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Diagrammatic approach to nonlinear optical response with application to Weyl semimetals
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Nonlinear optical responses are a crucial probe of physical systems including periodic solids. In the
absence of electron-electron interactions, they are calculable with standard perturbation theory starting from
the band structure of Bloch electrons, but the resulting formulas are often large and unwieldy, involving many
energy denominators from intermediate states. This work gives a Feynman diagram approach to calculating
nonlinear responses. This diagrammatic method is a systematic way to perform perturbation theory, which
often offers shorter derivations and also provides a natural interpretation of nonlinear responses in terms of
physical processes. Applying this method to second-order responses concisely reproduces formulas for the
second-order-harmonic shift current. We then apply this method to third-order responses and derive formulas
for third-order-harmonic generation and self-focusing of light, which can be directly applied to tight-binding
models. Third-order responses in the semiclasscial regime include a Berry curvature quadrupole term, whose
importance is discussed including symmetry considerations and when the Berry curvature quadrupole becomes
the leading contribution. The method is applied to compute third-order optical responses for a model Weyl
semimetal, where we find a new topological contribution that diverges in a clean material, as well as resonances
with a peculiar linear character.
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I. INTRODUCTION

Optical response provides a window into the quantum
nature of materials. The exquisite control and precise mea-
surements enabled by modern optical techniques frequently
couple with theoretical predictions to test and confirm models
of quantum materials. Nonlinear optical responses [1–4], in
particular, give a wealth of information on dynamics, sym-
metry, and—recently—topology [5–17]. To fully reap the
benefits of optical techniques, it is necessary to accurately
predict optical responses in solids from theory, including both
simplified tight-binding models and advanced computational
approaches.

Historically, optical responses were understood first at the
linear order, and then extended to nonlinear orders alongside
the development of the laser in the 1960s. For molecular
systems, normal quantum-mechanical perturbation theory suf-
fices, and a convenient diagrammatic language became popu-
lar, capturing optical processes in terms of electrons changing
energy levels [18]. In crystalline systems, however, there are
several additional wrinkles. Simply defining the perturbation
corresponding to an external electric field is a subtle task. Like
in a molecule, absorbing a photon can cause an electron to
jump to a different band but can also cause the electron to
move to a nearby k point on the same band. The latter requires
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connecting adjacent points in k space, and thus involves the
Berry connection [19,20].

It is only relatively recently that the electromagnetic per-
turbation was written carefully in order to treat nonlinear
responses. There are two standard ways of writing an electro-
magnetic perturbation within the framework of independent
electrons and dipole fields. First, the so-called length gauge

ĤE = Ĥ0 + eE(t ) · r̂ (1)

uses the single-particle position operator r̂ whereas the sec-
ond, the velocity gauge, uses the minimal substitution scheme

ĤA = Ĥ0(k − eA(t )), (2)

where the vector potential A(t ) is chosen so that E(t ) =
−∂t A(t ). As usual, each gauge is well suited for a different
set of tasks. The length gauge is better for analytical answers,
semiclassical limits, and some questions involving topology,
whereas the velocity gauge gives a cleaner resonance structure
and is easier to implement numerically, especially for tight-
binding models.

Over time, there has been competition between the two
approaches. The velocity gauge was initially favored in the
1980s due to easier calculation (see, e.g., Refs. [21,22]).
Velocity gauge calculations, however, often contain spurious
divergences at zero frequency, which can be eliminated only
with somewhat opaque sum rules. The position operator was
defined carefully in the work of Blount in the 1960s [23], and
its relation to the Berry connection was understood deeply
by the early 1990s, giving rise to the modern theory of po-
larization [24,25]. This understanding was harnessed by Sipe
and Shkrebtii to develop a widely used approach to calculate
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second-order responses within the length gauge [5]. The wide
variety of physical effects in the second-order response—
including shift current [6–9], injection current [13,14,26],
and second-order-harmonic generation (SHG) [9,27]—are of
great current interest for a wide variety of systems. These
convenient formulas [5], together with putative dangers asso-
ciated with the velocity gauge when truncating the number of
bands, ensured the primacy of the length gauge.

Recent work [28–30] has re-examined the roots of the
problem, providing careful prescriptions for both gauges and
how to translate between them. It is now possible to use
either gauge correctly, depending on the problem at hand.
In this work, we focus primarily on the relatively underap-
preciated velocity gauge, developing a convenient Feynman
diagram prescription for calculating nonlinear responses. As
noted above, diagrammatic methods have a long history in
the subject. The formulation here, however, has several key
differences from previous work to implement the correct form
of the electromagnetic interaction and fully account for the
effects of the Berry connection. Our goal is to show that any
second- or third-order optical response can be calculated from
diagrams in only a few lines. Two practical advantages of
the resulting velocity-gauge expressions is that the resonance
structure is manifest, immediately distinguishing one-, two-,
and three-photon terms, and the expressions can be directly
implemented in tight-binding models without the need for
sum rules.

One motivation for this work is providing tools to better
understand optical responses. A large body of recent work
has followed the theme of studying optical responses in sit-
uations where they become particularly simple: semiclassics
and Weyl semimetals. In semiclassics, the limit of a single
band where ω → 0, optical responses can be understood from
the semiclassical equations of motion (EOM) that describe
wave packets of Bloch electrons. Berry curvature gives an
additional contribution to these equations of motion called the
anomalous velocity, which leads to the Hall conductivity in
linear response [31]. At second order, the anomalous velocity
is responsible for the circular photogalvanic effect (CPGE)
and nonlinear Kerr rotation that is proportional to the dipole
of Berry curvature [10–12].

The next-to-simplest situation is that of two-band models,
where interband responses give rise to resonances. Perhaps
the most intriguing two-band models are those for Weyl
semimetals. These materials support three-dimensional gap-
less points called Weyl nodes that are sources and sinks of
Berry curvature [32,33]. Simple tight-binding models often
suffice to describe their properties. However, the fact that the
Fermi surface vanishes at the Weyl nodes puts them firmly
beyond the semiclassical regime. Because of their nontrivial
Berry curvature structure, Weyl semimetals host a variety
of nontrivial linear responses, including the chiral magnetic
effect [34,35] and gyrotropic magnetic effect [36,37]. As one
might expect, there is an even richer set of nonlinear optical
responses due to the Berry curvature [13,14,27]. These effects
can be realized, for instance, in the monopnictide TaAs,
a Weyl semimetal with inversion breaking [38,39]. Recent
optical experiments on TaAs revealed that TaAs shows CPGE
responses closely tied to its Weyl node structure [16] and giant
SHG, with the largest χ (2) of any known material [15,17].

Below we connect the Feynman diagram formulation of
optical response to both semiclassics and Weyl semimetals.
In the semiclassical limit, we show that, with particular sym-
metries, the largest term in the third-order response has a
topological origin as the quadrupole of the Berry curvature.
We also examine the third-order-harmonic response of a Weyl
semimetal. We find that the off-diagonal component σ zxxx has
large two-photon and three-photon resonances with peculiar
linear profiles due to the Weyl cones.

The remainder of this paper is organized as follows.
Section II introduces notation and the Feynman rules.
Sections III–V derive nonlinear optical responses through
third order using Feynman diagrams and provide some physi-
cally interesting limits. Section VI considers the semiclassical
limit, its relation to the length gauge, and some topological
considerations at third order. Section VII presents a numerical
example of a Weyl semimetal and, lastly, Sec. VIII concludes
with some heuristic rules for choosing a gauge, and other
comments.

II. SETUP AND FEYNMAN RULES

We will work in a band theory picture of noninteracting
electrons for simplicity, though most of the considerations
involved carry over to Fermi liquid theory. We first recall some
key definitions to set notation, then discuss perturbation the-
ory in an external electric field for velocity gauge, and derive
the Feynman rules. We also comment on the assumptions and
caveats of the frameworks.

A. Band theory and notation

Consider a crystalline material in d dimensions described
by band theory. The second-quantized Hamiltonian is then

Ĥ0 =
∑
a∈Z

∫
[dk] εa (k)c†kacka, (3)

where
∫

[dk] = (2π )−d
∫

dd k indicates the properly normal-
ized integral over the d-dimensional first Brillouin zone, the
sum runs over all bands, and the c† and c’s are single-particle
fermion creation and annihilation operators, satisfying the
usual anticommutation relations

{cka, c
†
k′b} = (2π )dδabδ(k − k′). (4)

(Latin indices a, b, c, d are used to label bands henceforth.)
We assume that the crystal is infinite in extent, without
boundary.

Because the Hamiltonian (3) involves only a single raising
and lowering operator, Fermion number is a symmetry of
the system. We may thus write all observables in terms of
the single-particle wave functions. As usual, Bloch’s theorem
says the single-electron wave functions may be written as

ψka (r ) = 〈0|�̂(r )c†ka|0〉 = eik·ruka (r ), a ∈ Z, k ∈ BZ,

(5)
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where �̂(r ) annihilates an electron at r , and the u’s are
periodic functions on the unit cell.1 The u’s are eigenfunctions
of the k-dependent Hamiltonian Ĥ0(k) = e−ik·rĤ0e

ik·r :

Ĥ0(k) uka (r ) = εka
uka (r ). (6)

Despite our assumption of independent electrons, we work in
a fully many-body framework. This is necessary to implement
Feynman diagrams but also, as discussed below, makes the
generalization to the interacting case transparent.

B. Electromagnetic interactions

Suppose there is an external electric field which we treat
classically. We adopt the velocity gauge with the minimal
coupling Hamiltonian (2). To capture nonlinear responses, we
expand in powers of the vector potential in a Taylor series.
This is, however, not as straightforward as it might naively
seem because one must carefully consider what notion of
derivative should be employed in the series. The answer is
that one should use the (Berry) covariant derivative D̂ when
working in k space. The derivation of this fact and the defin-
tion of the covariant derivative are reviewed in Appendix A.
Appendix A shows that the covariant derivative D̂ is related
to the single-electron position operator via r̂ = i D̂ and that it
acts naturally on operators via

D̂[Ô] = [ D̂, Ô], (7)

where the commutator has matrix elements

[D̂μ, Ô]ab = ∂Oab

∂kμ
− i[Aα, Ô]ab, (8)

where A is the Berry connection whose matrix elements are
Aab = i〈uka|∂kukb〉. Note that the covariant derivative of an
operator is not the derivative of its matrix elements.

In terms of the covariant derivatives, the Hamiltonian can
be written as a Taylor series in terms of the electric field as

ĤA = Ĥ0 + V̂E (t ) = Ĥ0 +
∞∑

n=1

1

n!

[
n∏

k=1

e

h̄
Aαk D̂αk

]
Ĥ0, (9)

where αk ∈ {x, y, z} is a spatial index with an implicit sum,
and D̂ is the (Berry) covariant derivative. (Greek indices
μ, α, β, . . . will always represent spatial indices with an
implicit summation henceforth.)

