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Classification of flat bands according to the band-crossing singularity of Bloch wave functions
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We show that flat bands can be categorized into two distinct classes, that is, singular and nonsingular flat
bands, by exploiting the singular behavior of their Bloch wave functions in momentum space. In the case of a
singular flat band, its Bloch wave function possesses immovable discontinuities generated by the band-crossing
with other bands, and thus the vector bundle associated with the flat band cannot be defined. This singularity
precludes the compact localized states from forming a complete set spanning the flat band. Once the degeneracy
at the band crossing point is lifted, the singular flat band becomes dispersive and can acquire a finite Chern
number in general, suggesting a new route for obtaining a nearly flat Chern band. On the other hand, the Bloch
wave function of a nonsingular flat band has no singularity, and thus forms a vector bundle. A nonsingular flat
band can be completely isolated from other bands while preserving the perfect flatness. All one-dimensional
flat bands belong to the nonsingular class. We show that a singular flat band displays a novel bulk-boundary
correspondence such that the presence of the robust boundary mode is guaranteed by the singularity of the Bloch
wave function. Moreover, we develop a general scheme to construct a flat band model Hamiltonian in which
one can freely design its singular or nonsingular nature. Finally, we propose a general formula for the compact
localized state spanning the flat band, which can be easily implemented in numerics and offer a basis set useful
in analyzing correlation effects in flat bands.
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I. INTRODUCTION

A flat band, strictly dispersionless in the whole Brillouin
zone [1–17], has been considered as an ideal playground
to explore strong correlation physics due to the complete
quenching of the kinetic energy [18–42]. For example, a
number of intriguing theoretical predictions are proposed in
flat band systems such as the Wigner crystallization in the
honeycomb lattice [19], the nontrivial conductivity behavior
in the presence of long-range Coulomb interactions [22], and
the huge critical temperature for the superconductivity [24].
Also, a nearly flat band with a finite Chern number was
recently proposed as a promising platform to realize fractional
Chern insulators, analogous to the case of the flat Landau level
[28–39].

Up to now, several flat band models have been experimen-
tally realized in the photonic crystals [43–46], optical lattices
[47–50], manipulated atomic lattices [51,52], and various
metamaterials [53,54]. For instance, in photonic systems, a
flat band has been considered as a promising route to realize
slowly propagating light [55]. Interestingly, the experimen-
tal observation of nearly flat bands was also reported even
in conventional solid state systems recently. For example,
in the twisted bilayer graphene at magic angle, it is proposed
that the presence of almost flat bands is the fundamental origin
of the Mott insulating phases and the associated superconduc-
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tivity [56,57]. Also, in the layered Fe3Sn2, a nearly disper-
sionless band is detected by ARPES measurements [58].

The localized nature of the flat band is usually captured
by strictly localized eigenfunctions in real space, the so-called
compact localized state (CLS) [1,3,13,59,60]. The CLS can be
considered as an extreme limit of the Wannier function whose
amplitude is finite only in a bounded region in real space, and
completely vanishes outside of it. Such a compact localization
is possible because of the destructive interferences between
the wave function amplitudes after the hopping processes of
the Hamiltonian, and in many cases this phenomena originate
from the specific lattice structures supporting geometric frus-
tration. Because of this, most of the previous studies on flat
bands have paid attention to particular lattice structures, and
the understanding of the universal properties of flat bands,
which are independent of the detailed lattice structure or spa-
tial dimensionality, is quite limited. In particular, considering
that a perfectly flat band isolated from other bands has a zero
Chern number, it is generally believed that the band topology
of flat bands is trivial in momentum space [61]. While a
completely flat Landau level obtained from a usual continuum
model has a nonzero Chern number, we focus on the lattice
models with finite hopping range.

Interestingly, however, a recent theoretical study of itiner-
ant electron models in frustrated lattices has reported intrigu-
ing momentum space structures of flat band systems. For in-
stance, it is found that a flat band in the kagome lattice exhibits
a band crossing with another dispersive band at a particular
momentum. Bergman et al. have pointed out that such a band
degeneracy is related with the incompleteness of the CLSs in
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this geometrically frustrated system [6]. Namely, the full set
of CLSs including all CLSs connected by lattice translation
vectors are found to be linearly dependent to each other, and
the missing basis eigenstates should be complemented by
the so-called noncontractible loop states (NLSs), which are
compact-localized in one direction but extended in the other
direction. This suggests that the flat band possessing a band
crossing might be distinguished from other types of flat bands
topologically, because NLSs cannot be smoothly deformed
to CLSs in real space on the torus geometry respecting the
periodic boundary condition [62].

Here, we show that the universal properties of flat band
systems can be described in a unified way by investigating
a certain singular property of the Bloch wave functions in
momentum space. This is quite an unexpected outcome con-
sidering that only local symmetries of a given lattice model
conventionally have been considered to study and generate
flat bands [3,8,12,13,15]. We show that the absence of the
complete set of the CLSs for a flat band is related to the
existence of the immovable discontinuity of the Bloch wave
function in the Brillouin zone. The term immovable disconti-
nuity stands for the nonexistence of the local gauge choice that
makes the Bloch wave function continuous around a certain
momentum by shifting the position of the singular point [63].
The presence of the immovable discontinuity in the flat band,
which is the defining property of a singular flat band, implies
that it is touching with another dispersive band at the singular
point, which we call a singular band touching. This kind of the
singularity is distinct from that of a Chern band. In the Chern
band case, one can always make a local gauge choice shifting
the location of the singularity to another momentum [59,64].
On the other hand, even if a flat band is touching with another
band, in some cases, one can choose a gauge in which the
wave function is continuous. In this case, the band touching
point is called a nonsingular touching. The flat band with a
nonsingular band touching can be spanned by a complete set
of CLSs as in the case when the flat band is fully separated
from other bands.

Let us note that Dubail and Read also studied the CLS from
the perspective of the Bloch wave functions [59], and N. Read
classified the nonsingular flat bands by applying the algebraic
K-theory [60]. While these two works considered the cases
where the vector bundle is well-defined due to the energy gap
between the filled and unfilled bands, we have focused on the
opposite cases where the vector bundle associated with the flat
band cannot be defined due to the singular band touching with
other dispersive bands.

These two types of band touching in flat band systems
display completely different features when the degeneracy
at the crossing point is lifted. In the case of a nonsingular
band touching, one can always open the gap while preserv-
ing the band flatness, and the resulting isolated flat band
is topologically trivial. On the other hand, a singular flat
band always becomes dispersive after gap opening, which can
lead to a nearly flat band with a finite Chern number. This
process provides a new scheme to obtain a nearly flat Chern
band starting from a singular flat band. This property clearly
demonstrates that the nature of a band crossing in flat band
systems is strongly constrained by the discontinuity of the
Bloch wave function, which, in turn, critically affects the band

flatness and its topological nature after degeneracy lifting.
Although there is no definite local topological invariant, such
as a winding number, characterizing the band crossing point in
flat band systems, the singularity of the Bloch states manifests
nontrivially combined with the band flatness condition.

Furthermore, we show in general that this singularity is
manifested in real space as localized boundary modes of
an open geometry whose penetration depth is smaller than
the size of the CLSs. These boundary states are actually
precursors of the NLSs in 2D and the noncontractible planar
states (NPSs) in 3D systems with the periodic boundary
condition. We also discuss how to probe this boundary mode
experimentally.

Finally, we propose several general and practical schemes
for tailoring CLSs and flat band tight-binding models. Up to
now, CLSs have been constructed based on some intuition,
which works only for limited simple models. The scheme we
developed, however, is so general that CLSs can be easily
constructed even for complex systems and one can even freely
determine the singular or nonsingular nature of the flat band
in a controlled manner.

II. DISCONTINUITIES OF THE BLOCH WAVE FUNCTION
AND INCOMPLETENESS OF THE
COMPACT LOCALIZED STATES

We study the properties of the CLS from the perspective
of the Bloch wave function. First, we show rigorously that if
there exists a flat band, one can always find a set of CLSs
as degenerate eigenstates whose energy is the same as that
of the flat band. This holds regardless of the dimensionality,
the lattice structure, and the presence or absence of the band
touching between the flat band and other bands. When the
system is composed of N unit cells, N independent CLSs are
necessary to span a flat band completely. Below, we show that
such a complete set of CLSs does not exists if the Bloch wave
function associated with the flat band possesses an immovable
discontinuity in momentum space due to the band touching.

A. The existence of the compact localized state

The eigenfunction of a Bloch Hamiltonian Hk can gener-
ally be written as

|ψn,k〉 = 1√
N

∑
R

Q∑
q=1

eik·Rvn,k,q |R, q〉, (2.1)

where n is the band index and R = ∑d
l=1 mlal is the lattice

vector for the d dimensional system consisting of N unit cells.
ml is an integer and al is the primitive vector. vn,k,q is the qth
component of the column vector vn,k , which is the eigenvector
of Hk with energy εn,k. The number of components of vn,k

is identical to the number of sites and orbitals in the unit
cell. |R, q〉 = c

†
R,q |0〉, where c

†
R,q is an operator creating an

electron in the qth orbital in the unit cell at R and |0〉 indicates
the vacuum state. We assume Hk is a Q × Q matrix. Here,
we assign the same Bloch phase eik·R to all the orbitals in the
same unit cell so that Hk = Hk+G, where G = ∑d

l=1 mlbl is
the reciprocal lattice vector with bl the primitive reciprocal
vector satisfying al · bl′ = 2πδl,l′ .
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We consider the case where there is at least one flat band,
and focus on one flat band while omitting its band index for
simplicity from now on. Since all the Bloch eigenfunctions in
the same flat band are degenerate, one can freely mix them to
obtain a new eigenfunction as follows:

|χR〉 = cχ

∑
k∈BZ

αke
−ik·R|ψk〉 =

∑
R′

Q∑
p=1

AR,R′,q · |R′, q〉,

(2.2)

where AR,R′,q , the qth component of the column vector

AR,R′ = cχ√
N

∑
k∈BZ

αk exp[ik · (R′ − R)]vk, (2.3)

estimates the amplitudes of the wave function in the unit cell
at R′. cχ is the normalization constant. If there exists a scalar
function αk that makes AR,R′ nonzero only in a certain finite
region, we call |χR〉 a CLS. Once we obtain a CLS around
R, any translated copies of it, |χR−R0〉, are also eigenstates. In
this way, one can find a set of N different CLSs.

For compact localization, each component of αkvk should
be a finite sum of the Bloch phases (FSBP) since AR,R′ is just
an inverse Fourier transformation of αkvk. That is,

αkvk,q =
∑

m1,...,md

f (q )
m1,...,md

exp

(
i

d∑
l=1

mlkl · al

)
, (2.4)

where vk,q is the qth component of the column matrix vk, ml

runs from m
(lo)
l to m

(up)
l , and f

(q )
m1,...,md

is a complex number.
Due to the upper and lower limits of ml , the CLS’s coefficient
AR,R′ vanishes if one of mi’s in R′ − R = ∑

i miai is out of
this range. In other words, αkvk,q is a finite polynomial of
Xl = exp(ikl · al ).

For a flat band, such αk that makes the vector αkvk in
the form of the FSBP always exists if a given Hamiltonian
contains only finite-range hopping processes. Since vk is an
eigenvector of the Hamiltonian, αkvk is just an unnormalized
eigenvector that is a solution of

H̄kxk = (Hk − ε0I )xk = 0, (2.5)

where ε0 is the flat band’s energy, and xk ∝ αkvk. Since ε0

is a constant and all the elements of Hk are in the form of
the FSBP. This system of homogeneous equations can also
have a solution in the form of the FSBP, which leads to the
conclusion that such αk is guaranteed. We note that the same
conclusion was derived by N. Read by applying the algebraic
K-theory [60]. A more rigorous proof for this is given in
Appendix A.

