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We describe an approach for many-body calculations with a finite-temperature, grand canonical ensemble
formalism using auxiliary-field quantum Monte Carlo (AFQMC) with a self-consistent constraint to control
the sign problem. The usual AFQMC formalism of Blankenbecler, Scalapino, and Sugar suffers from the sign
problem with most physical Hamiltonians, as is well known. Building on earlier ideas to constrain the paths
in auxiliary-field space [Zhang, Phys. Rev. Lett. 83, 2777 (1999)] and incorporating recent developments in
zero-temperature, canonical-ensemble methods, we discuss how a self-consistent constraint can be introduced
in the finite-temperature, grand-canonical-ensemble framework. This together with several other algorithmic
improvements discussed here leads to a more accurate, more efficient, and numerically more stable approach for
finite-temperature calculations. We carry out a systematic benchmark study in the two-dimensional repulsive
Hubbard model at 1/8 doping. Temperatures as low as T = 1/80 (in units of hopping) are reached. The
finite-temperature method is exact at very high temperatures, and approaches the result of the zero-temperature
constrained-path AFQMC as temperature is lowered. The benchmark shows that systematically accurate results
are obtained for thermodynamic properties.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods have become a key
numerical technique for studying interacting quantum many-
body systems in various areas, including condensed-matter
[1,2], high-energy [3,4] and nuclear [5] physics as well as
quantum chemistry [6]. Among them, auxiliary-field quantum
Monte Carlo (AFQMC) methods [1,2,7–12] decouple the
two-body interactions in the Hamiltonian by the Hubbard-
Stratonovich transformation [13], and sample the resulting
external auxiliary fields by Monte Carlo. AFQMC methods
can produce accurate, sometimes even numerically exact, so-
lutions in correlated fermion systems, by explicitly accessing
only a small fraction of the whole auxiliary-field space, whose
size grows exponentially with system size.

The determinantal quantum Monte Carlo (DQMC) algo-
rithm, formulated by Blankenbecler, Scalapino, and Sugar [1]
(BSS), is commonly applied for both finite-temperature and
ground-state [2,14] calculations. Direct DQMC calculations,
while formally exact, suffer from the minus sign problem
[15–17] in general. As a result, the computational cost of
DQMC calculations, for fixed statistical accuracy, scales ex-
ponentially with system size and inverse temperature [16,17],
instead of the polynomial scaling expected for systems free of
the sign problem. Though many specific models have turned
out to be free of the sign problem [18–27], the vast majority of
correlated electron systems are not. The sign problem hinders
or prevents DQMC studies of a variety of interesting prob-
lems in correlated fermion systems, including in Hubbard-like
models with doping and repulsive interactions, and almost all
realistic Hamiltonians of molecules and solids.

More recently, constrained-path (CP) AFQMC methods
[9,10,28] have been developed as an alternative approach.
Building on the basic formalism of the DQMC algorithm,
these methods introduce a computational framework of ran-
dom walks in the manifold of mean-field or independent-
particle solutions, which connects with concepts in electronic
structure and quantum chemistry [12]. CP-AFQMC controls
the sign problem by applying a constraint which restricts the
Monte Carlo sampling in auxiliary-field space. The constraint
identifies and removes redundant contributions to the ground-
state wave function or the finite-temperature density matrix
by paths in auxiliary-field space which would cancel with
explicit, full path integration but appear as random noise in
Monte Carlo sampling. The formalism is exact when the path
identification is exact. In practice it is implemented approxi-
mately with a trial wave function or trial density matrix, which
introduces a possible systematic bias in the numerical results
but in turn removes the exponentially growing computational
cost and recovers the algebraic complexity. Through many
tests and developments in the last two decades [29–41], the
zero-temperature (ZT) CP-AFQMC method has been proved
to be a highly accurate, general numerical approach for study-
ing ground-state properties of various interacting fermion
models as well as molecules and realistic materials by its
generalization, the phaseless AFQMC method [28,42,43].

The finite-temperature (FT) CP-AFQMC method was for-
mulated to study thermodynamic properties in correlated
fermion systems in Ref. [10]. The constraint applied in the
FT-CP-AFQMC method to control the sign problem involves
an input trial Hamiltonian or trial density matrix, correspond-
ing to the trial wave function used in the ZT method. The
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FT-CP-AFQMC formalism has been extended to Bose-Fermi
mixtures [44], and more recently applied to molecular sys-
tems [45] by replacing the sign constraint with the phaseless
constraint [28]. However, applications of the FT-CP-AFQMC
have been limited, since the benchmark has not been nearly
extensive as for ZT, and the many recent developments in
understanding and improving the constraint have not been
realized within the FT framework.

The ability to compute the temperature dependence of
various physical properties in many fermion systems is of fun-
damental importance. Examples in correlated fermion models
include pseudogap physics in cuprates, as well as BCS-BEC
crossover for ultracold fermions in optical lattice. More re-
cently, the direct measurements of the equation of state [46],
Mott insulator [47], as well as short-range charge and spin
correlations [48,49] of the Hubbard model are realized in
optical lattice. As experiments start to access lower temper-
atures, there is a growing need for accurate computations
across temperature ranges. It is especially timely to revisit the
difficulty posed by the sign problem and extend the reach of
AFQMC to finite but sufficiently low temperatures.

We address this need in the present paper. Building on
the FT-CP-AFQMC ideas in Ref. [10] and recent develop-
ments in ZT methods [38–40], we introduce a self-consistent
constraint in the FT framework, investigate the systematic
error and its relation to spin symmetry breaking in the trial
density matrix, and perform systematic benchmark studies
in the two-dimensional Hubbard model. We also describe
in detail several other algorithmic improvements in the FT
framework which allow stable and efficient computations to
low temperatures (as low as T = 1/80 in units of hopping in
the Hubbard model).

In the benchmark, we mainly concentrate on 1/8 hole
doping in the one-band Hubbard model, which has the most
severe sign problem and is algorithmically very difficult.
Physically it is a crucial regime to understand in the context
of the phase diagram of cuprates. The results demonstrate that
FT-CP-AFQMC is exact at very high temperatures and ap-
proaches ZT-CP with decreasing temperature. They show that
the new FT-CP algorithm is capable of computing thermody-
namic properties systematically with accuracy comparable to
or even better than that of ZT-CP for ground-state properties.

In the rest of the paper, we will refer to the standard
algorithm of BSS as DQMC and, unless necessary, refer to
the CP-AFQMC framework as AFQMC for brevity, distin-
guishing the zero- and finite-temperature formalisms by ZT
and FT respectively. As we will see in more detail below,
the CP-AFQMC framework shares the basic formalism of
DQMC; however, it reformulates the Monte Carlo process as
branching random walks, using importance-sampling trans-
formation, with an ensemble or population of walkers in the
imaginary-time (inverse temperature) direction instead of the
usual Metropolis sampling of the entire path in auxiliary-
field space. The reason for the reformulation is twofold.
One is to allow the imposition of the constraints without
incurring ergodicity problems [10,29,50]. The other is that,
for ground-state or ZT calculations, it provides a clear and
formal connection [28,51] with standard electronic structure
methods within density-functional theory, which has enabled
general computations in solids and molecular systems.

The rest of the paper is organized as follows. In Sec. II, we
summarize the DQMC algorithm, and establish the necessary
concepts and formalisms which are also important parts of
FT-AFQMC method. In Sec. III, we describe the FT-AFQMC
method, focusing on the constrained path approximation, pro-
cess of random walks with importance sampling, and several
implementation issues for improved efficiency and stability in
the numerical procedures. Then the self-consistent constraint
and the forms of the constraining trial Hamiltonian or density
matrix are discussed in Sec. IV, using the two-dimensional
(2D) doped Hubbard model with repulsive interaction as a
concrete example. In Sec. V, we present the benchmark results
for this system, which demonstrates the performance and
accuracy of the FT-AFQMC method. Finally, Sec. VI sum-
marizes this work, and discusses applications of the method
in other models and realistic molecules and materials.

II. DETERMINANTAL QUANTUM MONTE CARLO
METHOD AND THE SIGN PROBLEM

There are various overlapping numerical details in DQMC
and FT-AFQMC methods. Here we present a brief review of
the DQMC method including the basic formalism and the
sign problem. This will help illustrate the connection, and
also introduce several concepts and set up our notation for
describing AFQMC in the following sections.

