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Electronic correlations and competing orders in multiorbital dimers: A cluster DMFT study
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We investigate the violation of the first Hund’s rule in 4d and 5d transition-metal oxides that form solids of
dimers. Bonding states within these dimers reduce the magnetization of such materials. We parametrize the dimer
formation with realistic hopping parameters and find not only regimes where the system behaves like a Fermi
liquid or as a Peierls insulator, but also strongly correlated regions due to Hund’s coupling and its competition
with the dimer formation. The electronic structure is investigated using the cluster dynamical mean-field theory
for a dimer in the two-plane Bethe lattice with two orbitals per site and 3/8 filling, which is three electrons per
dimer. It reveals dimer-antiferromagnetic order of a high-spin (double-exchange) state and a low-spin (molecular-
orbital) state. At the crossover region, we observe the suppression of long-range magnetic order, fluctuation
enhancement, and renormalization of electron masses. At certain interaction strengths, the system becomes an
incoherent antiferromagnetic metal with well-defined local moments.
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I. INTRODUCTION

A standard paradigm of strongly correlated materials in-
volves competition between on-site Coulomb repulsion (U ),
which tends to localize electrons on particular sites, and band
effects (characterized, e.g., by the width of a corresponding
band, W ), making them delocalized [1,2]. In effect, there can
be a transition from a homogeneous metallic to a homoge-
neous insulating state. In real materials, this picture can be
enriched by an unusual band topology [3–5], namely spin-
orbit coupling [4,6], which is an interplay between different
degrees of freedom, such as orbital, charge, spin, etc. [7–9].
However, there can be another option—a system may prefer
an inhomogeneous scenario forming metallic clusters within
an insulating media (molecules-in-solids conception [10]).
The simplest example of such clusters is a dimer. If U is
not very large, the wave function is essentially a molecular
orbital with an electron delocalized over both sites. But there
are also materials with other types of clusters: trimers [11,12],
tetramers [13], and even heptamers [14]. The electrons can
easily propagate within these clusters, but hoppings between
them are suppressed.

There are two main problems in this regard. First of all,
there is no general theory, which explains why some of the
systems remain homogeneous while others form (sponta-
neous) clusters. We knew for a long time that such transitions
can be induced by Peierls and spin-Peierls effects [15,16], or,
more generally, by a charge-density-wave (CDW) instability
due to nesting of the Fermi surface [9,17], but a complete
understanding of how strong electronic correlations, spin-
orbit coupling, and exchange coupling affect this transition
is still lacking. Moreover, calculations for real materials show
that there is no nesting in many systems, whose properties
were supposed to be explained by the formation of a CDW, or
that there is nesting at a wrong wave vector [18].

Another problem is a theoretical description of such inho-
mogeneous systems. While the homogeneous situation with
a Mott-Hubbard transition was extensively investigated over
the years, the physical properties of clusterized materials
remain mostly unexplored. Up to now, most of the efforts were
concentrated on a study of the so-called two-plane Hubbard
model (known also as the dimer Hubbard model), which is
the Hubbard model on the Bethe lattice composed of dimers;
see also Sec. II. Most of the attention has been paid to the
situation with one orbital per site in a dimer and half-filling
[19–22]. This model allows us to describe the transition from
a band to a Mott insulator and is particularly relevant for such
materials as VO2, V2O3, and Ti2O3 [23–26]. The two-orbital
case has been considered for the one-dimensional chain us-
ing the dynamical mean-field theory (DMFT) [27,28]. The
orbital-selective behavior has been found for different electron
fillings and has been shown to strongly affect the magnetic
properties of a system, since some of the electrons occupying
bonding orbitals may form spin-singlets. In effect, only part
of the electrons contribute to the total magnetic moment. This
violates Hund’s rules and may dramatically change exchange
coupling between neighboring dimers [28]. However, the one-
dimensional lattice is not a natural choice for the DMFT
because of the small number of nearest neighbors.

Hund’s coupling stems from the Coulomb interaction. It
represents the intra-atomic exchange, and it has a strong
influence on the electronic correlations and therefore also on
the Mott transition [29–32]. It can shift the critical interaction
value of the Mott transition and also diminish or promote
the coherence of Fermi liquids. This depends strongly on the
filling [33], i.e., for half-filling the effective Coulomb inter-
action is increased, and for all other fillings it is decreased.
Therefore, Hund’s coupling can suppress the Mott transition,
but not the correlations. Thus there can be strongly correlated
materials that are not close to a Mott transition, but they still
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exhibit enhanced electron masses, local moments, and orbital
selectivity [34].

In the present paper, the simplest model of multiorbital
(two orbitals) dimers on the two-plane Bethe lattice with an
odd number of electrons (three) is considered. The parameters
of the model are chosen to be close to those specific param-
eters in real materials based on the late transition-metal ions.
We not only find the transition between states with different
total spin (S = 1/2 to 3/2) as a function of the hopping in the
dimer, but we also observe the suppression of the long-range
magnetic ordering by the temperature in the crossover region
near this transition. Moreover, surprisingly such a transition
can be induced by the hopping in the Bethe lattice. We discuss
the electronic and magnetic properties of the considered two-
plane Bethe lattice model, and we identify regimes where the
system behaves like a Fermi liquid, a Peierls insulator, and a
correlated metal. These results not only advance our knowl-
edge of the properties of the two-plane Bethe lattice model,
but they can also be useful for the description of dimerized
materials, which are presently under close examination.