B. The completeness condition for the CLSs

Once a CLS of a given flat band is found, its lattice
translations give (N − 1) different copies of CLSs, and these
N CLSs are expected to span the flat band completely. This
may explain why the electrons in the flat band are immobile
even though there are hopping processes. However, the linear
independence of those N translated copies of CLSs is not
guaranteed in general. In this section, we derive the exact
condition for the completeness of the N translated copies
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FIG. 1. (a) 1D flat band model on a zigzag chain. There are two
sites, A and B, per unit cell, and each site has one orbital. The
solid and dashed lines represent different hopping parameters. In the
zigzag chain, the hopping parameter is V1 along the solid line and V2

along the dashed one. There exists a flat band at E = −2 when V1 =√
2 and V2 = 1. Two examples of the CLS for this case are shown

by the gray compact regions. The numbers near the sites in this
region represent the amplitudes of the CLS. (b) The band structure
for V1 = √

2 and V2 = 1. (c) The kagome lattice with the nearest
neighboring hopping processes. Three colors of the sites stand for
the three different basis sites. The simplest CLS and two independent
NLSs are exhibited by gray regions. (d) The band structure for the
kagome lattice is drawn between high symmetry points.

of CLS from the perspective of the Bloch wave function by
analyzing its discontinuities in momentum space.

The completeness of the N translated copies of the CLS
can be examined by using its expression in (2.2) as follows:

D =

∣∣∣∣∣∣∣∣∣

αk1e
−ik1·R1 · · · αk1e

−ik1·RN

αk2e
−ik2·R1 · · · αk1e

−ik2·RN

...
. . .

...
αkN

e−ikN ·R1 · · · αkN
e−ikN ·RN

∣∣∣∣∣∣∣∣∣
∝

N∏
l=1

αkl
. (2.6)

Here, we use the fact that the set of Bloch wave functions
{ψkl

} is a complete basis for the flat band. Each column in
the determinant of (2.6) represents the vector corresponding
to |χRl

〉 in this basis. From (2.6), we obtain the most basic
conclusion that if αk is nonzero at every k, the N translated
copies of the CLS obtained from αk form a complete set. We
call this kind of flat band a nonsingular flat band. On the
other hand, if any possible αk vanishes at a momentum, the
corresponding flat band is called a singular flat band.

Let us consider a 1D zigzag lattice, illustrated in Fig. 1(a),
as an example. It has two sites in the unit cell, and there is
one orbital per site [65]. Considering the hopping amplitudes
between nearest neighbors V1 and second nearest neighbors
V2 = V1/

√
2, the Hamiltonian is given by

Hk =
(√

2V1 cos k V1 + V1e
−ik

V1 + V1e
ik 0

)
, (2.7)
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where Hk|11 and Hk|22 correspond to the on-site potentials on
A and B sites, respectively. For the flat band at E = −√

2V1,
the eigenvector is given by

vflat
k = 1√

4 + 2 cos k

( −√
2

1 + eik

)
. (2.8)

One can easily find that αk = √
4 + 2 cos k makes αkvflat

zigzag,k

in the form of the FSBP. Then, from (2.3), the relevant CLS is
given by

A0,R =1

2

( −√
2δR,0

δR,0 + δR,−1

)
(2.9)

around the unit cell at R = 0. The amplitude at the A site
of the unit cell at R = 0 is −1/

√
2, and those at two near-

est neighboring B sites are 1/2. This CLS is illustrated in
Fig. 1(a). Due to translational invariance, one can find N

CLSs centered at different unit cells. Since αk = √
4 + 2 cos k

is always nonzero in the Brillouin zone, those CLSs form
a complete set, and the flat band is nonsingular completely
described by the CLSs. So, we call the flat band of the 1D
zigzag lattice as a nonsingular flat band.

On the other hand, with another choice α̃k =√
4 + 2 cos k(1 + e−ik ), the relevant CLS is of the form

Ã0,R =
( −√

2(δR,0 + δR,1)
2δR,0 + δR,1 + δR,−1

)
, (2.10)

which is shown in Fig. 1(a). Since α̃k vanishes at k = π , the
N copies of CLSs obtained after translating Ã0,R do not form
a complete set spanning the 1D chain with a ring geometry.
Let us note that, in this case, the completeness of the CLSs
actually depends on whether the system size N is even or
odd because the value of (2π/N )m, which is the momentum
under the periodic boundary condition, can be strictly π only
when N is even. This is explicitly shown by the fact that∑N−1

s=0 (−1)sÃs,R = 0 for even N case whereas one cannot
find such a constraint for odd N case. This means that even
in the nonsingular flat band, we can find a choice of αk
that makes the resulting CLSs linearly dependent. However, a
given flat band is nonsingular if there exist at least one choice
of αk, which is nonzero for all k.

C. Immovable discontinuity and the incompleteness of the CLSs

As an opposite situation to the previous section, if every
choice of αk vanishes at a momentum k, one cannot span the
flat band only with the CLSs because the determinant (2.6)
vanishes. However, it is impossible to find all the possible
forms of αk. To resolve this problem, we show that the zeros
of αk are closely related to the immovable discontinuities of
the Bloch wave function vk of the flat band as follows. If
there exists a nonzero function αk which makes αkvk a FSBP,
the eigenvector vk can be made continuous (nonsingular) by
the proper gauge choice. Or, equivalently, if vk is always
discontinuous at some k0 for any local gauge choice around
it, any αk should be vanishing at k0, that is, any kind of the N

translated copies of the CLSs cannot span the flat band. Below,
we justify this statement.

According to the previous section, the eigenvector
of a flat band can be chosen to be proportional to

(wk,1 · · · wk,Q)T, where wk,q is the complex function in
the form of the FSBP like αkvk in (2.4), and Q is the size of
the Hamiltonian matrix. Without loss of generality, one can
assume that wk,q’s have no momentum-dependent common
factor. Then, the normalized eigenvector is of the form

vk = 1√∑Q
q=1 |wk,q |2

⎛
⎜⎝

wk,1
...

wk,Q

⎞
⎟⎠. (2.11)

If the eigenvector is discontinuous at k0, every wk,q has to
be vanishing at that momentum. Otherwise, the denominator
(
∑Q

q=1 |wk,q |2)1/2 cannot be zero and all the components of
the eigenvector are continuous since any function composed
of the FSBP is continuous. Therefore αk, which must be
proportional to (

∑Q
q=1 |wk,q |2)1/2, is zero at the momentum

k = k0. This proves the general statement in the previous
paragraph.

One can understand the nature of the immovable discon-
tinuity in the above by comparing it with the singularity of
the conventional Chern band as follows. The discontinuity
of vk at k0 appears since the value of vk varies depending
on the path along which k approaches k0. That is, vk is a
discontinuous function of k for which partial derivatives exist.
The necessary condition for this discontinuity is the band
touching or degeneracy at k0, which cannot be gauged away
because the band touching itself is gauge independent. This
is why we call such a discontinuity immovable. Due to the
discontinuity of the Bloch wave function, the flat band does
not form a vector bundle, and thus the Chern number cannot
be defined [59]. The Chern band also has the singularity in
its Bloch wave function. However, in this case, the Bloch
wave function forms a vector bundle because one can shift
the singularity to another k point. Using this property, one
can prepare a number of patches consisting of analytic vector
bundles to cover the whole momentum space [64]. In this
sense, the singularity of the Chern band is movable.

The relation between the incompleteness of N translated
CLSs and the zeros of αk can be understood more easily from
the very first expression of the CLS (2.2). Since αk is the
coefficient of the Bloch wave function |ψk〉, the Bloch wave
function at k0 does not participate in the construction of the
CLS. This implies that the number of linearly independent
eigenvectors among N translated CLSs is less than N and we
should add some noncompact or extended states to span the
flat band completely. These noncompact states will be further
discussed in detail in Sec. IV. Note that our conclusion holds
not only for the N translated copies of CLSs but also for the
general set of N CLSs with different shapes because any form
of αk vanishes at the singular momentum k0.

As an example, let us consider the following Hamiltonian
describing nearest neighbor hopping on the kagome lattice,

Hk = −t

⎛
⎝ 0 e−ia3·k + 1 eia2·k + 1

eia3·k + 1 0 e−ia1·k + 1
e−ia2·k + 1 eia1·k + 1 0

⎞
⎠, (2.12)

where t is the nearest neighbor hopping parameter, and a1 =
(1, 0), a2 = (−1/2,

√
3/2), and a3 = −a1 − a2. There is a flat
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band at E = 2t with the eigenvector

vk = ck

⎛
⎝ eia1·k − 1

1 − e−ia2·k

e−ia2·k − eia1·k

⎞
⎠, (2.13)

where ck = {2(3 − cos kx − 2 cos kx/2 cos
√

3ky/2)}−1/2. To
make CLSs, we choose αk = c−1

k . This leads to

A0,R = 1√
6

⎛
⎝ δR,−a1 − δR,0

δR,0 − δR,a2

δR,a2 − δR,−a1

⎞
⎠, (2.14)

which is illustrated in Fig. 1(c). Let us note that the N

translated copies of A0,R are not linearly independent of
each other due to the discontinuity of vk at k = 0, that is,
the value of limk→0 vk depends on how we approach the �

point. For example, limkx→0 v(kx ,0) �= limky→0 v(0,ky ). This is
reflected in the fact that the αk = 1/ck vanishes at k = 0.
Actually, the sum of the N copies of CLSs vanishes under
the periodic boundary condition in which the system has a
torus geometry [6]. Since any other choice of αk should be
proportional to c−1

k , any possible form of the CLS cannot span
a complete set. In the kagome lattice case, the incompleteness
does not depend on the system size unlike the 1D zigzag
lattice case discussed in the previous subsection because the
momentum k = 0 is always allowed on the torus geometry
of the system. As a result, the flat band cannot be completely
described by the CLSs, and some extended states, called the
NLSs [6] as illustrated in Fig. 1(c), must be complemented
in addition to the CLSs. As noted from this example, the
equivalence between the wave function’s discontinuity and the
absence of nonzero αk offers an extremely convenient way of
determining the completeness of the N translated copies of
any possible CLSs.

An interesting conclusion from the general statement is
that the complete set of CLSs can always be found in 1D.
That is, any flat band in 1D system is nonsingular (trivial). In
1D, the Bloch phase can be represented as eink = zn where
z = eik , and each component wk,q in (2.11) is just a Laurent
series of z around z = 0 with upper and lower limit in the
power of z because wk,q is in the form of the FSBP. One can
freely transform wk,q of the given eigenvector into a form of
a Taylor series by multiplying the inverse of the Bloch phase
with the lowest negative power of z. Then, the resulting w̃k,q is
just a finite polynomial. In this 1D case, it is impossible for all
w̃′

k,qs to vanish simultaneously, for example, at z0 because it
means all those components should be proportional to z − z0.
This implies that those components have a common factor
which contradicts the original assumption that w̃′

k,qs have no
common factor. So, we can always obtain a nonsingular αk in
1D by finding w̃′

k,qs without the common factor, and the N

translated copies of a CLS span the flat band completely.
While the discontinuity of the eigenvector comes from

the band touching, not all the band touchings are singular.
Namely, even though a flat band touches other bands, it can
be spanned by a set of CLSs completely if the eigenvectors
of the flat band do not have any immovable singularity. A
band touching can be identified to be singular or nonsingular,
depending on the presence or absence of the discontinuity
of the corresponding eigenfunctions. An example of a non-

A site B site
)b()a(

(c)
kx ky

kx ky

FIG. 2. (a) The bilayer square lattice with the nearest- and next-
nearest-neighbor hopping processes represented by dashed lines.
Hopping parameters for black and green dashed lines are 1/2 and
those for red ones are β. (b) and (c) are the band structures for
β = −2 and β = 0.

singular band touching appears in the bilayer square lattice
model illustrated in Fig. 2(a). The corresponding Hamiltonian
is given by

H =
(

cos kx + cos ky cos kx + cos ky − 2
cos kx + cos ky − 2 cos kx + cos ky

)
, (2.15)

which has two eigenenergies E1(k) = 2 and E2(k) = −2 +
2 cos kx + 2 cos ky as shown in Fig. 2(b). Although these
two bands touch each other at kx = ky = 0 quadratically,

the eigenvector of the flat band, vk = (1/
√

2)(1 1)T, is
nonsingular. As a result, the relevant CLSs can span the flat
band completely without resorting to extended states such
as NLSs.