A. Formalism of DQMC method

We begin with a general interacting model of spin-1/2
fermions, Ĥ = Ĥ0 + ĤI , where Ĥ0 is the noninteracting part
and ĤI represents fermion-fermion interactions. Ĥ0 can be
written as

∑
ij,σσ ′ (H0)iσ,jσ ′c+

iσ cjσ ′ (σ = ↑,↓ is the spin in-
dex), with c+

iσ (ciσ ) as the creation (annihilation) operator
on site i. A chemical potential term is included in Ĥ0 im-
plicitly. Given a finite-size lattice (or basis) with Ns sites,
H0 = {(H0)iσ,jσ ′ } is the 2Ns × 2Ns hopping matrix. If there
are no spin-flip terms, H0 is block diagonal with respect to
spin species: H0 = Diag(H↑

0 , H↓
0 ), where Hσ

0 is the Ns × Ns

matrix.
The DQMC method deals with the partition function of the

system as

Z = Tr(e−βĤ ) = Tr(e−�τĤ . . . e−�τĤ e−�τĤ︸ ︷︷ ︸
M

), (1)

where �τ = β/M and M is the number of imaginary-
time slices. For a small �τ , the Trotter-Suzuki decomposi-
tion, such as the asymmetric one e−�τĤ = e−�τĤI e−�τĤ0 +
O[(�τ )2], and the Hubbard-Stratonovich transformation,
generally expressed as e−�τĤI = ∑

x p(x)B̂I (x), are applied
to transform the many-body propagator e−�τĤ in Eq. (1) into
single-particle operators expressed as free fermions coupled
to auxiliary fields x = (x1, x2, . . . , xNf

) with Nf (comparable
with Ns) components. The error O[(�τ )2] originates from
[Ĥ0, ĤI ] �= 0, and B̂I (x) = exp { ∑

ij,σσ ′[HI (x)]iσ,jσ ′c+
iσ cjσ ′ }

where HI (x) = {[HI (x)]iσ,jσ ′ } is a 2Ns × 2Ns Hermitian or
anti-Hermitian matrix. Combining with the kinetic propagator
B̂K = e−�τĤ0 which has no dependence on imaginary time,
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we can rewrite the propagator e−�τĤ (�) at the �th time slice as

e−�τĤ =
∑

x�

p(x�)B̂� + O[(�τ )2], (2)

where B̂� = B̂I (x�)B̂K . Applying this to all time slices in
Eq. (1), we arrive at Z � ∑

X P (X)Tr(B̂M . . . B̂2B̂1), where
P (X) = ∏M

�=1 p(x�) is a probability density function and the
auxiliary-field configuration X = {xM, . . . , x2, x1} contains
MNf components. Since B̂� is a single-particle propagator,
the trace in the partition function can now be evaluated
explicitly to yield

Z �
∑

X

P (X)det(I2Ns
+ BM . . . B2B1), (3)

where B� = BI (x�)BK with BI (x�) = eHI (x� ) and BK =
e−�τH0 . In Eq. (3), D(X) = P (X)det(I2Ns

+ BM . . . B2B1) is
the so-called “weight” of auxiliary-field configuration X. With
this, we have formally mapped the study of a D-dimensional
quantum system for fermions with Ns lattice sites into solving
a (D + 1) classical system with MNf classical variables (or
sites on a space-time lattice).

If the determinant satisfies D(X) � 0, we can define a
probability density function

W (X) = D(X)∑
X′ D(X′)

(4)

and sample it by Monte Carlo (for example with the Metropo-
lis algorithm) to calculate physical observables

〈Ô〉 = 1

Z
Tr[e−(β−τ )Ĥ Ôe−τĤ ] =

∑
X

O(X)W (X), (5)

where the first and second equalities give the definition and
the formula used in Monte Carlo calculations, respectively.
In Eq. (5), the extra τ = ��τ with 0 � � � M is used to
indicate that, although there is overall translational invari-
ance in τ for 〈Ô〉, the evaluation of O(X), the measure-
ment of Ô within configuration X, can depend on imag-
inary time. For example, the static Green’s-function ma-
trix G(τ, τ ) = {Giσ,jσ ′ = 〈ciσ c+

jσ ′ 〉τ } takes the simple form
G(τ, τ ) = (I2Ns

+ RL)−1 where R = B� . . . B2B1 and L =
BMBM−1 . . . B�+1. With this, the O(X) for all single-particle
and two-particle observables can be calculated directly or via
Wick decomposition. Equation (5) is then used to obtain the
statistical average and perform standard analysis to estimate
the statistical error.

We remark on several technical aspects. (1) For the
special case of spin decoupled systems, the matrices in-
volved become block diagonal with respect to spin species,
as mentioned earlier. The determinant D(X) can be sepa-
rated as D(X) = D↑(X)D↓(X). (2) We used the asymmetric
Trotter-Suzuki decomposition in the discussion above. It is
straightforward to apply the symmetric one, e.g., e−�τĤ =
e−�τĤ0/2e−�τĤI e−�τĤ0/2 + O[(�τ )3]. In any case, the sys-
tematic error from a finite �τ can be removed by extrapo-
lating several calculations with different �τ values. (3) The
DQMC approach is typically realized by a Markov-chain
Monte Carlo algorithm. Ergodicity is required in the sampling
of new auxiliary-field configurations and detailed balance

must be maintained in the update procedure. (4) The com-
putational complexity of the DQMC algorithm is O(MN3

s ).
(5) There can be an infinite variance problem [52] in sign-
problem-free simulations with D(X) � 0 which needs to be
controlled. We will defer the discussion of numerical stabi-
lization and efficient updating of auxiliary-field configurations
to the sections on AFQMC, and discuss the sign problem in
DQMC next.

B. Minus sign problem

For systems free of the sign or phase problem, special sym-
metries are typically present to keep D(X) � 0 for all config-
urations, such as the antiunitary symmetry for the one-particle
Hamiltonian after HS transformation [18,19]. Recently, the
guiding principles for interacting fermion models which can
be made free of the sign or phase problem have been largely
extended [20–27]. However, these cases are still rare. In
general, the determinant D(X) cannot be made non-negative
for all configurations, which leads to the minus sign problem.
More generally, the B� matrix can be complex, because of
hopping terms in H0 from a twist angle or magnetic field, or
spin-orbit coupling, and/or because of specific choices of the
Hubbard-Stratonovich transformation in HI . This leads to a
phase problem.

In the presence of a sign or phase problem, W (X) in
Eq. (4) can no longer be used as a probability density. It is
of course straightforward to choose, for example, W ′(X) =

|D(X)|∑
X′ |D(X′ )| instead, and replace the Monte Carlo average of the

observable Ô in Eq. (5) with

〈Ô〉 =
∑

X sgn(X)O(X)W ′(X)∑
X′ sgn(X′)W ′(X′)

, (6)

where sgn(X) = D(X)/|D(X)| is the phase or sign of D(X).
The denominator in Eq. (6) gives the average of the sign (or
phase):

〈sgn〉 =
∑

X

sgn(X)W ′(X) =
∑

X D(X)∑
X′ |D(X′)| , (7)

which can be thought of as the ratio between two partition
functions, one for our actual interacting fermion system and
the other a fictitious system defined by the absolute value of
the determinants. Note that 〈sgn〉 is always a real number and
below we will loosely refer to it vanishing as a sign problem,
although in the case of a phase problem the imaginary part can
grow to be of comparable magnitude as the real part, causing
large fluctuations in the phase.

Implementing the above reweighting technique does not
prevent the sign problem, of course. It can be shown both
theoretically and numerically [16,17] that 〈sgn〉 ∝ e−ξβNs for
β larger than a specific value, where ξ is a positive constant
dependent on the filling and interaction strength of the system.
Thus, as β increases, D(X) tends to approach an antisymmet-
ric function and the sign average 〈sgn〉 vanishes exponentially.
The computational cost of DQMC simulations, for fixed sta-
tistical accuracy, scales exponentially with system size and
inverse temperature for any 〈Ô〉. As pointed out in Ref. [10]
and further discussed below in Sec. III A, the symptoms and
the origin of the sign problem can be understood with a simple
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intuitive picture in terms of the path integrals in auxiliary-field
space.

III. FINITE-TEMPERATURE CONSTRAINED PATH
AUXILIARY-FIELD QUANTUM MONTE CARLO METHOD

The FT-AFQMC approach is an alternative method. A con-
straint is applied, based on exact considerations of the nature
of the paths in auxiliary-field space but implemented approx-
imately using a trial density matrix, to control the sign/phase
in D(X). The approximation can introduce a systematic error,
but removes completely any decay of 〈sgn〉, and restores alge-
braic scaling. In this section, we discuss the basic formalism
of FT-AFQMC method in the first part. Then we introduce
the formulation of branching random walk with importance
sampling, which is necessary for an efficient implementation.
The last part contains several important technical aspects for
improving numerical efficiency and stability.