II. MODEL AND METHOD

While the two-plane Hubbard model seems to be a rather
natural choice in the case of VO2 with a single electron in
the 3d shell, for a realistic description of materials with a
larger number of d electrons one needs to take into account
the orbital degeneracy and possible crystal-field splitting. The
latter can be due to (i) a nearest-neighbor ligand’s environ-
ment (below, for the sake of simplicity, we will consider the
octahedral case) and (ii) bonding with other transition-metal
ions.

The dimerization occurs when two transition-metal ions
are able to come close enough to each other to lower the
total energy due to the formation of bonding orbitals. This
is possible when ligand octahedra share their edges or faces,
whereas a common corner geometry prevents dimerization
because of a negatively charged ligand sitting in between two
transition metals. Edge-sharing structures can be achieved,
e.g., in delafossites, spinels, 213 honeycomb iridates (which
are very popular at present), and ruthenates. Face-sharing
is more common in one-dimensional materials such as 6H-
perovskites, ZrI3, etc., but there are also three-dimensional
corundum-like structures.

It is rather important that in addition to a trivial splitting of
the d orbitals onto lower-lying t2g and higher-lying eg mani-
folds, there is always an additional splitting in these geome-
tries due to neighboring transition-metal ions. The last can be
effectively integrated out. In the edge-sharing octahedra, the
t2g orbitals turn out to be split into xy and yz/zx orbitals. The
xy orbitals of neighboring metals point to each other. This
results in a strong bonding-antibonding splitting, while the
xz/yz orbitals may still be considered as site-localized [10].
This is especially important for the 4d and 5d transition-metal
ions, since their wave functions are more spatially extended,
and the corresponding bonding-antibonding splitting is much
larger than for the 3d transition-metal ions. A similar situation
occurs for face-sharing octahedra, where the a1g orbitals form
a bonding orbital and the eπ

g orbitals remain localized [35,36].
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FIG. 1. Left: The two Bethe lattices with hopping tb are inter-
connected by dimers of two atomic orbitals (c, d) and two sites (0,1).
The Bethe lattice coordination is finite, i.e., z = 3, for illustrative
purposes. The sites can form bonding (B) and antibonding (A)
molecular orbitals. The bipartite Bethe lattice can be divided into
sublattices (�, �̄). Right: Two possible ground-state configurations
in the case of N = 3 electrons: the molecular-orbital (MO) and
the double-exchange (DE) states. Their competition is defined by
Hund’s exchange coupling J , screened intra- (U ) and interorbital
(U ′) Coulomb repulsion, and the dimer hoppings t c

⊥ and td
⊥.

Thus, in order to describe dimerized transition-metal com-
pounds with more than one electron, one needs at least two
different sets of atomic orbitals, which differ by the value of
the hopping parameters. Due to computational limitations, we
will restrict ourselves to the minimal model with two orbitals
per site. We label the orbital forming the molecular orbital
as c and the localized one as d (see Fig. 1). Corresponding
intradimer hopping parameters are t c⊥ and td⊥. A dimer is
considered to be a vertex of the Bethe lattice with infinite
coordination. For the sake of simplicity, we assume that
hoppings along the Bethe lattice, tb, are the same for both
orbitals. Spatial correlations beyond the dimer do not exist
because of the infinite coordination.

The Hamiltonian of the model above is

Ĥ = −tb
∑

〈λ,λ′〉σ

∑
αi

ĉ
†
λσαi ĉλ′σαi +

∑
λ

Ĥ dimer
λ , (1)

where ł denotes a nearest-neighbor dimer, σ is a spin, i =
{0, 1} runs over sites within a dimer, and α = {c, d} is an
orbital index of the t2g orbitals. Therefore, the first term
describes a hopping of the electron between dimers with the
amplitude tb, and the second term is responsible for the “local”
(intradimer) interaction and can be written as

Ĥ dimer
λ =

∑
σ iα

tα⊥ĉ
†
λσαi ĉλσαī + U

∑
iα

n̂λ↑αi n̂λ↓αi

+U ′ ∑
σ i

n̂λσci n̂λσ̄ di + (U ′ − J )
∑
σ i

n̂λσci n̂λσdi

− J
∑

i

(ĉ†λ↓ci ĉ
†
λ↑di ĉλ↓di ĉλ↑ci

+ ĉ
†
λ↑di ĉ

†
λ↓di ĉλ↑ci ĉλ↓ci + H.c.). (2)
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The orbital differentiation (the first term) is caused by the
intradimer hopping parameters, tα⊥, and we do not introduce
crystal-field splittings (c-d). The intradimer hopping can also
be written in matrix notation,

tloc =
(−t c⊥ 0

0 −td⊥

)
⊗ σx, (3)

where the Pauli matrix σx creates the off-diagonal entries
of the site space. The local electron-electron interaction
at each site [the last terms in Eq. (2)] is modeled via
the Kanamori parametrization [37], where U,U ′ are intra-/
interorbital Coulomb repulsions, and J is Hund’s exchange
coupling. We choose the interorbital Coulomb interaction by
cubic symmetry as U ′ = U − 2J .

The model is solved at finite temperatures exactly us-
ing the cluster dynamical mean-field theory (CDMFT)
[38–41] with a continuous-time quantum Monte Carlo im-
purity solver [the continuous-time hybridization expansion
solver (CTHYB)] [42–45]. The solver as well as the CDMFT
code have been written using the TRIQS library [46].