III. SINGULAR QUADRATIC BAND TOUCHING
PRESERVED BY BAND FLATNESS

In this section, mainly focusing on the flat band with a
quadratic band touching, we discuss how to distinguish the
nonsingular and singular band touchings from the modulation
of the band structure when the band degeneracy at the crossing
point is lifted. We show that, in the case of a nonsingular
band touching, the degeneracy can be lifted while maintaining
the flatness of the flat band. On the other hand, in the case
of a singular band touching, the degeneracy lifting generally
accompanies the warping of the flat band, and the resulting
warped band can have a finite Chern number.

A. Nonsingular band touching

Let us consider a unitary operator Uk diagonalizing
the Q × Q tight-binding flat band Hamiltonian Hk into
H(d )

k = diag(ε1,k, . . . , εQ−1,k, ε0). We assume that the flat
band touches with another dispersive band at k = k0. The
last column of U†

k is just the eigenvector vk of the flat
band (Uk|∗Q,j = vk|j ), which can be transformed to the form
of the FSBP by multiplying some real function αk as shown
in Sec. II. In the diagonalized basis, let us consider a pertur-
bation that deforms all bands except the flat one given by
H′(d )

k = diag(λk, . . . , λk, 0) where |λk| 
 1. In the original
basis, the perturbation becomes H′

k = U†
kH

′(d )
k Uk = λkI −
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(a)

(b) (c)

QBT

Non-singular Singular

or or

Line touching Point touching

FIG. 3. If the quadratic band touching in (a) is nonsingular, a
shifting of the flat band, upward or downward, is possible while
preserving the band flatness as shown in (b). On the other hand, if
it is singular, the flat band generically becomes dispersive after the
band shifting process as shown in (c).

U†
kdiag(0, . . . , 0, λk ))Uk. Namely, the matrix element of H′

k
is given by

H′
k|ij = λk(δij − Uk|∗Q,iUk|Q,j ) = λk(δij − vk|∗i vk|j ). (3.1)

This implies that λk = λ|αk|2 ensures all the elements of H′
k

are in the form of the FSBP because αkvk and |αk|2 are all
in the form of the FSBP. Here, it is important to note that the
perturbation is also in the form of the FSBP like Hk because
we only consider finite-range hopping processes. Since αk can
be chosen to be nonzero for all k for the nonsingular case,
adding H′

k to Hk removes the band touching at k0. Then,
depending on the sign of λ, we see either gap-opening or
line crossings between the flat band and the dispersive band
touching with it as shown in Fig. 3(b).

For instance, one can find a perturbation that can de-
stroy the nonsingular touching in the bilayer square lat-
tice in Sec. II C. With the choice αk = 1, we have H′

k =
λ/2σ0 + λ/2σx by noting U = 1/

√
2σ0 − i1/

√
2σy . Then,

the perturbed Hamiltonian Hk + H′
k yields eigenenergies as

E1(k) = 2 and E2(k) = λ − 2 + 2 cos kx + 2 cos ky . Namely,
the perturbation induces a constant shift of the dispersive band
by λ, which either opens a gap (λ > 0) or deforms the point
touching into a line touching (λ < 0) as shown in Fig. 2(c).

While the above discussion is completely general, one can
understand the result more concretely by considering an ef-
fective low-energy continuum model around the touching. We
deal with the quadratic band touching with the flat band which
we mostly encounter with. In 1D, the generic form of the
quadratic expansion of the flat band Hamiltonian around the
touching point is given by H = axk

2
xσx + ayk

2
xσy + azk

2
xσz +

a0k
2
xσ0 where a0 = ±

√
a2

x + a2
y + a2

z , and the momentum k

is measured with respect to the touching point. This is always
nonsingular which is consistent with the argument in Sec. II C,
and one can freely shift the flat band by the perturbation
H′ = λ(axσx + ayσy + azσz + a0σ0).

In 2D, as shown in detail in Appendix B, the effective low
energy Hamiltonian for the nonsingular quadratic touching
can always be transformed to

Hk = (
t ′1k

2
x + t ′2kxky + t ′3k

2
y

)
(σz + σ0), (3.2)

where the relevant eigenvectors, (1 0) and (0 1), are
obviously nonsingular at all momenta. In this case, since there
is only one species of the Pauli matrix, one can always find the
perturbation of the form δσz which lifts the double degeneracy
at k = 0 while maintaining the flatness of the flat band. Fo-
cusing on the gap opening procedures, the positive (negative)
δ opens the gap for the concave (convex) quadratic form
of t ′1k

2
x + t ′2kxky + t ′3k

2
y as illustrated in Fig. 3(b). Another

important feature of the nonsingular band touching is that
any generic mass term H′

k = mxσx + myσy + mzσz cannot
make the flat band to have a nonzero Chern number after gap
opening. One can easily check that the Berry connection and
curvature of Hk + H′

k are vanishing at all momenta.

B. Singular band touching

Unlike the case of the nonsingular band touching whose
low energy Hamiltonian can be described by a single Pauli
matrix, the effective Hamiltonian for a singular band touching
has at least two Pauli matrices and the flatness of the flat band
is not guaranteed after degeneracy lifting.

Let us justify this statements by considering the general
2D continuum model around the singular touching point. As
analyzed in Appendix B, the general form of the quadratic
band touching with a flat band in 2D can be described by

Hk = (
t1k

2
x + t2kxky + t3k

2
y

)
σz + (

t4kxky + t5k
2
y

)
σy

+ t6k
2
yσx + (

b1k
2
x + b2kxky + b3k

2
y

)
σ0, (3.3)

which yields the singular touching only when t1 and t4 are
nonzero due to the flatness condition detH̃k = 0 as shown in
Appendix B.

After adding a perturbation H′
k with three mass terms

mx,y,z, the flatness condition det(Hk + H′
k ) = 0 yields four

constraints on the masses given by (i) b1m0 = t1mz, (ii)
b3m0 = mzt3 + myt5 + mxt6, (iii) b2m0 = mzt2 + myt4, and
(iv) m2

0 = m2
x + m2

y + m2
z . These constraints, together with

the flatness condition detH̃k = 0 of the unperturbed Hamil-
tonian, give us t4 = 0 for both t1 = b1 and t1 = −b1 when at
least one of mi’s is nonzero. The final result t4 = 0 contra-
dicts the singular band touching condition, t4 �= 0, mentioned
above, and this implies it is impossible to have a gap opening
perturbation H′

k that preserves the band flatness. Namely,
the singular flat band should become dispersive when the
quadratic band touching is lifted by the generic mass term
H′

k. On the other hand, shifting the singular flat band to
the opposite direction to have the band crossing with the
quadratic band always leads to the splitting of the quadratic
band touching into two Dirac points as shown in detail in
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Appendix C. Interestingly, such a deformation of the quadratic
band crossing into two Dirac points is recently observed in the
bosonic system on the honeycomb lattice made of polariton
micropillars [44].

Another interesting property of the singular touching dis-
tinguished from the nonsingular one is that one can find a
gap opening perturbation that would assign nonzero Chern
number to the warped flat band. For example, for the singular
flat model described by

Hk = k2
x − k2

y

2
σz + kxkyσy + k2

x + k2
y

2
σ0, (3.4)

the Chern number of the warped flat becomes nonzero when
the mass term mσx is added. However, other kinds of mass
term like mσy and mσz cannot open a gap but split the
quadratic band crossing into two linear crossings. Details for
the calculation of the Chern number is in Appendix D.

One can see that the last conclusion holds also in the full
lattice model by examining a perturbed kagome lattice model
as an example. The unperturbed Hamiltonian is described in
(2.12). We add two kinds of mass terms H(1) = δ(λ1 + λ6)
and H(2) = δ(λ2 + λ7) to (2.12) where λi’s are the Gell-Mann
matrices [66] and δ is a real number. While both perturbations
lift the quadratic band crossing of the kagome lattice model,
only the addition of H(2) leads to the nearly flat band with a
nonzero Chern number.

IV. BULK-BOUNDARY CORRESPONDENCE

In this section, we show that the singular touching of the
flat band has another crucial implication in the open boundary
system. To this end, we first demonstrate the existence of the
noncompact states such as the noncontractible loop or planar
states in the torus geometry when the flat band exhibits the
singular touching. Then we discuss how those noncontractible
states are manifested as boundary modes when the system is
terminated. We confirm our correspondence by considering
concrete examples.

A. Noncontractible states in the bulk

As discussed in Sec. II C, the flat band of the kagome
lattice cannot be described completely by the CLSs, and
the NLSs should be involved. Naively, one may expect that the
missing state can be complemented by adding two Bloch wave
functions carrying the momentum at the singular point. Below,
we will show how to construct NLSs which are independent
of the CLSs in both 2D and 3D cases.

We first note that the Bloch wave function corresponding to
the singular momentum does not contribute to the CLS as can
be seen in (2.2) since αk = 0 at this momentum. This means
one can simply add the Bloch wave functions at the singular
points to the incomplete set of CLSs to span the flat band
completely. Let us first consider the 2D flat band model with
a singular point at k = (k∗

1 , k
∗
2 ). For given k2 = k∗

2 , we can
perform a linear combination of Bloch wave functions with
all possible k1 including k∗

1 . While they are extended along
a2 direction, an effective 1D Hamiltonian Hk1,k

∗
2
, considered

as an 1D flat band model, ensures the existence of the linear
combination of Bloch wave functions which is compact local-

)b()a(

(c)(d)

NLS

NLS

Open boundary
system

Robust boundary 
mode

FIG. 4. Schematic figures describing the robust boundary modes
derived from the NLSs. (a) Four NLSs (blue lines) on a torus. (b,c)
Deformation of the torus to a 2D plane with an open boundary
by cutting the region between each pair of NLSs. (d) The original
four NLSs become an eigenstate localized along the open boundary,
which illustrates the bulk-boundary correspondence in singular flat
bands.

ized along a1 direction. Thus the resulting wave function is
an NLS extended along a2 direction. Similarly, one can also
obtain another NLS extended along a1 direction. These NLSs
are linearly independent of the CLSs because they contain the
Bloch wave function at k = (k∗

1 , k
∗
2 ), which is absent in CLSs.

In the case of a 3D flat band with an immovable discontinu-
ity at k = (k∗

x , k
∗
y , k

∗
z ), one can perform a similar analysis by

fixing two of kα’s at k∗
α (α = x, y, z). In this case, the resultant

wave function is extended along the two directions with the
fixed momentum k∗

α whereas it is compact localized along the
other direction. We call such a state a noncontractible planar
state (NPS).

B. Bulk-boundary correspondence

The noncontractible states are realized on the surface of
torus geometry reflecting the periodic boundary condition.
However, this geometry is hard to prepare experimentally.
So, we study the open boundary of the flat band model, and
possible edge states.

One way of understanding the open boundary is to start
from a torus geometry with a pair of the nearest neighboring
NLSs along the poloidal direction and another nearest neigh-
boring pair of NLSs along toroidal direction as illustrated in
Fig. 4(a). By cutting the regions between each pair of NLSs,
the torus can be deformed to a 2D plane with open boundaries
as shown in Figs. 4(b)–4(d). Then, in the planar geometry,
we obtain a boundary eigenmode with the same energy of the
flat band. So, the presence of the NLSs on the torus geometry
guarantees the existence of the boundary mode in the planar
geometry with the open boundary.