A. Constrained path approximation

The CP approaches at both finite and zero temperatures
are based on understanding the structure of the paths in
auxiliary-field space, and devising rigorous constraints which
effectively sum positive and negative contributions prior to the
Monte Carlo sampling. Below we illustrate the idea at finite
temperature using the formalism of DQMC discussed earlier.

Instead of starting from a full initial configuration X
as in DQMC, we imagine that the complete path X =
{xM, . . . , x2, x1} is generated by M successive steps in imag-
inary time, from x1 to xM . Beginning with the partition
function Z = Tr(B̂B̂ . . . B̂) where B̂ = e−�τĤ , we replace B̂
by Eq. (2) one at a time from the right to the left. Af-
ter � such steps, the partial paths {x�, . . . , x2, x1} are con-
structed and the partition function can be written as Z �∑

{x�,...,x2,x1} P�({x�, . . . , x2, x1}, B̂) with P� as

P�({x�, . . . , x2, x1}, B̂)

=
�∏

n=1

p(xn) · Tr(B̂ . . . B̂B̂︸ ︷︷ ︸
M−�

B̂� . . . B̂2B̂1︸ ︷︷ ︸
�

). (8)

If we include all possible values of x�, all complete paths
will be generated after M steps, and we recover the full path-
integral representation of the partition function in Eq. (3).

Let us consider a case with a particular partial path
{x�, . . . , x2, x1} of length �, when P�({x�, . . . , x2, x1}, B̂) =
0. Mathematically this is equivalent to

∑
{xM,...,x�+1}

M∏
n=1

p(xn) · Tr(B̂M . . . B̂�+1B̂� . . . B̂2B̂1) = 0, (9)

where we have replaced the remaining (M − �) many-body
operators B̂ in Eq. (8) by the corresponding B̂(x) operators
with auxiliary fields, using Eq. (2). Equation (9) implies that
the contributions of all complete paths whose first � elements
are the particular partial path {x�, . . . , x2, x1} simply cancel
in the partition function Z, as the summation over all possible
{xM, . . . , x�+2, x�+1} is equal to zero.

This observation allows us to divide all the complete paths
(or the auxiliary-field space) into two categories according to

their contributions to the partition function Z: an antisymmet-
ric part and the residual part. All the complete paths contain-
ing the partial path {x�, . . . , x2, x1} discussed above belong to
the antisymmetric category. Complete paths in this category
share the common characteristic that P� defined in Eq. (8)
encounters P� = 0 for at least one � ∈ [1,M]. Statistically,
the complete paths belonging to the antisymmetric category
are “noise,” since the contributions of such paths cancel in
Z. These noise paths increasingly dominate the auxiliary-field
space with lowering temperature; they contribute to the expo-
nential growth in the variance of the numerical results. On the
other hand, complete paths belonging to the other category,
the residual part, are responsible for the actual signal in the
partition function; their contributions vanish exponentially
with the length of the path. The overall effect gives rise to the
behavior of the sign average discussed in Sec. II B, namely an
exponential decay of signal-to-noise ratio that is the signature
of the sign problem.

The recognition of the different categories of paths pro-
vides an understanding of the origin of the sign problem. It
shows that a complete path contributes if and only if all of the
following M conditions are satisfied in the generation of the
path:

P�({x�, . . . , x2, x1}, B̂) > 0, � = 1, 2, . . . , M. (10)

The constraints in Eq. (10) represent an absorbing boundary
condition (BC) at P� = 0 with increasing �. Under this BC,
the probability distribution of the generated paths vanishes
smoothly close to the boundary. Thus application of these
constraints will eliminate all noise paths while keeping the
contributing ones. Since the absorbing BC filters out the anti-
symmetric part in auxiliary-field space, the algorithm remains
exact. This is the basic idea of the FT-AFQMC method.

To realize the FT-AFQMC method numerically, several
additional issues must be addressed. First, a finite �τ is
always used in practical simulations, which makes it difficult
to determine P� = 0 precisely. Since P is continuous in �

only at the �τ → 0 limit, the random walk will typically
cross the absorbing boundary “in between” two successive
time steps. This problem turns out to be straightforward to
handle. In the simplest approximation, the absorbing bound-
ary can be identified by � corresponding to the first passage
to P� < 0. Alternatively, a higher-order approach called mir-
ror correction [9,29,53] can be applied, which introduces a
finite probability to terminate the path at (� − 1) for the case
when P�−1 > 0 and P� < 0. These two approaches locate
the absorbing boundary with controllable systematic errors of
O(�τ ) and O[(�τ )2], respectively, which vanish as �τ → 0
and can be extrapolated away with finite �τ calculations.

A second, much more significant issue is that B̂ in Eq. (10)
is a many-body operator, which makes the exact calculation
of P�({x�, . . . , x2, x1}, B̂) in Eq. (8) a many-body problem.
In practice, we replace it by a known trial propagator B̂T =
e−�τĤT , where ĤT can be thought of as a trial Hamilto-
nian. This substitution causes a systematic error, since now
the absorbing BC is only determined approximately. This
is the constrained path approximation and it results in the
only systematic error of the FT-AFQMC method. (All other
numerical errors can be systematically removed, such as the
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finite-�τ error, as discussed above, or population control
error.) The constrained path approximation becomes exact if
B̂T is exact. In practice the trial propagator B̂T is typically
of single-particle form. In other words the trial ĤT is often a
single-particle Hamiltonian: ĤT = ∑

ij,σσ ′ (HT )iσ,jσ ′c+
iσ cjσ ′ ,

where HT = {(HT )iσ,jσ ′ } is a 2Ns × 2Ns Hermitian matrix.
Using the trial B̂T , the P� in Eq. (8) can be rewritten in the
operator and matrix determinant forms as

PT
� ({x�, . . . , x2, x1}) = P�({x�, . . . , x2, x1}, B̂T )

=
�∏

n=1

p(xn) · Tr
(
B̂T . . . B̂T B̂T︸ ︷︷ ︸

M−�

B̂� . . . B̂2B̂1
)

=
�∏

n=1

p(xn) · det

[
I2Ns

+
(

M−�∏
n=1

BT

)
B� . . . B2B1

]
,

(11)

where the matrix BT = e−�τHT . Then the constraints in
Eq. (10) are replaced by the following:

PT
� ({x�, . . . , x2, x1}) > 0, � = 1, 2, . . . , M, (12)

which is imposed successively in imaginary time from � = 1
to M .

B. Random walk with importance sampling

We next discuss an algorithm for sampling the paths
efficiently while imposing the constraints in Eq. (12). Our
goal is to generate complete paths (configurations) X which
both satisfy the constraints and are distributed according to
D(X). We construct such contributing paths following exactly
the process outlined in the thought experiment in Sec. III A.
Instead of sweeping through the entire path for updates as
in the DQMC method, we construct the complete path X =
{xM, . . . , x2, x1} from x1 to xM using a branching random
walk, while imposing the constraints in Eq. (12).

To introduce importance sampling into the random-walk
process to improve sampling efficiency, we note that the
partition function can be rewritten as

Z �
∑

{xM,...,x2,x1}

PT
M

PT
M−1

PT
M−1

PT
M−2

. . .
PT

2

PT
1

PT
1

PT
0

PT
0 , (13)

where PT
� is shorthand for the full expression in Eq. (11), and

PT
M = D(X). Starting from PT

0 = det(I2Ns
+ ∏M

n=1 BT ) > 0,
we first use λ(x1) = max[PT

1 /PT
0 , 0] to construct a normal-

ized probability density function η(x1) = λ(x1)/
∑

x′
1
λ(x′

1).
We then draw a sample for x1 from η(x1), and assign the
normalization factor

∑
x′

1
λ(x′

1) as a weight of the newly
sampled path. Note that the constraints in Eq. (12) for �= 1
have automatically been implemented by our choice of the
probability density function. We then repeat the same pro-
cedure from x2 to xM . At the �th step, with the partial path
{x�−1, . . . , x2, x1} already constructed, we use the conditional
PDF η(x�) = λ(x�)/

∑
x′

�
λ(x′

�) to sample x�, where λ(x�) =
max[PT

� /PT
�−1, 0]. The weight of the path is multiplied by the

normalization
∑

x′
�
λ(x′

�).

