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Microwave signatures of the Z2 and Z4 fractional Josephson effects
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We present a many-body exact diagonalization study of the Z2 and Z4 Josephson effects in circuit quantum
electrodynamics architectures. Numerical simulations are conducted on Kitaev chain Josephson junctions
hosting nearest-neighbor Coulomb interactions. The low-energy effective theory of highly transparent Kitaev
chain junctions is shown to be identical to that of junctions created at the edge of a quantum spin Hall insulator.
By capacitively coupling the interacting junction to a microwave resonator, we predict signatures of the fractional
Josephson effects on the cavity frequency and on time-resolved reflectivity measurements.
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I. INTRODUCTION

Josephson junctions (JJs) built at the edges of quantum
spin Hall (QSH) insulators have been predicted to display a
rich variety of phenomena, which emerge from the interplay
between time-reversal (TR) symmetry and the conservation
of a local fermion parity. In the presence of a dc voltage bias,
three theoretical scenarios have been proposed, with distinct
periodicities of the Josephson current on the superconducting
phase difference across the junction [1–5].

In the first scenario, concerning noninteracting and TR-
symmetric JJs, an ac 2π -periodic Josephson effect takes place,
together with a dissipative dc current [1,2]. This is the ordi-
nary Josephson effect for perfectly transparent weak links. In
the second scenario, involving JJs with broken TR symmetry,
the current is dissipationless and its period doubles to 4π .
Such doubling is the hallmark of hybridized Majorana zero
modes (MZMs) at the edges of the weak link [3]. In the
third scenario, entailing TR-symmetric JJs with short-range
interactions, the current is nondissipative and 8π periodic
[4,5]. This effect has been attributed to TR-protected Z4

parafermions, fractionalized quasiparticles of conceptual and
practical interest [4]. The 4π -periodic (Z2) and 8π -periodic
(Z4) Josephson effects are known as “fractional,” as opposed
to the “integer” 2π -periodic Josephson effect.

The experimental realization of fractional Josephson
effects constitutes an active research topic in topological
condensed matter physics. Unexpectedly, recent experiments
on QSH JJs have reported Shapiro steps and Josephson
radiation consistent with a 4π -periodic Josephson effect
[6–9] instead of the 2π -periodic or 8π -periodic effects that
would have been anticipated for such a TR-symmetric system.
Consistent explanations for this phenomenon have been put
forward in terms of exchange interactions between QSH edge
states and nearby charge puddles, which can act as magnetic
impurities [10] as well as in terms of two-particle inelastic
scattering [11].

The 8π Josephson effect remains experimentally elusive to
this day. Its observation requires weak links of lengths com-
parable to, or larger than, the superconducting (SC) coherence
length. In addition, a many-body energy gap produced by TR-
preserving interactions is needed. For umklapp interactions,

such a gap develops only in the strong-coupling limit [4,5].
To date, it is unclear whether the condition of strong in-
teractions may be satisfied in real QSH JJs. In contrast,
spin-flip interactions with magnetic impurities can generate
8π periodicity both at strong and weak coupling [2,10,12].
Nevertheless, in the weak-coupling regime, interactions with
magnetic impurities give a dominant 4π periodicity [10].
In addition, for magnetic impurities of spin higher than 1

2 ,
particularities of the single-ion anisotropies can give rise to
2π and 4π periodicities.

In view of the aforementioned challenges, it would be of in-
terest to (i) identify alternative systems where the 8π -periodic
Josephson effect can occur, and (ii) develop alternative ways
to measure it. The main objective of this work is to make
theoretical progress along these lines. Concerning (i), we
establish that the 8π -periodic Josephson effect can take place
in JJs built out of Kitaev chains [13], i.e., one-dimensional
lattices of spinless fermions with p-wave superconductivity.
The proposals for physical realizations of Kitaev chains are
numerous and under intense experimental investigation (see
[14] and references therein). Concerning (ii), we propose
signatures of the 8π Josephson effect in circuit quantum
electrodynamics (cQED) architectures.