The dimer’s degrees of freedom of our auxiliary impurity
model contain two spins, two orbitals, and two sites. The
Bethe lattice can be divided onto two equivalent sublattices
� and �̄; see Fig. 1. The CDMFT self-consistency equation
describes a particle of � fluctuating through its environment
�̄. Since we are interested in a solution of a broken spin-
symmetry, we apply the antiferromagnetic condition for the
construction of the Weiss field,

G−1
σ (iωn) = (iωn + μ)1 − tloc − t2

b G−σ (iωn), (4)

where 1 is a unit matrix, G(iωn) is the Weiss field, and G(iωn)
is the local Green’s function; the latter two are both matrices
in spin, orbital, and site space. Note that the antiferromagnetic
order described by Eq. (4) exists between the dimers (dimer
antiferromagnetism) and not within them. To find CDMFT
solutions of broken spin symmetry, we add a small external
magnetic field to the Hamiltonian, which is switched off
after a few CDMFT iterations. It is worth mentioning that
there are also other interesting solutions, which allow for the
coexistence of insulating behavior and ferromagnetism [47],
but a study of this part of the phase diagram is beyond the
scope of the present paper. We also use a diagonal basis of the
site space in the block structure of the Green’s function (see
below), and thereby solutions of broken site symmetry within
dimers are excluded, i.e., charge ordering within the dimers
was forbidden by construction.

The local Green’s function, which is needed to calculate
the chemical potential μ in the CDMFT self-consistency, can
be found using the following equation:

G−1
σ (iωn) = (iωn + μ)1 − tloc − t2

b G−σ (iωn) − �σ (iωn).

(5)

This implicit equation has to be solved iteratively, which
begins by setting it equal to the impurity Green’s function of
the last CDMFT cycle G(iωn) = g(iωn), which is also the
self-consistency condition for the CDMFT. The self-energy is
calculated via the Dyson equation from the impurity quantities
�(iωn) = G−1(iωn) − g−1(iωn), and initially it is set to zero.

To make the quantum Monte Carlo impurity solver more
efficient, we use a standard unitary transformation on the site
space j ∈ {0, 1}:

ˆ̃cσαi =
∑

i

Rij ĉσαj , R = 1√
2

(
1 1
1 −1

)
, (6)

transforming to the bonding (B)/antibonding (A) basis, la-
beled by i ∈ {A,B}, with corresponding creation/annihilation
operators labeled by a tilde. This transformation diagonalizes
the local Green’s function in site space and thereby also in all
single-particle orbitals.

To sum up, even taking into account all constraints and
simplifications, there are still five parameters in our model
(U , J , t c⊥, td⊥, tb). To reduce this number further, we will
restrict ourselves by typical values met in real materials. We
choose two groups of compounds with the general formulas
Ba3MeTM2O9 [48–52] and Re5TM2O12 [53–55], where Re
is a rare-earth ion, TM is a transition-metal ion, and Me is a
rare-earth, alkali-, or transition-metal ion. There are dimers
formed by two TMO6 octahedra in these two classes of
systems (sharing their faces in Ba3MeTM2O9 and edges in
Re5TM2O12).

Typically, TM ions are 4d metals such as Ru, Re, Mo,
and Os for which Hund’s exchange J ∼ 0.7 eV and Hubbard
U ∼ 4.5 eV (i.e., U ′ ∼ 3 eV) [10]. Therefore, we will fix the
screened Coulomb interaction and Hund’s exchange to the
values above. The hopping of the more localized orbital is
set to td⊥ = 0.2 eV. The hopping parameters, t c⊥ and tb, will
be varied in what follows. Based on density-functional theory
calculations, we also suggest typical values of the hopping
parameters in these materials: t c⊥ changes from 0.7 to 1.4 eV,
while td⊥ ∼ 0.2 eV and tb ∼ 0.2 eV. One should also note
that the electron filling per dimer will be fixed to the value
of N = 3, i.e., 3/2 electrons per site. This is the simplest
nontrivial case with odd-number electrons in the two-orbital
model (a situation with five electrons, i.e., three holes, is
the same in the presence of particle-hole symmetry; one- or
seven-electron filling, i.e., one hole, is trivial). Such a filling
is not only interesting from the model point of view, but it
also reflects the situation realized in many different transition-
metal oxides with dimerized crystal structure, such as, e.g.,
Ho5Mo2O12 [56], V4O7 [57,58], Nb2O2F3 [59], and many
others. Additionally, we remind the reader that the antifer-
romagnetic (AFM) and paramagnetic (PM) self-consistency
conditions will be used throughout this study.

A. Atomic limit at T = 0

We start with a treatment of our model in the atomic limit,
where the hopping in the Bethe planes is suppressed, i.e.,
tb = 0. There are two possible ground states for the isolated
dimer with N = 3 electrons and two different orbitals c and
d. The first state, with one electron residing bonding c and
two other electrons occupying d orbitals with the same spin,
will be referred to as the double-exchange (DE) configuration,
since it maximizes the total spin of the dimer. Another config-
uration, called the molecular-orbital (MO) state, is a state with
a completely filled bonding c orbital and the remaining elec-
tron distributed over localized d orbitals (the charge ordering
is forbidden by construction; see Sec. II).
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FIG. 2. Spectrum E depending on the dimer-hopping t c
⊥ in the

atomic limit of an isolated dimer (T = 0). States are characterized
by 〈S2

dim〉. The ground-state energy E0 per t c
⊥ is subtracted from all

energies.