Another way of studying the open boundary is to exploit
the incompleteness condition of the N translated copies of
CLSs on the torus geometry described by

0 =
∑

R

cR|χR〉, (4.1)
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FIG. 5. (a) The robust boundary mode for a singular flat band
in the kagome lattice. Adding a CLS merely deforms the shape of
the boundary modes. (b) A fragile boundary mode for a nonsingular
flat band in the bilayer square lattice. The boundary mode can be
disconnected by adding CLSs on the boundary.

where the sum on R is over all the lattice vectors in the system
with the torus geometry. In the finite system with an open
boundary, on the other hand, this sum is not vanishing near
the boundary, although it vanishes in the interior of the system
far from the boundary. The skin depth of |ψ〉 from the open
boundary is usually less than the size of the CLS. Since |χR〉’s
are all eigenstates, |ψ〉 is also an eigenmode localized around
the open boundary of the system.

Thus obtained boundary state has some distinguishing
properties compared with the usual topological boundary
states. First, the energy of this state is the same as that of the
bulk flat band, which can be sharply contrasted to the usual
in-gap boundary modes of conventional topological phases
[67–72]. As a result, this boundary mode cannot be observed
by probing energy spectra. Instead, one may examine the time
evolution of the system by generating the boundary mode as
an initial state. This might be possible in the bosonic systems
such as the photonic crystal [43–46] where we can prepare
the initial input beam in the form of the boundary eigenmode,
and then check its nondiffracting property. Second, let us
note that although the boundary state |ψ〉 is an eigenstate
of the flat band model with an open boundary, it is not a
new degree of freedom independent of CLSs. In fact, N

translated copies of CLSs are all independent on the open
geometry. The distinct property of |ψ〉 of the singular flat
band is that it cannot be disconnected by adding a finite
number of CLSs additionally. Such a robustness of |ψ〉 against
destructive interference originates from the fact that |ψ〉 is
obtained by summing a macroscopic number of CLSs. On the
other hand, the boundary mode of a nonsingular flat band,
which is merely a stack of CLSs along the boundary, can
be easily disconnected by adding a few CLSs due to the
destructive interference as shown in Fig. 5(b). This property
originates from the noncontractible nature of the NLS or NRS.
In conclusion, the existence or absence this robust boundary
mode is a crucial signature for distinguishing the singular or
nonsingular touching of the flat band.

C. 2D and 3D examples

In this section, we introduce three concrete examples of
flat band models. Two of them have the singular touching
of the flat band, while the other has a nonsingular touching.
We show how those bulk properties are manifested as the
noncontractible states or the robust boundary modes justifying
our bulk-boundary correspondence.

As discussed in Sec. II C, the kagome lattice’s flat band
has a singular touching with the upper dispersive band. As a
result, the CLSs on the torus geometry cannot span the flat
band completely, and two NLSs are complemented as shown
in Fig. 1(c). In the planar geometry with the open boundary, as
illustrated in Fig. 5(a), we have a boundary eigenmode. One
can also check that this boundary state is actually constructed
by the sum of all the possible translated copies of the CLS.

On the other hand, in the case of the bilayer square lattice
studied in Sec. II C, which has a nonsingular band touching,
one cannot have the NLS or the robust boundary state. Its
CLS’s amplitudes are nonzero only at the two sites of a
vertical dimer. Even if one can make a boundary mode by
combining all the CLSs at the boundary, this can be discon-
nected by adding a CLS with opposite amplitudes as shown in
Fig. 5(d). So, this is not the robust boundary state.

As a 3D flat band model with singular band touchings,
let us consider a cubic lattice with three orbitals, denoted by
bx, by , and bz, per site described by

H =
∑
s=±1

∑
α,β,γ

∑
R

s

2
tαβγ b

†
α,R+sδγ

bβ,R, (4.2)

where α, β, γ run from x to z, and txyz = −tyxz = 1, tzxy =
txzy = i, and tzyx = tyzx = −i. Here, δγ = aγ̂ . The Fourier
transformed Hamiltonian is then given by

Hk =
⎛
⎝ 0 −i sin kz sin ky

i sin kz 0 − sin kx

sin ky − sin kx 0

⎞
⎠, (4.3)

whose eigenvector for the flat band is evaluated as

vk = 1

αk

⎛
⎝ sin kx

sin ky

i sin kz

⎞
⎠, (4.4)

where

αk =
√

sin2 kx + sin2 ky + sin2 kz. (4.5)

This model shows a flat band at the zero energy and two
dispersive bands.

The CLS around R corresponding to vk is obtained as

|χR〉 ∝ i|x, R + δx〉 − i|x, R − δx〉 + i|y, R + δy〉
− i|y, R − δy〉 − |z, R + δz〉 + |z, R − δz〉. (4.6)

As noted from the discontinuities of vk at k = (0, 0, 0),
(π, 0, 0), (0, π, 0), (0, 0, π ), (π, π, 0), (π, 0, π ), (0, π, π ),
and (π, π, π ), N = NxNyNz number of translated copies of
the CLS do not form a complete set. Since only k = (0, 0, 0)
is free from the even-odd effect of Nα , let us consider, for
simplicity, the case where Nx , Ny , and Nz are all odd. In this
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case, one can show that∑
R

|χR〉 = 0, (4.7)

where the sum is over the whole lattice vectors on the 3-torus
geometry of the cubic lattice. Since only the Bloch wave
function at k = 0 is missing when we construct the CLSs,
N − 1 translated copies of the CLS are linearly independent
and we need to find three complementary noncompact states
to explain the N + 2 degeneracy at the zero energy. Note that
we have triple degeneracy at k = (0, 0, 0).

The three missing states are compensated by three NPSs
with normal vectors α̂ = x̂, ŷ, and ẑ described by

|ρα〉 =
∑

R·α̂=0

b
†
α,R|0〉, (4.8)

where the sum is over all lattice vectors perpendicular to α̂.
When we consider a finite cube geometry, we have a robust
boundary state which has finite amplitudes over all the six
surfaces and vanishing amplitudes in the interior.

D. About the geometric frustration

When the NLSs were first discovered in the kagome lattice
by Bergmann et al., it was conjectured that the existence of
NLSs might be closely related with the geometrical frustration
of the hosting lattice [6]. However, in our theory, the most
fundamental origin of the NLSs is the Bloch wave function’s
discontinuity in momentum space. We point out that although
the geometric frustration could be helpful for realizing sin-
gular flat bands, it is not the generic origin of NLSs. Let us
clarify this point by constructing several model Hamiltonians
explicitly as follows.

First, one can have singular flat band models on the lattices
without geometrical frustration such as the Lieb lattice or the
modified Lieb lattices described in Appendixes E and F. In the
Lieb and the modified Lieb lattice models, the flat band has a
singular touching at k = (π, π ) and k = (0, 0). This means
that any N number of CLSs are not linearly independent of
each other, and some NLSs are required to be supplemented
to span the flat band completely as shown in Figs. 6(a) and
6(b). Unlike the kagome lattice model, the touching point
is triply degenerate, which requires three additional states to
describe it. In each case, we find two NLSs and one additional
noncompact state, which is completely extended occupying
all the 2-sites (black sites) as illustrated in Figs. 6(c) and 6(d),
relevant to the Lieb and modified Lieb lattices, respectively.

As a second example, we construct a nonsingular flat band
model on a geometrically frustrated lattice, i.e., a modified
kagome lattice model described in Fig. 7(a). It has 12 basis
sites in a unit cell, and contains two kinds of the nearest
neighboring hopping processes with hopping amplitudes 1
and −1 as marked by the dashed and solid lines between
neighboring sites. The red and black sites have different onsite
energies to each other. As shown in the band structure in
Fig. 7(b), this model has a flat band in the bottom which is
completely separated from others without any band touching.
As discussed in the previous section, this kind of the flat band
is a nonsingular type that can be spanned completely by N
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(e)
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1 1 1
1

1
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1 1
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1 1

FIG. 6. (a) The Lieb lattice. In the unit cell, we have three basis
sites labeled by 1 (blue), 2 (black), and 3 (red). All the nearest
hopping parameters corresponding to solid lines are 1. The CLS and
two NLSs are shown by the gray regions. (b) The modified Lieb
lattice. The hopping amplitudes along the dashed and solid lines are 1
and −1, respectively. In (c) and (d), we plot another extended state at
the zero energy for the Lieb and the modified Lieb lattice models,
respectively. (e) The band structure of the Lieb and the modified
Lieb lattice models, which has a flat band at the zero energy. The
Dirac point is located at k = (0, 0) in the modified Lieb lattice and
at k = (π, π ) in the Lieb lattice.

translated copies of CLS without the help of NLSs despite the
frustrated geometry. The CLS is described in Fig. 7(a).

The kagome-3 model is another example with the frus-
trated geometry, which has two completely degenerate flat
bands separated from the dispersive one as shown in Fig. 8(d)
[6]. Refer to Appendix G for details. In the original paper by
Bergman et al., they found two kinds of CLSs for this model as

1 1
1 1

1 1

1 1
1 1

1 1

CLS

Unit Cell

-2

0

2

4

Γ ΜK Γ

(a) (b)

FIG. 7. (a) Kagome lattice with alternating hopping signs. The
solid and dashed lines denote the hopping parameters −1 and 1,
respectively. We use the red and black colors to distinguish sites with
different on-site energies. The simplest CLS for this model is shown
by the gray region. (b) The band structure when the on-site energies
are zero for the black sites and 1 for the red sites.
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FIG. 8. (a) The kagome-3 model is described. It has three basis
sites labeled by 1 (yellow), 2 (green), and 3 (black). The hopping
processes are allowed up to the third nearest neighboring ones. We
describe the hopping processes involved with the first site by thick
blue lines. Three possible bow-tie-shaped CLSs are drawn by the
gray regions. The numbers in those regions are the amplitudes of
CLSs. (b) The NLSs suggested by Bergman et al. There are two more
NLSs of the same types along a3 direction. (c) Two new kinds of
CLSs. The N translated copies of each CLS form a complete set to
span each flat band. (d) The band structure of the kagome-3 model.
Two degenerate flat bands are separated from the dispersive one.

shown in Fig. 8(a), the so-called bow-tie CLS-1 and -3. They
noted that their N translated copies do not constitute a com-
plete set, and some NLSs are required to be supplemented.
They suggested four NLSs, two along a1 and another two
along a3 directions, as two of them are depicted in Fig. 8(b).
At first glance, it sounds correct and consistent with our
theory because the eigenvectors v(1)

k and v(2)
k for the two flat

bands have singularities at k = (π, π/
√

3) and (π,−π/
√

3),
respectively. However, we show in Appendix G that the NLSs
actually can be constructed by the linear combinations of the
bow-tie CLSs by introducing another kind of the bow-tie CLS
denoted by bow-tie CLS-2. That is, the NLSs suggested by
Bergman et al. can actually be disconnected by adding a finite
number of bow-tie CLSs as shown in Fig. 13. Let us note
that Bergmann et al. have not considered bow-tie CLS-2 as an
independent state. This is because the sum of six neighboring
bow-tie CLSs surrounding a hexagon, including each type
of bow-tie CLSs twice, vanishes. However, there is a caveat.
Although two neighboring bow-tie CLS-2s can be generated
by the other four bow-tie CLSs surrounding a hexagon, a
single CLS-2 can still be independent of CLS-1 and CLS-
3. Instead, we find another set of CLSs for the degenerate
flat bands, which are nonsingular at all momenta by two
linear combinations of v(1)

k and v(2)
k with momentum-

dependent coefficients. Since v(1)
k and v(2)

k have the singular-
ities at different momenta, the singularities can be removed
by this kind of momentum dependent mixing between them.