Our study begins in Sec. II, where we show that a Kitaev
chain JJ has the same low-energy effective field theory as
the QSH JJ. This equivalence holds provided that the lat-
tice model is tuned to the regime of a perfectly transparent
junction (Sec. II A). In this regime, the lattice model is en-
dowed with an effective low-energy TR symmetry operator
squaring to −1, which mimics that of the QSH JJ. Because
the low-energy states of the junction are localized within
the weak link, finite-sized superconducting electrodes suffice
to achieve a good agreement between the continuum and
lattice theories (Secs. II B and II C). Therefore, we can access
physical observables of strongly interacting QSH JJs via exact
diagonalization of the Kitaev chain JJ. Specifically, we carry
out a lattice analysis of the Z2 and Z4 Josephson effects
(Secs. II D, II E, and II F). Here, the main advantage over
the recent studies of fractional Josephson effects based on
bosonization and perturbation theory [2,4,10,12,15] is that we
have access to the many-body energies and wave functions,
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which then allow us to compute physical observables for an
arbitrary interaction strength.

In Sec. III, we apply our theory to determine the influ-
ence of strong interactions and quasiparticle fractionalization
in cQED measurements of topological JJs. Recently, cQED
architectures [16] have been explored, both theoretically and
experimentally, as promising venues to probe and characterize
topological superconductivity in JJs [17–23]. In cQED, a
microwave cavity is utilized to monitor, in an efficient and
noninvasive way, the discrete energy level dynamics of quan-
tum circuits [23]. Thus far, all cQED studies of topological
junctions have neglected the effect of short-range electron-
electron interactions. Accordingly, little is known about the
cQED signatures of the 8π -periodic Josephson effect. By
investigating the response of a microwave resonator coupled
to a topological JJ (Sec. III A), we find that the cavity fre-
quency inherits the anomalous Josephson periodicities and
displays a series of kinks and peaks (Sec. III B) that can be
resolved in the phase shift of the reflected signal (Sec. III D).
In contrast, the cavity linewidth is unaffected by the presence
of the junction, as long as (i) the broadening of the electronic
states is small compared to the cavity frequency, and (ii) the
cavity frequency is smaller than the energy gaps that protect
the fractional Josephson effects (Sec. III C). Finally, Sec. IV
presents the conclusions, and the Appendices contain extra
details on the calculations.

II. FRACTIONAL JOSEPHSON EFFECTS
IN KITAEV CHAIN JUNCTIONS

The objective of this section is to establish an equivalence
between the Kitaev chain JJ and the QSH JJ at low energies.
We begin by demonstrating that the low-energy continuum
expansion of the lattice model exhibits an effective TR sym-
metry which allows mapping to the QSH JJ. Then, we proceed
with a pedagogical discussion of the fractional Josephson
effects that arise when the effective TR symmetry is broken
or many-body interactions are turned on. After that, many-
body spectra and wave functions for the 4π - and 8π -periodic
scenarios are obtained by exact diagonalization of the lattice
model. One important conclusion from this section is that
the 8π Josephson effect can occur in Kitaev chains. This
statement complements that of Ref. [15], where the authors
considered an interacting Rashba nanowire with “true” TR
symmetry (i.e., no magnetic fields). Here, we demonstrate that
the 8π -periodic Josephson effect is also possible in Rashba
nanowires placed under magnetic fields because of an effec-
tive TR symmetry that emerges at low energies when the JJ
has a high transparency.

A. Lattice and continuum models

Figure 1(a) illustrates a Kitaev chain of N sites, whose
Hamiltonian reads as

HJJ = −
∑

l

[(tc†l cl+1 + �lclcl+1 + H.c.) + μc
†
l cl]. (1)

Here, cl’s are fermion operators at site l ∈
{−N/2, . . . , N/2 − 1}, μ is a uniform chemical potential,
t > 0 is the hopping parameter, and �l is the complex pairing

FIG. 1. (a) Cartoon of a Kitaev chain Josephson junction con-
taining N sites (blue). A pair of p-wave superconducting regions
(gray) of pairing strength �0 are separated by a normal weak link
(yellow) containing NL sites. The superconducting phase difference
is ϕ. When the hopping amplitude t and the onsite potential for the
spinless fermions are uniform throughout the system, an effective TR
symmetry squaring to −1 emerges at low energies. Local onsite
potentials (δμ) break this symmetry, whereas first-neighbor extended
Hubbard interactions (V ) do not. (b) Cartoon of a quantum spin-Hall
Josephson junction, with a pair of helical edge modes (red arrows) of
velocity v. At low energies, the Kitaev chain JJ can emulate a QSH JJ.
Local onsite potentials and first-neighbor repulsive interactions of the
Kitaev JJ map onto magnetic perturbations (δm) and TR-preserving
interactions (λ) in QSH JJs, respectively.

potential at site l. To obtain a Josephson junction with a weak
link of length NL − 1, we consider

�l =

⎧⎪⎨
⎪⎩

�0, l < −NL/2

0, −NL/2 � l < NL/2

�0e
iϕ, l � NL/2

(2)

where ϕ is the superconducting phase difference across the
junction, and �0 is taken to be real. For simplicity, we take N

and NL to be even. In this spinless model, the TR operation is
simply the complex conjugation K . For the JJs studied in this
work, the charging energy is assumed to be much smaller than
the Josephson energy and thus ϕ is regarded as a c number.