Neglecting quantum fluctuations, one can approximate
these states by their largest contribution to the wave function:

|MO〉 ≈ ĉ
†
↑dB

ˆ̃c
†
↑cB

ˆ̃c
†
↓cB |0〉, |DE〉 ≈ ĉ

†
↑d0ĉ

†
↑d1

ˆ̃c
†
↑cB |0〉,

(7)

as illustrated in Fig. 1, which provides an understanding of
the spin quantum numbers of the ground state. However,
since we use a large U , the ionic and homopolar terms in
the MO wave function will have somewhat different weights,
and therefore a variational approach [28] would be more
reasonable to estimate transition energies. In the case of T =
0, we can use the exact diagonalization for a Hilbert space
of 256 states. The results are shown in Fig. 2. At a critical
1.05 < t̃c⊥ < 1.1 eV, we observe a ground-state crossover
from a spin-quadruplet (〈S2

dim〉 = 3.75), which we identify
as the DE state, to a spin-doublet (〈S2

dim〉 = 0.75), i.e., the
MO state. In the considered range of t c ⊥ (0.7–1.4 eV), the
spectrum contains only these two states within energies up to
∼0.1 eV.

B. Noninteracting regime

To identify the effects of the interaction below, we first
present the electronic structure in the noninteracting regime
in Fig. 3. It is reminiscent of the simplified sketch shown in
the right part of Fig. 1. The density of states in this limit is a
superposition of four semicirculars with the individual band-
width W = 4tb. The bands, corresponding to the c (d) orbitals,
are centered at energies of ±t c⊥ (±td⊥) in a site representation
(see the upper panel of Fig. 3). A site equivalence leads to
an overlay of the densities of state (DOSs) from different
sites. Because in our consideration t c⊥ > td⊥, the c bands are
always farther away from the Fermi level than the d bands.
One should note that the Fermi level is not at the middle of
the d band since we are not at half-filling (which would be for
N = 4).

The transformation of the noninteracting model to the
bonding-antibonding (BA) representation simplifies drasti-
cally an examination of the DOS (see the lower panel of
Fig. 3). For example, in the site representation, the band of
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FIG. 3. The density of states in the noninteracting limit (i.e., U =
J = 0) as a function of intradimer hopping of the c-electrons t c

⊥ and
excitation energy ω. Hopping within the Bethe plane is chosen to be
tb = td

⊥ = 0.2 eV.

c character at site 0 or 1 was located at −t c⊥ and +t c⊥, while
after BA transformation there are two bands (instead of two
sites) of pure c bonding character at −t c⊥ and c antibonding
character at +t c⊥. Thus, in ascending order, one has four
bands of pure character: c bonding (c, B), d bonding (d, B),
d antibonding (d,A), and c antibonding (c,A). The bonding
and antibonding states are separated by 2t c⊥ − 4tb (2td⊥ − 4tb).
If t c⊥ > td⊥ + 4tb, there is a gap between c (anti)bonding and d

(anti)bonding states. Additionally, if td⊥ > 2tb, there is a small
gap between bonding and antibonding states of d character.
The formation of these bands can be considered as a local
crystal-field effect with the t c⊥ (td⊥) playing the role of crystal-
field splitting.

Crystal fields are known to compete with Hund’s coupling.
This leads to a number of very important phenomena, such
as, e.g., spin-state transitions [9,29]. Whereas intra-atomic
Hund’s exchange tends to the uniform orbital occupancy
(strictly speaking, this can be achieved only at half-filling),
the crystal field promotes orbital polarization when some of
the orbitals are less occupied than others [60]. However, the
interpretation of the BA splitting as an effective crystal field
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dim〉 as a function
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⊥ = tb = 0.2 eV. For certain temperatures, the double-exchange

state (DE) and the molecular-orbital state (MO) are separated by a
quantum critical region (QC). The red and green dashed lines mark
the positions of local minima of the spin and orbital correlations,
respectively.

also needs to take into account that the coefficients of the
interaction terms also change under the BA transformation.
In the next section, we discuss the phase diagram of the
two-plane Bethe lattice for an intermediate situation when
both intradimer hoppings and interaction (given by U and J )
strength are not small.

III. PHASE DIAGRAM

Previous studies of the two-plane Bethe lattice have fo-
cused on the single-orbital case. It was found to hold not only
the Mott and band insulators, but also a correlated mixed state
with coherent and incoherent peaks in the local density of
states. Competition between intra- and interplane exchange
interactions was shown to affect the formation of the local
moments [19,22,26]. We will demonstrate that substantial
orbital differentiation due to different interplane hoppings,
t c⊥  td⊥, results not only in a spin-state-like transition, but
also in a strong suppression of a long-range magnetic order
in the critical region.

Throughout this section, we discuss the results for fixed
tb = 0.2 eV. Figure 4 shows the phase diagram of our model
obtained by the CDMFT described in Sec. II. There are three
main regions. At low temperature and for small t c⊥ we find the
DE state with a total spin Sz

dim = ±3/2 (red part of the phase
diagram). All dimers are antiferromagnetically ordered, so
that 〈Sz

dim〉 ∼ 3/2. This DE state transforms into the MO state
with the total spin Sz

dim = ±1/2 upon increasing intradimer
hopping t c⊥ (the light blue part of the phase diagram). This
can be considered as a spin-state transition for the cluster. The
critical t̃ c⊥ is close to the value obtained in the atomic limit
(see Sec. II A). At low temperatures, dimers in the MO phase
are antiferromagnetically ordered and 〈Sz

dim〉 ∼ 1/2.
Increasing the temperature, we get to the last region with

paramagnetic dimers (this phase can again be divided accord-
ing to 〈S2

dim〉 in the DE or MO parts). Interestingly, however,
the temperature dependence of 〈Sz

dim〉 is very different in
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FIG. 5. The magnetic moment of the dimer 〈Sz
dim〉 as a function

of intradimer hopping of the c-orbitals t c
⊥ for td

⊥ = tb = 0.2 eV and
temperatures T .

different parts of the phase diagram. We see that the para-
magnetic phase appears at much lower temperatures in the
critical region of t c⊥ ∼ 1.05 eV. The DE and MO states have
different quantum numbers (different total spins), and thus in
the limit of isolated dimers (tb = 0) the transition between
them must be discontinuous at T = 0. Obviously, no long-
range magnetic order is possible in this situation. However,
fluctuations can result in a crossover. In this crossover region,
the system becomes frustrated and the paramagnetic phase
is promoted by the competition of the DE and MO states
forming a hybrid state (HYB) with properties that are distinct
from both.