Equation (7) can be used to write the velocity operator of
the unperturbed Hamiltonian as

v̂ = [ D̂,H0] = −i [̂r, Ĥ0]. (10)

For convenience, we define higher derivatives of the unper-
turbed Hamiltonian by

ĥα1...αN = D̂α1 · · · D̂αN [Ĥ0]. (11)

1We note that the Bloch wave functions are not necessarily periodic
in k. In fact, the natural gauge choice is given by the convention
uk+Ga (r ) = e−iG·ruka (r ). This gauge choice should be adopted when
trying to compute polarization and related quantities in tight-binding
models.

The perturbation due to the external field can then be
written as

V̂E (t ) = e

h̄
Aα (t )̂hα + 1

2

( e

h̄

)2
Aα (t )Aβ (t )̂hαβ + · · · . (12)

By Fourier transforming and using E(ω) = iωA(ω), we have

V̂E (t ) =
∞∑

n=1

1

n!

n∏
k=1

∫
dωke

−iωkt

(
ie

h̄ωk

)
Eαk (ωk )̂hα1...αn .

(13)

It is essential that—in the velocity gauge—a seemingly new
perturbation appears at each order in the electric field. Physi-
cally, the nth term corresponds to the simultaneous interaction
of N photons with an electron.

The electromagnetic response of a crystal is characterized
by the conductivity tensors. Incident electric fields produce
a current, giving rise to a nonzero expectation of the current
operator. The conductivity tensors are defined as the coeffi-
cients in an expansion of the current in powers of the external
field:

〈Ĵ μ〉(ω) =
∫

dω1 σμα (ω; ω1)Eα (ω1) (14)

+
∫

dω1dω2 σμαβ (ω; ω1, ω2)

×Eα (ω1)Eα (ω2) + · · ·, (15)

where the first argument of the conductivity tensor σ is the
“output” frequency ω and the others (ω1, ω2, . . . ) are the
frequencies of the incident light.

C. Feynman rules

The task in front of us is to compute the conductivity
tensors from the Hamiltonian Ĥ0. This is an ideal task for
perturbation theory, as we start with a free fermion system
and have a perturbation naturally stratified in powers of the
external field. In the literature, the current operator has com-
monly been computed with a density matrix formalism in
the single-particle picture [3,5]. However, we shall adopt a
path-integral and Feynman diagram approach that is shorter
and more physically transparent. The two approaches are, of
course, equivalent.

Formally, the partition function of the perturbed system
may be written as a path integral

Z[E] =
∫

Dc†Dc exp

(
−i

∫
dt HA(t )

)
,

HA(t ) =
∫

[dk] c
†
k (t )H0ck (t ) + c

†
k (t )VE (t )ck (t ).

(16)

The expectation of the current is then

〈Ĵ μ〉(t ) = 1

Z
Tr

[
T ev̂

μ

E (t ) e−i
∫

Ĥ (t ′ ) dt ′]
= 1

Z

∫
Dc†Dc

[
ev

μ

E (t )
]

exp

(
−i

∫
dt ′HA(t ′)

)
,

(17)
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where T represents time ordering of operators. Here v̂E is
the velocity operator in the perturbed system—which itself
depends on the electric field:

v̂
μ

E (t ) = D̂μ[Ĥ0 + V̂E (t )]

=
∞∑

n=0

1

n!

n∏
k=1

∫
dωke

iωkt

(
e

h̄ωk

)
Eαk (ωk )̂hμα1···αn .

(18)

In terms of functional derivatives, the conductivities are then
given by

σμα1...αn (ω; ωk ) =
∫

dt

2π
eiωt

n∏
k=1

∫
dtk

2π

× eiωktk
δ

δEα
k (tk )

〈Ĵ μ〉(t )|E=0. (19)

As a brief technical aside, one would usually take func-
tional derivatives in the frequency domain, but due to the
explicit time dependence in the Hamiltonian, it is neces-
sary to compute first in the time domain and then Fourier
transform.

Considering the form of (17), we are performing a dual
expansion in E, as both the exponent and the velocity operator
depend on the electric field. As is usual in quantum field
theory, the effect of the functional derivatives in (19) turns
out to be purely combinatorial and can be entirely captured
in terms of Feynman diagrams. The only wrinkle is that,
since we are computing a nonstandard type of current, there
is an extra vertex corresponding to the “output” velocity
operator.

Explicitly, the value of the N th nonlinear conductivity can
be computed by drawing all connected diagrams such that the
following conditions are met:

(1) There are N + 1 external photons.
(2) All electrons are internal and compose one loop.
(3) Exactly one vertex is crossed to indicate the output

current Ĵ μ; all other vertices are dotted.
(4) Diagrams are symmetrized over all incoming photons

(αk, ωk ). The factors on the vertices in Table I are chosen to
avoid double-counting.

(5) The value of edges and vertices are given in Table I.
This procedure is slightly different from what is common

in particle physics and thus merits some explanation. First,
since c � vF , the Fermi velocity, a negligible amount of mo-
mentum is exchanged through interactions. We thus consider
only energy conservation at each vertex. Second, we assume
electrons are bound to the solid, so only photons may be ex-
ternal. Third, since electrons must return to their equilibrium
positions after a perturbation and are noninteracting, only
diagrams with exactly one fermion loop are permitted. Fourth,
we treat the photon as a classical background field without
dynamics, whose propagator is unity. However, the electron
propagator is the usual one for free fermions,

Gka (ω) = 1

ω − εa (k)
, (20)

TABLE I. The Feynman rules for nonlinear electromagnetic
perturbations in a crystal. Following the pattern, a new vertex with
N incoming photons will appear at N th order. Energy must be
integrated around each internal loop and conserved at each vertex.
The output vertex can appear with any number of photons and gains
a power of ie(kh̄ωk )−1 for each additional external photon.

Component Diagram Value

(Classical) Photon
propagator

1

Electron propagator Ga (ω)

One-photon input
vertex

ie

h̄ω1
hα

ab

Two-photon input
vertex

2∏
k=1

( ie

kh̄ωk
)hαβ

ab

Three-photon input
vertex

3∏
k=1

( ie

kh̄ωk
)hαβγ

ab

One-photon output
vertex

eh
μ

ab

where the k index is suppressed below for notational conve-
nience. We will see below that, in practice, photons may never
cross the inside of a fermion loop.

This method is simple to apply in practice. Unlike many
diagrammatic methods, this method involves no divergences
beyond simple poles and does not require regularization. The
computation of the first-, second-, and third-order responses
are no more than a few lines. The only nontrivial part con-
sists of one new contour integral at each order, which are
performed for the reader’s convenience in Appendix B.

D. Assumptions and caveats

Though the method of Feynman diagrams outlined here
is convenient, it is important to recognize the assumptions
that went into it and thus determine its range of validity.
The use of the velocity gauge is associated with several
problems: spurious divergences and inaccurate approxima-
tions. The conductivities computed in velocity gauge are
apparently divergent with σ (N ) ∼ 1

ωN . These divergences are
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spurious, but eliminating them requires the use of sum rules.
These sum rules are now understood as identities needed to
convert from velocity to length gauges (see the Appendix
of Ref. [28]). However, they are still inconvenient to apply
beyond first order, so when taking the ω → 0 limit, it is best
to work in the length gauge. This is carried out carefully in
Sec. VI.

The velocity gauge has often been considered badly be-
haved under approximations. When materials are modeled by
effective Hamiltonians focusing on a few bands close to the
Fermi level (such as two-band models for Dirac semimetals),
then effective optical responses calculated in the length gauge
are generally accurate, while those in the velocity gauge can
suffer from corrections the same size as the response, render-
ing them practically useless. It was shown in Ref. [29] that
this inaccuracy only arises with models where the effective
Hamiltonian is not defined on the full Brillouin zone, ruining
periodicity, or from the application of incorrect sum rules. In
practice, this prevents some two-band models of topological
materials from being studied with velocity gauge. However, if
enough care is taken in defining the model, there is no reason
the velocity gauge cannot be used.

One should also take care with dynamical effects. We have
taken a perturbative approach to what is actually a nonequilib-
rium problem. The currents described here are only the initial
current created after an incident pulse of light. In practice,
other dynamical effects may come into play before those
currents can be observed, corrupting or distorting the current.
For instance, a strong laser field could create a population
of excitons whose recombination interferes with the motion
of electrons. This type of issue makes it difficult to ob-
serve phenomena which manifest as electrical currents rather
than optical responses, such as the shift current. We should
note, however, that the perturbation theory with equilibrium
Green’s functions accurately describe the nonlinear conduc-
tivities, since they are obtained as finite order perturbation
in the external electric field E(ω) with respect to the equi-
librium state. Namely, one could say that our diagrammatic
approach generalizes the Kubo formula for linear response.
Normally, the Kubo formula relates the linear conductivity
to the current-current correlation function 〈J J〉. Nonlinear
conductivity generalizes this to the setting where the input and
output current are different operators, so we are effectively
computing correlators of the form 〈J ( J J J )〉 (at the third
order).

A brief comment on the effect of scattering is also in order.
In a real material, impurities, photons, and other effects will
perturb the free fermion band structure. If these effects are
sufficiently weak, as is often the case, one can simply replace

the electron propagator with a dressed version,

Ga (ω) = 1

ω − εa

→ 1

ω − εa + i�a (ω)
, (21)

where �a is the self-energy of the electron and is calculable
within Fermi liquid theory. In practice, it is usually unnec-
essary to understand the full frequency dependence of the
self-energy. The phenomenological approximation i�(ω) =
iγ → i0+ is therefore often made. All the above calculations
can be carried out with this phenomenological scattering
factor included by slightly moving the poles, i.e., simply
substituting ω1 → ω1 + iγ , etc. One should note that for
two-photon poles, the scattering factor contributes twice, so

1

ω1 + ω2 − ε
→ 1

ω1 + ω2 − ε − 2iγ
. (22)

It was pointed out in Ref. [29] that this factor of 2 can
actually have a significant effect on the shape of resonances,
especially at low frequency, and is therefore crucial when
making experimental predictions.

This procedure is essentially the same as incorporating
interactions into the model. In principle, the technique de-
veloped here works in the fully interacting case, once the
propagator and velocity operator are appropriately modified.
However, performing this analytically requires either weak
interactions (i.e., a Fermi liquid) or a quadratic Hamiltonian,
such as in a mean-field approximation. The BCS model of
superconductivity falls into the latter category, and nonlinear
responses of superconductors will be the topic of future work.

Equipped with the Feynman rules, it is straightforward
to compute the nonlinear conductivity tensors at any order.
At first order, there are two diagrams, four at second or-
der, and eight at third order. Each corresponds to a unique
physical process that contributes independently to the overall
response.

III. FIRST-ORDER CONDUCTIVITY

As a pedagogical demonstration of our framework, we red-
erive the first-order conductivity. Using the rules, the answer
is almost immediate. As an additional confirmation, however,
we offer a complementary derivation starting from the defini-
tion of the conductivity. One can see this as a derivation of the
Feynman rules at first order.