Assuming that the chemical potential is well within the
bandwidth (|μ| � 2t), namely, that the chain is well within
the topologically nontrivial phase, we can make a low-energy
expansion of the fermionic lattice modes close to the two
normal-phase Fermi points: a−1/2cl ≈ [eikF xψR + e−ikF xψL],
where a is the lattice constant (x = la), h̄ = 1, and ψR,L

are slowly fluctuating right- and left-mover fields. The Fermi
wave vector kF is defined through μ = −2t cos kF a. To lead-
ing order in a gradient expansion of a, and neglecting fast
oscillating terms, Eq. (1) becomes

HJJ(ϕ) ≈ v

∫
dx(ψ†

R (−i∂x )ψR − ψ
†
L(−i∂x )ψL)

+
∫

dx(�c�(|x| − L/2)ei�(x)ϕψLψR + H.c.),

(3)

where �(x) is the step function, v = 2at sin (kF a) is a ve-
locity, �c = 2�0 sin (kF a) is the effective pairing potential,
L = (NL − 1)a is the length of the weak link, and the super-
conducting phase was globally shifted by π/2. As illustrated
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in Fig. 1(b), the same Hamiltonian describes a JJ at the edge of
a spin-momentum-locked QSH insulator with proximitized s-
wave superconductivity [3,4]. Next, we consider possible an-
tiunitary TR operators, which commute with our low-energy
description of HJJ(ϕ).

The lattice level TR operator T+ acts on the continuum
basis by exchanging L and R modes up to a gauge-dependent
phase. For Eq. (3), TR acts on the operators as T+ψLT −1

+ =
iψR , T+ψRT −1

+ = iψL, and the lattice level symmetry is
preserved such that [HJJ (nπ ) , T+] = 0, for n ∈ Z. Defining
a spinor (ψR, ψL) with the left- and right-moving modes, and
a set of Pauli matrices τi (i = x, y, z) acting on this space,
the so-called first-quantized description of this TR operator
is T+ = iτxK , with T 2

+ = +1. In addition, we can define a
second antiunitary operator T− which also commutes with
Eq. (3) at ϕ = nπ (n ∈ Z) and with first-quantized represen-
tation T− = iτyK . Since T 2

− = −1, this additional symmetry
enforces Kramers degeneracies at TR-invariant superconduct-
ing phase differences.

Even though the fermions ψR and ψL carry no spin degrees
of freedom, their Hamiltonian displays the same symmetries
and behavior as that of a QSH edge state. Unlike in the case of
the QSH edge, however, this T− = iτyK TR symmetry is only
effective. First, it crucially relies on the validity of neglecting
the fast oscillating terms in the low-energy expansion leading
to Eq. (3). In order to be valid, this approximation requires
the superconducting coherence length ξ0 = h̄v/�c = ta/�0

to obey ξ0 � 2π/kF , which will be satisfied for lattice pa-
rameters such that t � �0 (ξ0 � a). Second, certain pertur-
bations of the lattice Hamiltonian (1), such as local spatial
inhomogeneities in the hopping parameter or in the chemical
potential, produce terms in the continuum approximation that
do not commute with T−, leading to single-body backscat-
tering terms between left and right movers. In short, T− is
a low-energy symmetry of the Kitaev chain JJ only when
the transparency of the junction is unity. Extended Hubbard
interactions, the simplest two-body terms in the Kitaev chain,
preserve T− at low energies. For now, we proceed with the
noninteracting and fine-tuned TR-preserving scenario.

B. Single-particle states

In this section, we validate the continuum expansion of
the lattice model by calculating and comparing the spectra of
Eqs. (1) and (3). This exercise will set the notation for the
following sections. Since Eq. (3) has been previously solved
[2–4,24], here we review the main results rapidly but pause on
some intricacies that are rarely discussed in the literature.