In Fig. 5 we present a selection of data of Fig. 4 in order to
resolve more detailed properties of the DE/MO transition. In
particular, it shows that the order parameter 〈Sz

dim〉 is smooth
along the transition, and since furthermore no coexistence of
the two phases is found, it suggests that the lattice exhibits
a phase transition of second order at t̃ c⊥ corresponding to the
ground-state crossover of the isolated dimer. The integrated
occupancies

Nσ =
∑

α∈{c,d}

∑
i∈{B,A}

ñσαi, σ ∈ {↑,↓},

Nα =
∑

σ∈{↑,↓}

∑
i∈{B,A}

ñσαi, α ∈ {c, d},

Ni =
∑

σ∈{↑,↓}

∑
α∈{c,d}

nσαi, i ∈ {B,A},

(8)

are shown in Fig. 6 (top), confirming our illustration of the DE
and MO states (Fig. 1). For low temperatures, fluctuations are
suppressed by AFM order and the integrated occupancy has a
sharper crossover. In fact the crossover region, in close prox-
imity to its boundaries, shows local minima of the spin and or-
bital correlations 〈δNxδNx̄〉 = 〈NxNx̄〉 − 〈Nx〉〈Nx̄〉 with x =
↑,↓ and x = d, c, respectively. The physical reasoning be-
hind this is that the fluctuations are always very strong in the
vicinity of phase transitions. The temperature dependences of
the 〈δNxδNx̄〉 minima are shown in Fig. 4 by dashed lines.

The phase diagram shows that both originate from
the DE/MO ground-state crossover, but their temperature
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FIG. 6. Occupations (top) and correlations (bottom) of the
single-particle orbitals across the t c

⊥ driven DE/MO transition at
T = 0.02 eV (left) and T = 0.01 eV (right). Nx is the integrated
occupancy. Dashed lines mark the t c

⊥ of the correlation’s respective
local minimum for the spin (red) and orbital (green) correlations.

dependence is very different. The spin correlation minimum
is very close to the critical temperature of the DE state for
all t c⊥. The decoupling of spins is much stronger than that of
the orbitals, which is rather independent of the temperature.
The comparison of the correlations at different temperatures
(Fig. 6, left and right) shows that also the magnitude of
spin fluctuations of the DE state depends strongly on the
temperature whereas the orbital fluctuations do not. The or-
bital fluctuations are less temperature-dependent because of
a rather large U ′ that suppresses them. In contrast, the main
impact of the relatively small J is on the spin fluctuations,
and therefore they set in at lower temperatures. A prominent
feature of the ground-state crossover is also the inversion
of the orbital polarization, which agrees with our estimated
critical value of t̃ c⊥ in Sec. II A.

To estimate the evolution of quasiparticles, we use the
description of renormalized quasiparticle bands [26]. The
quasiparticle residue

Z−1 = 1 − ∂ Re�(ω)

∂ω

∣∣∣∣
ω=0

(9)

renormalizes the noninteracting bandwidth W = 4tb to

Wε̃ = ZW, (10)

and thereby the imaginary part of the self-energy �(iωn) on
the Matsubara axis encodes the coherence of the quasiparti-
cles. Additionally, the real part of the self-energy shifts the
energies of the quasiparticles,

ε̃ = Z[t̃loc − μ + Re�(ω = 0)]. (11)

One can see in Fig. 7 that far from the critical region (t c⊥ �
1.05 eV or t c⊥  1.05 eV) both c and d states are (mostly)
shifted from the Fermi level (by strong bond-antibonding
splitting and by correlation effects). In contrast, three bands
appear in the vicinity of the Fermi level close to critical t c⊥,
which favors frustration effects.

In Fig. 4, we use the notion of a quantum critical (QC)
region for the low-temperature (T ∼ 0.02 eV) paramagnetic
phase. It is critical in the sense that the scattering rates of all

0.8 1.0 1.2 1.4

tc
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0.0
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]
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0.8 1.0 1.2 1.4

tc
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c, B
d, B
c, A
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FIG. 7. Renormalized quasiparticle bands of the majority (left)
and the minority (right) spin at T = 0.02 eV. Bonding (b) and
antibonding (a) combinations of the atomic c and d orbitals. The
renormalized bandwidths are represented by the colored regions.

quasiparticles in proximity to the Fermi level diverge, i.e., the
quasiparticle residue and renormalized bandwidth go to zero.
The mechanism behind the formation of the paramagnetic in-
sulator for 1 < tc⊥ � 1.1 eV is the divergence of self-energies
in several orbitals. This is distinct from interaction-induced
effective field splittings encoded in the real part of the self-
energies, and it is reminiscent of the Mott insulator. The
QC region is bounded from below. At low temperatures, this
criticality is avoided by the quasiparticles as they leave the
Fermi level.