A. Derivation from diagrams

There are two Feynman diagrams at first order:

σμα (ω; ω1) =

= ie2

h̄ω1

∑
a,b

∫
[dk]

∫
dω′ hα

abGb(ω′ + ω1)hμ

baGa (ω′) + ie2

h̄ω1

∑
a

∫
[dk]

∫
dω′ hμα

aa Ga (ω′). (23)
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The frequency integrals are performed with standard tech-
niques (see Appendix B) to find

I1 =
∫

dω′Ga (ω′) = fa, (24)

I2(ω1) =
∫

dω′Gb(ω′ + ω1)Ga (ω′) = fab

ω1 − εab

, (25)

where fa = f (εka ) is the Fermi factor and fab = fa − fb,
εab = εa − εb are differences of Fermi factors and energies
respectively. Therefore, the conductivity is

σμα (ω; ω) = ie2

h̄ω

∑
a 
=b

∫
[dk]fah

μα
aa + hα

abh
μ

bafab

ω − εab

. (26)

(The sum over band indices is only performed over the indices
appearing in each term; the first term is summed over a while
the second is summed over both a and b. This notational
abbreviation is used from now on.)

To connect this to familiar results, we convert to the length
gauge and consider the ω → 0 limit, expressing all matrix
elements in terms of the velocity matrix elements, v

μ

ab = h
μ

ab.
Using the identity

h
μα

ab = [Dα, vμ]ab = ∂αv
μ

ab − i[Aα, vμ]ab (27)

and the fact v
μ

ab = −iεbaA
μ

ab, the conductivity becomes

σμα (ω; ω) = ie2

h̄ω

∑
a,b

∫
[dk]fa∂

αvμ
aa

+ fabv
α
abv

μ

ba

(
1

εba

− 1

ω − εab

)
. (28)

Combining the term in parentheses into a single fraction
eliminates the spurious divergence:

σμα (ω,ω) = ie2

h̄

∑
a,b

fa∂
αv

μ
aa

ω
+ fabv

α
abv

μ

ba

(ω − εab )εba

. (29)

This is the standard result in the length gauge [5].
In the ω → 0 limit, the second term becomes

fabv
α
abv

μ

ba/(ε2
ba ) + O(ω2) = faFμα

aa + O(ω2), the Berry
curvature. We then have

lim
ω→0

σμα (ω; ω) = ie2

h̄

∑
a

∫
[dk]

−∂αfav
μ
aa

ω − iγ
+ faFμα

aa .

(30)

The first term corresponds to the Drude weight, and the second
term is responsible for the Hall conductivity. This formula
matches what is derived from semiclassics in a Boltzmann
equation approach, which is examined in Sec. VI.

B. Derivation of the diagrams

We now give an alternative derivation of Eq. (23) from the
definition of the current operator. This is essentially equivalent
to a derivation of the Feynman rules and may be skipped by
a reader already convinced of their validity. We start from the
time-domain conductivity

σμα (t ; t1) = δ

δEα (t1)
〈Ĵ μ〉(t )|E=0. (31)

We must therefore evaluate the expectation value of

δv̂
μ

E (t )

δEα (t1)
− v̂

μ

E (t )
δ

δEα (t1)

∫
dt ′ Ĥ (t ′) (32)

at E = 0. Writing Ĥ (t ′) = Ĥ0 + V̂E (t ′), and using (13), the
second term requires the derivative

δ

δEα (t1)
V̂E (t ) = ie

h̄

∫
dω1

e−iω1(t−t1 )

ω1

×
∞∑

n=0

1

n!

n∏
k=1

∫
dωke

−iωktEαk ĥαα1...αn

= ie

h̄

∫
dω1

e−iω1(t−t1 )

ω1
ĥα + O(E). (33)

Starting from (18) for the first term of (32), one computes

δ

δEα (t1)
v̂

μ

E (t ) = ie

h̄

∫
dω1

e−iω1(t−t1 )

ω1

×
∞∑

n=0

1

n!

n∏
k=1

∫
dωke

−iωktEαk ĥμαα1...αn (t )

= ie

h̄

∫
dω1

e−iω1(t−t1 )

ω1
ĥμα (t ) + O(E). (34)

Hence, the conductivity is

σμα (t ; t1) = −e

∫
dt ′

ie

h̄

∫
dω1

e−iω1(t ′−t1 )

ω1
〈̂hμ(t )̂hα (t ′)〉

+ e
ie

h̄

∫
dω1

e−iω1(t−t1 )

ω1
〈̂hμα (t )〉, (35)

where brackets denote expectations with respect to the unper-
turbed Hamiltonian.

To proceed, we must evaluate the expectation values in
terms of the electron propagator

〈c†ka (t )ckb(t ′)〉 = δab

∫
dω eiω(t−t ′ )Gka (ω). (36)

Hence,

〈̂hμα (t )〉 =
∑
a,b

∫
[dk]

〈
c
†
ka (t )hμα

ab ckb(t )
〉

(37)

=
∑

a

∫
[dk] hμα

aa

∫
dω Gka (ω) (38)

and, applying Wick’s theorem,

〈̂hμ(t )̂hα (t ′)〉

=
∑

a,b,c,d

∫
[dk]

〈
c
†
ka (t )hμ

abckb(t )c†kc(t ′)hα
cdckd (t ′)

〉
=

∑
a,b

∫
[dk]hμ

baGka (t − t ′)hα
abGkb(t ′ − t )

= −
∑
a,b

∫
[dk]

∫
dω′′e−iω′′(t1−t ′ )

∫
dω′e−iω′(t ′−t1 )

× h
μ

baGka (ω′′)hα
abGkb(ω′). (39)

045121-6



DIAGRAMMATIC APPROACH TO NONLINEAR OPTICAL … PHYSICAL REVIEW B 99, 045121 (2019)

In the last step, we dropped terms corresponding to discon-
nected diagrams, which contribute zero in expectation.

We have now reduced everything to the propagators
and matrix elements of derivatives of the Hamiltonian—the

elements present in the Feynman rules. The last step is to
Fourier transform the conductivity to frequency-space to elim-
inate exponential factors. Thus,

σμα (ω; ω1) =
∫

dt

2π
eiωt

∫
dt ′

2π
eiω1t1

ie2

h̄

[∫
dω1

e−iω1(t−t1 )

ω − 1
〈̂hμα (t )〉 −

∫
dt ′

∫
dω1

e−iω1(t ′−t1 )

ω1
〈̂hμ(t )̂hα (t ′)〉

]

= ie2

h̄ω

∑
a,b

∫
[dk]

[∫
dω′ hμα

aa Ga (ω′) +
∫

dω′ hα
abGa (ω′)hμ

baGb(ω′ − ω1)

]
δ(ω − ω1), (40)

where in the first step all the t integrals have been performed
to create δ functions in frequency, eliminating t, t ′, ω′, and
ω′′ and ω1 → ω′ in the second step. This precisely matches
(23), which was obtained immediately by Feynman diagrams.
The diagrams serve to eliminate the tedious steps of collapsing
Fourier transforms into δ functions, thereby greatly streamlin-
ing calculations.

IV. SECOND-ORDER RESPONSE

We now turn to the second-order response and demon-
strate the second-order conductivity is concisely reproduced
by the diagramatic formalism. There are four diagrams that
contribute:

σμαβ (ω; ω1, ω2) =

+

+ +

+ [(α,ω1) ↔ (β, ω2)]

= e

(
ie

h̄ω1

)(
ie

2h̄ω2

) ∑
a

∫
[dk]

∫
dω′Ga (ω′)hμαβ

aa

+ −e3

h̄2ω1ω2

∑
a,b

∫
[dk]

∫
dω′Ga (ω′)hα

abGb(ω′ + ω1)hμβ

ba

+ −e3

2h̄2ω1ω2

∑
a,b

∫
[dk]

∫
dω′Ga (ω′)hαβ

abGb(ω′ + ω12)hμ

ba

+ −e3

h̄2ω1ω2

∑
a,b,c

∫
[dk]

∫
dω′Ga (ω′)hα

abGb(ω′ + ω1)hβ

bc

× Gc(ω′ + ω12)hμ
ca + [(α,ω1) ↔ (β, ω2)]. (41)

There is an overall constraint ω = ω12 ≡ ω1 + ω2.
The frequency integrals, which are called I1, I2, and I3,

are performed in Appendix B. Indeed, only the triangle dia-
gram contributes a new integral, I3, computed in (B24); the
others appeared at first order. The most convenient form of

I3 depends on the situation. For instance, one can use partial
fractions to split each term into separate resonances. However,
for now we adopt a more compact representation with a triple
resonance:

I3(ω1, ω2) = (ω2 − εcb )fab + (ω1 − εba )fcb

(ω1 − εba )(ω2 − εcb )(ω − εca )
. (42)

We thus arrive at a formula for the second-order conductivity

σμαβ (ω; ω1, ω2)

= −e3

h̄2ω1ω2

∑
a,b,c

∫
[dk]

1

2
fah

μαβ
aa + fab

hα
abh

μβ

ba

ω1 − εab

+ fab

1
2h

αβ

ab h
μ

ba

ω − εab

+hα
abh

β

bch
μ
ca

(ω2 − εcb )fab + (ω1 − εba )fcb

(ω1 − εba )(ω2 − εcb )(ω − εca )

+ [(α,ω1) ↔ (β, ω2)] (43)

As above, the sum over bands a, b, c should only be em-
ployed when necessary. For instance, the term fah

μαβ
aa is only

summed over a, and not b, c.
Let us pause for a moment to interpret the structure of

this formula. Each term is a product of a matrix-element
part and a resonance part from one of the integrals I1, I2

or I3. This natural separation allows us to easily consider
various physical limits, wherein the resonance structure
simplifies but the matrix elements remain unchanged. The
terms are arranged by powers of ω. The first term corresponds
to the derivative of the Drude weight, the “Drude weight
dipole.” The second and third terms are one- and two-photon
resonances respectively, which are large when two bands
are separated by energies of ω1 or ω1 + ω2. The last term,
corresponding to the triangle diagram, is more complex.
We will see below that it is still the sum of one-photon and
two-photon resonances.2 Also note that there is an overall
pole (ω1ω2)−1. Except for the first term, the resonance
factors can be used to eliminate this apparent divergence. The
exception is in the ω → 0 limit, which contains a physical
divergence. Section VI considers this point carefully.

To provide convenient equations for important limits, as
well as to gain a better understanding of the resonance

2However, this term is familiar from atomic physics: The second-
order response of a molecular system has the same form as this last
term, but without the Brillouin zone integral. Of course, the meaning
of the matrix elements is different in that situation.
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structure, we next examine two limits: second-order-harmonic
generation and the shift current. Again, this merely amounts
to taking the limit of the resonance integrals I2 and I3, and
other limits can be carried out with comparable ease.

A. Second-order-harmonic generation

The second-order-harmonic response is generated by both
one-photon and two-photon resonances. That is, if the incident
light is at frequency ω, then there will be a second-order
response at both ω and 2ω. One-photon resonances come from
the second and fourth diagrams in (41), while two-photon
resonances are due to the third and fourth diagrams. The first
diagram only contributes resonantly near ω = 0. To capture
these resonances carefully, we use an alternative form for the
integral I3 which makes them manifest.