In the calculation, we carry an ensemble of NX samples and
propagate them in parallel. Each sample is called a random
walker, and the random walk is carried out for M steps.
During the random walk, the walker weights can fluctuate
and a population control procedure is applied periodically,
as discussed in the next section. At the end of the random
walk, NX complete paths are obtained, given by Xk with
weight wk for k = 1 to NX. They provide Monte Carlo
samples of a modified probability density function W c(X)
as defined in Eq. (4) but with D(X) replaced by Dc(X),
where the superscript “c” means “under the constraint” of
Eq. (12). Observables can then be computed as in Eq. (5),
which is further discussed in the next section. We repeat the
M-step random walk procedure as needed to reach the desired
statistical accuracy.

The FT-AFQMC method, as is now evident, does not use
the Markov-chain Monte Carlo employed in DQMC. The
choice is driven by the difficulty in imposing the constraints
in the path-integral formalism in DQMC. The constraining
conditions are nonlocal in imaginary time, since the condition
at the �th step depends on the path history from 1 to (� − 1),
or alternatively from M to (� + 1) depending on how one
views the reference point (or sweeping direction in the path
sampling). This means that the sampling could get “stuck”
with a configuration which violates the absorbing boundary
condition. As we see from the analysis in Sec. III A, this will
occur with higher and higher probability as the path becomes
longer (lower temperature). The one-directional random walk
with branching adopted in FT-AFQMC, which is similar to
ZT-AFQMC, solves this problem.

In the discussion so far, we have implied that trial Hamil-
tonian ĤT (or trial propagator B̂T ) has no imaginary-time
dependence. (Note that the time dependence of B̂T should
be distinguished from that of the constraint; because of the
product form in Eq. (11), the constraint is time dependent even
if B̂T is not.) It is straightforward to generalize the procedure
to an imaginary-time dependent ĤT .

C. Implementation issues for numerics

In this section we discuss several issues in a general imple-
mentation of the FT-AFQMC method for correlated fermion
systems. They include numerical stabilization, growth estima-
tor and population control, measurements, and the form of
ĤT and its implementation. Additional details are provided
in Appendix A.

Finite-temperature AFQMC calculations, like DQMC, are
more challenging to keep numerically stable than zero-
temperature calculations. The instability grows more severe
at lower temperatures, and is caused by numerical round-off
errors [8,54,55] from the multiplication of many B matrices.
In our calculations, we use the column-pivoted QR algorithm
to stabilize the matrix products and we also implement a very
stable way [54,55] to calculate the single-particle Green’s-
function matrix shown in Appendix A. Combining them, we
can access temperatures as low as 1/80 in units of the hopping
parameter (or 1/20 in units of Fermi energy).

In the FT-AFQMC method, the weights of walkers, wk ,
can fluctuate. The procedure to keep these fluctuations under
control and maintain statistical accuracy is similar to that used
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in ground-state AFQMC calculations [29] and in diffusion
Monte Carlo calculations [6]. Several schemes are possible
whose details differ somewhat and can affect the statistical
accuracy and population control bias, but the effects are
negligible (much smaller than the statistical errors) in our
calculations with O(103–104) random walkers. Here we will
not make distinctions of the technical details of the population
control schemes, but simply describe the simplest approaches.

In our calculations, a fixed population of NX random walk-
ers are kept. The weights of the walkers are carried. We often
use a combing algorithm, which periodically resets all weights
to unity by resampling them according to the normalized
distribution wk/

∑
k wk . Alternatively, we monitor the weights

for large and small values which are predefined thresholds
(e.g., 5.0 and 0.2, respectively). If the overall weight

∑
k wk

systematically increases or decreases with imaginary time,
we can adjust all weights by a constant factor as needed,
similar to the growth estimator of ground-state calculations
[29]. Walkers with large weights are duplicated and those with
small weights are eliminated with the appropriate probability
(to maintain a statistically identical population).

The measurement of observables are quite straightforward
after the contributing paths are generated with importance
sampling. In the branching random-walker formulation, every
single random walker generates a contributing path Xk with
the final overall weight wk as its contribution to the partition
function Z. Thus the physical observable 〈Ô〉 can be com-
puted as

〈Ô〉 =
∑NX

k=1 ωkOk∑NX
k=1 ωk

, (14)

where Ok is the measurement result within the configuration
Xk . Since the contributing path is generated from � = 1 to � =
M time slices, the simplest way to calculate Ok is to measure
it at the Mth time slice (or τ = β):

Ok = Tr(ÔB̂MB̂M−1 . . . B̂2B̂1)

Tr(B̂MB̂M−1 . . . B̂2B̂1)
. (15)

The evaluation of Ok in Eq. (15) is the same as discussed in
Sec. II A for DQMC. Although imaginary-time translational
invariance is broken in FT-AFQMC, it is reasonable to expect
that measurements at different times are of comparable quality
and will become more equivalent with better trial B̂T . We
generally take the average of the multiple measurements at
different imaginary times, which can be easily achieved by
wrapping the B̂�’s after the complete path has been sampled.
The extra computational cost is often more than compensated
for by the gain in statistical accuracy. Furthermore, we find
that the time-averaged results, which partially recover trans-
lational invariance in imaginary time, tend to have smaller
systematic error than the single-time measurement at β. The
procedure for measuring imaginary-time correlation functions
is straightforward [11,56].

We next comment on the operations involved in substitut-
ing the trial B̂T by the interacting propagators in the sam-
pling process. The Hamiltonian can be written as Ĥ = Ĥ0 +
ĤI = ĤT + (ĤI + Ĥ0 − ĤT ). The trial propagator is B̂T =
e−�τĤT , and we need to insert the e−�τ (ĤI +Ĥ0−ĤT ) operator.
Operationally, this means replacing B̂T by B̂ = B̂I (x)B̂K at

every time slice. The overall weight of the generated path
comes from two parts: the importance sampling of the aux-
iliary fields and the ratio of the determinants when changing
BT to BK . In the special case when we choose ĤT = Ĥ0, as
is the case when a restricted Hartree-Fock form is used, there
is an additional simplification, and we only need to insert the
corresponding BI (x�) matrix. Further details and the formulas
for PT

� /PT
�−1 are provided in Appendix A.

IV. FT-AFQMC WITH SELF-CONSISTENT CONSTRAINT

In this section, we present a self-consistent constraint in
FT-AFQMC, after first carrying out a systematic study of the
effect of different choices of mean-field trial density matrices.
For concreteness, we will use the doped two-dimensional
repulsive Hubbard model as an example. However, much of
the discussion can be generalized to other Hamiltonians, in-
cluding realistic electronic Hamiltonians under the phaseless
formalism of the constraint [28].

A. Trial density matrix: Illustration in the Hubbard model

The one-band Hubbard model is a representative model
for studying correlation effects of interacting electrons. The
model Hamiltonian Ĥ = Ĥ0 + ĤI is as follows [57]:

Ĥ = −t
∑
〈ij〉σ

(c+
iσ cjσ + c+

jσ ciσ ) + μ
∑

i

(n̂i↑ + n̂i↓)

+U
∑

i

(
n̂i↑n̂i↓ − n̂i↑ + n̂i↓

2

)
, (16)

where n̂iσ = c+
iσ ciσ is the density operator on the lattice site

i = (ix, iy ). The nearest-neighbor hopping t , on-site Coulomb
interaction U , and chemical potential μ are model parameters.
In this work, we focus on repulsive interaction, U > 0. The
Hamiltonian above is written such that μ = 0 gives half
filling, with μ > 0 for hole doping and μ < 0 for electron
doping. The overall electron density is given as n = (N↑ +
N↓)/Ns , and the hole density, or doping, is then (1 − n).

To choose a trial density matrix, the simplest ĤT to con-
sider is the restricted Hartree-Fock (RHF) type:

ĤT = −t
∑
〈ij〉σ

(c+
iσ cjσ + c+

jσ ciσ ) +
∑

i

μi,T (n̂i↑ + n̂i↓), (17)

where μi,T are free parameters. In this work, we only consider
the simplified case of μi,T = μT , namely keeping transla-
tional invariance. Taking μT = μ simply gives ĤT = Ĥ0.
More importantly, μT can be used to tune the electron filling
〈n̂〉T for the trial Hamiltonian.

Another trial Hamiltonian for Hubbard model is the unre-
stricted Hartree-Fock (UHF) type:

ĤT = −t
∑
〈ij〉σ

(c+
iσ cjσ + c+

jσ ciσ )

+
∑
iσ

[
UT

(
〈n̂iσ̄ 〉 − 1

2

)
+ μT

]
n̂iσ , (18)

where σ̄ denotes the opposite of σ , and {〈n̂i↑〉, 〈n̂i↓〉, i =
1, 2, . . . , Ns} are from a self-consistent solution with U =
UT . The μT parameter here is similar to that in the RHF
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trial Hamiltonian in Eq. (17). We have omitted a constant
term which only affects the overall weights as discussed in
the previous section.