It is interesting that different molecular spin-states (such
as our DE and MO) have been observed experimentally in
dimerized materials mentioned in Sec. II with the general
formula Ba3MeTM2O9 depending of the choice of Me [48–
50,52]. Moreover, some of these materials are characterized
by a puzzling suppression of the long-range magnetic order
and even a possible realization of the quantum spin-liquid
phase due to frustrations [61–63].

IV. LATTICE EFFECT

The Bethe hopping parameter tb controls the embedding
of the correlated dimer into the lattice. The limits of tb = 0
and tb → ∞ correspond to isolated dimers and disconnected
Bethe lattices, respectively. The situation of tb � t c⊥ corre-
sponds to not yet disconnected dimers, but “uncorrelated”
ones with the charge concentrated on the bonds rather than
sites. This state corresponds to the uncorrelated Peierls in-
sulator. Apart from that, tb controls the strength of quantum
fluctuations of the bath, because it scales the hybridization
for the corresponding Anderson impurity model that CDMFT
maps to.

In this section, we pick three values of t c⊥ = 0.7, 1.05, and
1.4 eV as representatives of the DE, HYB, and MO states,
respectively, at the temperature of T = 0.01 eV, and we vary
the Bethe-hopping tb for each of them. The first part focuses
on spin-polarized solutions and the second on paramagnetic
ones.
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FIG. 8. Top: Dimer magnetization 〈Sz
dim〉 as a function of the

Bethe hopping tb for the dimer hoppings t c
⊥ = 0.7 eV (DE), 1.05 eV

(HYB), and 1.4 eV (MO) at T = 0.01 eV. At the crossover, the
spin-freezing (SF) phenomenon exists at certain tb. Filled and empty
markers present insulating and metallic states, respectively. Metal-
licity is determined by analytical continuation using the maximum-
entropy method. Bottom: Squared total spin of the dimer 〈S2

dim〉 as
a function of the Bethe hopping tb for the dimer hoppings t c

⊥ = 0.7,
1.05, and 1.4 eV at T = 0.01 eV.

A. Dimer antiferromagnetism

The upper panel of Fig. 8 shows the dimer magnetization
〈Sz

dim〉 (for the sake of simplicity, we omit the g factor) at
T = 0.01 eV as a function of the Bethe hopping parameter
tb in three regimes: the antiferromagnetically ordered DE
(t c⊥ = 0.7 eV) state, the crossover region (t c⊥ = 1.05 eV), and
the antiferromagnetically ordered MO (t c⊥ = 1.4 eV) phase.
One may see from this figure that there is no net magnetization
in the limit of very small tb (< 0.1 eV), which corresponds to
nearly isolated dimers as for tb = 0.1 eV the single-particle
gap of the d-orbital opens up. In the region of intermediate tb,
both the DE and MO solutions have nearly maximal 〈Sz

dim〉,
3/2 and 1/2, respectively. It is interesting that the tb range
of the nonzero magnetization is smallest for t c⊥ = 1.05 eV
corresponding to the HYB state of the crossover region.
Here, the fluctuations between the dimers are enhanced by
the competing MO and DE states and suppress long-range
magnetic order.

It is useful to compare the upper and lower panels of Fig. 8,
where the square of the total spin, 〈S2

dim〉, is plotted for the
same values of t c⊥. While 〈Sz

dim〉 measures ordered spin, 〈S2
dim〉

simply tells us what is the total spin of a configuration. The
squares of the total spin [= S(S + 1)] for the DE and MO
states in the atomic limit and at T = 0 are 3.75 and 0.75.
Comparing Fig. 8 (top) and Fig. 8 (bottom), we first make sure
that two transitions for the MO solution at tb = 0.1 eV and 0.4
are due to a transition to the paramagnetic state, and the total
spin per dimer is still well defined even for tb < 0.1 eV and
tb > 0.4 eV. 〈S2

dim〉 for both the MO and DE solutions depend
on tb only weakly. Thus, the formation of spin order is not due
to local moment formation, but rather to suppression of the
fluctuations.

Second, we see from Fig. 8 that an increase of tb sup-
presses the DE state and increases the MO contribution in the
crossover region (i.e., for t c⊥ = 1.05 eV). Using corresponding

values of 〈S2
dim〉 for these two states, one may estimate their

contributions to the wave function for arbitrary tb. If for tb =
0.1 eV there is roughly a 50/50 ratio between the weights of
the DE and MO states, then for tb = 0.35 we have ∼90% of
the MO and only 10% of the DE state. This can be rationalized
by treating it with a correction to the total energy of both
states due to hopping within the Bethe lattice, i.e., tb, using
the perturbation theory.

We assume that the intradimer hopping t c⊥, Hubbard U ,
and Hund’s exchange J are leading parameters. Then the
second-order correction to the total energy due to tb would be
∼−t2

b /δε, where δε is the energy difference between excited
and ground states. Clearly, the excited energy for the MO state
will be much smaller than for the DE configuration, since
the transfer of the d electrons between two antiferromagnet-
ically coupled dimers in the MO state does not cost Hund’s
exchange energy [there are two electrons with opposite spin
projections on the bonding c orbitals in the MO state, and
when transferring d electrons between dimers we keep the
number of electrons (per site) with the same spin]. Neglecting
spin-flip and pair-hopping terms for the sake of simplicity, we
get δεMO ∼ U/2. The transfer of the c electrons in the MO
configuration is rather unfavorable, since it is possible only
to antibonding orbitals. In contrast, one may transfer the c

electrons in the DE state, which gives δεDE ∼ U/2 + J , while
an electron hopping via d orbitals results in δεDE ∼ U +
J/2—both much larger than the energy of the excited state
in the MO configuration. This explains the gradual increase
of the MO weight and the decrease of 〈S2

dim〉 in the crossover
region with increasing tb.

