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The magnetic properties over a wide range of temperatures in diluted magnetic semiconductors (DMSs) are
discussed in the framework of the Kondo lattice model with magnetic impurity disorder. In the approach of
dynamical mean-field theory, a set of self-consistent equations has been derived to specify single-particle Green
functions. Analytical expressions of the static magnetic susceptibility and the B1g channel Raman response
are then delivered. Inspecting for signatures of an itinerant carrier density of states and magnetization, we have
identified a stable ferromagnetic (FM) state at low temperature. With increasing temperature, thermal fluctuations
diminish the ordered state and the system favors a paramagnetic (PM) phase. Tracking and tracing different
model parameters, the FM-PM transition phase diagram has been constructed. Spin fluctuations in the PM state
have been pointed out in the behaviors of the self-energies, the static magnetic susceptibility, and the Raman
scattering. Analyzing the properties of the B1g channel Raman response, we have attributed a formation of
magnetic polarons in the PM state. The magnetic polaron scenario in a wide range of temperatures has been
then intensively discussed. For the first time, both the static magnetic susceptibility and the B1g Raman response
have been combined together to discuss the magnetic properties in DMSs compactly based on the dynamical
mean-field approach.
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I. INTRODUCTION

Diluted magnetic semiconductors (DMSs) have attracted
much attention because of their novel ferromagnetic (FM)
properties and perspective applications in future spintronics
[1,2]. Analyzing the FM state and its transition in the DMSs
makes it possible to examine the physical properties due to
interplay between semiconductor quantum structures and FM
materials [1,2]. Due to a slight doping of magnetic ions into a
semiconducting host (e.g., doping Mn in GaAs), the partially
filled d-shell magnetic ions (Mn2+) play dual roles of forming
local magnetic moments and inducing the free carriers (holes)
[3]. At low temperature, DMSs have been found to be FM
[4,5]. The FM state is caused by the local exchange interaction
between the impurities and the carriers, inducing a long-range
effective ferromagnetic interaction between the impurity local
moments [5–8]. Increasing temperature, the ordered state is
suppressed and the system settles in the paramagnetic (PM)
phase. The FM-PM transition scenario in DMSs has stimu-
lated enormous attention [5–14].

To explain the FM-PM transition in DMSs, the forma-
tion of a magnetic cluster described in the sense of bound
magnetic polaron states above the Curie temperature has
been assumed [6,8,10–13]. As for decreasing temperature,
the size of polarons increases until the magnetic clusters
overlap through the whole sample at the FM-PM transition
temperature. Using the lattice Monte-Carlo method adapted
to a lattice spin-fermion model for DMSs, one can observe
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the magnetic clustered state above the Curie temperature [6].
In the meanwhile, to attribute the formation of magnetic
clusters in the PM state, the polaron percolation theory has
been widely utilized [8,11–13]. In our study, signatures of
the FM-PM transition and the formation of magnetic polarons
in the PM state in DMSs are investigated compactly in the
framework of the single-site dynamical mean-field theory
(DMFT). DMFT has been extensively used for investigating
strongly correlated electron systems [15]. It is based on the
fact that the self-energy depends only on the frequency in the
infinite dimensional limit. The FM-PM transition temperature
in DMSs has been examined by DMFT handling on a single-
band model [5,7,16] or on a two-band model [14] but as-
suming that the effective medium is weakly linear dependent
on the magnetization. Overcoming this assumption, in the
present work, the FM-PM transition is studied in a signature
of the static magnetic susceptibility function. Investigating a
phase transition through its corresponding static susceptibility
function is often a natural way in the literature [17]. In DMS,
due to the strong compensation, the density of localized holes
is much smaller than the density of Mn ions, leading to a
polaronic picture in which a single hole polarizes a cloud of
Mn spins, in other words, the polaron is formed around the
carrier localized in the impurity band [10,18]. The DMFT is
thus applicable to study the formation of the magnetic polaron
in DMSs. The situation is similar to that of a lattice polaron,
i.e., the case of an electron dressed by a phonon cloud, which
has been profoundly considered within the single-site DMFT
[19–23]. The single-site DMFT was also applied to discuss
the lattice polaron scenario in connection with the magnetic
polaron in the Holstein t-J model [24–26]. Of course, the
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DMFT is essentially local, so intersite information, e.g., about
the polaron size is difficult to obtain. Based on DMFT, the
magnetic properties in DMSs in a wide range of temperatures
are thus compactly discussed.

The Raman response has proven to be an effective tool for
studying complex phase changes and especially in addressing
the spin-disorder, magnetic polaron, and ferromagnetic states
in low-carrier density magnetic systems [27–30]. In theoret-
ical studies, the Raman scattering has been used to probe
the magnetic polarons in the DMSs by the bound magnetic
polaron theory [31–34]. Recently, the exchange interaction in
a ferromagnetic semiconductor quantum well is also analyzed
in a signature of the Raman scattering [35,36]. In the present
work, the magnetic polaron formation in DMSs is indicated
by studying the Raman scattering through the B1g channel
in the framework of DMFT. It is useful because there are no
vertex corrections requiring the evaluation of the Raman B1g

channel response and it thus can be determined directly if one
knows the single-particle spectral function of itinerant carriers
derived from the present approach [37,38].

In DMSs, the doped magnetic ions act as an acceptor, so
the main charge carrier in the DMSs is the hole. The holes
are assumed to be able to hop in the lattice that creates the
quasiparticle band and, for simplicity, it is often modeled by
the tight-binding approximation [39,40]. We assume that the
doped magnetic ions are randomly substituted in the cation
sites, so in the lattice, only a fraction of lattice sites are
occupied by the magnetic impurities and the remaining sites
are nonmagnetic. The local spin exchange is valid only on
the magnetic impurity sites. Due to the substitution, a local
potential for the charge carriers at the magnetic impurity sites
is needed to be taken into account. This situation looks similar
to doped manganites in which rare-earth ions are replaced by
divalent alkaline ions [41–44]. By adapting the DMFT, the
model including all the above complex scatterings has been
used to describe the spin dynamics in paramagnetic DMSs
[45]. In the same manner, we present here a solution of DMFT
adapting to the model showing the magnetic properties in
DMSs in a whole range of temperatures. At low temperatures,
by analyzing the density of states (DOS) of the itinerant
carriers and examining the magnetization and self-energies,
the system has been pointed out to stabilize in a FM state.
Due to the thermal fluctuations, the FM state is suppressed
and the FM-PM transition temperature can be evaluated in
the divergence of the static magnetic susceptibility, and the
FM-PM transition phase diagram is then constructed. In the
PM state, the spin fluctuation properties in the system are
discussed in the signatures of the susceptibility function and
the Raman response. The B1g channel Raman response shows
us the potential formation of a magnetic polaron in PM
state, which is diminished with increasing temperature. The
magnetic polaron in DMSs, therefore, is discussed based on
a well-known theoretical method, the DMFT. Moreover, the
PM-PM transition in DMSs in the signature of the static mag-
netic susceptibility function is also addressed in the frame-
work of the DMFT.