Both the RHF and UHF trial Hamiltonians resemble (or
are identical) to the Ĥ0 term in the many-body Hamiltonian
in Eq. (16). Thus computational simplifications exist in the
updating procedure as discussed in the previous section. Of
course in principle any other form of single-particle ĤT can
be used as trial Hamiltonian.

B. FT-AFQMC calculations with self-consistent procedure

The self-consistent procedure we develop here will allow
us to improve the constraint based on feedback from the
AFQMC calculation. It generalizes the method discussed in
Ref. [40] under the ZT-AFQMC framework to finite tem-
peratures. We will optimize the trial Hamiltonian (or trial
propagator) step by step iteratively through a sequence of
FT-AFQMC calculations so as to reduce the error from the
constraint.

For illustrating the method and testing our results, we will
consider a more general form of the Hamiltonian of Eq. (16),
by including an extra external potential term

∑
iσ viσ n̂iσ . This

will allow us to add magnetic pinning fields [58–60] to break
translational invariance in illustrating the method and testing
our results. With pinning fields, spin and charge correlations in
periodic systems can be probed by one-body spin and charge
order parameters, whose measurements are straightforward
from the single-particle Green’s functions.

The basic idea of a self-consistent procedure is to couple
the QMC calculation to an independent-particle (IP) calcula-
tion. The IP calculation deals with the following Hamiltonian,
including an external pinning field:

ĤIP = −t
∑
〈ij〉σ

(c+
iσ cjσ + c+

jσ ciσ ) +
∑
iσ

viσ n̂iσ

+
∑
iσ

[
Ueff

(
〈n̂iσ̄ 〉 − 1

2

)
+ μeff

]
n̂iσ , (19)

where Ueff and μeff are tuning parameters, and the input
densities {〈n̂i↑〉, 〈n̂i↓〉} are from a preceding QMC calculation.
The solution is used to construct the input trial Hamiltonian
for the next QMC calculation in the self-consistent procedure.

We outline the method in concrete steps:
(1) Start from a FT-AFQMC calculation using any typical

choice of trial Hamiltonian ĤT , for example RHF or UHF.
(2) ĤIP in Eq. (19) is solved using the densities ob-

tained from the AFQMC calculation in the previous step:
〈n̂iσ 〉QMC → 〈n̂iσ 〉IP. We vary Ueff to find an optimal value,
with which the computed densities at the targeted tempera-
ture are closest to the input from QMC, by minimizing the
following function:

χ =
√

1

2Ns

∑
iσ

(〈n̂iσ 〉IP − 〈n̂iσ 〉QMC)2. (20)

(3) The IP Hamiltonian ĤIP with the optimal Ueff and input
densities from the previous AFQMC calculation is taken as
trial Hamiltonian ĤT to perform a new FT-AFQMC calcula-
tion.

(4) Return to step (2) or stop if convergence criteria is
reached.

As mentioned, μeff in Eq. (19) is a tuning parameter similar
to μT in the RHF and UHF trial Hamiltonians in Eqs. (17) and
(18). In our calculations, we tune μeff to make 〈n̂〉IP equal to
the desired electron filling of the many-body system.

Two somewhat different schemes can be used to ob-
tain T > 0 results at each electron filling 〈n̂〉. We can per-
form the above self-consistent procedure at T within FT-
AFQMC calculations. Alternatively, we can first apply the
self-consistent procedure using ZT-AFQMC method [40] to
obtain the converged results of Ueff and densities at T = 0.
Substituting these converged results into the IP Hamiltonian
ĤIP in Eq. (19), we can then take ĤIP to generate a UHF trial
Hamiltonian once for all to perform FT-AFQMC calculations.
The temperature dependence of the UHF trial Hamiltonian
only lies in μeff parameter, which is again tuned so that 〈n̂〉IP

match the filling 〈n̂〉. We have done a careful comparison of
these two schemes in the benchmark study. Both were found
to yield accurate results with only slight differences visible at
high and low temperatures. We will only present the results of
finite-T self-consistent calculations in the following.

V. BENCHMARK RESULTS

In this section we present benchmark results of FT-
AFQMC calculations by comparing them with those from
DQMC at T > 0 and ED, DMRG, and ZT-AFQMC at T = 0.
The results are divided into two parts. In the first part, we
perform a detailed test of the accuracy of “one-shot” FT-
AFQMC calculations, using periodic supercells. Then in the
second part we study the self-consistent procedure with FT-
AFQMC; calculations are presented in the second part, with
Hubbard model on a studying mostly systems with pinning
fields. When applying the antiferromagnetic (AFM) pinning
fields to an Lx × Ly supercells, we add a term

∑
iσ viσ n̂iσ

with vi↑ = −vi↓ = (−1)iy h for both ix = 1 (and sometimes
also ix = Lx as we will specify below) in Eq. (16). The
supercell remains periodic along the y direction and open
along the x direction. With pinning fields, spin and charge
correlations in periodic systems can be probed by one-body
spin and charge order parameters, whose measurements are
straightforward from the single-particle Green’s functions.

We apply the symmetric decomposition e−�τĤ =
e−�τĤ0/2e−�τĤU e−�τĤ0/2 + O[(�τ )3] and use the following
discrete form [61] for Eq. (2):

e−�τU [ni↑ni↓−(ni↑+ni↓ )/2] =
∑

xi=±1

1

2
eλxi (ni↑−ni↓ ) (21)

in both DQMC and FT-AFQMC calculations. In Eq. (21), λ =
cosh−1(e�τU/2) for U > 0 and xi is an auxiliary field.

Conservative values of �τ , typically 0.05 or 0.02, are used,
and the same �τ is applied in DQMC and FT-AFQMC when
comparing their numerical results. The population of random
walkers ranges from 103 to 104. All the results we will present
are from the multiple measurements along the contributing
paths as discussed in Sec. III C, unless otherwise noted.

045108-7



HE, QIN, SHI, LU, AND ZHANG PHYSICAL REVIEW B 99, 045108 (2019)

-2.8

-2.5

-2.2

-1.9

-1.6

-1.3

-1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.5 1.0 1.5 2.0
-0.060

-0.045

-0.030

-0.015
0.0 0.5 1.0 1.5 2.0

-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

0.0 0.5 1.0 1.5 2.0
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

0.0 0.5 1.0 1.5 2.0
-1.0
-0.5
0.0
0.5
1.0

0.0 0.5 1.0 1.5 2.0
-5
-4
-3
-2
-1
0
1

(a)

〈H
〉/N

s

FT-AFQMC
βt = 2
βt = 5

DQMC
βt = 2
βt = 5

(b)

〈n
〉

(c)

μ/t

〈n
i,↑
n i
+1
,↓
〉

μ/t

(d)

〈 s
z is
z i+
1〉

R
el
at
iv
e
Er
ro
r (×
10

)

βt = 2
βt = 5

R
el
at
iv
e
Er
ro
r (×
10

)

R
el
at
iv
e
Er
ro
r (×
10

)

R
el
at
iv
e
Er
ro
r (×
10

)

FIG. 1. Benchmark of FT-AFQMC at high temperatures. Results are shown for Hubbard model under periodic boundary conditions, on a
4 × 4 system with U/t = 4 and varying μ/t , comparing FT-AFQMC with DQMC calculations at βt = 2 and βt = 5. The four panels give
(a) Total energy per site, (b) electron filling, (c) NN density-density correlation function 〈n̂i,↑n̂i+1,↓〉, and (d) NN spin-spin correlation function
〈ŝz

i ŝ
z
i+1〉. The relative errors of FT-AFQMC results are shown in the corresponding inset plots.

A. Numerical results from FT-AFQMC calculations
with specific trial Hamiltonians

We first benchmark the FT-AFQMC at high temperatures.
The Hubbard model on a 4 × 4 square lattice with periodic
boundary conditions will be used, for availability of exact
results. We study βt = 2 and βt = 5, varying the μ parameter
to examine different electron fillings. The sign problem is
mild in these situations, and we obtain accurate results from
DQMC calculations for comparison. In AFQMC, the RHF
trial Hamiltonian of Eq. (17) is applied. We determine μT

by the condition 〈n̂〉T = 〈n̂〉, i.e., the electron filling of ĤT

is equal to the targeted filling of the many-body system, as
defined by DQMC. The choice of μT is further discussed
below.