Measuring energies and lengths in units of �c and ξ0,
respectively, Eq. (3) can be recast in the Bogoliubov–de
Gennes (BdG) form

HJJ(ϕ) ≈ 1

2

∫
dx �†h(ϕ)�, (4)

where � = (ψR,ψL,ψ
†
L,−ψ

†
R )

T
. In this basis, the single-

particle BdG Hamiltonian reads as

h(ϕ) = [−iτz∂x]ρz + �(|x| − L/2)ρxe
iρz�(x)ϕ, (5)

0 π 2π

Superconducting phase difference ϕ

-1.0

-0.5

0.0

0.5

1.0

E
/
Δ

c
FIG. 2. Noninteracting QSH JJ single-particle spectrum obtained

for μ = 0, �0 = t/2 (ξ0 = 2a). Red dots are obtained from nu-
merical diagonalization of the Kitaev chain JJ (NL = 8, N = 200),
black full curves are obtained from solving the continuum effective
theory [cf. Eq. (7), with L = 3.5ξ0]. No adjustments of parameters
are made. Blue dashed curves are obtained by an effective model
where the superconducting banks of the junction are substituted by
pointlike leads and an effective pairing �eff ≈ 0.77�0.

where L/ξ0 → L, Pauli matrices ρi act in the Nambu particle-
hole space, and, as mentioned above, τi matrices act in the
ψL,ψR space.

Using [h, τz] = 0, we decompose the Hilbert space in two
τz eigensectors and solve

hτ (ϕ)ψτ = Eτψτ (6)

with wave functions of the form ψ+ = (u+, 0, v+, 0)T and
ψ− = (0, u−, 0, v−)T obeying continuous boundary condi-
tions at x = ±L/2.

1. Energy spectrum of Eq. (6)

Let us concentrate on the Andreev bound state (ABS)
spectrum, i.e., states with discrete energies inside the bulk
SC gap (|Eτ | < 1). The ABS energies are determined by the
solutions of the transcendental equation

tan(τLEτ ) =
√

1 − E2
τ − τEτ tan

(
ϕ

2

)
τEτ + √

1 − E2
τ tan

(
ϕ

2

) , (7)

which reduces to an earlier result [4] at ϕ = π . For each value
of ϕ, the solutions En,τ (ϕ) are discrete and labeled with the
indices n and τ . The latter index characterizes the slope of
the energy eigenvalue as a function of ϕ: τ = +1 for negative
slope, τ = −1 for positive slope.

Figure 2 displays the solutions of Eq. (7) (full black) and a
single-particle diagonalization of Eq. (1) (red dots). A good
agreement is obtained between the two sets of curves for
energies well inside the bulk SC gap. The agreement can be
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made even better by increasing the ratio ξ0/a, which further
suppresses the T−-breaking fast oscillating terms.

The structure of the energy eigenvalues in Fig. 2 is con-
strained by the Nambu particle-hole operator C = ρyτyK and
the TR operator T− = iτyK , which impose

τyρyh(ϕ)ρyτy = −h∗(ϕ),

τyh(ϕ)τy = h∗(−ϕ). (8)

These relations in turn enforce

Eτ (ϕ) = −E−τ (ϕ),

Eτ (ϕ) = E−τ (−ϕ), (9)

where the left- and right-hand sides need not correspond to the
same value of n. As a consequence of TR symmetry and the
2π periodicity of the Hamiltonian, different ABS cross at ϕ =
π (or multiples thereof). The index n can be used to identify
these crossings, with n > 0 if the crossing happens at positive
energies, n = 0 if the crossing is at vanishing energy, n < 0
for crossings at negative energies. The number M of positive-
energy ABS crossings at ϕ = π depends on the length of the
weak link and is fixed by −π

2 < L − Mπ � π
2 , as can be

concluded from Eq. (7). With the parameter values of Fig. 2
we have M = 1, which is the minimum necessary for the Z4

Josephson effect to be discussed below. For concreteness, we
will keep this number of crossings for the remainder of this
paper.

To gain some analytical insight on the characteristic energy
scale of the ABS modes, we take an approach of replacing the
SC electrodes by pointlike SC leads. In this case, following
the standard procedure of effective field theories, we fit for an
effective SC pairing strength that returns the correct energy
spectrum (see Ref. [25] for an illuminating discussion). After
putting back the units, this exercise results in [24]

En,τ = �effξ0

2L
[π (2n + τ ) − τϕ], (10)

thereby uncovering the scaling of ABS energies with the
Thouless energy ET = �cξ0/L = v/L. Fitting an effective
SC pairing of �eff ≈ 0.77�c, one recovers the blue dashed
curves in Fig. 2, which again match the numerical data at low
energies, as expected for an effective field theory.