The present paper is organized as follows. In Sec. II,
we present a microscopic Hamiltonian essentially applied
for the DMS materials and its DMFT solution. Section III
outlines an analytic calculation of the static spin susceptibility

function based on the results of the DMFT in the previous
section. In Sec. IV, we present the numerical results and their
discussions. A summary and conclusion are presented in the
last section.

II. MODEL AND DYNAMICAL MEAN-FIELD THEORY

Taking into account both the magnetic coupling between
the local magnetic moment with a spin of the itinerant carriers
and the potential arising due to the random magnetic ions in
DMSs, we introduce in the following an appropriate micro-
scopic Hamiltonian in the tight-binding approximation:

H = − t
∑
〈i,j〉σ

c
†
iσ cjσ + 2J

∑
i

αiSisi

− μ
∑

i

ni +
∑

i

Uαini, (1)

where c
†
iσ and ciσ are the creation and annihilation operators

for an itinerant carrier with spin σ at lattice site i, respectively.
t is the nearest-neighbor-hopping integral, which is scaled
with the spatial dimension d as t = t∗/2

√
d in the infinite

dimensional limit [15]. In the analytical calculations below,
t∗ = 1 is taken as the unit of energy. Si is the magnetic
impurity moment at lattice site i, while si = ∑

ss ′ c
†
isσ ss ′cis ′/2

is the spin of the itinerant carriers (σ are the Pauli matrices),
the second term in Eq. (1) indicates the magnetic coupling
in DMSs. In the present work, the magnetic exchange is
considered in the Ising-type, i.e., only the z component of the
magnetic moment is accounted. Indeed, the essential features
of the magnetic and electronic properties in DMSs do not
depend on whether the exchange is of Ising- or Heisenberg-
type coupling [7,46–48]. We treat this simplified type to make
our further simple calculation in the next section. The last term
addresses the potential arising when the lattice site is occupied
by magnetic ions. U is the strength of the magnetic disorder
and is mapped onto the difference in the local potential,
which splits energetically in favor of the lattice site with
and without magnetic doping. In general, the disorder is site-
dependent, however, in our work, we handle the bulk system
by approximating to infinite dimensions, thus the disorder can
be introduced in average and is considered as a kind of the
diagonal disorder. That diagonal disorder has been intensively
studied in the literature by the DMFT [15,49–53].

In the Hamiltonian in Eq. (1), we have also included αi as
a classical variable that takes the value of either 1 or 0 if site
i is occupied or unoccupied by a magnetic ion, respectively.
The appearance of α ensures that the spin exchange and
the magnetic disorder arise only on the lattice sites that are
occupied by the magnetic ions. If x is the doping number
of the magnetic ions in DMSs, α is distributed like a binary
function:

P (α) = (1 − x)δ(α) + xδ(1 − α). (2)

In the case of αi = 1 for all i, the first three terms in the
Hamiltonian illustrate the Kondo lattice model [5]. In the
Hamiltonian, μ is the chemical potential that is introduced to
control carrier doping.
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The Hamiltonian given in Eq. (1) has been discussed in
the framework of DMFT but only in the PM state [45]. In
the following, we address the application of DMFT to the
model in Eq. (1) in a wide range of temperatures so the
spin dependence of the single-particle Green’s function is
explicitly considered from the beginning. Moreover, we also
point out some functionals that would be used in the next
section to evaluate the static magnetic susceptibility function.

We now present a DMFT application to the Hamiltonian in
Eq. (1). The DMFT is a nonperturbative local theory, the self-
energies driven from the time-dependent mean-field function
must be thus local or momentum independent. The DMFT,
therefore, is exact in the infinite space dimensional limit. The
local Green function of itinerant carriers with spin σ can be
determined via the equation

Gσ (iωn) =
∫

dερ(ε)
1

iωn − ε + μ − �σ (iωn)
, (3)

where ωn = (2n + 1)πT is the Matsubara frequency at tem-
perature T , �σ (iωn) is the self-energy, and ρ(ε) is the non-
interacting DOS of the itinerant carriers. In the infinite di-
mensional hypercubic lattice, it has a Gaussian form: ρ(ε) =
exp(−ε2)/

√
π .

The local Green function must coincide with the Green
function determined within the effective single impurity em-
bedded in the dynamical mean-field medium. In this issue, one
obtains

Gσ (iωn) =
∫

dαP (α)
δlnZα

eff

δG−1
σ (iωn)

, (4)

where Zα
eff is the partition function of the effective problem,

which depends on whether a site is doped by the magnetic
ions or not and Gσ (iωn) is the Green function of the effective
medium. Within the effective single-site problem, the partition
function is

Zα
eff = Tr

∫
Dc†σDcσ e−S

[s,α]
eff . (5)

The trace in Eq. (5) is taken over all possible values of s, and
the action for this effective problem S

[s,α]
eff is given by

S
[s,α]
eff = −

∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

c†σ (τ )G−1
σ (τ − τ ′)cσ (τ ′)

+
∫ β

0
dτ

∑
σ

[J sσ + U ]αc†σ (τ )cσ (τ ), (6)

where Gσ (τ − τ ′) is the time-dependent Green function of
the effective medium. It acts as the bare Green function of
the effective problem. Using a Fourier transformation, the
effective action in Eq. (6) can be written as

S
[s,α]
eff = −

∑
nσ

c̄nσ

[
G−1

σ (iωn) − (J sσ + U )α
]
cnσ , (7)

with c̄nσ and cnσ being the Grassman variables. With the help
of Eq. (7), one can calculate exactly the partition function in

Eq. (5), it reads

Zα
eff = Tr

{
2 exp

[∑
nσ

ln
G−1

σ (iωn) − (J sσ + U )α

iωn

]}
. (8)

Then one obtains an explicit expression of the local Green
function from the effective single impurity solution in Eq. (4):

Gσ (iωn) =
∑
αs

Wαs

G−1
σ (iωn) − (J sσ + U )α

. (9)

Note here that the expression of the distribution function in
Eq. (2) has been used. In Eq. (9), Wαs (α = {0, 1}) act as the
weight factors, which explicitely read

W0s = 2(1 − x)

Z0
eff

exp

[∑
nσ

ln
G−1

σ (iωn)

iωn

]
(10)

and

W1s = 2x

Z1
eff

exp

[∑
nσ

ln
G−1

σ (iωn) − (J sσ + U )

iωn

]
. (11)