Results for the energy, electron filling, density, and spin
correlations are shown in Fig. 1 for both DQMC and FT-
AFQMC. It is evident that the results from both methods
are perfectly consistent at βt = 2 for all μ parameters, with
zero relative discrepancy within statistical error bars. This
confirms that the FT-AFQMC results are exact at high tem-
perature, even with the simplest RHF trial Hamiltonian. (For
the βt = 2 results shown, we actually took μT = μ, i.e.,
ĤT = Ĥ0. Tuning it with respect to the exact density yields
indistinguishable results.) For βt = 5, FT-AFQMC calcula-
tions with RHF trial Hamiltonian also generate quite accurate
results, with the largest relative error <1% for total energy,
electron filling, density correlation function, and about 4%
for spin-correlation function. For spin-correlation function,
the largest deviation appears at half filling with μ = 0. This

can be improved by using a trial Hamiltonian with UHF and
becomes essentially exact in ZT-AFQMC with a generalized
Hartree-Fock (GHF) trial state [37,62].

We next study more closely the role of μT in the RHF
trial Hamiltonian, with additional FT-AFQMC calculations at
βt = 5. Two representative points are checked, μ = 0.4t and
μ = 1.0t , where relative errors shown in Fig. 1 are close to the
largest. We vary μT and study the corresponding systematic
error of FT-AFQMC, 〈Ô〉FT-AFQMC − 〈Ô〉DQMC. For μ = 0.4t ,
as shown in Fig. 2(a), all the physical observables have the
smallest systematic errors at the μT /t value determined from
the 〈n̂〉T = 〈n̂〉DQMC condition. That is not the case for μ =
1.0t as shown in Fig. 2(b), for which the smallest errors for
different observables are located at different μT /t values.
Thus no μT exists within the RHF trial Hamiltonian frame-
work which “optimizes” the FT-AFQMC calculation in an
absolute sense. However, at the position of μT /t determined
from the exact electron filling condition, the systematic errors
of all the quantities are very close to the minimum, validating
our earlier choice. Furthermore, the errors all vary slowly
(note the small scale of the errors in the plot) in a broad
range of μT /t values, indicating that the constraint is not very
sensitive to the details of the trial Hamiltonian.

Now we study a broader temperature range and examine
the behavior of the FT-AFQMC algorithm for accessing suf-
ficiently low temperatures to approach the ground state. We
focus on U = 4t with 1/8 hole doping, i.e., 〈n̂〉 = 0.875, and
a temperature range from T = t/2 to T = t/80. Here we
apply an AFM pinning field h = 0.1t on one edge, at ix = 1,
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FIG. 2. Systematic errors from FT-AFQMC calculations as the
μT /t parameter in the applied RHF trial Hamiltonian ĤT is varied.
The system is the same as in Fig. 1 at βt = 5. (a) μ = 0.4t and
(b) μ = 1.0t are studied as representative cases. Gray, horizontal line
represents zero error and the dark yellow, vertical line stands for the
μT /t value in Fig. 1, determined from 〈n̂〉T = 〈n̂〉DQMC.

with an open boundary condition the along x direction in the
4 × 4 system. All reference calculations, ED, ZT-AFQMC,
and DQMC, are performed on the same Hamiltonian and
parameter choices. The lowest temperature accessible here
with DQMC is T = t/15, with average sign of 0.031. We use
the RHF trial Hamiltonian (with the same AFM pinning fields)
in FT-AFQMC calculations.

The results of this benchmark are shown in Fig. 3. In
panel (a), energies computed from FT-AFQMC at high tem-
perature, e.g., βt = 2, are indistinguishable from DQMC as
seen earlier. As T decreases, the systematic error becomes vis-
ible and tends to increase, with a maximum of about 0.2% de-
viation at the lowest temperature available from DQMC, T =
t/15. In the lower temperature region, we find that the energy
with measure B obtained from FT-AFQMC fits accurately to
an exponential, E = E0 + be−c/T . The extrapolated value E0

at T = 0 is consistent with the result from ZT-AFQMC (mea-
sured with back propagation). This consistency unifies the
FT- and ZT-AFQMC framework. Thus we expect a maximum
relative error, as T → 0, of ∼0.24% as given by ZT-AFQMC,
as shown in inset of Fig. 3(a). This is very accurate, especially
since it is obtained with the simplest RHF form of the trial
Hamiltonian. The energy results from measure A (single
measurement at τ = β) and measure B (averaging multiple
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FIG. 3. Benchmark results over the complete range of temper-
atures. The system is a 4 × 4 square lattice with U/t = 4 and
AFM pinning fields h = 0.1t at ix = 1, targeting 〈n̂〉 = 0.875. The
computed total energy vs temperature is shown in (a), and the relative
errors are shown with respect to DQMC for T = t/15 ∼ t/2 region
and then with respect to ED at T = 0 K. Measure A denotes doing
a single measurement at τ = β in FT-AFQMC, while measure B
denotes averaging multiple measurements along the whole path. The
computed density is shown in (b), with the numerically determined
μ parameter shown in the inset together with the μT parameter in the
RHF trial Hamiltonian ĤT .

measurements along the complete path) show significant dif-
ferences at low temperatures, as seen in Fig. 3(a) and the
inset. The improvement from measure B at low temperatures
is an effect of partially restored imaginary-time translational
symmetry, as mentioned in Sec. III C. As seen in Fig. 3(b), the
numerically calculated overall filling 〈n̂〉 from both DQMC
and FT-AFQMC methods are indeed equal to the desired value
0.875, within statistical error bars, across the entire range
of temperature. The calculated electron fillings are the same
for measure A and measure B, since the density operator
commutes with the B̂ used. As shown in inset of Fig. 3(b),
the μ parameters determined from DQMC and FT-AFQMC
calculations, to produce the desired density, are in good
agreement at high temperatures, but discrepancy is visible
with decreasing T . This is a consequence of the constrained
path approximation in FT-AFQMC. The μT parameter in
the RHF trial Hamiltonian for AFQMC, determined via the
density condition 〈n〉T = 〈n〉 = 0.875, is also indicated in the
plot.
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FIG. 4. Convergence of the self-consistent FT-AFQMC procedure. Results are shown for a 16 × 4 system with U = 4t, βt = 40 and AFM
pinning field h = 0.10t applied to both edges in x direction, targeting an overall electron filling 〈n̂〉 = 0.875. The left column, (a) and (b),
shows results of staggered spin and hole density respectively, starting from the RHF trial Hamiltonian, while the middle column, (c) and (d),
presents the corresponding results starting from the UHF trial Hamiltonian with Ueff = U . The difference at each stage of the iteration with
respect to the final converged results is shown in the insets. The right column shows energy (e), electron filling [inset in (e)], and χ (f) vs
iteration number.

B. Numerical results from FT-AFQMC calculations
with self-consistent procedure

The FT-AFQMC results presented in Sec. V A are
from one-shot calculations with a specific trial Hamiltonian
(namely RHF). In such calculations, there is no internal mech-
anism to indicate whether the results are optimal or not. The
self-consistent procedure developed for T > 0 in this work
serves as such a mechanism. In this part, we illustrate and
benchmark the self-consistent approach. As mentioned, we
will use a 16 × 4 system at 〈n̂〉 = 0.875 with AFM pinning
fields. The local spin and hole densities, sz

i = 〈n̂i↑ − n̂i↓〉/2
and nh

i = 1 − 〈n̂i↑ + n̂i↓〉, will serve as probes for spin and
charge order. To plot the spin order, we will often use the
staggered spin density (−1)ix+iy sz

i . Translational symmetry in
y and the mirror symmetry in x direction are applied to reduce
statistical errors.

We start by testing the general stability of the self-
consistent FT-AFQMC procedure, in Fig. 4. We carry out
two separate self-consistent processes, starting the calculation
with RHF and UHF trial Hamiltonians, respectively. The
UHF trial Hamiltonian is prepared from the UHF mean-field
solution of the many-body system at the desired tempera-
ture (βt = 40), using original parameters in the many-body
Hamiltonian (Ueff = 4t). The results are shown in panels
(a) and (b) and (c) and (d), respectively. We observe that
FT-AFQMC calculations starting from both RHF and UHF
trial Hamiltonians converge within four iterations. While it
is possible for the self-consistent iteration to get stuck in a
local minimum, the tests we have carried out at finite temper-
atures resulted in the same converged results for all studied

observables, independent of which initial trial Hamiltonian is
used. (Interestingly, the χ function monotonically increases
with the Ueff = 4t UHF starting trial Hamiltonian, which is
different from the behavior in ZT-AFQMC calculations [40].
This might be from how finite temperature is accounted for in
the trial density matrix.)

