear setup [Fig. 2(a)], potentially generating a
resonant feedback for an ac drive, is an interesting topic in the
future.
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