Two new CLSs (CLS-1 and CLS-2) are shown in Fig. 8(c).
This means that the flat bands of the kagome-3 model are
nonsingular type and we do not need any NLSs. This example
clearly shows that our approach based on the singularity of
Bloch wave functions is more efficient and helpful to construct
CLSs and NLSs as compared to the conventional approaches
based on intuition.

V. GENERAL CONSTRUCTION SCHEME FOR COMPACT
LOCALIZED STATES

When we consider the flat band model, which can be
treated analytically, the generic form of the eigenvector of
the flat band is given by (2.11), and one can obtain the CLS
by choosing αk = (

∑Q
q=1 |wk|2)1/2. However, if the analytic

treatment is impossible and numerical studies are required,
how to obtain such αk? If one could transform the Bloch basis
into the N translated CLSs, it has sometimes great advantages
in studying the strongly correlated physics arising from the
flat band model [19].

We show that

αk = detH̄(p,p)
k

vk,p

(5.1)

can be a choice that makes all components of αkvk FSBP
if there exists a component vk,p of vk such that the above
formula is well-defined for all k. Here, H̄(p,p)

k is a (Q −
1) × (Q − 1) matrix obtained by eliminating the pth row and
column from H̄k.

To this end, we note that the following equation holds:

H̄(p,p)
k

⎛
⎜⎝

αkvk,1
...

αkvk,Q

⎞
⎟⎠

′

= −αkvk,p

⎛
⎜⎝
H̄k|1,p

...
H̄k|Q,p

⎞
⎟⎠

′

, (5.2)

which leads to⎛
⎜⎝

αkvk,1
...

αkvk,Q

⎞
⎟⎠

′

= −αkvk,p

(
H̄(p,p)

k

)−1

⎛
⎜⎝
H̄k|1,p

...
H̄k|Q,p

⎞
⎟⎠

′

, (5.3)

where the prime denotes the pth component such as αkvk,p,
and H̄k|p,p is excluded. First, αkvk,p = detH̄(p,p)

k is in the
form of the FSBP. According to the Cayley-Hamilton theo-
rem, a general invertible matrix A can be represented as

A−1 = −1

|A|
M−1∑
s=0

As
∑

k1,...,kM−1

M−1∏
l=1

(−1)kl

lkl kl!
tr(Al )kl , (5.4)

where |A| = detA, and kl are all the nonnegative solutions of
s + ∑n−1

l=1 lkl = n − 1 for each s [73]. This assures the other
components in (5.3) are also in the form of the FSBP because
the determinant factor detH̄(p,p)

k in the denominator of the
inverse matrix of H̄(p,p)

k is canceled by the same factor in αk
in (5.1).

As an example, let us consider the modified Lieb lat-
tice of Appendix F. From (5.1) with p = 3, we have αk =
E+(k)1/2(1 − eikx ), which makes αkvk in the form of the
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FSBP as follows:

αkvk =

⎛
⎜⎝

−1 + eikx + e−iky − ei(kx−ky )

0

2 − eikx − e−ikx

⎞
⎟⎠. (5.5)

This leads to the CLS amplitude of the form

A0,R =

⎛
⎜⎝

−δR
(0,0) + δR

(−1,0) + δR
(0,1) − δR

(−1,1)

0

2δR
(0,0) − δR

(−1,0) − δR
(1,0)

⎞
⎟⎠. (5.6)

One can note that the size of the CLS described by (5.6) is
larger than (F3). However, once we obtain a CLS of any size,
one can easily get the smaller one by the linear combination
between several translated copies of the CLS from (5.1). For
instance, in this example, we have

A0,R + A(1,0),R =

⎛
⎜⎝

δR
(−1,0) − δR

(−1,1) − δR
(1,0) + δR

(1,1)

0

δR
(0,0) − δR

(−1,0) − δR
(2,0) + δR

(1,0)

⎞
⎟⎠

= A(0)
(−1,0),R − A(0)

(1,0),R, (5.7)

where A(0)
R′,R is the smallest CLS defined in (F3). Since

A(0)
(−1,0),R and A(0)

(1,0),R are completely decoupled to each other,
we can simply select one of them as a smaller CLS.

VI. GENERAL RECIPE TO CONSTRUCT
FLAT BAND MODELS

A. Strategy

In this section, we suggest a simple scheme to construct
a flat band model with or without a singular touching in a
controlled way. A well-known method to construct a flat band
tight-binding model was to start from a nice miniarray of
lattice sites which offers destructive interferences so that the
CLS can be formed, and then build an infinite network of them
with the translational symmetry [12]. Although this scheme
gives us an intuition about how the local structure of the lattice
model specifically affects the destructive interferences of the
wave function, one cannot determine whether the obtained
model exhibits singular touching or not.

The overall strategy is as follows. First, we prepare a
lattice structure and a CLS as we want while the hopping
parameters will be determined at the end. At this stage, we
do not need to think about the normalization condition for the
CLS, and we imagine that the CLS is in the form of αkvk
or (2.4) as discussed in Sec. II. The singular or nonsingular
nature of the flat band can be manipulated by making αkvk
vanishing or nonvanishig at a particular momentum k = k∗.
After we construct a complete set of eigenvectors including
those of dispersive bands, we can easily build the relevant
tight-binding Hamiltonian.

B. Singular touching at k = (0, 0): checkerboard I

First, we construct a singular flat band model on the
checkerboard lattice. We design the flat band to have a singu-
lar touching at k = 0. While there can be numerous choices

A site B site

1 -1

1

-1

11 -1-

1

-1

1

1

1

1

1

1

1 1 1 1

CLS

NLS

NLS

1

0

2
4

6
8

Γ ΜX

Γ

Μ

X

Γ

(a)

(c)

1 1

1

1

11 11

1

1

1

-1

1

1

-1

1

1 -1 1 -1

CLS

NLS

-1

(b)

1

1

1 -1 1 1
1

NLS
1 1 11 1

1

1

B2 B1B1

A1

A2

A3

A4

B3 B4

(e)

0

2
4
6
8

(d)

Unit Cell

FIG. 9. (a) The configuration of the checkerboard-I model. The
dashed and solid lines represent the bonds with the hopping param-
eters 1 and −1. The CLS and two NLSs are drawn by the gray
regions with wave function amplitudes on each site denoted by
integer numbers. (b) and (c) correspond to band structures of the
checkerboard model I and II, respectively. (d) and (e) illustrate the
configurations of the checkerboard-II model. In (d), we have even
numbers of Nx and Ny in the whole system in the brown box. On the
other hand, in (e), Nx and Ny are odd numbers. In (e), the NLSs in
(d) are not eigenmodes anymore.

for CLSs, the simplest one can be obtained from

αkv(1)
k =

(
1 − e−ikx

1 − eiky

)
, (6.1)

where αk = (4 − 2 cos kx − 2 cos ky )1/2 for v(1)
k to be normal-

ized. This has the amplitudes 1 at both sites in the R = 0 unit
cell, and −1 at the A (B) site in the R = (1, 0) (R = (0,−1))
unit cell as shown in Fig. 9(a). The vanishing of αkv(1)

k at
k = 0 implies that v(1)

k is discontinuous at there. Another
eigenvector orthogonal to v(1)

k can be obtained easily as

αkv(2)
k =

(
1 − e−iky

−1 + eikx

)
, (6.2)

which may correspond to another (dispersive) band.
Then, the Hamiltonian having v(1)

k and v(2)
k as eigenvectors

can be composed as follows:

Hk

(
v

(1)
k,1 v

(2)
k,1

v
(1)
k,2 v

(2)
k,2

)
=

(
0 E

(2)
k v

(2)
k,1

0 E
(2)
k v

(2)
k,2

)
, (6.3)

which leads to

Hk =
(

0 E
(2)
k v

(2)
k,1

0 E
(2)
k v

(2)
k,2

)(
v

(1)
k,1 v

(2)
k,1

v
(1)
k,2 v

(2)
k,2

)†

, (6.4)
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where we assume that the flat band is at the zero energy. Here,
E

(2)
k is the energy dispersion of the other band. To make the

Hamiltonian in the form of the FSBP, E
(2)
k should be chosen

to be proportional to α2
k as noted from the form of v(2)

k in the
above. In the simplest case where E

(2)
k = α2

k, the Hamiltonian
becomes

Hk =
(

2 − 2 cos ky −(1 − e−iky )(1 − e−ikx )
−(1 − eiky )(1 − eikx ) 2 − 2 cos kx

)
,

(6.5)

which has a flat band at the zero energy. The relevant hopping
amplitudes are shown in Fig. 9(a). One can check that the
N translated copies CLS are not independent of each other
on the torus manifold because the sum of all CLSs vanishes
as in the case of the kagome lattice. The complementing
noncontractible loop states are exhibited in Fig. 9(a).

C. Singular touching at k = (π,π ): checkerboard-II

On the same lattice, one can also make a Hamiltonian to
have a singular flat band with the discontinuity at k = (π, π ).
To this end, we begin with

αkv(1)
k =

(
1 + e−ikx

1 + eiky

)
, (6.6)

where αk = (4 + 2 cos kx + 2 cos ky )1/2. Another orthogonal
eigenvector is found as

αkv(2)
k =

(
1 + e−iky

−1 − eikx

)
. (6.7)

With these, through the same procedure as before, we obtain
the singular flat band Hamiltonian of the form

Hk =
(

2 + 2 cos ky −(1 + e−iky )(1 + e−ikx )
−(1 + eiky )(1 + eikx ) 2 + 2 cos kx

)
.

(6.8)

The corresponding hopping amplitudes, the CLSs, and NLSs
are described in Fig. 9(d) or 9(e). This model has a zero
energy flat band touching with the dispersive upper band at
k = (π, π ) as plotted in Fig. 9(c). First, from (6.7), one can
find the CLS |χR〉 with amplitudes 1 at the A sites in the
unit cells at R and R + ax̂ and B sites in the unit cells at
R and R − aŷ as shown in Fig. 9(d). However, N translated
copies of CLS do not form a complete set because α

(0)
k = 0 at

k = (π, π ), which is reflected by the multivaluedness of the
eigenvector at this momentum. Indeed, one can show that

0 =
∑

R

(−1)R·(x̂+ŷ )/a|χR〉 (Nx,Ny : even), (6.9)

where R runs over the whole system indicated by the brown
box in Fig. 9(d) as an example, and Nx and Ny are the numbers
of unit cells along x̂ and ŷ, respectively. The periodic bound-
ary condition is applied to this system. Two complementary
NLSs extended along x and y directions are also depicted in
Fig. 9(d). However, if at least one of Nx or Ny is odd, the N

translated CLSs form a complete set. This is consistent with
the fact that α

(0)
k �= 0 with kx = 2πnx/Nx and ky = 2πny/Nx

where nx and ny are integers.

D. Nonsingular band touching: checkerboard III

In the same lattice, we can also have a flat band completely
separated from other dispersive bands by assigning proper
hopping parameters. We start from the CLS without singu-
larities given by

αkv(1)
k =

(
1 + e−ikx

2 + eiky

)
, (6.10)

where αk = (7 + 2 cos kx + 4 cos ky )1/2. Then, another eigen-
vector orthogonal to the above is found to be

αkv(2)
k =

(
2 + e−iky

−1 − eikx

)
. (6.11)

Repeating the same process as before, the Hamiltonian having
v(1)

k and v(2)
k as the eigenvectors, and the flat band at the zero

energy is obtained as

Hk =
(

5 + 4 cos ky −(1 + e−ikx )(2 + e−iky )
−(1 + eikx )(2 + eiky ) 2 + 2 cos kx

)
.

(6.12)

The configuration of the hopping processes relevant to
this Hamiltonian is illustrated in Fig. 10(a). As shown in
Fig. 10(b), the flat band at the zero energy is completely
separated from another dispersive band, which implies that
the flat band is nonsingular. Also, the N translated copies of
the CLS represented by the gray region in Fig. 10(a) form a
complete set spanning the flat band.