Defining ρ1 = ω1/ω, ρ2 = ω2/ω. We may apply the par-
tial fraction identity

1

(A − ω1)(B − ω2)

= 1

(A − ρ1B )(B − ω2)
− ρ1

(A − ρ1B )(A − ω1)
(44)

to write

I3(ω1, ω2)

= 1

ρ1εcb + ρ2εab

[
fac

ω − εca

+ ρ2fbc

ω2 − εab

+ ρ1fba

ω1 − εba

]
.

(45)

Here, the first-term is a resonance due to absorbing both
photons simultaneously, while the latter two are resonances
in ω1 or ω2 only. So far, this is general, and can be used in
(43) in place of (42). In the case of second-order-harmonic
generation, we take ω1 = ω2 = ω, so ρ1 = ρ2 = 1

2 . After
several cancellations,

I3(ω,ω) = 1

εab + εcb

[
2fac

2ω − εca

+ fbc

ω − εcb

+ fba

ω − εba

]
.

(46)

Starting from the general equation (43), using I3(ω,ω),
and writing out the frequency symmetrization, (α,ω) ↔
(β, ω) yields

σμαβ (2ω; ω,ω) = − e3

2h̄2ω2

∑
a,b,c

∫
[dk] fah

μαβ
aa

+ fab

hα
abh

μβ

ba + h
β

abh
μα

ba

ω − εab

+ fab

h
αβ

ab h
μ

ba

2ω − εab

+
(
hα

abh
β

bc + hα
abh

β

bc

)
h

μ
ca

εab + εcb

×
[

2fac

2ω − εca

+ fbc

ω − εcb

+ fba

ω − εba

]
.

(47)

This result is equivalent to velocity-gauge formulas for the
second-order-harmonic present in the literature [27,29] but did
not involve any sum rules.

B. Shift current

Another interesting limit to consider is the so-called shift
current, σμαβ (0; ω,−ω). It can be thought of as the “solar
panel” response where incident light generates a dc current
and has been of recent interest in the context of two-band
systems where it has a particularly simple form [9].

As with the second harmonic, the only real task is to
determine what happens to the pole structure. Starting from
(45), one finds

I3(ω,−ω) = 1

εac

[
fab

(ω − εba )
− fcb

(ω − εbc )

]
. (48)

Then, symmetrizing explicitly, for the case of prime interest
α = β

σμαα (0; ω,−ω) = e3

h̄2ω2

∑
a,b,c

∫
[dk] fah

μαα
aa + fab

hα
abh

μα

ba

ω − εab

+ fab

hα
abh

μα

ba

−ω − εab

+ fab

hαα
ab h

μ

ba

εba

+ hα
abh

α
bch

μ
ca

εac

[
fab

(ω−εba )
− fcb

(ω − εbc )

]

+ hα
abh

α
bch

μ
ca

εac

[
fab

(−ω−εba )
− fcb

(−ω − εbc )

]
.

(49)

This result agrees with known expressions for the shift cur-
rent found in the literature. One can easily check this reduces
to the correct two-band limit that has been studied in previous
work [9]. It is worth contrasting this result to the alternative
(but equivalent) length-gauge results in, e.g., Ref. [5]. The
results there involve a maximum of two bands in each term,
whereas here there are three band terms. Converting between
the two gauges requires the use of sum rules, which exchange
some intraband matrix elements with interband ones, and
visa versa. Specifically, one can convert to the shift current
formula in Ref. [5] by focusing on the interband resonance
from the band a to b, where we collect terms involving fab

(ω−εba )

after switching indices a ↔ c in the term fcb

(ω−εbc ) and use the
second-order sum rule in Eq. (13) of Ref. [8]. Moreover, since
the conductivity does not depend on the choice of gauge,
one may conclude that saying a particular term involves a
certain number of bands is gauge-dependent information and
therefore not necessarily physical. This demonstrates Eq. (49)
is equivalent to previously known expressions for the shift
current in the literature.

The injection current is a second-order process that de-
scribes a current whose magnitude grows linearly in time as
the sample is illuminated. This process is manifest in Ref. [5]
as a term with an overall 1/δω divergence in the nonlinear
conductivity σ (δω; ω + δω,−ω). In our framework, the naive
limit of Eq. (49) does not contain this divergence, but it can
be recovered by considering the limit δω → 0 of σ (δω; ω +
δω,−ω) in Eq. (43). Specifically, the last two terms in
Eq. (49) are related to the injection current since the factor
1/εac is divergent for a = c which is cutoff by introducing a
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small δω. The subtle limit δω → 0, particularly in the case
α 
= β, will be the subject of future work.

V. THIRD-ORDER RESPONSE

It is at third order that the diagrammatic method espoused
here becomes the most useful. Unlike at second order, the
third-order response is generically allowed by symmetry and
expected to be present to some degree in all materials. Third-
order optical responses are relatively unstudied, especially
in the case of nonzero Berry connection. Understanding this

area is our main focus in this paper. Using our diagrammatic
formalism, we derive expressions for the third-order response
where each term is associated with an individual process.
This allows them to be split into manifestly one-photon, two-
photon, and three-photons parts, so that the origin of each
resonance is clear. We then examine the limits of third-order-
harmonic generation and self-focusing of light. In subsequent
sections, we begin to interpret these formulas in the one-band
(semiclassical) and two-band (Weyl semimetal) limits.

There are eight diagrams that contribute at third order.

σμαβγ (ω; ω1, ω2, ω3) = (50)

(51)

(52)

= e

3!ω1ω2ω3

(
ie

h̄

)3 ∑
a

∫
[dk]

∫
dω′ Ga (ω′)hμαβγ

aa (53)

+ e

2!ω1ω2ω3

(
ie

h̄

)3 ∑
a,b

∫
[dk]

∫
dω′ Ga (ω′)hα

abGb(ω′ + ω1)hμβγ

ba (54)

+ e

2!ω1ω2ω3

(
ie

h̄

)3 ∑
a,b

∫
[dk]

∫
dω′ Ga (ω′)hαβ

abGb(ω′ + ω12)hμγ

ba (55)

+ e

3!ω1ω2ω3

(
ie

h̄

)3 ∑
a,b

∫
[dk]

∫
dω′ Ga (ω′)hαβγ

ab Ga (ω′ + ω123)hμ

ba (56)

+ e

ω1ω2ω3

(
ie

h̄

)3 ∑
a,b,c

∫
[dk]

∫
dω′ Ga (ω′)hα

abGb(ω′ + ω1)hβ

bcGc(ω′ + ω12)hμγ

bc (57)

+ e

2!ω1ω2ω3

(
ie

h̄

)3 ∑
a,b,c

∫
[dk]

∫
dω′ Ga (ω′)hα

abGa (ω′ + ω1)hβγ

bc Gc(ω′ + ω123)hμ
ca (58)

+ e

2!ω1ω2ω3

(
ie

h̄

)3 ∑
a,b,c

∫
[dk]

∫
dω′ Ga (ω′)hαβ

abGa (ω′ + ω12)hγ

bcGc(ω′ + ω123)hμ
ca (59)

+ e

ω1ω2ω3

(
ie

h̄

)3 ∑
a,b,c,d

∫
[dk]

∫
dω′ Ga (ω′)hα

abGb(ω′ + ω1)hβ

bcGc(ω′ + ω12)hγ

cdGd (ω′ + ω123)hμ

da (60)

The ω′ integrals are evaluated in Appendix B. For concision, however, we shall leave the expression in terms of I3 and I4. We
must also symmetrize under all possible combinations of incoming photons, which amounts to the six permutations of (α, ω1),
(β, ω2), and (γ, ω3). We will denote this permutation symmetry by 1

3!S3. The full third-order nonlinear response is thus

σμαβγ (ω; ω1, ω2, ω3) = 1

3!
S3

−ie4

h̄3ω1ω2ω3

∑
a,b,c,d

∫
[dk]

1

6
fah

μαβγ
aa +

1
2fabh

α
abh

μβγ

ba

ω1 − εab

+
1
2fabh

αβ

ab h
μγ

ba

ω12 − εab

+
1
6fabh

αβγ

ab h
μ

ba

ω − εab

+ hα
abh

β

bch
μγ

bc I3(ω1, ω2) + 1

2
h

αβ

ab h
γ

bch
μ

bcI3(ω12, ω3) + 1

2
hα

abh
βγ

bc h
μ

bcI3(ω1, ω23)

+ hα
abh

β

bch
γ

cdh
μ

daI4(ω1, ω2, ω3). (61)
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A. Third-order-harmonic generation

One physical limit of interest is third-order-harmonic generation, when there is a single incoming frequency. There are many
simplifications in this case, giving rise to a relatively simple expression. In particular, the integral for the box diagram, I4, can
be separated into one-, two-, and three-photon resonances as

I4(ω,ω,ω) = fab

(ω − εba )(εab + εcb )(2εab + εdb )
+ fbc

(ω − εcb )(εab + εcb )(εbc + εdc )
+ fdc

(ω − εdc )(εcb + εcd )(2εdc + εac )

+ 4fdb

(2ω − εdb )(2εab + εdb )(εbc + εdc )
+ 4fca

(2ω − εca )(εcb + εab )(2εdc + εac )
+ 9fda

(3ω − εda )(2εab + εdb )(2εdc + εac )
.

(62)

We can similarly decompose the integrals for the triangle diagrams. The case I3(ω,ω) is given in Eq. (47). Similarly,

I3(ω, 2ω) = 1

2εab + εcb

[
3fac

3ω − εca

+ 2fcb

2ω − εcb

+ fba

ω − εba

]
, (63)

I3(2ω,ω) = 1

2εcb + εab

[
3fac

3ω − εca

+ 2fba

2ω − εba

+ fcb

ω − εcb

]
. (64)

Combining these and applying the permutation symmetry yields

σμαβγ (3ω; ω,ω,ω) (65)

= −ie4

h̄3ω3

∑
a,b,c,d

∫
[dk] fah

μαβγ
aa + fab

[
hα

abh
μβγ

ba + h
β

abh
μγα

ba + h
γ

abh
μαβ

ba

ω − εab

]
+ fab

[
h

αβ

ab h
μγ

ba + h
βγ

ab h
μβ

ba + h
γα

ab h
μα

ba

2ω − εab

]
(66)

+ [(
hα

abh
β

bc + h
β

abh
α
bc

)
hμγ

ca + (
h

β

abh
γ

bc + h
γ

abh
β

bc

)
hμβ

ca + (
h

γ

abh
α
bc + hα

abh
γ

bc

)
hμα

ca

]
I3(ω,ω) (67)

+ [
hα

abh
βγ

bc hμ
ca + h

β

abh
γα

bc hμ
ca + h

γ

abh
αβ

bc hμ
ca

]
[I3(ω, 2ω) + I3(−ω,−2ω)] (68)

+ [
hα

abh
β

bch
γ

cd + hα
abh

γ

bch
β

cd + h
β

abh
γ

bch
α
cd + h

β

abh
α
bch

γ

cd + h
γ

abh
α
bch

β

cd + h
γ

abh
β

bch
α
cd

]
h

μ

daI4(ω,ω,ω). (69)