Note that the weight factors Wαs are not simply a number.
They are functionals of the local Green function. This is an
important feature of the DMFT that gives nontrivial contribu-
tions to the response functions of the system [54–56]. In our
calculation, the magnetic doping x in DMSs has appeared in
the weight factors. To close a set of self-consistent equations,
one notes that the local Green function also satisfies the Dyson
equation

G−1
σ (iωn) = G−1

σ (iωn) − �σ (iωn). (12)

From Eqs. (3), (9), and (12), we obtain a set of self-
consistent equations allowing us to determine the self-
energies �σ (iωn) and then the local Green function of the
itinerant carriers numerically. Starting from some initial val-
ues for �σ (iωn), the local Green function Gσ (iωn) in Eq. (3)
and then Gσ (iωn) in Eq. (12) are determined. With the new
Gσ (iωn), one finds a new local Green function Gσ (iωn) from
Eq. (9). Then, using Eq. (12), the self-energies �σ (iωn) are
recalculated and the self-consistent process is restarted until a
convergence is achieved.

III. STATIC MAGNETIC SUSCEPTIBILITY

To detect the FM and analyze magnetic fluctuations in the
PM state, in this section, we examine the static magnetic
susceptibility for the model given in the Hamiltonian (1).
Based on the DMFT equations in the previous section, we
shall derive an analytical expression of the static magnetic
susceptibility function. Note here that the magnetic suscep-
tibility function is valid only in PM state and it diverges at the
magnetic transition point. The static magnetic susceptibility
in momentum space is defined by

χ (q) = −
∑
ij

e−iq(Ri−Rj )χ (i, j ), (13)
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where the magnetic correlation function in the real space
χ (i, j ) reads

χ (i, j ) = 〈(δni↑ − δni↓)(δnj↑ − δnj↓)〉. (14)

Here we have defined the density fluctuation operator at a site
i with spin σ : δniσ = niσ − 〈niσ 〉. The correlation function in
Eq. (14) can be rewritten as

χ (i, j ) =
∑
σσ ′

χσσ ′ (i, j )σσ ′, (15)

where χσσ ′ (i, j ) = 〈δniσ δnjσ ′ 〉. The correlation functions
χσσ ′ (i, j ) can be obtained by differentiating the Green func-
tion respected to the external magnetic field h and then taking
the zero limit of the field [54–56], i.e.,

χσσ ′ (i, j ) = −T 2
∑

n

dGii,σ (iωn)

dhjσ ′

∣∣∣∣
h=0

. (16)

Following a feature developed in calculating the susceptibility
functions previously in Ref. [41,43], we derive an expression
of the static magnetic susceptibility function

χ (q) = −T 2
∑

n

χ (q, iωn), (17)

where

χ (q, iωn) = Rn(q)

[
2 − 1

2

∑
αsσ

(
∂�σ (iωn)

∂Wαs

)
G,Wαs

σγαs (q)

]
.

(18)

Here,

R−1
n (q) = [χ0(q, iωn)]−1 + 1

2

∑
σ

( ∂�σ (iωn)

∂Gσ (iωn)

)
W

, (19)

and χ0(q, iωn) = ∑
k,σ Gσ (k + q, iωn)Gσ (k, iωn)/2 is the

bare particle-hole susceptibility. γαs (q) term in Eq. (18) can
be determined in a matrix identity

γ̂ (q) = Q̂−1(q)P̂ (q), (20)

where the matrices Q̂(q), P̂ (q) have the following elements:

Qαs,α′s ′ (q) = δαα′δss ′ − Aαs,α′s ′ (q)

+ 1

2

∑
nσσ ′

Rn(q)

(
∂�σ (iωn)

∂Wα′s ′

)
G,W

α′s′

Bσ ′
αs,n(q)σσ ′,

Pαs (q) = 2
∑
nσ

Rn(q)Bσ
αs,n(q)σ. (21)

Here we have introduced the following notations:

Aαs,α′s ′ (q) =
∑
nσ

∂Wαs

∂G−1
σ (iωn)

(
∂�σ (iωn)

∂Wα′s ′

)
G,Wαs

,

Bσ
αs,n =

[(
∂�σ (iωn)

∂Gσ ′ (iωn)

)
W

− 1

G2
σ (iωn)

]
∂Wαs

∂G−1
σ (iωn)

. (22)

The derivatives in Eqs. (18)–(22) can be calculated explic-
itly. From the result of the local Green function in Eq. (9) and

expressions of the weight factors in Eqs. (10) and (11), we
straightforwardly obtain

(
∂�σ (iωn)

∂Wαs

)
G,Wαs

= 1

Snσ

[
G−1

σ (iωn) − (Jσs + U )α
] , (23)(

∂�σ (iωn)

∂Gσ (iωn)

)
W

= 1

G2
σ (iωn)

− 1

Snσ

, (24)

∂Wαs

∂G−1
σ (iωn)

= Wαs

G−1
σ (iωn) − (Jσs + U )α

− WαsGσ (iωn),

(25)

where

Snσ =
∑
αs

Wαs[
G−1

σ (iωn) − (Jσs + U )α
]2 . (26)

In such a way, Eqs. (19)–(25) fully determine the static
magnetic susceptibility function in Eq. (17), once the self-
consistent equations of the DMFT are solved. The static
magnetic susceptibility diverges indicating the instability of
the PM state. The q dependence of the susceptibility comes
entirely from the bare susceptibility χ0(q, iωn). To study the
instability of the FM state one considers the uniform zone
center point q = 0, and the corresponding bare susceptibility
reads [17]

χ0(0, iωn) = 2[1 − (iωn + μ − �σ (iωn))Gσ (iωn)]. (27)

Note here that the bare susceptibility is spin-independent
because it is valid only in PM state. The single-particle Green
function and its self-energy, in this case, do not depend on
spin.