2. Wave functions of Eq. (6)

The nonzero components of the ψn>0,τ bound states are
[2,4]

un,τ = An,τ e
−
√

1−E2
n,τ |x−l(x)|(−1)neiτEn,τ l(x),

vn,τ = −τAn,τ e
−
√

1−E2
n,τ |x−l(x)|ei

(
ϕ

2

)
e−iτEn,τ l(x), (11)

where

l(x) =
{

x if |x| < L/2,

sgn(x) L
2 if |x| > L/2,

(12)

and the normalization factor reads as |An,τ | =
{2[L + (1 − E2

n,τ )−1/2]}−1/2. To access the ψn<0,τ states,
it suffices to apply the Nambu particle-hole transformation

C = ρyτyK . The eigenstates obey the orthogonality relations∫
dx ψ†

n,τ (x, ϕ)ψn′,τ (x, ϕ) = δτ,τ ′δn,n′ (13)

and, if supplemented with the continuum of scattering states,
the completeness relation∑

n,τ

ψn,τ (x, ϕ) ⊗ ψ†
n,τ (x ′, ϕ) = I4×4δ(x − x ′) (14)

is respected, where I4×4 is the 4 × 4 identity matrix.
For later discussion on the transformation properties of the

many-body states under TR, it is convenient to consider the
action of T− on the above wave functions. The transformation
rules may be written as

iτyψ
∗
n,τ (x, ϕ) = τψn+τ,−τ (x,−ϕ)

= −τψn,−τ (x, 2π − ϕ). (15)

C. Noninteracting many-particle states

The single-particle wave functions and energies from
the previous subsection allow us to construct noninteracting
many-particle states in the continuum approximation. This
construction will be useful for later discussion on interacting
JJs. The starting point is to expand the field operators in terms
of ABS as

�(x) =
∑
n,τ

ψn,τ (x, ϕ)an,τ (ϕ),

an,τ (ϕ) =
∫

dx ψ†
n,τ (x, ϕ)�(x), (16)

where the operator an,τ annihilates the ABS labeled with
(n, τ ). For the junction length L ≈ πξ0 chosen above, we may
limit ourselves to the six lowest-energy states

|j ; ϕ〉, j = 0, . . . , 5 (17)

which are plotted in Fig. 3 and presented in more detail in
Appendix A. These states are built from fixing |0; ϕ = 0〉
with all negative-energy single-particle states filled. The ex-
citations over the ground state involve “particle-hole” pairs
composed of positive-energy quasiparticles, together with
their Nambu conjugate quasiholes. The total number of BdG
quasiparticles is the same in all states.

With the states in Eq. (17) and the single-particle energies
from the previous subsection, one can build the low-energy
many-body spectrum. Alternatively, one can perform a brute-
force exact diagonalization of the lattice Hamiltonian in the
full many-body Fock space, without any reference to single-
particle states. The results of both approaches are depicted in
Fig. 3.

On the one hand, we find an excellent agreement be-
tween the single-body lattice diagonalization (red dots), where
we use N = 200 sites, and the many-body numerics (green
dashes), where we use N = 26. This indicates that the finite-
size effects originating from the superconducting leads are
not significant. On the other hand, only a fair agreement
is obtained between the continuum (black curves) and the
lattice numerics. This discrepancy can be tracked down to the
ϕ-dependent contribution of the continuum of scattering states
to the ground-state energy [26], which is not captured in the
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FIG. 3. Many-body energy spectrum in the absence of interac-
tions. The parameter values are the same as in Fig. 2. Black curves
are obtained by solving the transcendental equation (7) and by there-
after building many-body energies from Eq. (17); see Appendix A for
further details. Full versus dashed black lines correspond to different
eigenvalues of the parity operator (22). Contributions from single-
particle scattering states are ignored, which generates a mismatch
with the remaining data. Red dots correspond to a single-body
exact diagonalization of Eq. (1) for chains of N = 200 sites, with
many-body energies built in a similar way as the black lines from
Eq. (17), but scattering states taken into account. Green dashes are
also obtained from the lattice Hamiltonian, but from a brute force
diagonalization in the many-body Fock space for a chain with N =
26 sites. Avoided crossings labeled (b) are due to T−-breaking terms
in the lattice Hamiltonian which become negligible in the ξ0 � a

limit (see Fig. 11 of Appendix A).

continuum analysis. A better comparison between the effec-
tive theory and the exact diagonalization of the lattice model
can be achieved by subtracting off the ground-state energy at
each value of ϕ separately. The obtained excitations energies
are physically observable, e.g., in the tunneling density of
states [4] or in the microwave response functions evaluated in
the next section. When comparing these excitation energies,
a much improved agreement is found between the exact
diagonalization results and the analytical results (see Fig. 11
in Appendix A).