B. Self-focusing

Another common third-order response is the self-focusing of light, which is the modification to the linear conductivitiy due
to nonlinear effects. For instance, the process wherein an excited electron absorbs photons of energy ω and then −ω,

(70)

can masquarade as the diagram for first-order conductivity from Eq. (23). To describe this effect, one can define the effective
conductivity, via 〈Jμ〉(ω) = σ

μα

eff (ω)Eα (ω), where

σ
μα

eff (ω) = σμα (ω) + σμαβγ (ω; ω,−ω,ω)Eβ (−ω)Eγ (ω) + O(E4). (71)

The third-order correction term, σμαβγ (ω; ω,−ω,ω), is also called the self-focusing effect.
In the self-focusing limit, the conductivity is a sum of resonances at 0ω, 1ω, and 2ω, corresponding to the sums and differences

of the incident frequencies. Unfortunately, the minus sign from the −ω photons lifts the permutation symmetry between the
various incident photons, creating a more complex resonance structure than in the third-order-harmonic case. It is convenient to
express the conductivity in terms of the following expressions:

I3(ω,−ω) = 1

εac

[
fab

ω − εba

+ fbc

ω − εbc

]
, I3(0, ω) = 1

εab

[
fac

ω − εca

+ fcb

ω − εcb

]
, I3(ω, 0) = 1

εbc

[
fab

ω − εba

+ fca

ω − εca

]
,

(72)
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and I3(ω,ω), which is given by (47). For the box diagram, one must also consider

4(−ω,ω,ω) = 1

εac(εab + εad )

[
fba

ω − εab

+ fad

ω − εda

]
+ 1

εac(εcb + εcd )

[
fcb

ω − εdc

+ fcd

ω − εdc

]
+ 4fdb

(2ω − εdb )(εbc + εdc )(εab + εad )
,

(73)

I4(ω,−ω,ω) = 1

εacεbd

[
fab

ω − εba

+ fbc

ω − εbc

+ fda

ω − εda

+ fcd

ω − εdc

]
, (74)

I4(ω,ω,−ω) = 1

εdb(εad + εac )

[
fcd

ω − εcd

+ fad

ω − εda

]
+ 1

εbd (εab + εac )

[
fba

ω − εba

+ fcb

ω − εcb

]
+ 4fac

(2ω − εca )(εab + εcb )(εadεcd )
.

(75)

Then, by applying the symmetrization over (α,ω), (β,−ω), (γ, ω), the self-focusing is

σμαβγ (ω; ω,−ω,ω) = ie4

3!h̄3ω3

∑
a,b,c,d

∫
[dk]fah

μαβγ
aa + fab

[
hα

abh
μβγ

ba

ω − εab

+ h
β

abh
μγα

ba

(−ω) + εab

+ h
γ

abh
μαβ

ba

ω − εab

]

+ fab

[
h

αβ

ab hμγ

0 − εab

+ h
βγ

ab h
μα

ba

0 − εab

+ h
γα

ab h
μβ

ba

2ω − εab

]
+ fab

h
αβγ

ab h
μ

ba

ω − εab

+ [(
hα

abh
β

bch
μγ
ca + h

γ

abh
β

bch
μα
ca

)
I3(ω,−ω)

+ (
h

β

abh
α
bch

μγ
ca + h

β

abh
γ

bch
μα
ca

)
I3(−ω,ω) + (

h
γ

abh
α
bch

μβ
ca + hα

abh
γ

bch
μβ
ca

)
I3(ω,ω)

]
+ [(

h
αβ

ab h
γ

bch
μ
ca + h

βγ

ab hα
bch

μ
ca

)
I3(0, ω) + h

γα

ab h
β

bch
μ
caI (2ω,−ω)

]
+ [(

hα
abh

βγ

bc hμ
ca + h

γ

abh
αβ

bc hμ
ca

)
I (ω, 0) + h

β

abh
γα

bc hμ
caI (−ω, 2ω)

]
+ [(

hα
abh

β

bch
γ

cd + h
γ

abh
β

bch
α
cd

)
h

μ

daI4(ω,−ω,ω) + (
h

β

abh
γ

bch
α
cd + h

β

abh
α
bch

γ

cd

)
h

μ

daI4(−ω,ω,ω)

+ (
h

γ

abh
α
bch

β

cd + hα
abh

γ

bch
β

cd

)
h

μ

daI4(−ω,ω,ω)
]
. (76)

Note that there is an exact permutation symmetry α ↔ γ since the second and forth frequencies are both ω.

VI. SEMICLASSICAL LIMIT

This section carefully examines the semiclassical limit of
nonlinear optical responses. This crucial physical limit, where
on focusing on independent bands in the limit ω → 0, has
been the subject of much recent work, as described in the
introduction. The goal of this section is to carefully take
this limit. Per the discussion in Sec. II D, this is most easily
carried out in the length gauge. The alternative is to start from
the velocity gauge and apply many sum rules. However, the
source of these sum rules is expanding the change of gauge
which converts from velocity to length gauge [28], so it clear
that the length gauge is the natural physical setting for this
limit. We will start with a purely semiclassical derivation, then
show that this matches the results from the length gauge, and
lastly comment on the topological properties of the third-order
semiclassical conductivity.

A. Semiclassical derivation

We work with a single band and ignore interband contri-
butions. Recall that the equations for semiclassical electron
dynamics in an electric field (but no magnetic field) are
given by

h̄
d

dt
r = ∇kεk + eE × �(k),

h̄
d

dt
k = −eE,

where E = E(t ) is the applied electric field and � is the
standard vector representation for the Berry curvature in three
dimensions. In the notation of this paper, for a single band
a, �α

a = εαβγFβγ
aa , where ε is the Levi-Civita symbol, so

(E × �)μ = FμαEα .
We take a Boltzmann equation approach, writing the

charge and current density as, respectively,

ρ(t ) = −i

∫
[dk]f (t ), and J (t ) = −e

∫
[dk]

d r
dt

f (t ),

(77)

where f = f (t, k) is the distribution function of electrons and
is taken to be Fermi-Dirac distribution fFD in equilibrium. The
time evolution of f is given by the Boltzmann equation

dk
dt

· ∇kf + ∂tf = fFD − f

τ
(78)

for some relaxation time τ .
We take a monochromatic perturbation E(t ) = Eαeαeiωt .

Expanding f (t ) = ∑
K∈Z f (K )e−iωKt and equating terms of

the same order in (78), we have

−eE · ∇kf
(K ) + (−iKω)f (K+1) = − 1

τ
f (K+1). (79)
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With the initial condition f (0) = fFD, this gives an order-by-
order solution as

f (K+1) = −i

Kω + iγ
eE · ∇f (K ), (80)

where γ = 1/τ is a dissipation rate. The first-order current is
thus

Jμ(ω) = −e

∫
[dk] vμf (1) + FμαEαf (0), (81)

so, integrating by parts, the linear conductivity is

σμα (ω; ω) = e2

h̄

∫
[dk] fFD

(
−i

∂αvμ

ω + iγ
− Fμα

)
. (82)

One can check this exactly reproduces the fully quantum
equation for σμα , Eq. (30), for the case of a single band.

At higher orders, the semiclassical conductivities are es-
sentially the same, composed of “Drude-like” and “Berry-
curvature”-like terms:

σμαβ = e3
∫

[dk]fFD

(
∂β∂αvμ

(2ω̃)ω̃
− i

∂βFμα

ω̃

)
, (83)

σμαβγ = e4
∫

[dk]fFD

(
i

∂γ ∂β∂αvμ

(3ω̃)(2ω̃)ω̃
+ ∂γ ∂βFμα

(2ω̃)ω̃

)
, (84)

where ω̃ should be read as ω + iγ .
We will show that these equations reproduce the leading-

order divergences at ω → 0 for the quantum calculations of
the second- and third-order conductivities. However, the nu-
merous other terms in the quantum formulas are not captured
here because of their essential interband nature. It would be
interesting to examine a modified semiclassical picture involv-
ing interband corrections, which should be able to reproduce
more of the full response.

Under time-reversal symmetry, ∇k, v, F , and k all change
sign, so at second order only the derivative of the Berry
curvature survives, while at third order only the velocity term
remains. One can extrapolate the pattern in (84) to all orders
in semiclassics.

B. Length gauge

Let us now derive the semiclassical limit starting in the
length gauge formulation, (1). We adopt the standard density-
matrix approach pioneered by Sipe and Shkrebtii [5], defining
the single-particle reduced density matrix

ρkab(t ) = 〈c†ka (t )ckb(t )〉. (85)

Then the current is given by Jμ(t ) = e Tr [̂vμρ(t )], where
the trace is taken over the single-particle Hilbert space; i.e.,
it stands for the integral of the Brillouin zone and sum over
bands.

The time dependence of the density matrix in the interac-
tion picture is given by the Schwinger-Tomonaga equation

i
d

dt
ρ̂I (t ) = [ĤE,I (t ), ρ̂I (t )], (86)

where the subscript I indicates the interaction picture:
ÔI (t ) = U (t )†ÔU (t ) for U (t ) = e−itĤ0 . We can solve (86)

within the framework of perturbation theory by employing
Dyson series. Expand ρ̂ = ∑

K ρ̂ (K ) as a power series in
power of the electric field. We can then integrate (86) to find
an order-by-order solution

ρ̂ (K+1)(t ) = −i

∫ t

−∞
dτ

[
ĤE,I (τ ), ρ̂ (K )

I (τ )
]
. (87)

This also requires an initial condition ρ̂ (0) = δabfa , taken to be
the Fermi-Dirac distribution. We can now write a computable
expression for the current. At nth order, the current can be
written as a nested commutator

Jμ(t ) = e

n∏
k=1

∫ τk−1

−∞
dτk (ieEαk )

× Tr{[· · · [̂vμ, r̂α1 (τ1)] · · · , r̂αn (τn)]ρ̂0}, (88)

where τ−1 ≡ t . By rearranging commutators and Fourier
transforming, we can write the nth nonlinear conductivity as

σμα1...αn (ω; ω1, . . . , ωn)

= 1

n!
Sne

n∏
k=1

∫ τk−1

−∞
dτke

−iωkτk

× (ie) Tr{ρ̂0[̂rαn (τn), . . . , [̂rα1 (τ1), v̂μ] . . . ]}, (89)

where Sn symmetrizes over all incoming frequencies
{(αk, ωk ) : 1 � k � n}.

Our task is now to evaluate this commutator at leading
order in ω. This is done most expediently by using the relation
between the position operator and the covariant derivative
r̂ = i D̂, which is described in Appendix A. The form of
the commutators in (89) is almost the same as the covariant
derivative repeatedly acting on the velocity operator—but we
must account for the time dependence. The time-evolved op-
erator r̂ (t ) = U (t )† r̂ U (t ) is easily computed by noting that,
in the energy basis, U (t )ab = e−iεka (t )δab is a one-parameter
family of gauge transformations. Equation (A7) implies

i D̂(t ) = i∇ + A′(t ), A′(t ) = eiH0t Ae−iH0t + t∇H0,

(90)
where (∇Ĥ0)ab = δab∇kεa (k) is the regular gradient of the
matrix elements. In components, this implies the identity

[̂rα (τ ),O]ab = (
i∂α + τ�α

ab

)
Oab

+
∑

c

eiεactAα
acOcb − OacA

α
cbe

iεcbt , (91)

where we have defined �α
ab ≡ hα

aa − hα
bb = ∂αεab.