A site B site

1 1

2

1 CLS

(a)

Unit Cell

0
2
4
6
8
10

12

Γ ΜX Γ

(b)

(c)

0

2

4

6

8

Γ

Μ
Κ

Γ ΚM Γ

(d)

1 1
1

1

CLS

FIG. 10. (a) The checkerboard-III model, which hosts a nonsin-
gular flat band at the zero energy. A and B sites have different on-site
energies 5 and 2, respectively. The solid red and gray lines represent
the hopping parameters 2 and 1 while the dashes red and gray lines
denote −2 and −1, respectively. Its band structure is drawn in (b). (c)
The honeycomb lattice model yielding a nonsingular flat band at the
zero energy. A and B have the on-site energies 3 and 1, respectively.
The solid and dashed lines mean the hopping parameters −1 and 1,
respectively. Its band spectrum is shown in (d).
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E. Nonsingular band touching: honeycomb

In the section, we consider a different lattice structure, the
honeycomb lattice. We construct a Hamiltonian possessing
a flat band which is completely separated from another. We
consider a CLS corresponding to

αkv(1)
k =

(
1

1 + eia1·k + ei(a1−a2 )·k

)
, (6.13)

where a1 = (1/2,
√

3/2), a1 = (−1/2,
√

3/2), and αk =
(4 + 2 cos kx + 2 cos kx/2 cos

√
3ky/2)1/2. The shape of the

CLS is drawn in Fig. 10(c). Since it has no zeros in momentum
space, v(1)

k is nonsingular. Another orthogonal eigenvector is
given by

αkv(2)
k =

(
1 + e−ia1·k + e−i(a1−a2 )·k

−1

)
. (6.14)

Then, repeating the same procedure, we obtain

Hk|1,1 = 3 + 2 cos kx + 4 cos
kx

2
cos

√
3ky

2
, (6.15)

Hk|1,2 =H∗
k|2,1 = −1 − e−ikx − e−i 1

2 (kx+
√

3ky ), (6.16)

Hk|2,2 = 1, (6.17)

whose hopping processes in real space are shown in Fig. 10(c).
Note that the next nearest neighbor hopping is allowed only
between A sites. As plotted in Fig. 10(d), the flat band is com-
pletely separated from another dispersive band as expected
from the nonsingular property of the Bloch eigenfunction of
the flat band.

F. General scheme

Up to now, we have focused on simple 2 × 2 Hamiltonian
matrices to demonstrate the general recipe to construct flat
band models. However, the recipe can be generally applied
to any Hamiltonian with an arbitrary size. We first design
a CLS for a flat band by writing down an unnormalized
eigenvector αkv(0) of size Q (the number of orbitals in a unit
cell). At this stage, we already determine whether the flat
band is singular or not. If the flat band is singular, αkv(0)

vanishes at a momentum while if it is nonsingular, αkv(0) is
nonzero for all momenta. Then, we should find Q − 1 other
eigenvectors orthonormal to each other as well as to v(0),
denoted by v(q )

k (1 � q � Q − 1), to construct a full tight-
binding Hamiltonian. There are arbitrarily many choices for
such set of eigenvectors, and we obtain different tight-binding
models depending on the choice. An option is to apply the
Gram-Schmidt process to obtain the set of orthonormal wave
functions from any set of linearly independent vectors such
as (1, 0, . . . , 0), (0, 1, . . . , 0), · · · , and v(0)

k . Then, our target
Hamiltonian satisfies

HkUk = Vk, (6.18)

where

Uk =

⎛
⎜⎜⎜⎜⎝

vCLS
k,1 v

(1)
k,1 · · · v

(Q−1)
k,1

vCLS
k,2 v

(1)
k,2 · · · v

(Q−1)
k,2

...
...

. . .
...

vCLS
k,Q v

(1)
k,Q · · · v

(Q−1)
k,Q

⎞
⎟⎟⎟⎟⎠, (6.19)

which is composed of the CLS in the first column and other
orthonormal vectors in other columns, and

Vk =

⎛
⎜⎜⎜⎜⎝

0 E
(1)
k v

(1)
k,1 · · · E

(Q−1)
k v

(Q−1)
k,1

0 E
(1)
k v

(1)
k,2 · · · E

(Q−1)
k v

(Q−1)
k,2

...
...

. . .
...

0 E
(1)
k v

(1)
k,Q · · · E

(Q−1)
k v

(Q−1)
k,Q

⎞
⎟⎟⎟⎟⎠, (6.20)

where E
(q )
k is the possible eigenenergy of v(q )

k . By multiplying
U−1

k = U†
k to both sides of (6.18), we have

Hk|ij =
Q−1∑
q=1

E
(q )
k v

(q )
k,i v

(q )∗
k,j . (6.21)

While E
(q )
k also can be chosen freely, it is required to make all

the elements of the Hamiltonian in the form of the FSBP. In
general, not all the choices of v(q )

k allow us to have such E
(q )
k .

However, if v(q )
k is obtained from the Gram-Schmidt process

starting from the initial basis vectors in the form of the FSBP,
such E

(q )
k exists. This is because thus obtained v(q )

k ’s are in
the form of (2.11). This can be shown by the mathematical
induction as follows. Let us denote the initial unnormalized
vectors as u(q )

k whose components are in the form of the FSBP.
Then, we have

v(1)
k ∝ u(1)

k − [(
v(0)

k

)† · u(1)
k

]
v(0)

k , (6.22)

which can be transformed into the form of the FSBP by
multiplying the factor (α(0)

k )2. This leads to the expression

v(1)
k = 1√∑Q

q=1

∣∣w(1)
k,q

∣∣2

⎛
⎜⎝

w
(1)
k,1
...

w
(1)
k,Q

⎞
⎟⎠ = 1

α
(1)
k

⎛
⎜⎝

w
(1)
k,1
...

w
(1)
k,Q

⎞
⎟⎠, (6.23)

where w
(1)
k,q is in the form of the FSBP. Let us assume that v(q )

k
is also represented as

v(q )
k = 1√∑Q

p=1

∣∣w(q )
k,p

∣∣2

⎛
⎜⎝

w
(q )
k,1
...

w
(q )
k,Q

⎞
⎟⎠ = 1

α
(1)
k

⎛
⎜⎝

w
(q )
k,1
...

w
(q )
k,Q

⎞
⎟⎠. (6.24)

Then, v(q+1)
k is obtained as

v(q+1)
k ∝ u(q+1)

k −
q∑

p=0

[(
v(p)

k

)† · u(q+1)
k

]
v(p)

k . (6.25)

Multiplying the factor
∏q

p=0(α(p)
k )2, one can have v(q+1)

k in
the form of the FSBP, and it can be written in the same
form of (2.11) with the normalization coefficient. Once the
Q orthonormal basis vectors are prepared, the eigenenergies
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are simply of the form

E
(q )
k = Fk × (

α
(q )
k

)2
, (6.26)

where Fk is an arbitrary function of k in the form of the FSBP.
This makes Hk|ij also the FSBP form because v

(q )
k,i and v

(q )∗
k,j

in (6.21) share the same α
(q )
k factor.

VII. CONCLUSIONS

In this work, we suggest a completely different approach
for analyzing the flat bands by focusing on the singularity
of Bloch wave functions in momentum space, which is al-
ternative to the conventional approach based on the local
symmetries of the lattice model in real space. Our scheme
offers a unified way to analyze the flat band models regardless
of their dimensionality, detailed lattice structures, and symme-
tries. We show that the existence or absence of the immovable
discontinuities of the Bloch wave function in momentum
space, which is generated by the band touching, determines
the singular or nonsingular character of the flat band. In the
case of a nonsingular touching, one can always find a mass
term as a perturbation that lifts the degeneracy while keeping
the band flatness. On the other hand, the singular touching
is protected by the band flatness. If the degeneracy at the
band crossing is lifted, the resultant nearly flat band can gain
a nonzero Chern number. One can construct a complete set
of CLSs for a nonsingular flat band whereas, in the case
of singular flat bands, the N translated copies of CLSs are
incomplete due to the singularity of the Bloch wave functions.

Furthermore, we demonstrate that the presence of the dis-
continuity of the Bloch wave function implies that we have the
robust boundary mode as an eigenstate at the open boundary
of the system. Interestingly, this mode has the same energy as
the flat band, not located in the gap. We suggest that this new
kind of the bulk-boundary correspondence can be observed
experimentally in the bosonic systems like the photonic crys-
tals [43–46] where it recently has become possible to observe
the CLSs and flat bands. In this system, one might also
prepare the robust boundary state as an initial state, and
then observe its evolution in time to confirm the compact
localization of the eigenmode.

Our finding demonstrates a new perspective on the role
of the bulk Bloch wave functions to characterize flat band
systems. Although flat bands are generally expected to be
topologically trivial, their Bloch wave function still contains
the key information about the singular nature of the associated
band crossing. Finally, we note that our theory naturally
leads to systematic schemes useful for the construction of
the CLSs and flat band tight binding models. Up to now,
flat band models have been constructed based on physical
intuition, which cannot be generally applied to complicated
systems with long range hopping, in high dimensions, or not
tractable analytically. However, our schemes overcome those
difficulties so that one might have advantages in designing the
flat band models or finding a compact localized basis for the
study of strongly interacting systems.
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APPENDIX A: EXISTENCE OF THE COMPACT
LOCALIZED STATE

In this section, we show that a choice of αk, which makes
|χR〉 compact localized, always exists if the band is flat over
the whole Brillouin zone. It is equivalent to prove that the
kernel of the matrix H̄k = Hk − ε0I, where ε0 is the energy
of the flat band, has an element xk in the form of the FSBP. αk
can be obtained from xk = αkvk. We assume that the hopping
range of the tight-binding model is finite, so that all elements
of Hk are in the form of the FSBP.

This can be shown by the mathematical induction. First,
when H̄k is a 2 × 2 nonzero matrix, one can find a solution of
the form

xk =
( H̄k|1,2

−H̄k|1,1

)
, (A1)

where its elements are in the form of the FSBP. One can easily
see that the first row of H̄kxk is vanishing. Then the second
row of H̄kxk is also zero because we assume that there exists
a flat band at ε0, which guarantees detH̄k = 0.

Then, let us assume that the kernel of any (Q − 1) × (Q −
1) matrix H̄k always possesses a vector xk in the form of
the FSBP. Then, we consider a Q × Q matrix H̄k with a flat
band at ε0. We assume that every column of H̄k contains
at least one nonzero element. Otherwise, the problem just
reduces to the one considering a (Q − 1) × (Q − 1) matrix,
which is already assumed to have a solution in the form of
the FSBP. In the system of Q homogeneous equations given
by H̄kxk = 0, one can eliminate xk,Q, the Qth component
of xk, by multiplying H̄k|1,Q and H̄k|q,Q to the q-th and the
first rows of H̄kxk = 0 and subtracting between them for all
q’s between 2 and Q. Then, we obtain a system of (Q − 1)
number of equations for xk,1, xk,2, . . . , xk,Q−1 given by

0 =
Q−1∑
j=1

(H̄k|q,j H̄k|1,Q − H̄k|1,j H̄k|q,Q)xk,j . (A2)

One can note that the above can be represented by K̄kxk = 0,
where K̄k|q,j = H̄k|q,j H̄k|1,Q − H̄k|1,j H̄k|q,Q. K̄k is a (Q −
1) × (Q − 1) matrix with elements in the form of the FSBP.
This implies that xk,1, xk,2, . . . , xk,Q−1 can be chosen to be
in the form of the FSBP. If we denote such solution for (A2)
as xk,j = yk,j and assume that the nonzero component of the
Qth column of H̄k is H̄k|p,Q, xk,j = yk,j H̄k|p,Q is also a
nontrivial solution of (A2) in the form of the FSBP. Finally,
the remaining last component of xk is determined from the
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pth row of the equation H̄kxk = 0 as follows:

xk,Q = −
Q−1∑
j=1

H̄k|p,j yk,j . (A3)

This is also in the form of the FSBP. Again, from the relation
xk = αkvk, we find the multiplying factor 4αk that makes the
eigenvector in the form of the FSBP. In the proof, the key point
is that all matrix elements of H̄k = Hk − εn,kI are in the form
of the FSBP if the band εn,k is flat. This allows us to have a
solution of H̄kxk = 0 in the form of the FSBP.