On a related note, the avoided crossings at ϕ = 0, 2π

between the states |1〉 and |2〉 (cf. the green dashes and red
dots in Fig. 3) result from the finite ratio of ξ0/a leading to the
continuum Hamiltonian being only approximately equivalent
to the lattice model, with small fast-oscillating T−-breaking
terms lifting Kramers degeneracy. We verified that these anti-
crossings are eliminated by increasing the ratio of ξ0/a, which
is easily done for single-particle diagonalizations, but not for
the many-body case (due to system size limitations).

For the remainder of this section, we study the rich struc-
ture of crossings in Fig. 3 from a symmetry point of view.

We begin by recalling that TR acting in the second-quantized
operators yields [27]

T−�(x)T −1
− = iτy�(x). (18)

Combining Eqs. (15), (18), and (16), we get

T−an,τ (ϕ)T −1
− = τan+τ,−τ (−ϕ)

= −τan,−τ (2π − ϕ). (19)

Consequently, the action of T− on the many-body states of
Eq. (A1) at ϕ = 0 returns (up to phase factors)

T−|0; 0〉 ∼ |0; 0〉,
T−|1; 0〉 ∼ |2; 0〉, (20)

T−|3; 0〉 ∼ |3; 0〉,
with the other states being either invariant or having partners
at higher energies. At ϕ = π , one gets

T−|0; π〉 ∼ |1; π〉,
T−|2; π〉 ∼ |5; π〉, (21)

T−|3; π〉 ∼ |4; π〉.
These transformations demonstrate that many of the crossings
in the spectrum of Fig. 3 are protected by the effective TR
invariance of the low-energy physics (or the true TR invari-
ance of the QSH edge modes, in the case of a QSH JJ).
Yet, some of the crossings therein are protected by another
symmetry as well, namely, the local fermion parity. The local
fermion-parity operator counts the parity of the number of
ABS excitations in the many-body state. It can be written as

Pin(ϕ) ≡ (−1)(a†
0,+a0,++∑

n>0,τ a
†
n,τ an,τ ), (22)

where the sum over n is done among the discrete-energy
bound states only (n = 1 only, for our parameter values).1 An
application of this operator over the many-body states written
explicitly in Eq. (A1) returns the pattern of full and dashed
black curves displayed in Fig. 3. Importantly, Pin is conserved
at every ϕ as long as the total fermion parity of the system is
conserved.

The conservation of Pin and TR allows to understand the
various crossings in Fig. 3. At ϕ = 0, |1; 0〉 and |2; 0〉 have the
same parity and are related by TR symmetry; they constitute
Kramers partners. At ϕ = π , TR operation connects states of
opposite parity. Accordingly, the degeneracy between |0; π〉
and |1; π〉 (two states of opposite parity) is protected by both
TR symmetry and the conservation of Pin. Indeed, in the

1This definition of the parity operator is not unique. The modes
contributing to it must be spatially localized in the weak link and
the number of such modes depends on the length of the link. Also,
in the absence of TR-breaking perturbations, the connection of the
ABS modes with the continuum of scattering dictates that a cutoff
must be introduced, in a rather arbitrary way, in the mode sum,
depending on ϕ. Finally, the definition is sensitive to the choice
of the reference ground state. The form displayed in this work is
in accordance with our conventions, but may be straightforwardly
adjusted to other conventions.
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topological phase, the parity eigenvalues of the two lowest-
energy many-body states are inverted when going from ϕ = 0
to 2π , which requires a band crossing in-between.

The higher-energy fourfold crossing at ϕ = π is only
partly protected. On the one hand, the degeneracy between
|2; π〉 and |5; π〉, as well as the degeneracy between |3; π〉
and |4; π〉, are enforced by both TR symmetry and the con-
servation of Pin. On the other hand, the degeneracy between
|2; π〉 and |3; π〉 is “accidental” and guaranteed only at the
noninteracting level. Indeed, we will show below that TR- and
parity-preserving interactions introduced at the lattice level
break the fourfold degeneracy into a pair of twofold crossings,
as previously proposed in the context of QSH JJ [1–5].