Employing (91) with Ô = v̂μ,

σμα (ω; ω) = ie2

h̄

∑
a,b

∫
[dk]fa

∫ 0

−∞
e−iωτ

× (
i∂αvμ + eiεabτAα

abv
μ

ba − eiεbaτ v
μ

abA
α
ba

)
.

(92)

As is customary when performing the time integral, a phe-
nomenological relaxation rate ω → ω + iγ is added so that∫ 0
−∞ dτ ei(ζ−ω−iγ )τ = i

ω+iγ−ζ
. Therefore, the linear conduc-
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tivity is

σμα (ω; ω) = ie2

h̄

∑
a 
=b

∫
[dk]fa

∂αvμ

ω + iγ
+ fab

Aα
abv

μ

ba

εab − ω − iγ
.

(93)

The first term reproduces the Drude formula, and the second
term is almost [Aα,Aμ]. This is equivalent to the expression
derived in the velocity gauge, Eq. (29). Under the limit ω �
εab, one arrives at (28), which matches the semiclassical result
(82) at linear order in E.

At nonlinear order, one must evaluate further nested com-
mutators. Since we are only interested in the ω → 0 limit,
we will limit ourselves to the leading-order terms. However,
this procedure can be easily continued to give expressions for
the general conductivity tensors in the length gauge; such a
calculation is carried out in Ref. [28]. At second order, we
consider the expression [̂rβ (τ2), [̂rα (τ1), v̂μ]]aa . Expanding,

[̂rβ (τ2), [̂rα (τ1), v̂μ]]aa

= i∂βi∂αvμ
aa + i∂β[Aα (τ1), vμ]aa

+ [Aβ (τ2), (rα (τ1)vμ)]aa

+ [Aβ (τ2), [Aα (τ1), vμ]]aa, (94)

where Aα
ab(τ ) ≡ eiεabτAα

ab is the time-evolved operator. Each
factor of eiεabτ is Fourier transformed to a denominator of the
form 1

ω−εab
. However, the number of such exponential factors

is different in each term. The first term has none, the second
term has one, and the latter terms generically have two. The
Fourier transform of the first two terms is therefore

∂β∂αv
μ
aa

ωω2
+

∑
b 
=a

−i∂β

ω2

[
Aα

abv
μ

ba

ω − εba

− v
μ

abA
α
ba

ω − εab

]
. (95)

After Fourier transforming the third and fourth terms, either
there are factors 1

εcd−ω
which are O(ω0) and hence subleading

or, when c = d there are poles 1
ω

, which cancel out due to the
commutator in the ω → 0 limit. Hence, only the terms (95)
survive in the semiclassical limit, so

lim
ω,ωi→0

σμαβ (ω,ω1, ω2)

= −e3

h̄2

∑
a,b

∫
[dk]

fa∂
β∂αv

μ
aa

ωω2

+ fa

−i∂β

ω2

[
Aα

abv
μ

ba

ω − εba

− v
μ

abA
α
ba

ω − εab

]
+ O(ω0) (96)

or

lim
ω,ωi→0

σμαβ (ω,ω1, ω2) = −e3

h̄2

∑
a

∫
[dk]

fa∂
β∂αv

μ
aa

ωω2

+ fa

−i∂β

ω2
Fαμ

aa + O(ω0). (97)

The two terms are clearly just ie
h̄

∂β

ω2
acting on the first-order

expression—exactly in line with the semiclassical prediction
(83). The first term is the derivative of the Drude weight, while
the second is the Berry curvature dipole, which was studied in
semiclassics [10,11] and with a Floquet formalism [12]. As

mentioned above, this is the only term that survives in the
presence of time-reversal symmetry.

At third order, one must consider

[̂rγ (τ3), [̂rβ (τ2), [̂rα (τ1), v̂μ]]]aa

= i∂γ i∂βi∂αvμ
aa + i∂γ i∂β[Aα (τ ), vμ]aa + · · · . (98)

As a result of the same logic that applied at second order, only
these first few times survive at lowest order in ω. Hence,

σμαβγ (ω; ω1, ω2, ω3)

= e4

h̄3

∑
a,b

∫
[dk]fa

∂γ ∂β∂αv
μ
aa

ωω23ω3

− ifa

∂γ ∂β

ω23ω3

[
Aα

abv
μ

ba

ω − εba

− v
μ

abA
α
ba

ω − εab

]
+ O(ω−1), (99)

so

lim
ω,ωi→0

σμαβγ (ω; ω1, ω2, ω3) = e4

h̄3

∑
a,b

∫
[dk]fa

∂γ ∂β∂αv
μ
aa

ω23ω3ω

− ifa

∂γ ∂β

ω23ω3
Fαμ

aa + O(ω−1).

(100)

Here, the first term is the third derivative of the Drude weight
while the second is the Berry curvature quadrapole. Of course,
this matches the semiclassical result (84).

C. Symmetry considerations

This subsection considers the effect of symmetry on the
two terms of the semiclassical third-order response. We focus
on the effect of inversion I, time reversal T , and reflection
in the b direction Rb. The semiclassical response involves
the group velocity vm, Berry curvature Fαμ, and k derivatives
thereof, so we start by looking at their transformations under
symmetry. Their transformation laws can be deduced from
the fact that vμ and ∂α are vectors, while the Berry curvature
behaves as a psuedovector defined by Fβ ≡ εβαμFαμ/2.

The effect of inversion I is

vμ → −vμ, (101)

Fβ → Fβ, (102)

∂α → −∂α. (103)

Applying time reversal T gives

vμ → −vμ, (104)

Fβ → −Fβ, (105)

∂α → −∂α. (106)

Lastly, the reflection Rb leads to

vμ → (−1)δbμvμ, (107)

Fβ → −(−1)δbβFβ, (108)

∂α → (−1)δbα ∂α. (109)

These constraints indicate that the group velocity term and
the Berry curvature term [the first and the second terms in
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Eq. (100), respectively] are both even under I and even and
odd under T . Under Rb, either both terms are even or both
terms are odd, depending on the component of nonlinear
conductivity and the direction of mirror plane. For example,
in σ zxxx , both are odd under Rz and both are even under Ry .

An interesting question is when the group velocity term
vanishes, whereupon the Berry curvature contribution domi-
nates, if it is nonzero. First, this requires T breaking. Next,
we need a symmetry such that the group velocity term is
odd and the Berry curvature is even. Such a symmetry is
obtained by combining Rb in which both terms are odd and
T . For example, σ zxxx has a nonzero contribution only from
the Berry curvature term when T Rz symmetry is preserved
and both T and Rz symmetries are broken. This situation
can be realized in materials with antiferomagnetic order in
z direction. Since σ zxxx is measured as intensity-dependent
Hall conductivity or intensity-dependent transmission of cir-
cular polarized light, measuring these quantities in suitable
antiferromagnetic materials will allow us to access the Berry
curvature effect in third-order responses. This Berry curvature
effect might be measured in the magnetic Weyl semimetal
Mn3Sn [40–42] since it breaks T and some candidate AFM
structures break Rz while preserving T Rz [43].

D. Length versus velocity gauges

Overall, we have shown that the semiclassical limit is
straightforwardly accomplished in the length gauge and
matches the answer from the simple Boltzmann equation
approach. A few comments on the relation between the
length and velocity gauge are in order. It was shown in
Ref. [29] that one can convert between the two gauges with
the time-dependent unitary transformation S(t ) = e− e

h̄
A(t )·D.

The equivalence of expectations of any physical observable O
in the two gauges leads to sum rules of the form [28]∫

[dk] Tr{Dα1 . . . Dαn[Oρ̂k(t )]} = 0, (110)

where ρk(t ) is the single-particle density matrix defined
above. Expanding this with D = i∇ + A leads to the sum
rules of Aversa and Sipe [44]. In particular, one can use
O = v̂m to convert from velocity to length gauge at order n.
This will eliminate terms like hμα in favor of ∂αvμ + · · · .
However, this algebra is quite involved in practice, so it is
usually better to choose the correct gauge from the outset
rather than painstakingly changing gauge after writing the
answer to a computation.

VII. NUMERICAL EXAMPLE

This section applies the techniques developed in this paper
to a model of Weyl semimetals. Numerical calculations of
nonlinear optics are usually done within the frameworks of ei-
ther tight-binding models or density functional theory (DFT).
Tight-binding models are usually simple enough to perform
analytical calculations and, when chosen wisely, will repro-
duce the main qualitative features of a material, such as the
frequencies of resonances. For more quantitative predictions
in specific materials, DFT is the favored technique. Velocity
gauge formulas are particularly well-suited for tight-binding
models, where operators such as hμα may be computed an-
alytically. We will therefore present the example of a simple

tight-binding model of a Weyl semimetal where the leading
contribution is topological in origin.

The primary feature of Weyl semimetals are their paired
Weyl- and anti-Weyl cones, whose linear dispersion acts as
a sources and sinks of Berry curvature. As mentioned in the
introduction, a wide variety of linear and second-order optical
responses have been studied in Weyl semimetals, many with
a topological origin. Here we study the third-order response
σ zxxx , for which the leading contribution comes from the
(topological) Berry curvature. To our knowledge, this is the
first prediction for a third-order response in Weyl semimetals.

Consider the following two-band Hamiltonian for a Weyl
semimetal with a Wilson mass:

H (k) = d0I + d(k) · σ, (111)

where σ = {σx, σy, σz} is the vector of Pauli matrices, d =
{dx, dy, dz}, and

d0(k) = t sin aky, dx (k) = sin akx,

dy (k) = sin aky,

dz(k) = cos akz + m(2 − cos akx − cos aky ),

where a is the lattice spacing. Generically, this model supports
four Weyl–anti-Weyl pairs, but we gap out three of them
by adding Wilson mass term where we set m = 1 [45]. The
remaining Weyl nodes are at k = (0, 0,±π/2). The parameter
t controls the tilting of the Weyl nodes.

In Sec. VI C, we showed that in materials where time-
reversal symmetry T and a mirror symmetry Rz are broken,
but their product T Rz is preserved, the leading-order contri-
bution at third order in the ω → 0 limit is

σμαβγ (ω; ω1, ω2, ω3)

= −i
e4

h̄3

∑
a

∫
[dk]

fa∂
γ ∂βFαμ

aa

(ω3 + iγ )(ω2 + ω3 + 2iγ )
+O(ω−1).

(112)

Whenever the tilting parameters t is nonzero, the model
satisfies these considerations and thus we expect a topological
leading response in the off-diagonal component of the third-
order-harmonic response σ zxxx (3ω; ω,ω,ω). (Here, z is the
direction of the emitted light.) The tilting is selected to be in
the y direction so that both nodes are tilted the same way,
making the resonances symmetry allowed.