IV. NUMERICAL RESULTS

In this section, we present the numerical results analyzing
the magnetic properties in the DMS in a compact theory.
In doing so, we solve self-consistently the set of Eqs. (3),
(9), and (12). In the calculation, the chemical potential μ is
adjusted for a given value of the carrier density n = n↑ +
n↓, with nσ = ∫

dωAσ (ω)f (ω), where Aσ (ω) and f (ω) are
respectively the DOS of the itinerant carriers with spin σ and
the Fermi-Dirac distribution function f (ω) = 1/(1 + eβω ),
β = 1/T is inverse of temperature. The DOS is evaluated
straightforwardly from its Green’s function via Aσ (ω) =
−ImGσ (ω)/π . Due to the heavy compensation in almost
DMS systems, we use n < x 	 1 [7,12]. To proceed with the
task in the real frequency ω, we use the analytical continuation
by replacing iωn = ω + i0+, all summations of the Masubara
frequencies, for instance, in Eq. (11) thus would be changed
to integrals of the real frequency [15,17]. In the unit of
the hoping integral, the magnetic coupling J in the present
work is chosen in the range of 0–3, which is relevant to the
implication of almost DMSs [57–60]. In our knowledge, the
value of U relevant to the experimental observations is not
clear. However, U in the work is chosen around the limitation
at which the impurity band and the main band are separated.
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ω

-2 0 2 4 6 8
ω

1=J0=J

J=3J=2.7

0

0.06

0.06

0

T
T

FIG. 1. Temperature dependence of the DOS Aσ (ω) (σ =↑-
black solid lines and σ =↓-red dashed lines) of the itiernant carriers
for different magnetic coupling J at U = 0.5, n = 0.05, and x =
0.1. Blue solid lines indicate the DOS at the FM-PM transition
temperature and the green dashed line indicates the Fermi level.

A. Density of states

First of all, we discuss the magnetic properties of the
DMS systems by analyzing the DOS Aσ (ω) of the itinerant
carriers. Signature of the DOS of the itinerant carrier with
different spin polarization could address the main points of
the magnetic properties in the systems. In the FM state, DOSs
of the spin-up and spin-down itinerant carriers below the
Fermi level are not identical. In the meanwhile, they are the
same in the PM state. In Fig. 1, we show the temperature
dependent DOS of the itinerant carriers for different magnetic
couplings J at U = 0.5 for n = 0.05 and x = 0.1. Without the
magnetic coupling between the itinerant carrier and Mn ion
(J = 0), apparently, the DOSs of spin-up (majority spin) and
spin-down (minority spin) itinerant carriers are completely
identical at all temperature. The system in this case, thus
settles in the PM state. In this case, one finds no impurity band.
At J = 1, the impurity band is still not isolated from the main
band, however, in this case, one can find a difference between
the signatures of the minority and majority spin DOSs at low
temperature (lines below the solid blue line). The system thus
settles in the FM state at low temperature and in the PM state
at large temperature. The blue solid line indicates the DOS
at the FM-PM transition temperature. Increasing temperature
up to that transition temperature, two minority and majority
spin DOSs of the itinerant carriers begin to merge with each
other. At J = 2.7, the impurity band is separated from the
main band. In this case, the discrepancy between the DOSs
of different spins at low temperature has been transparently
viewed. The FM-PM transition temperature at J = 2.7 has

00.20.40.6
A (ω)

-2

0

2

4

6

8

ω

0 0.2 0.4 0.6
A (ω)

U=0
U=0.5
U=1
U=1.5
U=2

↑ ↓

FIG. 2. Zero-temperature DOS Aσ (ω) of the itinerant carriers at
different disorder U for J = 3, n = 0.05, and x = 0.1. The magenta
dashed line indicates the Fermi energy.

been increased up to T ∼ 0.035. Increasing the magnetic
coupling to J = 3, the impurity band is completely separated
from the main band. At T → 0, therefore, only majority spin
carriers exist below the Fermi level. In this case, all impurity
spins are aligned, say, in the z direction and the system settles
in a saturated FM state. The FM-PM transition temperature,
in this large J , is also increased to a temperature T ∼ 0.04.
For n = x/2, the Fermi level settles nearly at the middle of
the impurity band at large magnetic coupling.

Discussing effects of the disorder strength in the associa-
tion of the FM-PM transition, in Fig. 2, we show the DOSs
of the spin-up and spin-down carriers with J = 3, n = 0.05,

and x = 0.1 at zero temperature for different values of U .
If there is no disorder scattering in the system or U = 0,
the magnetic coupling J = 3 is large enough to create the
impurity band separately from the main band as discussed
above in Fig. 1. Once the disorder is included, the majority
spin carriers with spin parallel to the local magnetic moment
feel a potential −J + U on each magnetic impurity site and
the minority spin carriers feel a potential J + U [7]. Increas-
ing the disorder scattering, therefore, decreases the potential
magnetic scattering of the majority spin carriers and increases
that of the minority ones. As a consequence, with increasing
U the impurity band of the majority spin carriers generally
merges with the main band. A minority spin band below the
Fermi level develops or the spin-down carrier density becomes
comparable with the up-spin carriers leading to an unstable
FM state.

As a function of the carrier density n, zero-temperature
DOSs of the spin-up and spin-down carriers at J = 3, U =
0.5, and x = 0.1 are displayed in Fig. 3. With increasing
carrier density, both DOSs of up and down spin carriers
are shifted to the lower energy. Once n < x, there is no
signature of the spin-down (minority spin) DOS below the
Fermi level, whereas, a partial part of the impurity band of
up-spin (majority spin) carrier DOS is filled, the system thus
settles in the FM state. In contrast, for the filled impurity band,
i.e., for n = x, the Fermi level settles inside the gap between
the impurity band and the main band. Especially, in that case,
the DOS of the majority spin carrier in the impurity band
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ω
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A (ω)
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n=0.05
n=0.07
n=0.10

↓↑

FIG. 3. Zero-temperature DOS Aσ (ω) of the itinerant carriers at
different doping n for J = 3, U = 0.5, and x = 0.1. The magenta
dashed line indicates the Fermi energy.

appears with the same spectral weight with the opposite one.
In this case, no low energy hopping processes are allowed in
the FM state, instead, only the antiferromagnetic (AFM) state
hopping is favored. Competition between the FM and AFM is
a fundamental and challenging problem of DMSs [5,61,62].

B. Self-energies

In the following, we discuss in more detail the spin dynam-
ics properties in the system in a mention of the imaginary part
of the self-energies. Understanding the self-energies might
help us clear the nature of the quasiparticle excitation and
different excitation states in both PM and FM states. In
Fig. 4, we show the frequency dependence of the imaginary
part Im�σ (ω) of the self-energies for different values of the
magnetic coupling J at U = 0.5, x = 0.1, and n = 0.05 at
zero temperature. In a free-magnetic scattering situation, i.e.,
J = 0, the imaginary parts of both majority spin Im�↑(ω)
and minority spin Im�↓(ω) quasiparticles are identical, and
in this case, the system settles in the PM state. Increasing
the magnetic coupling, the peaks in the imaginary part of
the self-energy of two opposite spin directions are separated,
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FIG. 4. The imaginary part of the zero temperature self-energies,
Im�σ (ω), for different magnetic couplings J at U = 0.5, x = 0.1,
and n = 0.05.
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FIG. 5. Temperature dependence of the imaginary part of the
self-energies, Im�σ (ω), for J = 3, U = 0.5 at x = 0.1 and n =
0.05.

that of the majority spin quasiparticle is shifted to the left,
while that of minority spin quasiparticle is shifted to the right
on the real-frequency axis. The system thus settles in the
FM state. The shift is proportional with 2J . Sharper peak in
the self-energy of the minority spin carrier in comparison to
that of the majority spin carriers is due to the displacement
of the DOS of the former carriers to the high energies. In
comparing with the DOS in Fig. 1, the gap between Im�↓(ω)
and Im�↑(ω) indicates that there is no correlation scattering
in the main-band, it is due to the semiconductor host. The
correlations come from the quasiparticles in the impurity band
only. At large enough J , one finds only nonzero of Im�↑(ω)
at the Fermi level or the system in a non-Fermi liquid of the
spin-up quasiparticle.