D. Fractional Josephson effects: Phenomenology

Having understood the low-energy spectrum of the non-
interacting junction, it is useful to embark on a pedagogical
discussion of the different fractional Josephson effects listed
in the Introduction. The different effects can be distinguished
by focusing on the several crossings that take place in the
energy spectrum of Fig. 3, at ϕ = nπ (n ∈ Z). To guide the
explanation, we use the labels “(a)” for the lowest twofold
crossing at ϕ = π , “(b)” for the lowest twofold crossings at
ϕ = 0, and “(c)” for the fourfold crossing at ϕ = π .

When all (a), (b), and (c) crossings are preserved (like in
Fig. 3), the ABS energy levels are continuously connected,
as a function of ϕ, with the continuum of scattering states
of energies greater than �c. As a consequence, dc-voltage
biasing the junction leads to a time-dependent evolution of
the states that eventually connects the ground state with the
continuum of scattering states, thereby generating a dissipa-
tive dc contribution on top of a 2π -periodic Josephson current
[1,2]. In order to have only the purely ac component of the
Josephson current, it is necessary to disconnect the ABS from
the continuum by opening a gap either at (a), (b), or (c).

The crossing at (a) is gapped in topologically trivial JJs,
which lack MZMs and do not have the corresponding con-
served local fermion parity. Accordingly, the lowest curve in
Fig. 3 fully separates from the rest. The evolution of this state
as function of ϕ is 2π periodic, corresponding to a standard,
dissipationless, Josephson effect.

A second possible scenario involves lifting the crossing (b).
Since this crossing is protected by TR symmetry alone, it can
be gapped by applying a magnetic perturbation on the QSH JJ
[3] or by a adding potential barrier (which breaks T− symme-
try) in the Kitaev chain JJ. The gap scales with the strength
of the TR-breaking perturbation, which is responsible for
localizing the Majorana modes at the boundaries of the weak
link. Due to this gap, a doublet of states [the crossing at (a)
being protected by Pin conservation] becomes disconnected
from the remaining states, including the scattering ones, and
the 4π -periodic fractional Josephson effect arises. This effect
is characteristic of weakly hybridized MZMs allowing for
single-electron tunneling through the junction.

The third and last scenario arises from lifting the fourfold
degeneracy at (c). This crossing, composed of states with
one- and two-quasiparticle excitations, exists only if the JJ
can accommodate at least three discrete ABS levels with
energies smaller than �c (cf. Fig. 2). TR- and Pin-conserving

interactions can lift this fourfold crossing in two pairs of TR-
and parity-protected crossings. In a QSH JJ, umklapp interac-
tions (at half-filling) or interactions with magnetic impurities
(at any filling) are known to lift the fourfold degeneracy
[2,4,5,10,12,15]. The case of an interacting Kitaev chain JJ
will be discussed below. The consequence of the gap opening
at (c) is an 8π -periodic fractional Josephson effect character-
ized by transport of charges e/2 through the junction.

E. T -breaking perturbations

In this section, we consider a junction where the effective
TR symmetry T− is broken and the 4π -periodic Josephson
effect arises. This can be achieved in several ways but, to
keep the analogy with the QSH JJ interrupted by a magnetic
insulator, we choose to implement a potential barrier inside
the junction,

HSB = δμ

NL/2−2∑
l>−NL/2

c
†
l cl . (23)

For more appreciable effects, we take the perturbation to be
larger than the bandwidth (δμ > t). This term transforms
the normal weak link into a trivial insulator and thereby
localizes Majorana modes at the edges of each SC bank,
which hybridize perturbatively. From the point of view of our
continuum theory, HSB leads to single-body backscattering
between the left and right movers, violating the effective TR
symmetry.

In order to make a seamless connection with the interacting
case discussed in the next subsection, we perform an exact
diagonalization of the noninteracting TR-broken junction in
the many-body Fock space. As the lattice Hamiltonian pre-
serves the total fermion parity, we project the Fock space into
the subspace of an even total number of fermions. As seen
in Fig. 4(a), the subgap part of the spectrum is disconnected
from the scattering states, leaving the blue and orange bands
as the ground-state doublet. As expected, the avoided crossing
happens at the crossing (b) of the spectrum of Fig. 3.