Third, there is a rather nontrivial evolution of both 〈Sz
dim〉

and 〈S2
dim〉 with tb for t c⊥ = 0.7 eV (i.e., nominally for the DE

solution). In particular, for large tb (� 0.4 eV) we observe
the coexistence of two regimes: a conventional insulating DE
solution with long-range magnetic ordering and 〈Sz

dim〉 = 3/2,
and a metallic and paramagnetic solution with suppressed
〈S2

dim〉 ≈ 2. The value of 〈S2
dim〉 for the second solution is close

to what one may expect for the spin triplet.
Figure 9 shows the local density of states in the crossover

region with an increase of tb. One can see that for tb =
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0.4 eV our system is in a metallic state, characterized by
a large quasiparticle peak. Reducing tb, we arrive at the
broken spin-symmetry situation, where the peak becomes less
coherent (the width at half-maximum height decreases), and
then eventually we observe the formation of a pseudogap
for tb = 0.33 eV, which corresponds to a sudden increase
in the magnetization. The maximum of 〈Sz

dim〉 is exceeded at
tb ≈ 0.24 eV, where the pseudogap transforms to a real gap. A
further decrease of tb results in a transition to the paramagnetic
state, which is accompanied by a modification of the spectral
function. In particular, for tb = 0.24 eV there is a sharp edge
for electron excitations, while for tb = 0.1 eV we have a sharp
edge for hole excitations.

In Fig. 10 we focus on the incoherent metal with local
moments of 0.33 < tb < 0.4 eV, and we identify the under-
lying mechanism of spin-freezing, which has been found in a
previous single-site DMFT multiorbital study [66–68] and is a
property of Hund’s metals. It is a non-Fermi-liquid described
by the constant spin-spin correlation function at long times
and a strong enhancement of the local susceptibility [69].
It has been pointed out that the ground-state degeneracy
seems to be an important component of spin-freezing. We can
confirm that as our model shows the feature only in proximity
to the ground-state crossover. The self-energy of that phase is
non-Fermi-liquid-like, but still the system is metallic in the
freezing process. Since electrons scatter at the frozen mo-
ments, the self-energy shows power-law behavior �(iωn →
0) = (iωn)α with α < 1 and can be fit with a quantum critical
crossover function,

−Im�(ωn)/t = C + A(ωn/t )α. (12)

A minimal exponent of α = 0.5 was found at the critical point
in the original study [66]. At the magnetization jump, i.e., tb =
0.34 eV, we also find a drop in α leading to a value α ≈ 0.5.
The crossover region we found is very similar to that of studies
that investigated a high-spin/low-spin transition driven by a
crystal field [70]. In that context, one can also expect to find
an instability toward spin-orbital ordering, i.e., an excitonic
insulator [71]. The latter is suppressed as we do not consider
interorbital hybridization in our numerical calculations.

−2 0 2

ω[eV]

0

1

A
(ω

)[
eV

−
1
]

−2 0 2

ω[eV]

−2 0 2

ω[eV]

t b
=

0
.1

0

1

A
(ω

)[
eV

−
1
]

t b
=

0
. 2

0

1

A
(ω

)[
eV

−
1
]

t b
=

0
.3

0

1

A
(ω

)[
eV

−
1
]

tc
⊥ = 0.7(DE)
c, B
d, B
c, A
d, A

tc
⊥ = 1.05(HYB) tc

⊥ = 1.4(MO)

t b
=

0
.4
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intradimer hopping, t c

⊥, and Bethe hopping, tb, parameters (rows and
columns, respectively). The fixed parameters are: U = 4.5 eV, J =
0.7 eV, td

⊥ = 0.2 eV, T = 0.01 eV and paramagnetism is enforced.
Obtained by the Maximum Entropy method.

B. Spectral properties

Even though a paramagnetic solution may only be
metastable, one can enforce it to enhance scattering processes
and thereby also amplify the electronic correlations. Thus,
the paramagnetic solution is a tool to investigate ordering
mechanisms and quasiparticles, whose diverging scattering
rates eventually lead to a symmetry-broken solution.

Figure 11 presents partial DOSs in the BA representation
for various values of the intradimer hopping of the c electrons,
t c⊥, and the Bethe hopping, tb, which controls the bandwidth
of noninteracting states. The most comprehensible is the
MO state with t c⊥ = 1.4 eV and tb = 0.1 eV (the lower-right
part of Fig. 11). At these values of parameters, the bonding
and antibonding c orbitals are almost completely occupied
(n(c,B ) = 1.78) and empty (n(c,A) = 0.2), respectively, and can
be integrated out. Therefore, one deals with a single electron
in the double-band model with crystal-field splitting defined
by 2td⊥ = 0.4 eV [72]. Such a large value of the crystal-field
splitting in comparison to the bandwidth, W = 4tb = 0.4 eV,
results in a further lifting of the degeneracy, and finally
one has a conventional Mott-Hubbard single-band insulator,
which occurs for the (d, B) orbital. By increasing tb (from
bottom to top, right column of Fig. 11), this insulating state
is determined to be a single-band metal at tb = 0.2 eV and
a three-band metal at tb = 0.4 eV. The latter happens due to
such factors as the bandwidth increase of (c, B) and (d,A)
states and its touching of the Fermi level (see the lower panel
of Fig. 12). One should note that the (c,A) state remains
empty at all values of the Bethe hopping. This picture of the
insulator-to-metal transition is confirmed by the renormalized
quasiparticle bands, (ε̃,Wε̃ ), and the quasiparticle residue
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entropy method). Paramagnetism is enforced, T = 0.01.