APPENDIX B: LOW-ENERGY DESCRIPTION OF
THE FLAT BAND TOUCHING

1. Linear touching

We show that if a dispersive band is touching with a flat
band linearly, the flat band must be nonsingular. Since all 1D
flat bands are nonsingular (Sec. II C), we begin with a general
two dimensional 2 × 2 effective Hamiltonian of the form

Hk = (bxkx + byky )σ0 + (αxkx + αyky )σx

+ (βxkx + βyky )σy + (γxkx + γyky )σz, (B1)

around the band touching point. The condition for a flat band
at the zero energy is described by the equation

detHk = 0. (B2)

This leads to

b2
x = α2

x + β2
x + γ 2

x , (B3)

b2
y = α2

y + β2
y + γ 2

y , (B4)

bxby = αxαy + βxβy + γxγy, (B5)

which lead to

0 = (αxβy − βxαy )2 + (αxγy − γxαy )2

+ (βxγy − γxβy )2. (B6)

If we define α = (αx, αy, 0), β = (βx, βy, 0), and γ =
(γx, γy, 0), we obtain

α × β = α × γ = γ × β = 0, (B7)

and we conclude that

α//β//γ . (B8)

This means that all the momentum dependencies of the Hamil-
tonian are factored out as a common factor so that

Hk = (αxkx + αyky )(c0σ0 + σx + cyσy + czσz), (B9)

where c0, cy , and cz are the momentum-independent coeffi-
cients. An example for the band structure of this Hamiltonian
is shown in Fig. 11(a). This form of the Hamiltonian always
yields the nonsingular band touching since its eigenvectors are
independent of momentum too.

For the three-dimensional case, a general effective Hamil-
tonian for a linear band touching with a flat band is given by

Hk =
∑

j

(bjkjσ0 + αjkjσx + βjkjσx + γjkjσx ), (B10)

)b()a(

FIG. 11. (a) The band structure of the Hamiltonian (B9) with
αi = cy = cz = 1, and c0 = √

3. (b) The band spectrum of the
Hamiltonian (B18) with t1 = t2 = t3 = t5 = b1 = b2 = 1, t4 = 2,
t6 = √

7, and b3 = 3.

where j runs from x to z. The flatness condition (detHk = 0)
for one of two bands leads to

b2
x = α2

x + β2
x + γ 2

x , (B11)

b2
y = α2

y + β2
y + γ 2

y , (B12)

b2
z = α2

z + β2
z + γ 2

z , (B13)

and

bxby = αxαy + βxβy + γxγy, (B14)

bybz = αyαz + βyβz + γyγz, (B15)

bxbz = αxαz + βxβz + γxγz. (B16)

After the same procedure of the 2D case, we obtain the same
condition for these coefficients given by α × β = α × γ =
γ × β = 0, where α = (αx, αy, αz), β = (βx, βy, βz), and
γ = (γx, γy, γz). This again leads to the same conclusion
α//β//γ , which implies the flat band is nonsingular.

2. Quadratic touching

Now, let us consider the quadratic touching of the flat band.
Oshikawa demonstrated that the linear touching between two
bands in 3D can be described effectively by

H̃p̃ = p̃zσz + p̃xσx + p̃yσy + p̃ · bσ0, (B17)

where p̃ = T k with a proper upper triangular matrix T hav-
ing positive diagonal elements [74]. In 2D quadratic band
touching, the formula (B17) is still useful since we have
three independent quadratic terms proportional to k2

x , k2
y , and

kxky . By replacing (kx, ky, kz) with (k2
x, kxky, k

2
y ), we obtain

a generic form of the quadratic Hamiltonian as follows:

H̃k = (
t1k

2
x + t2kxky + t3k

2
y

)
σz + (

t4kxky + t5k
2
y

)
σy

+ t6k
2
yσx + (

b1k
2
x + b2kxky + b3k

2
y

)
σ0, (B18)

where we use the abbreviated notation ti instead of Tα,β

for convenience. Let us denote hx (k) = t6k
2
y , hy (k) =

t4kxky + t5k
2
y , hz(k) = t1k

2
x + t2kxky + t3k

2
y , and h0(k) =
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b1k
2
x + b2kxky + b3k

2
y . To have a flat band, the following

conditions are required:

t2
1 = b2

1, (B19)

t1t2 = b1b2, (B20)

t2
3 + t2

5 + t2
6 = b2

3, (B21)

t2
2 + 2t1t3 + t2

4 = b2
2 + 2b1b3, (B22)

t2t3 + t4t5 = b2b3, (B23)

which are obtained from the condition detH̃k = 0. For exam-
ple, the Hamiltonian has a flat band when t1 = t2 = t3 = t5 =
b1 = b2 = 1, t4 = 2, t6 = √

7, and b3 = 3, which is shown in
Fig. 11(b).

a. t1 �= 0 and t4 �= 0

In this case, from (B19) and (B20), we obtain t2
2 = b2

2.
Then, from (B22) and (B23), we have

t5 = t2

2t1
t4. (B24)

Eliminating b3 in (B21) by using (B23), t6 is given by

t2
6 = t2

4

4t2
1

(
4t1t3 + t2

4 − t2
2

)
. (B25)

As a result, we note that independent parameters are just t1,
t2, t3, and t4. One can see that the Hamiltonian has a flat band
with the singular touching at k = 0 as is clear from the form
of the eigenvector given by

vk ∝
(

−t2
6 k2

y + i
(
t4kxky + t5k

2
y

)
h(k) + (

t1k
2
x + t2kxky + t3k

2
y

)
)

, (B26)

which cannot have any common factor as long as t1 and t4
are nonzero. Here, h(k) = (h2

x + h2
y + h2

z )1/2. While this is
the conclusion when the flat band is the lower band, we have
the same conclusion for the opposite case.

b. t1 �= 0 and t4 = 0

From t2
2 = b2

2 and (B23), we have t2
3 = b2

2. Then, from
(B21), we conclude that t5 = t6 = 0. Consequently, the eigen-
vector is of the form

vk ∝
(

0
h(k) + (

t1k
2
x + t2kxky + t3k

2
y

)) ∝
(

0
1

)
, (B27)

which implies that the quadratic touching of the flat band is
nonsingular.

c. t1 = 0 and t4 = 0

From t1 = 0, we have b1 = 0. Then, (B22) reduces to
t2
2 = b2

2 because we assume t4 = 0. It leads to t2
3 = b2

3 from
(B23). As a result, from (B21), we have t5 = t6 = 0 so that
the eigenvector becomes

vk ∝
(

0
h(k) + (

t2kxky + t3k
2
y

)) ∝
(

0
1

)
. (B28)

This means the quadratic touching of the flat band in this case
is also nonsingular.

d. t1 = 0 and t4 �= 0

In this case, (B22) becomes t2
2 + t2

4 = b2
2. Then, from

(B21) and (B23), removing b2 and b3, we obtain

0 = (t2t5 − t3t4)2 + t2
6

(
t2
2 + t2

4

)
, (B29)

which means t2t5 = t3t4 and t6 = 0 because we assume t4 �= 0.
If t2 = 0, we have t3 = 0 due to (B29) so that the eigenvector
becomes

vk ∝
(

i
(
t4kxky + t5k

2
y

)
h(k)

)
∝

(
i

±1

)
, (B30)

which is nonsingular at k = 0. If t2 �= 0, on the other hand,
the eigenvector is of the form

vk ∝
(

iA
(
t2kxky + t3k

2
y

)
h(k) + (

t2kxky + t3k
2
y

)), (B31)

where the constant A is introduced to reflect the condition
t2t5 = t3t4. Then, h(k) = (A2 + 1)1/2|t2kxky + t3k

2
y |, which

reduces the eigenvector to the form

vk ∝
(

iA

1 ± √
A2 + 1

)
, (B32)

which is nonsingular at k = 0. Note that for all the nonsin-
gular touching cases from b to d above, the Hamiltonian is
composed of only a single Pauli matrix. That is, the general
form of the flat band Hamiltonian with the nonsingular touch-
ing is given by

Hk = (
t ′1k

2
x + t ′2kxky + t ′3k

2
y

)
(σz + σ0) (B33)

after a proper rotation of the Pauli matrices.

APPENDIX C: PHASE TRANSITION PROPERTIES

Based on the classification of the quadratic touching of a
2D flat band model in the previous section, we investigate
the response of a flat band against a generic perturbation
of the form H′

k (λ) = ∑
α fα (λ)σα where α is from x to z.

We assume that fα (0) = 0, so that we have a flat band at
λ = 0. Since we are interested in the behavior of a flat band
in the vicinity of the transition point (λ = 0), we consider
H′

k (λ) ≈ δλ
∑

α �ασλ where �α = ∂λfα|λ=0.

1. Nonsingular touching

As discussed in the previous section, for a nonsingular
touching between the flat and quadratic bands, the Hamilto-
nian including the perturbation is given by

Hk + H′
k =(

t1k
2
x + t2kxky + t3k

2
y

)
σz + δλ

∑
α=x,y,z

�ασα,

(C1)

where we omit the term proportional to σ0 which is irrelevant
in analyzing the phase transition behavior. First, if �x or �y

is nonzero, there is no band touching except when δλ = 0
at which we assume the flat band’s quadratic touching. On
the other hand, if �x = �y = 0 and �z �= 0, the equation
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t1k
2
x + t2kxky + t3k

2
y + �zδλ = 0 has real solutions for kx and

ky . For ky , we have

ky =
−t2kx ±

√(
t2
2 − 4t1t3

)
k2
x − 4�zt3δλ

2t3
, (C2)

which becomes real-valued when (t2
2 − 4t1t3)k2

x > 4�zt3δλ.
If t2

2 − 4t1t3 > 0, the inequality always holds for the suffi-
ciently large kx or small δλ. Since there is only one constraint
for kx and ky , we have a transition between two line touching
semimetals through the intermediate quadratic point touching
of the flat band. However, if t2

2 − 4t1t3 < 0, we can have
an insulating phase for δλ < 0 by assuming �1t3 < 0. After
the quadratic touching at δλ = 0, we have a line touching
semimetal for δλ > 0. This is the insulator-to-metal transition.

2. Singular touching

First, let us consider the case where t6 = 0 in (B18). If
�x �= 0, we always have an insulating phase for δλ �= 0,
which means an insulator-to-insulator transition. On the other
hand, if �x = 0 but �y or �z are nonzero, the band touching
requires real solutions of the following two equations:

t1k
2
x + t2kxky + t3k

2
y + �zδλ = 0, (C3)

t4kxky + t5k
2
y + �yδλ = 0. (C4)

Without loss of the generality, we set t1 = 1. Combining
two equations in the above and applying the identity t5 =
t2t4/2t1 = t2t4/2 from the flatness condition (B24), we obtain

t4

(
k2
x +

(
t3 − t2

2

2

)
k2
y

)
+ δλ(t4�z − t2�y ) = 0, (C5)

t4

(
kxky + t2

2
k2
y

)
+ δλ�y = 0. (C6)

From (C5), we have kx = ±
√

g1 − g2k2
y , where g1 =

−δλ(�z − t2�y/t4) and g2 = t3 − t2
2 /2. Plugging this into

(C6), we obtain a real solution of ky from

k2
y = 2

t2
4

(
�z ±

√
�2

z + �2
y

)
δλ, (C7)

where we take the plus (minus) sign for the positive (negative)
δλ. For kx to be also real-valued, g1 − g2k

2
y should be positive.