Considering the Born approximation would lead to Im� ∼
−xN (EF )J 2, where N (EF ) is the DOS at the Fermi level
[63]. With increasing magnetic coupling, a spin-polarized
bound state can be formed for the majority spin leading to
a strong increase of the effective magnetic scattering rate.
In contrast, increasing J leads to an antibound state for the
minority spin carrier and its effective scattering rate is thus
decreased. The spin-polarized bound state of the quasiparti-
cles in the impurity band is also indicated in a sharp signature
of the self-energies [64]. The sharp peak of the self-energies
remains in the whole temperature range as shown in Fig. 5.
With increasing temperature, the thermal fluctuation excites
the minority spin carriers, the correlation of the minority spin
carriers individually contributes besides that of the majority
spin carrier. At temperature close to the FM-PM transition
point, the self-energies of both carriers with opposite spin
directions merge with each other.

C. Magnetization and static magnetic susceptibility

To detect the FM state and the spin fluctuations in the FM
state in a more explicit way, we discuss in the following the
properties of magnetization. The magnetization is defined as
m = n↑ − n↓, where nσ is the density of the spin σ carriers.
In Fig. 6, we illustrate the magnetization m as a function of
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FIG. 6. Magnetization m (solid lines with symbols) and static
magnetic susceptibility χ (solid lines) as functions of the temperature
for different values of J at U = 0.5, x = 0.1, and n = 0.05.

temperature in the case of x = 0.1, n = 0.05, and U = 0.5
for different values of magnetic coupling J . For all magnetic
couplings (J � 0.5), the magnetization is finite at low tem-
perature, indicating that the system stabilizes in the FM state.
Increasing temperature, the spin of the carrier fluctuates and
one finds with more probability the minority spin carriers
below the Fermi level (cf. Fig. 1). The magnetization is
thus depressed. If the temperature is larger than a so-called
critical value Tc, the magnetization completely disappears and
the system is in the PM state. The Tc, therefore, indicates
the FM-PM transition or the Curie temperature. Increasing
the magnetic coupling, the magnetization increases, and the
Curie temperature increases as well. In case of large magnetic
coupling (J = 3 for instance), the magnetization at very low
temperature approaches the value of carrier density (in Fig. 6,
that value is 0.05). Due to the large magnetic coupling, spins
of all carriers are aligned in the direction of the impurity spin.
Enlarging more the magnetic coupling thus does not affect
the magnetization or the system stabilizes in the saturated FM
state.

The magnetization, however, only shows us the spin dy-
namics properties in the FM state. To understand the spin
dynamic properties also in the PM state, one needs to show
the spin susceptibility function. Figure 6 shows the spin
susceptibility χ as a function of temperature for the same set
parameters in discussing the magnetization. As a function of
temperature, the spin susceptibility behaves like the Curie-
Weiss law, χ ∼ 1/(T − Tc ), i.e., the susceptibility in the
PM state is diverging if the temperature reaches the PM-FM
transition temperature. At a given magnetic coupling, rapid
enhancement of spin susceptibility with reducing temperature
close to the critical temperature indicates the development of
spin fluctuations with decreasing temperature. In the mean-
while, at a given large temperature ensuring that the system
settles in the PM state, increasing the magnetic coupling,
the spin susceptibility increases. At low carrier density, it is
suitable that in the PM state the magnetic scattering resolves
the electronic mean free path l, satisfying the relationship J ∼
l ∼ T χ [30,33]. Increasing the magnetic coupling, therefore,
provides a strong evidence that spin fluctuations are enlarged
in the temperature range.

0 0.02 0.04 0.06 0.08 0.1
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0

0.05

0.1

0.15

m

n=0.02
n=0.05
n=0.07
n=0.09

0

300

600

900

χ

FIG. 7. Magnetization m (solid lines with symbols) and static
magnetic susceptibility χ (solid lines) as functions of temperature
for some values of n at J = 3, U = 0.5, and x = 0.1.

Next, we discuss the spin dynamics under the influence of
the carrier doping. In Fig. 7, we show the magnetization and
the spin susceptibility as a function of temperature for differ-
ent carrier densities n at large magnetic coupling J = 3, U =
0.5, and x = 0.1. As expected, at very low temperature, the
magnetization is finite, indicating that the system stabilizes in
the FM state. As discussed before, at large magnetic coupling,
the impurity band is completely separated from the main
band, increasing the carrier density leads to an increase of
the majority spin carrier. Increasing carrier density, therefore,
increases the magnetization. In the whole temperature range,
however, it is correct only with small n. In the case with
large carrier densities n ∼ x, one finds the opposite behavior
of magnetization depending on temperature. Indeed, with
enlarging n, the magnetization decreases if the temperature
is increased, corresponding to a decreasing PM-FM transition
temperature. In the limit of filled impurity band, i.e., n = x,
no low-energy hopping processes are allowed in the FM state,
instead, this case favors the AFM state hopping [5].

The dependence of the spin susceptibility on the temper-
ature, in this case, is similar to that discussed previously in
Fig. 6. However, as varying the carrier density, the behavior
of the spin susceptibility becomes more complicated depend-
ing on temperature. At large temperature, the susceptibility
increases with increasing carrier density indicating that the
spin fluctuations in the system are enhanced if the carrier
doping is enlarged. If the temperature approaches the critical
value of PM-FM transition, one finds another scenario of the
spin dynamics. At this range of temperatures, of course, the
spin fluctuation is found to dominate at half impurity band
filling, i.e., n = 0.05. In this case, the magnetic scattering is
the largest. Deviating carrier density from this situation leads
to suppressed spin fluctuations, as indicated by a decrease of
the spin susceptibility.