Z, shown in Fig. 12 (lower panel). The energetic order of
the bands is determined by tloc, i.e., bonding orbitals are
lower than antibonding orbitals, and the c orbital is lower
than the d orbital. At small values of tb, all renormalized
bands except (d, B) are placed far from the Fermi level. The
corresponding quasiparticle residue, Z(d,B ), is close to zero.
At tb > 0.2 eV, Z(d,B ) is increased and the system becomes a
correlated metal.

The spectral function of the DE state (lower-left part of
Fig. 11) is also consistent with the atomic picture. The (d, B )
and (d,A) states are occupied with one electron per spin
orbital, n(d,B ) = n(d,A) = 1, which is equivalent to a single-
electron occupation of site-centered orbitals. The remain-
ing electron is on the (c, B ) state (the antibonding part is
completely empty). The Coulomb interaction leads to a gap
opening for these states in different ways. Although the QP
bands for all these orbitals are away from the Fermi level (see
the upper panel of Fig. 12), the quasiparticle residues behave
differently for (c, B ) and (d, B ), (d,A) states. Z(c,B ) goes to
zero at small values of tb, while for larger tb they have finite

values. This results in the orbital selective Mott transition
at increased values of tb = 0.3 eV. A further increase of tb
closes the gap in the (c, B ) spectral function. One should
note that the overall quasiparticle residues of the DE solution
are smaller than its MO counterparts, indicating stronger
electronic correlations in this regime.

The hybrid state, t c⊥ = 1.05 eV, has an even stronger quasi-
particle renormalization than the DE state for all orbitals. The
(c, B ), (d, B ), and (d,A) quasiparticle residues go to zero
approximately at tb = 0.25 eV. This is related to the quantum
critical region, which we have discussed in the context of
Fig. 4. It results in the metal-to-insulator transition and gap
opening in the corresponding spectral functions; see Fig. 11.

It is interesting to note that a critical value of the Bethe
hopping, t∗b , decreases with the increase of the intradimer
hopping parameter t c⊥. In the MO case, there is only one active
electron, which leads to an increased value of the critical
Coulomb interaction for the multiband model [31], which also
corresponds to a decreased value of tb. With the decrease
of the intradimer hopping, t c⊥, all of the electrons have to
be regarded for a description of the model. Therefore, the
effective number of electrons is increased, which results in
a decreased value of the Coulomb interaction parameter, or an
increased value of the critical Bethe lattice hopping, tb.

V. CONCLUSIONS

The electronic and magnetic properties of multiorbital
dimers in solids have been studied using a cluster exten-
sion of the DMFT. We used the model consisting of two
orbitals per site constituting a dimer with specific filling
of 3/8 electrons per site (three per dimer). The parameter
range of the model was motivated by the density-functional
calculations for two large classes of materials with the general
formula Ba3MeTM2O9 (face sharing of TMO6 octahedra) and
Re5TM2O12 (edge sharing of TMO6 octahedra). We argue
that already such a minimal model can be used to describe
various physical phenomena observed in real materials with
dimerized crystal structure. For example, the ratio of hopping
parameters of strongly overlapping orbitals (t c⊥) and Hund’s
rule exchange (JH ) may strongly affect the value of the
observed magnetic moments. These effects were indeed ob-
served in Ba3MeTM2O9 (through modification of the hopping
parameters by lattice distortions induced by different Me ions)
[52,73].

In our simplistic two-orbital model, t̃ c⊥ defines a critical
hopping parameter, which separates the regions where the
high-spin, S = 3/2, or low-spin, S = 1/2, states are realized.
Close to this critical parameter, the lattice of such dimers
is in a strongly correlated state, where the long-range an-
tiferromagnetic order is substantially suppressed. This fact
can be important in connection with recent findings on the
formation of the spin liquid state in Ba3ZnRu2O9 [61,63]
and Ba3ZnIr2O9 [74]. This correlated state exhibits electrons
with strongly renormalized masses in both orbitals (c and d)
and separates orbital decoupling from spin decoupling. Both
decouplings originate from the dimer–ground-state crossover
of t̃ c⊥. Furthermore, the long-range spin order is more sensitive
to temperature fluctuations than orbital order, and that renders
the MO state more stable against temperature fluctuations.
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Correlation effects could be induced by the change of
the electron’s itineracy within the Bethe planes (tb) as it
promotes quantum fluctuations from the lattice on the dimers.
We explain the larger stability of the AFM order in the MO
configuration with the exchange energy t2

b /(U/2) of the d

electrons as opposed to the exchange energy of the DE state,
i.e., t2

b /(U/2 + J ) for the c electrons. The competition of the
DE and MO states causes the formation of a new hybrid state,
which exhibits qualitatively new features, e.g., an incoherent
metallic spin-polarized state with a non-Fermi-liquid self-
energy corresponding to the spin-freezing phenomenon.

We used the cluster DMFT to study the correlation-
enhanced enforced paramagnetic calculations that unveiled
the orbital selectiveness of the DE state—typical for Hund’s
physics. The MO state shows correlation features, but the
metal-to-insulator transition is of Peierls-type instead. Finally,
the hybrid state has a metal-insulator transition involving the
renormalization of all d and the bonding c states around

the same value of the Bethe lattice hopping, emphasizing
the large impact of competing interactions on the electronic
correlations.
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