We check the inequality g1 − g2k
2
y > 0 by replacing k2

y in
g1 − g2k

2
y with (C7), which leads to

g1 − g2k
2
y = δλ

t2
4

(
2t3�z + t2t4�y ± (

t2
2 − 2t3

)√
�2

y + �2
z

)
,

(C8)

where we have used the relation t2
4 = t2

2 − 4t3 obtained from
(B25) with t6 = 0. Note that t2

2 − 2t3 is always positive. Let us
denote C1 = (2t3�z + t2t4�y )2 and C2 = (t2

2 − 2t3)2(�2
y +

�2
z ). Then, one can show (C8) is positive because

C2 − C1 = (t2t4�z − 2t3�y )2. (C9)

This result implies that we always have a band touching
regardless of the sign of δλ when t6 = 0 and �x = 0. Fur-
thermore, it is point touching unlike the nonsingular case
because it is obtained from the two independent constraints
(C3) and (C4) for two variables kx and ky . That is, we only
have the phase transition from a point-node semimetal to
another point-node semimetal through the quadratic flat band
touching. However, we cannot obtain the insulator-to-metal
transition in this case.

Second, if t6 �= 0, we have one more constraint,

t6k
2
y = −δλ�x, (C10)

in addition to (C3) and (C4). As a result, for the nonzero �x ,
we can have the insulating phase when δλ < 0 if �x/t6 < 0.
In this case, we have a point-node semimetal for δλ > 0 if

t2
6

(
�2

x + �2
y + �2

z

) =
(

t6�z + t4�x

2

)2

, (C11)

and an insulating phase otherwise. That is, in t6 �= 0 case, the
insulator-to-metal phase transition is allowed.

APPENDIX D: CHERN NUMBER OF NEARLY
FLAT BANDS

In general, a gapped 2 × 2 Hamiltonian is written in the
form H = ∑

α=x,y,z dα (kx, ky )σα , where dα (kx, ky ) is a real-
valued function and σα is the Pauli matrix. Then, the corre-
sponding Chern number of the occupied band is given by

ν = 1

2π

∫
d2kFxy, (D1)

where the Berry curvature Fxy is defined as

Fxy = 1

2
εαβγ d̂α∂xd̂β∂yd̂γ . (D2)

Here, d̂α = dα/(d2
x + d2

y + d2
z )1/2, and εαβγ is the Levi-Civita

tensor.
We calculate the Chern number of the nearly flat band

obtained by the gap opening process of the singular flat band
model given by

Hk = k2
x − k2

y

2
σz + kxkyσy + k2

x + k2
y

2
σ0, (D3)

where σ0 is the identity matrix. We examine three basic pertur-
bations H(x) = mσx , H(y) = mσy and H(z) = mσz. First, H(x)

can gap out the singular touching, and the Berry curvature of
the separate nearly flat band becomes

F (x)
xy = − 4mk2

(4m2 + k4)
3
2

, (D4)

where k2 = k2
x + k2

y . Then, the Chern number is obtained as

νm = −sgn(m), (D5)

which leads to �ν = ν+ − ν− = 2. While the Chern number
of a continuum model depends on the regularization scheme,
the finite Chern number difference means that we have a
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nonzero Chern number at least when m < 0 or m > 0. On
the other hand, the other perturbations H(y) and H(z) cannot
open a gap. Instead, the quadratic touching at k = 0 is split
into two linear crossings. The crossing points are located at
k = ±(

√|m|,−sgm(m)
√|m|) for H(y), k = ±(0,

√
2m) for

H(z) with positive m, and k = ±(
√−2m, 0) for H(z) with

negative m.

APPENDIX E: LIEB LATTICE

While the doubly degenerate band touching is quite generic
among the flat band models, we sometimes encounter with the
higher degeneracy as in the Lieb lattice [Fig. 6(a)] discussed
in this section. The Hamiltonian of the Lieb lattice is given by

Hk =
⎛
⎝ 0 1 + eikx 0

1 + e−ikx 0 1 + e−iky

0 1 + eiky 0

⎞
⎠, (E1)

which has a flat band at the zero energy, and the upper
and lower bands, described by E±(k) = ±(4 + 2 cos kx +
2 cos ky )1/2, touch linearly with each other at the zero energy
at k = (π, π ) as shown in Fig. 6(e). The eigenvector of the
flat band is given by

vk = 1√
E+(k)

⎛
⎜⎝

1 + e−iky

0

−1 − e−ikx

⎞
⎟⎠, (E2)

which has the immovable discontinuity at k = (π, π ). The
relevant CLS is described by

A0,R = 1

2

⎛
⎜⎝

δR
(0,0) + δR

(0,1)

0

−δR
(0,0) − δR

(1,0)

⎞
⎟⎠, (E3)

which is obtained by choosing αk = E+(k)1/2. This is shown
in Fig. 6(a).

APPENDIX F: MODIFIED LIEB LATTICE

We can move the Dirac point to k = (0, 0) by changing
the signs of the inter-unit cell hopping processes of the Lieb
lattice model as plotted in Fig. 6(b). We call it the modified
Lieb lattice model. The Hamiltonian is given by

Hk =
⎛
⎝ 0 1 − eikx 0

1 − e−ikx 0 1 − e−iky

0 1 − eiky 0

⎞
⎠, (F1)

which has a flat band at the zero energy, and the upper and
lower bands, E±(k) = ±(4 − 2 cos kx − 2 cos ky )1/2, show a
linear crossing at the zero energy at k = (0, 0) as plotted in
Fig. 6(e). The eigenvector of the flat band is obtained as

vk = 1√
E+(k)

⎛
⎜⎝

−1 + e−iky

0

1 − e−ikx

⎞
⎟⎠, (F2)

which is discontinuous at k = (0, 0). From this, we obtain the
corresponding CLS of the form

A0,R = 1

2

⎛
⎜⎝

−δR
(0,0) + δR

(0,1)

0

δR
(0,0) − δR

(1,0)

⎞
⎟⎠, (F3)

from αk = E+(k)1/2. This is described in Fig. 6(b). The
discontinuity of the eigenvector at k = (0, 0) implies N trans-
lated copies of the CLS in the above are incomplete.

APPENDIX G: KAGOME-3 MODEL

In this sections, we consider the kagome-3 model studied
by Bergman et al. [6]. While they claimed that there are
four NLSs, we show that their NLSs are actually contractible.
According to our theory, the flat bands of the kagome-3 model
are actually nonsingular and one can find the proper CLSs that
form a complete set spanning the flat bands.

The elements of the Hamiltonian matrix of the kagome-3
model are given by

Hjj = eik·aj + e−ik·aj , (G1)

H21 = 1 + e−ik·a1 + e−ik·a2 + eik·a3 , (G2)

H31 = 1 + eik·a1 + e−ik·a2 + eik·a3 , (G3)

H32 = 1 + eik·a1 + e−ik·a2 + e−ik·a3 , (G4)

where a1 = ax̂, a2 = −1/2x̂ + √
3/2ŷ, and a3 = −1/2x̂ −√

3/2ŷ are illustrated in Fig. 8(b). We assume a = 1 for
simplicity. The eigenvalues and eigenvectors are evaluated as

E
(1)
k = E

(2)
k = −2, (G5)

E
(3)
k = 4 + 2 cos kx + 4 cos

kx

2
cos

√
3ky

2
, (G6)

and

v(1)
k = c1

⎛
⎜⎝

−1 − e−ik·a3

0

1 + eik·a1

⎞
⎟⎠, (G7)

v(2)
k = c2

⎛
⎜⎝

−eik·a1 − e−ik·a3

1 + eik·a1

0

⎞
⎟⎠, (G8)

for two degenerate flat bands where c1 and c2 are normal-
ization coefficients. One can quickly check that v(1)

k /c1 and
v(2)

k /c2 correspond to the CLSs called the bow-tie CLS-1 and
-2 respectively as illustrated in Fig. 8(a). Combining v(1)

k and
v(2)

k , we can find another form of the eigenvector:

v(3)
k = c3

⎛
⎝ 0

1 + e−ik·a3

−1 − e−ik·a2

⎞
⎠. (G9)
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FIG. 12. The sum of the six bow-tie CLSs around a hexagon
vanishes. In other words, the combination of two bow-tie CLSs in
(a) is a linear combination of bow-tie CLS-1s and bow-tie CLS-3s in
(b) and (c), respectively.

The relevant CLS is denoted by the bow-tie CLS-3 and
depicted in Fig. 8(a). Note that although v(3)

k is constructed
from v(1)

k and v(2)
k , it does not mean that one can obtain a single

bow-tie CLS-3 from the bow-tie CLS-1 and -2. As described
in Fig. 12, one can show that a couple of the bow-tie CLSs of
one kind can be constructed from other kinds of bow-tie CLSs.
However, it is impossible to represent a single bow-tie CLS by
the linear combination of other kinds of bow-tie CLSs.

Bergman et al. showed that two sets of N translated copies
of the bow-tie CLS-1 and -2 are incomplete and suggested
that there must be four NLSs plotted in Fig. 8(b). It is correct
that their bow-tie CLSs form incomplete sets as manifested
by the singularities in v(1)

k and v(2)
k at k = (π, π/

√
3) and

k = (π,−π/
√

3), respectively. However, their NLSs are not
independent of the bow-tie CLSs as shown below. First,
we show that the NLS-1 can be constructed by the sum of

the translated copies of bow-tie CLS-1 and -2. The CLSs
corresponding to v(1)

k and v(2)
k are given by

A(1)
R′,R = 1

2

⎛
⎝−δR−R′ − δR−R′−a3

0
δR−R′ + δR−R′+a1

⎞
⎠, (G10)

A(2)
R′,R = 1

2

⎛
⎝−δR−R′ − δR−R′+a2

δR−R′ + δR−R′−a1

0

⎞
⎠. (G11)

Then the NLS-1 and -2, denoted by B(1)
R and B(2)

R , are
represented as

B(1)
R =

Nx∑
n=1

(
A

(1)
R′+na1,R − A

(2)
R′+na1,R

)
, (G12)

B(2)
R = 2

Nx/2∑
n=1

(
A

(1)
R′+2na1,R − A

(2)
R′+(2n−1)a1,R

) − B(1)
R , (G13)

where Nx is the system size along x direction. This shows that
the two NLSs suggested by Bergman et al. are not noncon-
tractible, and can be disconnected by adding finite number of
CLSs as described in Fig. 13. In Fig. 13, the CLSs in (b) and
(e) are obtained from the combinations of the bow-tie CLS-1s
and -2s at different positions.

Then, are there any genuine NLSs? Our answer is that the
flat bands of the kagome-3 model are actually nonsingular
and we do not need any NLSs. The crucial point is that
although there are singular momenta in v(1)

k and v(2)
k , we can

recombine these two eigenvectors to obtain a nonsingular
set of eigenvectors because two flat bands are completely
degenerate. These nonsingular eigenvectors are obtained as

w(1)
k ∝ v(1)

k

c1
− v(2)

k

c2
=

⎛
⎝−1 + eik·a1

−1 − eik·a1

1 + eik·a1

⎞
⎠, (G14)

w(2)
k ∝ v(1)

k

c1
+ v(2)

k

c2
=

⎛
⎝−1 − eik·a1 − 2e−ik·a3

1 + eik·a1

1 + eik·a1

⎞
⎠. (G15)

The CLSs corresponding to these are plotted in Fig. 8(c).

NLS-2

(a)
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-1 -1 -11 1 -1 -1 -11 11 -1 -1/21 1
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1/2-1/2
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-1 1
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1 1

FIG. 13. The NLS-1 and NLS-2 of the kagome-3 model in (a) and (d) are disconnected into two pieces as shown in (c) and (f) by adding
CLSs in (b) and (e) to them, respectively.
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