D. Phase diagram of the FM-PM transition

From the discussion above in Fig. 6 and 7, the critical tem-
perature of the PM-FM transition Tc can be determined either
by a divergence of the spin susceptibility χ or by a vanishing
condition of the magnetization m. We use here the former way
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FIG. 8. PM-FM transition temperature Tc vs the itinerant carrier
density n for different values of J at U = 0.5 and x = 0.1.

to evaluate the Tc. Figure 8 displays the PM-FM transition
temperature Tc versus carrier density n for some different
values of magnetic coupling J at x = 0.1 and U = 0.5. There
are two opposite behaviors of Tc as a function of n at two
different ranges of the magnetic coupling. At small magnetic
coupling (J � 1), the impurity band either is not formed or
not clearly formed (cf. Fig. 1), then the magnetic transition
temperature increases with increasing carrier density over n =
x/2. Otherwise, an impurity band is distinctly formed in the
case of large magnetic coupling and one finds a nonmonotonic
behavior of Tc. However, in this case, Tc becomes maximum at
n < x/2. In the case of infinite magnetic coupling, i.e., J →
∞, Tc is expected to become maximum at n = x/2. Because
of the infinite magnetic coupling, the FM state is driven by
the kinetic energy of the majority carriers only, and Tc would
have been maximum in case of the electron-hole symmetry
situation occurring in the impurity band. Noting here that
the FM state is driven by the delocalization energy in the
impurity band, and as a consequence, Tc diminishes at n → 0
or n → x. Once the impurity band is partly filled (n 	 x), the
carrier is essential to launch the coupling between the spin of
the carrier and the impurity magnetic moment. In this case,
the FM-PM transition temperature increases with increasing
magnetic coupling J . In contrast, for a nearly filled impurity
band (n ∼ x) situation, with increasing magnetic coupling,
the carriers get more trapped in the spin impurity site. As
a consequence, the mobility of the carriers is reduced and
thus the magnetism is suppressed. If the impurity band is
completely filled (n = x), only AFM state hoping is allowed
and the ground state of the system is AFM state [5]. Studying
a competition between the FM and AFM states in the DMS
would be a worthwhile subject in the near future.

To discuss the impurity doping effect on the PM-FM
transition in DMS, we present in Fig. 9 the PM-FM transition
temperature as a function of the carrier density for different
impurity dopings x at U = 0.5 and large magnetic coupling
J = 3. At a given impurity doping, the behavior of the crit-
ical temperature dependence on the carrier density has been
discussed before in Fig. 8. At a given carrier density, Fig. 9
shows us that the critical temperature increases with increas-
ing impurity doping x. That signature can be understood if

0 0.02 0.04 0.06 0.08 0.1
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0
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0.04

0.06

T
c

x=0.10

x=0.15

x=0.20

FIG. 9. PM-FM transition temperature Tc vs the itinerant carrier
density n for some values of x at J = 3 and U = 0.5.

one notes here that the magnetic coupling between the carriers
and impurity magnetic moment J is only efficient at the
impurity sites. So for a given magnetic coupling, the effective
coupling strength of the system increases with increasing
impurity concentration x [65]. Moreover, increasing x, the
impurity band is enlarged and the situation of the particle-hole
symmetry occurs when n ∼ x/2 takes place at a respectively
large value of n. The maximum of Tc discussed previously in
Fig. 8, therefore, shifts to a larger carrier density range.

In Fig. 10, we discuss the FM-PM transition in the system
in the T -U plane for some different magnetic couplings J

at x = 0.1 and n = 0.05. As discussed before in Fig. 2,
switching on the disorder suppresses the magnetic potential
of the majority spin carriers, otherwise, enhances that of the
minority spin carriers. As a result, the FM state is dimin-
ished once the disorder increases. That scenario has been
displayed in Fig. 10 at a given magnetic coupling J , where
by increasing U , Tc is monotonically suppressed and if U is
large enough, the system would be stabilized in the PM state
even at zero temperature. To discuss the validity of the Ising
approximation, we compare the critical temperature released
in the present work with that reported in the literature. At
n = 0.02 and x = 0.1 for U = 0 and J = 1, the red line in

0 0.5 1 1.5 2
U

0
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0.02

0.03

0.04

T
c

J=0.5
J=1
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J=3

FIG. 10. PM-FM transition temperature Tc vs disorder strength
U for different values of J at x = 0.1 and n = 0.05.
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FIG. 11. Intensity plots of the imaginary part of the B1g channel
Raman scattering, ImχB1g (ω), at some values of J for U = 0.5, x =
0.1, and n = 0.05.

Fig. 10 gives Tc approximately equal to 0.01. This value is
close to the critical temperature found in the same set of
parameters once the localized spin is considered classically
[5]. The Ising approach in the present calculation is thus not
much exaggerated in evaluating the critical temperatures.

E. Raman scattering

To understand more about the spin fluctuations in the PM
state in DMSs, in the remainder of this paper we discuss
the electronic Raman scattering at a temperature above Tc

for the Hamiltonian given in Eq. (1). In the B1g channel,
the nonresonant Raman response has no vertex corrections
and in the infinite dimensional limitation, its imaginary part
reads [37,38]

ImχB1g (ω) = π

∫
dν

∫
dερ(ε)[f (ν) − f (ν + ω)]

×A(ε, ν)A(ε, ν + ω), (28)

where A(ε, ν) is a spectral function of the itinerant carriers.
Here, we have assumed that the system is in the PM state and
the carriers with different spins are homogenous, i.e.,

A(ε, ν) = Aσ (ε, ν) = − 1

π
Im

1

ν − ε + μ − �σ (ν)
. (29)

Here, the local self-energy �σ (ν) has been determined in the
framework of the DMFT in Sec. II.

Figure 11 displays the imaginary part of the Raman scatter-
ing ImχB1g (ω) depending on temperature T for some different
values of magnetic coupling J at U = 0.5, x = 0.1, and n =
0.05. Once the magnetic coupling is small and the impurity
band is not separated from the main band, i.e., at J � 1 (cf.
Fig. 1), one finds only a single peak in the B1g channel of the
nonresonant Raman response (see upper panels in Fig. 11). At
zero magnetic coupling (J = 0), there is no magnetic ordered
state in the system even at zero temperature. The Raman

FIG. 12. Intensity plots of the imaginary part of the B1g channel
Raman scattering, ImχB1g (ω), at some values of U for J = 3, x =
0.1, and n = 0.05.

scattering response, therefore, releases a weak signature near
zero frequency, indicating a weak spin fluctuation in the PM
state. Increasing the magnetic coupling, the amplitude of the
peak increases at a larger frequency, the spin fluctuations
thus become stronger. The pronounced peak indicates that the
magnetic polarons form in the PM state. In the situation with
the completely formed impurity band, i.e., at large magnetic
coupling, one finds a two-peak structure in the B1g spectral
signatures (see lower panels in Fig. 11). A low-frequency
peak identifies the magnetic polaron formation arising from
the impurity band, whereas, a large frequency peak indicates
a quasiparticle excitation arising from the main band. In-
creasing the magnetic coupling, the low-frequency peak shifts
up in the energy. The magnetic polaron is favored by the
large magnetic coupling between the carrier and the impurity
magnetic moment. That magnetic coupling causes a trapped
charge to lower its energy by polarizing the local moments.
In all cases, the peak frequency is temperature independent,
however, its amplitude is decreased or the magnetic polaron
signature is smeared out with increasing temperature. The
behavior of the electronic Raman response is similar to that
observed in the t-J model by using the finite-temperature
diagonalization method [66] or in the Hubbard model by using
the cluster DMFT [67] at low doping. Our theoretical results
are also in agreement with the observations of the magnetic
polaron formation observed in PM state in some low doping
ferromagnetic semiconductors [30].