We now study the temperature dependence of the self-
consistent FT-AFQMC procedure. We will carry out calcu-
lations for two systems, with U = 4t and U = 6t , at tempera-
tures as low as βt = 50. The lowest temperature accessible
with standard DQMC is βt ∼ 8 and 5, with average signs
of 0.043 and 0.016, respectively. As we shall see, the be-
haviors of the system at such temperatures are very different
from those at low temperatures and in the ground-state limit,
highlighting the fundamental need for FT methods which
control the sign problem. The ZT-AFQMC results from self-
consistent calculations for these two systems are presented
and discussed in Appendix B.

The computed total energy, staggered spin density, and
hole density are shown in Fig. 5 for the U = 4t system, after
convergence of the self-consistent procedure. The results from
DQMC at βt = 8 and DMRG at T = 0 are also presented as
a benchmark. The final converged value of the Ueff parameter
in the UHF trial Hamiltonian is also indicated for each tem-
perature. As illustrated in Fig. 5(a), the results of total energy
from AFQMC calculations are highly accurate for this system,
with relative systematic error 0.07% at βt = 8 and 0.09% for
the ground state. Results of a polynomial fit are shown at low
temperatures, which gives an extrapolated answer at T = 0
fully consistent with ZT-AFQMC. At βt = 8, the FT-AFQMC
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FIG. 5. Computed results of the (a) energy, (b) staggered spin
density, and (c) hole density at a variety of temperatures, after
convergence of self-consistency procedure. The system is 16 × 4
with U = 4t and 1/8 hole doping, with AFM pinning fields of h =
0.10t applied on both edges along the y direction. The converged
Ueff parameter for the trial Hamiltonian is also shown at each T .
FT-AFQMC results systematically approach those from ZT-AFQMC
as temperature is lowered. Panels (b) and (c) share the same symbols,
legends, and scales of x axis. The inset in (b) presents the staggered
spin density at ix = 8 and a quadratic fit at low T .

calculation yields staggered spin density which is statistically
indistinguishable from that of DQMC as shown in Fig. 5(b).
The hole density in Fig. 5(c) is also in good agreement but
discrepancy from the constraint is visible, especially near
the edges; this behavior is consistent with ZT-AFQMC cal-
culations [40]. Both results converge monotonically toward

the ZT-AFQMC results as temperature is lowered. As shown
more quantitatively in the inset of Fig. 5(b), the staggered
spin density can be fitted very well by a polynomial, and the
extrapolated result at T = 0 is in excellent agreement with
the self-consistent ZT-AFQMC result. The self-consistent Ueff

parameters shown in Figs. 5(b) and 5(c) only vary slightly as
Ueff/t = 2.14–2.15 within a large range of temperature.

We next turn to a physically more relevant and challenging
system with U = 6t . Many of the characteristics seen in the
benchmark in the U = 4t systems are also seen here. In Fig. 6,
results are shown for the total energy, the spin order, and
hole density for a temperature range β = 4–50. The sign
problem prevents DQMC calculations from reaching much
below β = 5, indicated by the large error bars of the results
in all three panels in Fig. 6. This is too high a temperature for
the antiferromagnetic correlations to develop, as seen from
the results at lower temperatures. At βt = 5, the pinning
fields near the edge introduce short-range antiferromagnetic
correlations. The hole density in the system also responds
but remains flat outside of the edge region. As temperature
is lowered, the AFM order systematically increases in the
self-consistent FT-AFQMC results. The hole density starts to
exhibit inhomogeneities, and develops peaks near the nodal
lines where the AFM order shows a phase change. The spin
and hole densities approach the ZT-AFQMC results but with
a visible difference even at βt = 20. The results from FT-
AFQMC at βt = 50 and ZT-AFQMC are virtually indistin-
guishable. Compared to exact ground-state DMRG results, the
spin density from AFQMC is highly accurate, while the hole
density shows noticeable discrepancy. This is consistent with
the observation from ground-state studies [40] where more
systems were tested. As shown in Fig. 6(a), the total energy
per site is also exact at high temperatures, compared with
DQMC results. At lower temperatures, the computed energies
extrapolate to a value of −0.8765(3), consistent with the
ZT-AFQMC results of −0.8768(2), which has a relative error
of about 0.36% compared to the exact ground-state energy of
−0.8735 from DMRG.

Besides obtaining the results of thermodynamic properties,
the self-consistent procedure in FT-AFQMC calculations also
determines an effective interaction strength Ueff. The com-
puted spin and charge densities from the IP Hamiltonian in
Eq. (19) actually provide a reasonable approximation to the
many-body results. As expected, the optimum Ueff increases
with interaction strength U in the many-body Hamiltonian.
Similar to the U = 4t case, the Ueff at T > 0 is found to be
smaller than that at T = 0 at U = 6t , although Ueff only varies
slightly in a wide range of low temperatures.

VI. DISCUSSION AND SUMMARY

The self-consistent FT-AFQMC method developed in this
work allows finite-temperature QMC computations to system-
atically improve the accuracy while removing the exponential
computational scaling from the sign/phase problem. We have
studied the form of the trial Hamiltonian or trial density
matrix. Compared to ground-state calculations, for which
the constraint is defined in terms of the ground-state trial
wave function, the FT-AFQMC formalism involves account-
ing for the temperature. The self-consistent constraint we have
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FIG. 6. Development of antiferromagnetic correlations and
charge order as temperature is lowered. The system is 16 × 4, U =
6t , and 1/8 hole doping, with AFM pinning fields of h = 0.10t
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are from self-consistent calculations. Energies are shown in (a), and
spin density and hole density are plotted in panels (b) and (c), which
share the same symbols, legends, and scales of the x axis.

discussed aims to generate a B̂T by optimizing e−βĤT with
respect to the many-body calculation at the desired tempera-
ture β. The alternative we also tested, of using a ground-state
ĤT , takes the view of optimizing an effective Hamiltonian.
No significant difference was observed in the performance of
these in the Hubbard model. Another approach which will be
interesting to test is to, as random walk proceeds (varying
�), refine the constraint e−τĤT “dynamically” with τ , which

corresponds to
∏M−�

n B̂T in the constraining conditions in
Eq. (11), as the random walk proceeds (varying �). Applying
the computed single-particle density matrix as a constraint to
form a self-consistent procedure is also possible, as discussed
in Ref. [40] for the ground state. We will leave these to a future
study.

As mentioned, the self-consistent approach produces a
rigorous procedure to identify an optimal independent-particle
treatment of the many-body system. In the Hubbard model,
this takes the form of an effective interaction. In a more
general context, one can imagine this procedure as a way
to optimize an exchange-correlation functional within the
context of density functional theory (DFT). The optimized
parametrization of a particular DFT flavor can then be applied
to larger systems or other materials. Similarly, one could
imagine using the approach to help determine a “U” parame-
ter for DFT + U type calculations in correlated materials.

The finite-temperature extension of AFQMC allows many
potential applications. Among these are direct calculations to
study temperature dependence and obtain thermodynamic in-
formation in correlated electron models and materials. It could
also potentially be combined with embedding methods such
as dynamical mean-field theory [63], acting as an impurity
solver.

To summarize, we have presented a self-consistent finite-
temperature AFQMC approach to study many-fermion sys-
tems. The method shares the basic formalism of DQMC, but
controls the sign or phase problem with a constraint. The
calculations are formulated as branching random walks with
importance sampling. The constraint is applied with a trial
Hamiltonian in an independent-particle form, or a density
matrix, and is optimized by a self-consistent feedback from
the AFQMC calculation. The approach complements the ZT-
AFQMC which has been widely applied in lattice models
and in realistic systems in condensed matter and quantum
chemistry. In this paper, we presented the finite-temperature
algorithm in detail, including many technical and numeri-
cal aspects, which will help make the implementation of
the FT-AFQMC method to other correlated fermion systems
more straightforward. With our method and with improved
numerical stabilization procedures (further described in
Appendix B), calculations can reach very low temperatures
(as low as 1/80 in the Hubbard model).

In addition to presenting the method, we also carried out a
careful benchmark, and studied its behavior in detail. Differ-
ent forms of the trial Hamiltonian were tested. Comparisons
were made with DQMC where the latter could be performed,
as well as with ZT-AFQMC and ED and DMRG in the
ground state. The FT-AFQMC method is indistinguishable
from DQMC at high temperatures, and connects smoothly to
the ZT-AFQMC at very low temperatures. The benchmark
results show that the accuracy of FT-AFQMC method for
thermodynamic properties is comparable to or even better
than that of the ZT-AFQMC method for ground-state prop-
erties. The results in the Hubbard model demonstrate that the
approach opens up regimes in temperature where interesting
physics takes place and which are inaccessible by DQMC. It
is hoped that applications to study thermodynamic properties
in a variety of correlated fermion models will now be possible
with developments in this work.
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APPENDIX A: SOME FURTHER DETAILS
IN FT-AFQMC METHOD

In this Appendix, we further discuss several technical
details of the FT-AFQMC implementation.