We compute the response via numerically integrating
Eq. (65) for the third-order harmonic on a mesh of k points
until convergence is achieved. This involves evaluating the
band energies, wave functions, and higher derivatives of the
Hamiltonian, which may all be computed analytically. As is
usual for a two-band model, the energies and wave functions
are, up to normalization,

ε±(k) = d0 ± |d|, |u±〉 =
(

d3±|d|
d1+id2

1

)
. (113)

The velocity operators are easily found by differentiation:

hx (k) = ta cos akyI + a cos akxσx + ma sin akxσz, (114)

hy (k) = a cos akyσy + ma sin akyσz, (115)

hz(k) = −a sin kzσz. (116)
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FIG. 1. (Top) Band structure of Eq. (111) along the kx = 0, kz =
π/2 plane. A (tilted) Weyl node is visible at ky = 0. The dispersion
is approximately linear for |ε| � 8μ. (Middle) Linear conductivity in
the x direction. The Drude peak is visible at low frequencies, and the
conductivity increases linearly for ω � 2μ. (Bottom) Off-diagonal
component of the third-order-harmonic response. The O(ω−2) diver-
gence due to the Berry curvature is visible at low frequencies, and
wide resonances are visible at ω ∼ 2μ/3 and ω ∼ μ. The parameters
used for all data are μ = 0.1, γ = 0.001, t = 0.1, m = a = 1.

Higher derivatives are similarly straightforward. For example,

hxx (k) = −ta2 sin akyI − a2 sin akxσx (117)

+ma2 cos akxσz, (118)

hxxx (k) = −a2hx (k), (119)

hxxxx (k) = −a2hxx (k). (120)

Figure 1 shows the well-understood linear response of the
material and the third-order-harmonic response σ zxxx .

The linear response of Weyl semimetals is shown in the
middle panel of Fig. 1. This response is already well under-
stood [46]. The conductivity exhibits a typical Drude peak at
low frequencies and Re[σxx] ∼ ω at higher frequencies. This
is due to the interband resonance that becomes possible once
the frequency exceeds twice the chemical potential. Because
of the tilting, the Fermi surface with μ = 0.1 is an ellipse
with a smaller band gap on one side than another. This causes
the linear conducitivity to onset in the range 2μ − t � ω �
2μ + t .

The third-order-harmonic response is shown in the bottom
panel of Fig. 1 and displays several features of interest. At low
frequency, where ω ∼ γ , we observe the predicted divergence
(112), in accordance with the semiclassical considerations
of Sec. VI. The divergence is visible in both the real and
imaginary parts due to the phenomenological broadening.
Resonances are visible near ω ∼ μ and ω ∼ 2μ/3, due to
two- and three-photon processes respectively. The top panel
of Fig. 1 indicates these processes schematically.

One can see that the two-photon process becomes resonant
around ω ∼ 2μ/3 − t , corresponding to the side of the Weyl
cone with the smaller band gap, and continues up to ω ∼
2μ/3 + t , when the resonance is on the other side of the cone.
This causes a peculiar linear increase in Re σ zxxx in the range
2μ/3 − t � ω � 2μ/3 + t , and similar considerations apply
to the third-order response in the range μ − t � ω � μ + t .
As the tilting is increased, the range of this linear regime
grows. This not too surprising, since a similar linear onset due
to the tilt is present at first order. To our knowledge, this is the
first prediction of a third-order response in Weyl semimetals.
Again, the key topological feature is the divergence at low
frequency, which is proportional to the quadrupole moment of
the Berry curvature.

One should note that, although we have focused on the
third-order-harmonic contribution here, the equations for the
third-order response from Sec. V are generic. One can
just as easily evaluate the self-focusing correction, totally
off-diagonal components such as σ zyxz, or other effects such
as the ac Kerr effect. Similarly, any other tight-binding model
can be used instead of (111). The only restriction is that it must
be defined on the entire Brillouin zone, so that the equivalence
with length gauge is maintained.

Let us comment briefly on the use of DFT. The optical
response formulas in previous sections require the matrix
elements of derivatives of the Hamiltonian operator (11).
Using the covariant derivative (8), these can be written in
terms of the matrix elements of the velocity operator and the
Berry connection. There are well-established techniques for
calculating linear responses within DFT [47]—which already
involves computing the Berry connection and matrix elements
of the velocity operators—and frequently achieves predic-
tions within 1–10% of experimental values. Naively, this is
somewhat surprising, as DFT does not necessarily give good
wave functions but only energies. Nevertheless, tools such
as the GW approximation [48] or the use of specific func-
tionals permit accurate determination of the wave functions
in many cases. With sufficiently fine k-space meshes, one
can in principle converge the numerical derivatives required
and make accurate predictions for nonlinear optical responses
within DFT [49]. Another option is to use the technique of
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“Wannierization” to produce accurate tight-binding models by
Fourier transforming Wannier functions derived ab initio [50].
In sum, the nonlinear optical responses presented here may, in
principle, be accurately computed within DFT.

VIII. DISCUSSION AND CONCLUSIONS

This work has elucidated a diagrammatic approach to
nonlinear optical responses and applied it to predict the
third-order optical response of Weyl semimetals. In this final
section, we will reiterate the main results of the paper and
discuss the choice of gauge.

As mentioned in the introduction, the choice of the
length or velocity gauge in optical response calculations
is a long-standing issue. The modern definitions of the
gauges—which depend crucially on the Berry connection—
permit the use of either gauge to compute optical re-
sponses. Therefore, one is now free to choose the best
gauge for the problem at hand. The computations in this
work suggest a few rules of thumb for when each gauge
should be applied. Equations in the velocity gauge have
a natural separation between matrix elements and reso-
nances and contain only simple poles, making them prefer-
able whenever it is necessary to separately examine one-,
two-, and three-photon resonances. Since the only matrix
elements that appear are derivatives of the Hamiltonian, the
velocity gauge is particularly well suited for tight-binding
calculations. However, in the ω → 0 limit, the velocity gauge
suffers from (cancelling) apparent divergences. Hence, for an-
alytical work in this limit, the length gauge is often preferable.

Let us comment on why our diagrammatic approach nec-
essarily employs the velocity gauge. The key issue is the
presence of the position operator r̂ , which acts on all op-
erators to the right by differentiation. The vertices needed
in the length gauge become complicated quite quickly, as
they involve not only the position and velocity operators, but
objects such as the derivatives of the position operator and a
resonance; virtually every term uses its own unique vertex.
A naive diagrammatic approach to nonlinear response in the
length gauge is therefore impractical. One should note that,
historically, diagrammatic methods have indeed employed the
length gauge [18]. However, these techniques do not account
for the Berry connection, but only the fully interband parts of
the position operator. In any material with nonvanishing Berry
connection, these old-style diagrams will miss important con-
tributions to nonlinear responses, including some resonances.

The diagrammatic method of this work provides an ef-
ficient computational framework to calculate nonlinear re-
sponses in the velocity gauge. The results are general for any
component and frequency, without unphysical divergences.
We have provided convenient formulas for the general second-
and third-order responses, as well as the particular cases of
second-order-harmonic, shift current, third-order-harmonic,
and self-focusing cases. To interpret these equations, we
examined the semiclassical limit and linked it to the length
gauge. On a technical level, the method of this work should
often be the shortest way to compute nonlinear optical re-
sponses.

The expressions for nonlinear optical responses given here
are equivalent to those previously given in the literature in

all cases we are aware of (so long as the correct definitions
for the length and velocity gauges are employed). We have
checked that our formalism explicitly reproduces the results
of Refs. [5,10,11,13,26,51], as well as the equivalence of our
equations for the first-order conductivity, shift current, and
second-order-harmonic generation with those present in the
literature. This is exactly what is expected. After all, one
can recover many other schemes for computing nonlinear
responses as limits of ours, including (i) Boltzmann and semi-
classical transport theory, (ii) quantum mechanical perturba-
tion theory in the length or velocity gauge, and (iii) Floquet
formalism. Recent work [52] develops a diagrammatic expan-
sion for nonlinear optical responses in the Keldysh formalism
which reduces to our formalism when the applied electric
fields are periodic in time (i.e., plane waves). We expect,
however, that our results hold for general wave packets E(t )
so long as the duration of the wave packet and measurement
are much less than the time scale associated with dissipation.

Optical responses are most useful when connected to ex-
periment. To this end, we have predicted the third-order-
harmonic response of a Weyl semimetal. At small frequencies,
the third-order-harmonic response is dominated by a divergent
term due to the quadrupole of the Berry curvature, and hence
of topological origin. There are also large resonant contri-
butions from both two- and three-photon processes, with a
peculiar linear character.

The results of this work can be expanded in both technical
and practical directions. Technically, the diagrammatic for-
malism enables interacting electrons to be treated on the same
level as free ones; we are currently expanding these results to
the case of Fermi liquids and possibly even magnetic fields.
On a practical level, third-order responses are somewhat un-
derstudied at present, despite being present in most materials
and technologically important. The formulas and techniques
of this work should enable or simplify prediction of the third-
order optical response in a wide variety of materials.
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APPENDIX A: THE POSITION OPERATOR
AND THE BERRY CONNECTION

This Appendix discusses the position operator and its close
relation to the Berry connection, giving some mathematical
details thereof.
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1. The position operator as covariant derivative

Suppose we have a crystal with a finite number of bands,
N , which are all close to the Fermi level and separated from
all other bands by a large energy gap. We can then consider
those N bands as an effective model for the material. What
form does the single-particle position operator take in this
situation? The correct answer to this question was known at
least as early as 1962, where it is discussed in the classic paper
of Blount [23]. Morally, just as derivatives and polynomials
are exchanged by Fourier transforms, the real-space position
operator r̂ should become a k derivative. We briefly recall
Blount’s derivation, adapted to modern notation.

Any wave function |f 〉 can be written in terms of the Bloch
functions ψka as

〈r|f 〉 = f (r ) =
∑

a

∫
[dk]ψkafa (k). (A1)

Then,

〈r |̂r|f 〉 =
∑

a

∫
[dk] ψka (r )rfa (k)

=
∑

a

∫
[dk] [−i∂k(eik·r )]uka (r )fa (k).

After integrating by parts (the surface term vanishes because
the Brillouin zone is a closed manifold),

〈r |̂r|f 〉 =
∑

a

∫
[dk] eik·r [i∂kuka (r ) + uka (r )i∂kf ]

=
∑
a,b

∫
[dk] ψkb(r )[δabi∂k + ukbi∂kuka]fa.

We can therefore identify

r̂ = iD̂ = i[∇k − iA], (A2)

where

Aab = i〈uka|∂kukb〉. (A3)

To be clear, in (A2), ∇k = δab∇kδ(k′ − k) is the gradient
operator which acts on all matrix elements to the right.
Here, we have used the standard notation ψka for the Bloch
functions, but nowhere was the fact that they are eigenvec-
tors of the Hamiltonian necessary. Indeed, nothing about the
Hamiltonian was needed. The connection we have defined is a
generalization of the Berry connection to the case of multiple
bands; D is a U (N ) connection. It depends only on the choice
of which N bands are involved and not on any details of the
dynamics.