Lastly, to discuss the disorder effect on the electronic
Raman response in the systems, we show in Fig. 12 the B1g

channel spectral signatures in the dependence of temperature
at different disorder U for J = 3, x = 0.1, and n = 0.05.
Once the disorder is small (see upper panels in Fig. 12), one
finds a sharp peak at low frequency, indicating signatures of
the magnetic polaron formation. The feature remains if U

is increased up to U = 1. Increasing the disorder, therefore,
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the peak at low-frequency shifts down in the energy with
a bit smeared out spectral weight. In particular, at U = 2,
the low-frequency response is nearly depleted, indicating that
the magnetic polaron has been diminished. The disorder, in
this case, becomes a point that depletes the magnetic order
state as discussed before. At given disorder strength and
magnetic coupling, the B1g channel spectral signature always
falls off with increasing temperature indicating that with the
appearance of the thermal fluctuations, the magnetic polaron
and also the spin fluctuations are depressed. In the contrast,
for T → Tc, the enhancement of carrier scattering by spin
fluctuations with the development of magnetic polarons leads
the system to the a FM ordered state if T < Tc. These results
illustrate that the electronic Raman scattering can probe the
spin dynamics properties in paramagnetic diluted magnetic
semiconductors.

V. CONCLUSION

In summary, we have investigated the magnetic properties
in diluted magnetic semiconductors in the entire range of
temperatures in a compact theory. In doing so, the dynamical
mean-field theory has been adapted to the Kondo lattice model
including lightly random magnetic impurity distribution. In
the infinite dimensional limit, we have derived a set of
self-consistent equations allowing us to evaluate the single-
particle Green functions. The static magnetic susceptibility
and then the B1g channel Raman response expressions are
obtained. At low temperature, by analyzing the itinerant car-
rier density of states and magnetization, we have indicated a

stability of the ferromagnetic state. Increasing temperature,
the thermal fluctuations diminish the ordered state and the
system favors a paramagnetic state. Phase diagrams showing
the ferromagnetic-paramagnetic transition temperature Tc de-
pending on the model parameters then have been constructed.
The spin fluctuation scenario in the paramagnetic state has
been pointed out in the signatures of the self-energies, the
static magnetic susceptibility, and the Raman scattering. Ana-
lyzing the properties of the B1g channel Raman response, we
have attributed the formation of magnetic polarons in the para-
magnetic state. Our results thus illustrate that the electronic
Raman scattering can probe the spin dynamics properties
with the formation of magnetic polarons in the disordered
paramagnetic state in diluted magnetic semiconductors. The
magnetic polaron scenario in diluted magnetic semiconduc-
tors, therefore, is discussed based on the dynamical mean-field
approach. Moreover, the paramagnetic-ferromagnetic transi-
tion in the system in the signature of the static magnetic sus-
ceptibility function is also addressed in the same framework.
The competition of the ferromagnetic and antiferromagnetic
states at low temperature and the formation of magnetic
polarons leading the system to an antiferromagnetic state if
the temperature is smaller than the Neel temperature in DMSs
are also important and will be considered in the near future.
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(2003).
[18] A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65,

235205 (2002).
[19] A. J. Millis, R. Mueller, and B. I. Shraiman, Phys. Rev. B 54,

5389 (1996).
[20] A. J. Millis, R. Mueller, and B. I. Shraiman, Phys. Rev. B 54,

5405 (1996).
[21] S. Ciuchi and F. de Pasquale, Phys. Rev. B 59, 5431 (1999).
[22] S. Ciuchi, F. de Pasquale, and D. Feinberg, Europhys. Lett. 30,

151 (1995).
[23] S. Ciuchi and S. Fratini, Phys. Rev. B 77, 205127 (2008).
[24] E. Cappelluti and S. Ciuchi, Phys. Rev. B 66, 165102 (2002).
[25] E. Cappelluti, S. Ciuchi, and S. Fratini, Phys. Rev. B 76, 125111

(2007).
[26] E. Cappelluti, S. Ciuchi, and S. Fratini, Phys. Rev. B 79, 012502

(2009).
[27] P. Nyhus, S. Yoon, M. Kauffman, S. L. Cooper, Z. Fisk, and J.

Sarrao, Phys. Rev. B 56, 2717 (1997).
[28] H. L. Liu, S. Yoon, S. L. Cooper, S.-W. Cheong, P. D. Han, and