In Sec. III B, we mentioned that there are two somewhat
different ways to implement FT-AFQMC depending on the
connection between ĤT and Ĥ0. If ĤT is closely related to
the free fermion part Ĥ0, e.g., with the RHF or UHF form, we
need to insert the e−�τ (ĤI +Ĥ0−ĤT ) = ∑

x p(x)B̂I (x) operator
at every time slice. In this case we have, for the �th time slice,

PT
�

PT
�−1

= p(x�)
Tr

[(∏M−�
n=1 B̂T

)
B̂I (x�)B̂T

( ∏�−1
m=1 B̂m

)]
Tr

[(∏M−�
n=1 B̂T

)
B̂T

( ∏�−1
m=1 B̂m

)] = p(x�)
det

[
I2Ns

+ (∏M−�
n=1 BT

)
BI (x�)BT

( ∏�−1
m=1 Bm

)]
det

[
I2Ns

+ ( ∏M−�
n=1 BT

)
BT

( ∏�−1
m=1 Bm

)] , (A1)

where the notations are the same as the main text. In the second way, the trial Hamiltonian ĤT is assumed to be quite different
from Ĥ0, and we need to replace B̂T by B̂ = B̂I (x)B̂K for every time slice. In this case, we first replace B̂T by B̂K and then
insert the e−�τĤI = ∑

x p(x)B̂I (x) operator to evaluate PT
� /PT

�−1 during the random walk:

PT
�

PT
�−1

= p(x�)
Tr

[(∏M−�
n=1 B̂T

)
B̂I (x�)B̂KB̂�−1 . . . B̂2B̂1

]
Tr

[(∏M−�
n=1 B̂T

)
B̂T B̂�−1 . . . B̂2B̂1

]
= p(x�)

Tr
[(∏M−�

n=1 B̂T

)
B̂I (x�)B̂KB̂�−1 . . . B̂1

]
Tr

[(∏M−�
n=1 B̂T

)
B̂KB̂�−1 . . . B̂1

] · Tr
[(∏M−�

n=1 B̂T

)
B̂KB̂�−1 . . . B̂1

]
Tr

[( ∏M−�
n=1 B̂T

)
B̂T B̂�−1 . . . B̂1

]
= p(x�)

det
[
I2Ns

+ (∏M−�
n=1 BT

)
BI (x�)BKB�−1 . . . B1

]
det

[
I2Ns

+ ( ∏M−�
n=1 BT

)
BKB�−1 . . . B1

] · det
[
I2Ns

+ (∏M−�
n=1 BT

)
BKB�−1 . . . B1

]
det

[
I2Ns

+ ( ∏M−�
n=1 BT

)
BT B�−1 . . . B1

] , (A2)

where the second and first ratios in the last line correspond to the insertion of BI (x�) matrix and replacement of BT by BK matrix.
To evaluate PT

� /PT
�−1 in Eq. (A2) numerically, we need to calculate the determinant det[I2Ns

+ (
∏M−�

n=1 BT )BKB�−1 . . . B1] and
the static single-particle Green’s function at every time slice, which results in extra computational cost compared to the first way
in Eq. (A1).

We next describe our numerical stabilization procedures. In the DMQC and FT-AFQMC methods, the numerical stabilization
procedures are similar and they both involves the static single-particle Green’s-function matrix G(τ, τ ) = {Giσ,jσ ′ = 〈ciσ c+

jσ ′ 〉τ }
at τ = ��τ . Generally, its matrix element takes the form

Giσ,jσ ′ = Tr[B̂(β, τ )ciσ c+
jσ ′B̂(τ, 0)]

Tr[B̂(β, τ )B̂(τ, 0)]
= {[

I2Ns
+ B(τ, 0)B(β, τ )

]−1}
iσ,jσ ′ . (A3)

For DQMC, B̂(β, τ ) = B̂M . . . B̂�+2B̂�+1 and B̂(τ, 0) = B̂� . . . B̂2B̂1, with B(β, τ ) = BM . . . B�+2B�+1 and B(τ, 0) =
B� . . . B2B1. For the FT-AFQMC algorithm, B̂(β, τ ) = ∏M−�

n=1 B̂T and B̂(τ, 0) = B̂� . . . B̂2B̂1, with B(β, τ ) = ∏M−�
n=1 BT ,

B(τ, 0) = B� . . . B2B1, instead.
We apply the column-pivoted QR algorithm [54,55] to perform the following decompositions for B(β, τ ) and B(τ, 0)

matrices: B(β, τ ) = VLDLUL and B(τ, 0) = URDRVR , where UR, UL, VR, VL are 2Ns × 2Ns matrices and UR, UL are unitary,
and DR, DL are 2Ns × 2Ns real diagonal matrices. To calculate the Green’s function matrix in Eq. (A3), we further separate
DR as Dmax

R Dmin
R , which are both 2Ns × 2Ns real diagonal matrices satisfying the following condition: if |(DR)ii | � 1, then

(Dmax
R )ii = |(DR)ii | and (Dmin

R )ii = Sgn[(DR)ii]; if |(DR)ii | < 1, then (Dmax
R )ii = 1 and (Dmin

R )ii = (DR)ii . Similarly, we have
DL = Dmin

L Dmax
R following the same definitions. We can then calculate the single-particle Green’s-function matrix in Eq. (A3) in

a numerically stable manner [54,55] as

G(τ, τ ) = (UL)−1[(UR)−1(UL)−1 + DRVRVLDL]−1(UR)−1 = (UL)−1
[
(ULUR)−1 + Dmax

R Dmin
R VRVLDmin

L Dmax
L

]−1
(UR)−1

= (UL)−1
(
Dmax

L

)−1[(
Dmax

R

)−1
(ULUR)−1

(
Dmax

L

)−1 + Dmin
R VRVLDmin

L

]−1(
Dmax

R

)−1
(UR)−1. (A4)
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FIG. 7. Numerical results from self-consistent ZT-AFQMC calculations at T = 0 for 16 × 4 system with U = 4t and U = 6t , with 1/8
hole doping. AFM pinning fields are applied on both edges along y direction, with h = 0.10t for U = 4t and h = 0.25t for U = 6t . (a)–(c)
Results of staggered spin density, hole density, and total energy per site are plotted in three panels in each row, with the top row for the U = 4t

system and the bottom row (d)–(f) for U = 6t . Panels (a),(b) and (d),(e) share the same symbols and legends, respectively. The insets in the
first two columns show the difference between successive iterations.

From Eq. (A4), we can observe that the matrix
[(Dmax

R )−1(ULUR)−1(Dmax
L )−1 + Dmin

R VRVLDmin
L ], whose

inverse matrix needs to be calculated, should have all its
matrix elements around −100–100. For time-displaced single-
particle Green’s-function matrices G(τ, 0) and G(0, τ ), there
are similar formulas to calculate them in a numerically
stable manner. Practically, the numerical stabilization is
carried out with a suitably chosen number of imaginary time
slices as an interval.

APPENDIX B: NUMERICAL RESULTS FROM
SELF-CONSISTENT ZT-AFQMC CALCULATIONS

In Sec. V B, we presented T = 0 results from ZT-
AFQMC calculations for comparisons with the self-consistent
FT-AFQMC results on 16 × 4 systems at 1/8 hole doping.
Here we include the ZT-AFQMC results for completeness,
summarized in Fig. 7.

The self-consistent calculations started from free-electron
trial wave functions. For both systems, five steps of iterations

reached the converged results for the densities, while the total
energy converged within two steps. The converged effective
interaction strengths are Ueff = 2.18t and Ueff = 2.77t for
those two systems, respectively. The convergence of staggered
spin density and hole density are illustrated by the differences
of results between successive iterations as shown in Figs. 7(a)
and 7(b) for the U = 4t, h = 0.10t system and Figs. 7(d)
and 7(e) for the U = 6t, h = 0.25t system. For the U =
6t system, the converged results of staggered spin density
are very close to the DMRG results, highlighting the high
accuracy. The hole density still has some deviations, similar
to the results shown in Ref. [40]. The results of total energy
per site from both the mixed estimate and back propagation
measurements are shown in the last column. As expected,
the error bars of results of total energy per site from mixed
estimate measurements is much smaller than those from back
propagation measurements as shown in Figs. 7(c) and 7(f).
For U = 6t , the converged results of total energy per site from
those two different ways of measurement have relative errors
of 0.028% and 0.355% from DMRG, respectively.
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