This is particularly clear once we consider a change of
basis. Suppose U is a general change of basis, i.e., a U (N )
gauge transformation: ψ

′
ka′ = Ua′a (k)ψka where the Ua′a’s

vary smoothly with k. Gauge transforms act naturally on basis
vectors, and therefore act through the dual representation on
wave functions, which are coefficients. Concretely, 〈r|f 〉 =∑

a

∫
[dk]ψkafa transforms to∑
a′

∫
[dk]ψ

′
ka′fa′ =

∑
a,a′

∫
[dk]ψkaUaa′ (k)fa′ . (A4)

Hence, wave functions transform as f → U †f . We therefore
mandate that D̂f , which is itself a wave function, must
transform as

D̂f → U †D̂f = (U †D̂U )(U †f ) (A5)

under a gauge transformation. The action of D gives

[U †U∇k + U †(∇kU ) − iU † AU ](U †f ). (A6)

Comparing this with [∇k − i A′](U †f ), we find

A′ = U † AU + iU †∇kU. (A7)

This confirms that D̂ is a U (N ) non-Abelian connection.
Beyond being necessary to define the position operator

correctly, this connection allows us to define the k derivatives
of operators. The connection acts on operators naturally via

D̂[Ô] = [ D̂,O]. (A8)

This is used extensively in the main text.

2. Generalized Berry connections

Let us give a few more mathematical comments. Readers
curious for a more formal treatment are recommended to
consult Chapter 7 of Ref. [53] or Appendix D of Ref. [54]. The
normal Berry connection [20] is a U (1) connection defined
for a single band. For our setting of N bands, there are two
possible generalizations to consider: a U (1)N connection or
a U (N ) connection, the latter of which we have described
above. Let us see how each of these arise and what role they
play physically.

From the perspective of differential geometry, we are
working with an infinite-dimensional Hilbert bundle over the
Brillouin torus. The exterior derivative d is a provides a
(curvature-free) connection on the Hilbert bundle. When we
select an N -dimensional effective Hilbert space, there is a
projection map

P = 1

N

N∑
a=1

∫
[dk] |uka〉〈uka| (A9)

from the Hilbert bundle to the CN bundle of interest, and this
projection naturally induces a connection on the CN bundle
which acts on CN -valued differential forms ω as [55]

D ω = Pd ω = (d + iA) ω. (A10)

An important yet subtle point is that the considerations
above do not uniquely define a connection. There is still a
residual freedom corresponding to the choice of origin in the
(real space) unit cell. This is intimately related to the modern
theory of polarization and is carefully considered from a
mathematical point of view in Ref. [56].

Because of the non-Abelian nature of the U (N ) connec-
tion, its gauge-invariant quantities are Wilson loops, which
cannot be computed directly from the curvature. It would
be interesting to compute these and determine if they have
any physical meaning or utility. However, it seems unlikely
that expressions involving Wilson loops are buried inside
nonlinear conductivities. In the special case of degenerate
bands, the Wilson loops have been used, for instance, to
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classify topological parts of Fermi-surface oscillations under
magnetic fields [57].

Now let us identify the second, Abelian, connection. In
practice, one virtually always chooses to work in the energy
basis with Bloch functions uka . However, as is well known,
these are only defined up to a phase. The functions u′

ka =
eiθa (k)uka also satisfy (6). In other words, the choice of the
energy basis does not completely fix the gauge, but only up
to a change of phase in each band; there is a residual U (1)N

gauge freedom. This allows us to define the second connec-
tion, which is Abelian and is denoted by a noncalligraphic
letter,

D̂(k)ab = δab[∇k − i Aaa], (A11)

where A is the same as above, but this is now diagonal in the
band indices. Under a U (1)N gauge transformation U (k) =
δabe

iθa (k), Eq. (A7) reduces to

Aaa = Aaa − ∇kθa (k). (A12)

So, the Abelian connection transforms as D → D′ =
e−iθa Daae

iθa = D and is thus gauge invariant. This U (1)N

connection is nothing more than one copy of the normal Berry
connection for each band. As above, we get an associated
connection on operators given by D[Ô] = [D, Ô], and D[Ô]
will be gauge invariant whenever O is.

Let us briefly contrast the U (N ) and U (1)N connections
and identify when each should be used. The non-Abelian
connection D is a strictly more complicated object than the
Abelian connection D. In general, objects involving D will
be gauge covariant after choosing the energy basis, but objects
with D may be gauge invariant. For example, the curvature

FD = i[D,D] → (FD )′ = U †FDU (A13)

is gauge covariant, whereas in the Abelian case

F D = i[D, D] → (F D )′ = e−iθaF D
abδabe

iθb = F D (A14)

is gauge invariant. (This is a standard fact for non-Abelian
versus Abelian connections.) As any observable must be
strictly gauge invariant, it is necessarily much easier to pro-
duce observables out of the second connection. In an ideal
world, we would be able to work only with D and not D.
Indeed, for a single band when N = 1, this is the case. There
is some hope of eliminating D, because for all operators that
act diagonally in band space, with Ô = δabOaa , the induced
connection D reduces to D. However, this is a vain hope:
Measuring electromagnetic responses inevitably involves the
off-diagonal components Aab, and we must use the full gen-
erality of the non-Abelian connection. Moreover, when bands
are degenerate or cross, such as at a Dirac point, there is no
unique way to define the Bloch wave functions of each band.
These points, which play a crucial role in topological-band
structures, therefore cannot be fully described via this U (1)N

connection.
In a philosophical sense, the presence of the non-Abelian

connection helps to explain why nonlinear conductivity re-
sponses are often devoid of simple forms: They must be
gauge invariant, but their “building blocks” are only gauge
covariant and so much be composed of tricky combinations
that cancel out among themselves. More optimistically, how-
ever, one can harness this gauge invariance. We will use it

to conceptually simplify our perturbation theory approach to
nonlinear conductivities in the length gauge. A theme from
recent years is that the converse is also true: Once a new
gauge-invariant combination has been isolated, it is usually
physically measurable, perhaps in a limit. To search for new
and interesting quantities to measure, one need only consider
what combinations are gauge invariant.

APPENDIX B: USEFUL INTEGRALS

In this section, we will evaluate the loop integrals in the
Feynman diagrams. Following Chapter 3 of Mahan [58], we
work with Matsubara frequencies, which allows the evalu-
ation of the integrals with straightforward contour integral
techniques.

We wish to evaluate integrals such as

I1 =
∫

dω Ga (ω) =
∫

dω
1

ω − εa

, (B1)

I2(ω1) =
∫

dω Ga (ω)Gb(ω + ω1), (B2)

I3(ω1, ω2) =
∫

dω Ga (ω)Gb(ω + ω1)Gc(ω + ω1 + ω2),

(B3)

I4(ω1, ω2, ω3) =
∫

dω Ga (ω)Gb(ω + ω1)Gc(ω + ω1 + ω2)

(B4)

×Gd (ω + ω1 + ω2 + ω3). (B5)

In imaginary time, fermions only have frequencies at odd
imaginary integers: iωn = i(2n + 1)π/β for n ∈ Z. The in-
tegral is then analytically continued to a sum

I1 → S1 = 1

β

∑
n∈Z

1

iωn − εa

. (B6)

To evaluate this sum, note that the Fermi-Dirac distribution
f (z) = 1

eβz−1 has poles at exactly these complex frequencies
iωn, each with residue −1/β. We can therefore use the follow-
ing trick of trading the sum for a contour integral. Consider

0 = J1 = lim
R→∞

∮
CR

dz

2πi
f (z)F1(z), (B7)

where the contour is the circle of radius R and

F1(z) = 1

z − εa

. (B8)

The integral on the right-hand side is easy to evaluate. The
poles of f (z)F1(z), shown in Fig. 2, are at zn = iωn with
residue Rn = − 1

β
F1(iωn), coming from the Fermi-Dirac dis-

tribution, and then z1 = εa with residue R1 = f (εa ). So,

0 = J1 = − 1

β

∑
n∈Z

F1(iωn) + f (εa ). (B9)

After rearranging,

I1 = S1 = f (εa ), (B10)

where the first equality is true since the analytic continuation
back is trivial here.
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ω

iω

z1 = εa

R

FIG. 2. Depiction of the poles of the function f (z)F1(z) and the
integration contour. The poles zn are on the iω axis and the pole z1 is
on the ω axis.

Precisely the same technique will work for the more
complex integrals with one extra residue for each Green’s
function. For I2, we analytically continue to

S2(iω1) = 1

β

∑
n∈Z

1

z − εa

1

z + iω1 − εb

. (B11)

Since iω1 is due to an incoming photon, it is a bosonic
Matsubara frequency and thus an even integer instead
of odd: iω1 = i(2M )π/β for some integer M . Now
consider

0 = J2 = lim
R→∞

∮
CR

dz

2πi
f (z)F2(z), (B12)

F2(z) = 1

z − εa

1

z + iω1 − εb

. (B13)

The function f (z)F2(z) has poles and residues:

zn = iωn; Rn = − 1

β
F2(iωn); (B14)

z1 = εa; R1 = f (εa )

εa + iω1 − εb

= −f (εa )

εba − iω1
; (B15)

z2 = εa − iω1; R2 = f (εb − iω1)

εb − iω1 − εa

= f (εb )

εba − iω1
.

(B16)

In the last equality for R2, the fact eβ(iω1 ) = 1 implies f (εa −
iω1) = f (εb ). Therefore,

S2(iω1) = R1 + R2 = fab

iω1 − εab

. (B17)

Analytically continuing back, we then have

I2(ω1) = fab

ω1 − εab

. (B18)

The generalization to I3 and I4 follows the same pattern.
For I3, we consider the contour integral against

F3(z) = 1

z − εa

1

z + iω1 − εb

1

z + iω12 − εc

, (B19)

where ω12 = ω1 + ω2. Then f (z)F3(z) has poles and
residues:

zn = iωn; Rn = − 1

β
F3(iωn); (B20)

z1 = εa; R1 = f (εa )

(εab + iω1)(εac + iω12)
; (B21)

z2 = εb − iω1; R2 = f (εb )

(εba − iω1)(εbc + iω2)
; (B22)

z3 = εc − iω12; R3 = f (εc )

(εca − iω12)(εcb − iω2)
. (B23)

Then S3(iω1, iω2) = R1 + R2 + R3. Analytically continuing
back to real frequency,

I3(ω1, ω2) = f (εa )

(εab + ω1)(εac + ω12)
(B24)

− f (εb )

(εab + ω1)(εbc + ω2)

+ f (εc )

(εac + ω12)(εbc + ω2)
. (B25)

When we employ the same procedure, S4 is made up of
four poles, which sum to give

I4(ω1, ω2, ω3) = f (εa )

(εab + ω1)(εac + ω12)(εad + ω123)

+ f (εb )

(εba − ω1)(εbc + ω2)(εbd + ω23)

+ f (εc )

(εca − ω12)(εcb − ω2)(εcd + ω3)

+ f (εd )

(εda − ω123)(εdb − ω23)(εdc − ω3)
.

(B26)
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