D. A. Payne, Phys. Rev. B 58, R10115 (1998).

045123-10

https://doi.org/10.1103/RevModPhys.86.855
https://doi.org/10.1103/RevModPhys.86.855
https://doi.org/10.1103/RevModPhys.86.855
https://doi.org/10.1103/RevModPhys.86.855
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1103/PhysRevB.66.045201
https://doi.org/10.1103/PhysRevB.66.045201
https://doi.org/10.1103/PhysRevB.66.045201
https://doi.org/10.1103/PhysRevB.66.045201
https://doi.org/10.1126/science.287.5455.1019
https://doi.org/10.1126/science.287.5455.1019
https://doi.org/10.1126/science.287.5455.1019
https://doi.org/10.1126/science.287.5455.1019
https://doi.org/10.1103/PhysRevLett.87.227202
https://doi.org/10.1103/PhysRevLett.87.227202
https://doi.org/10.1103/PhysRevLett.87.227202
https://doi.org/10.1103/PhysRevLett.87.227202
https://doi.org/10.1103/PhysRevLett.89.277202
https://doi.org/10.1103/PhysRevLett.89.277202
https://doi.org/10.1103/PhysRevLett.89.277202
https://doi.org/10.1103/PhysRevLett.89.277202
https://doi.org/10.1103/PhysRevB.72.035210
https://doi.org/10.1103/PhysRevB.72.035210
https://doi.org/10.1103/PhysRevB.72.035210
https://doi.org/10.1103/PhysRevB.72.035210
https://doi.org/10.1103/PhysRevB.70.115216
https://doi.org/10.1103/PhysRevB.70.115216
https://doi.org/10.1103/PhysRevB.70.115216
https://doi.org/10.1103/PhysRevB.70.115216
https://doi.org/10.1103/PhysRevLett.88.137201
https://doi.org/10.1103/PhysRevLett.88.137201
https://doi.org/10.1103/PhysRevLett.88.137201
https://doi.org/10.1103/PhysRevLett.88.137201
https://doi.org/10.1103/PhysRevLett.88.247202
https://doi.org/10.1103/PhysRevLett.88.247202
https://doi.org/10.1103/PhysRevLett.88.247202
https://doi.org/10.1103/PhysRevLett.88.247202
https://doi.org/10.1103/PhysRevB.68.235210
https://doi.org/10.1103/PhysRevB.68.235210
https://doi.org/10.1103/PhysRevB.68.235210
https://doi.org/10.1103/PhysRevB.68.235210
https://doi.org/10.1103/PhysRevB.67.155201
https://doi.org/10.1103/PhysRevB.67.155201
https://doi.org/10.1103/PhysRevB.67.155201
https://doi.org/10.1103/PhysRevB.67.155201
https://doi.org/10.1103/PhysRevLett.92.177203
https://doi.org/10.1103/PhysRevLett.92.177203
https://doi.org/10.1103/PhysRevLett.92.177203
https://doi.org/10.1103/PhysRevLett.92.177203
https://doi.org/10.1103/PhysRevB.73.075206
https://doi.org/10.1103/PhysRevB.73.075206
https://doi.org/10.1103/PhysRevB.73.075206
https://doi.org/10.1103/PhysRevB.73.075206
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1016/j.aop.2016.10.004
https://doi.org/10.1016/j.aop.2016.10.004
https://doi.org/10.1016/j.aop.2016.10.004
https://doi.org/10.1016/j.aop.2016.10.004
https://doi.org/10.1103/RevModPhys.75.1333
https://doi.org/10.1103/RevModPhys.75.1333
https://doi.org/10.1103/RevModPhys.75.1333
https://doi.org/10.1103/RevModPhys.75.1333
https://doi.org/10.1103/PhysRevB.65.235205
https://doi.org/10.1103/PhysRevB.65.235205
https://doi.org/10.1103/PhysRevB.65.235205
https://doi.org/10.1103/PhysRevB.65.235205
https://doi.org/10.1103/PhysRevB.54.5389
https://doi.org/10.1103/PhysRevB.54.5389
https://doi.org/10.1103/PhysRevB.54.5389
https://doi.org/10.1103/PhysRevB.54.5389
https://doi.org/10.1103/PhysRevB.54.5405
https://doi.org/10.1103/PhysRevB.54.5405
https://doi.org/10.1103/PhysRevB.54.5405
https://doi.org/10.1103/PhysRevB.54.5405
https://doi.org/10.1103/PhysRevB.59.5431
https://doi.org/10.1103/PhysRevB.59.5431
https://doi.org/10.1103/PhysRevB.59.5431
https://doi.org/10.1103/PhysRevB.59.5431
https://doi.org/10.1209/0295-5075/30/3/005
https://doi.org/10.1209/0295-5075/30/3/005
https://doi.org/10.1209/0295-5075/30/3/005
https://doi.org/10.1209/0295-5075/30/3/005
https://doi.org/10.1103/PhysRevB.77.205127
https://doi.org/10.1103/PhysRevB.77.205127
https://doi.org/10.1103/PhysRevB.77.205127
https://doi.org/10.1103/PhysRevB.77.205127
https://doi.org/10.1103/PhysRevB.66.165102
https://doi.org/10.1103/PhysRevB.66.165102
https://doi.org/10.1103/PhysRevB.66.165102
https://doi.org/10.1103/PhysRevB.66.165102
https://doi.org/10.1103/PhysRevB.76.125111
https://doi.org/10.1103/PhysRevB.76.125111
https://doi.org/10.1103/PhysRevB.76.125111
https://doi.org/10.1103/PhysRevB.76.125111
https://doi.org/10.1103/PhysRevB.79.012502
https://doi.org/10.1103/PhysRevB.79.012502
https://doi.org/10.1103/PhysRevB.79.012502
https://doi.org/10.1103/PhysRevB.79.012502
https://doi.org/10.1103/PhysRevB.56.2717
https://doi.org/10.1103/PhysRevB.56.2717
https://doi.org/10.1103/PhysRevB.56.2717
https://doi.org/10.1103/PhysRevB.56.2717
https://doi.org/10.1103/PhysRevB.58.R10115
https://doi.org/10.1103/PhysRevB.58.R10115
https://doi.org/10.1103/PhysRevB.58.R10115
https://doi.org/10.1103/PhysRevB.58.R10115


FERROMAGNETIC TRANSITION AND SPIN FLUCTUATIONS … PHYSICAL REVIEW B 99, 045123 (2019)

[29] S. Yoon, H. L. Liu, G. Schollerer, S. L. Cooper, P. D. Han,
D. A. Payne, S.-W. Cheong, and Z. Fisk, Phys. Rev. B 58, 2795
(1998).

[30] C. S. Snow, S. L. Cooper, D. P. Young, Z. Fisk, A. Comment,
and J.-P. Ansermet, Phys. Rev. B 64, 174412 (2001).

[31] M. Nawrocki, R. Planel, G. Fishman, and R. Galazka, Phys.
Rev. Lett. 46, 735 (1981).

[32] T. Dietl and J. Spałek, Phys. Rev. Lett. 48, 355 (1982).
[33] T. Dietl and J. Spałek, Phys. Rev. B 28, 1548 (1983).
[34] M. Umehara, Phys. Rev. B 61, 12209 (2000).
[35] I. A. Akimov, M. Salewski, I. V. Kalitukha, S. V. Poltavtsev, J.

Debus, D. Kudlacik, V. F. Sapega, N. E. Kopteva, E. Kirstein,
E. A. Zhukov et al., Phys. Rev. B 96, 184412 (2017).

[36] E. A. Zhukov, Y. G. Kusrayev, K. V. Kavokin, D. R. Yakovlev, J.
Debus, A. Schwan, I. A. Akimov, G. Karczewski, T. Wojtowicz,
J. Kossut et al., Phys. Rev. B 93, 245305 (2016).

[37] J. K. Freericks, T. P. Devereaux, and R. Bulla, Phys. Rev. B 64,
233114 (2001).

[38] J. K. Freericks and T. P. Devereaux, Phys. Rev. B 64, 125110
(2001).

[39] M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87, 107203
(2001).

[40] T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. Mac-
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