The continuation of the coloring through the crossings at
ϕ = π and 3π in Fig. 4(a) is justified by the the conservation
of Pin [cf. Eq. (22)]. This form of the parity operator cannot
be easily accessed from the many-body exact diagonalization,
which circumvents the single-particle energy levels.

To verify the protection of the crossings, we consider
instead the parity of occupation of a nonlocal state built out of
the MZMs �L and �R (ϕ) located, respectively, at the left and
right outer ends of the chain [13]. Since the parity of the total
number of fermions has been fixed, the parity of this nonlocal
outer mode, with operator corresponding to2

Pout(ϕ) = i�L�R (ϕ), (24)

2In the particular case of a perfectly dimerized fine-tuned
Kitaev chain (μ = 0, �0 = t), MZMs are localized on sin-
gle sites and the parity operator is simply Pout = (cN/2−1e

iϕ/2 +
c
†
N/2−1e

−iϕ/2)(c†−N/2 − c−N/2). Away from this point, MZMs extend
over several lattice sites [see Eq. (14) from Ref. [13], and also
Ref. [35]] and the expression for Pout becomes less simple.
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FIG. 4. Exact diagonalization of a noninteracting Kitaev chain
JJ with broken effective TR. The parameter values are μ = 0, �0 =
t/2, NL = 8, N = 26, δμ/t = 1.3. (a) Many-body spectrum. The
blue and orange curves form the ground-state multiplet. Gray states
are excited states. (b) Off-diagonal matrix elements of the total
number operator N̂ for the lowest many-body states. The vanishing
of N01(ϕ) follows the conservation of the local fermion parity in
(c). (c) The parity of occupation of the nonlocal fermion in Eq. (24)
for the states forming the ground-state multiplet. Parity conservation
protects the crossings in the ground-state doublet and enforces the
4π periodicity of the blue and orange states in (a).

is locked to the value of Pin in Eq. (22). In the thermodynamic
limit, where each superconducting bank is sufficiently long,
the MZM operators are well localized and commute with
the lattice Hamiltonian (1) even when the JJ is strongly
interacting. Thus, for N sufficiently large, the states |j ; ϕ〉 are
eigenstates of Pout (ϕ).

The computation of the expectation value Pout,i (ϕ) ≡
〈i; ϕ|Pout|i; ϕ〉 returns Fig. 4(c), showing that the parity is
conserved and continuously defined for the blue and orange
ground doublet across the full 4π evolution. The small kinks
close to ϕ = π, 3π are finite-size effects that should vanish for
larger values of N . Consequently, the crossings are protected
and the 4π Josephson effect develops.

From the many-body spectrum and wave functions, we
can obtain matrix elements of physical observables. With
the cQED applications of the next section in mind, let us
consider Nij (ϕ) ≡ 〈i; ϕ|N̂ |j ; ϕ〉, the matrix elements of the
total number of particles N̂ = ∑

i c
†
i ci . Figure 4(b) displays

N0j , where the state i = 0 corresponds to the blue state in
Fig. 4(a). Since the total number of particles is a sum over
local operators, it cannot connect states with different values
of the nonlocal operator Pout. This is why N01(ϕ) and N02(ϕ)
vanish.3 In contrast, N03 is nonzero because the state j = 3
has the same parity as j = 0 and can thus be connected by a
local and parity-preserving operator such as N̂ .

F. Short-range Coulomb interactions

The previous subsections have established the equivalence be-
tween the low-energy properties of the QSH JJ and the Kitaev
chain JJ at the noninteracting level. Here, we incorporate to
the Hamiltonian (1) the simplest possible interaction term, a
first-neighbor extended Hubbard interaction inside the normal
region of the junction

HEH = V

NL/2−2∑
l=−NL/2

nlnl+1. (25)

Outside the junction, the proximity coupling to a three-
dimensional superconductor is assumed to screen away the
interactions.

In the continuum approximation, the extended Hubbard
interactions decompose into

c
†
ncn

a

c
†
n+1cn+1

a
≈ ρ(x)ρ(x + a) + [ei2kF a (ψ†

RψL)(x)(ψ†
LψR )(x + a) + H.c.]

+ [e−i2kF (2x+a)(ψ†
RψL)(x)(ψ†

RψL)(x + a) + H.c.]

+{e−i2kF x[e−i2kF aρ(x)(ψ†
RψL)(x + a) + (ψ†

RψL)(x)ρ(x + a)] + H.c.}, (26)

3The computed values of N01(ϕ) are O(10−3) for our parameters
of choice. We performed a finite-size scale analysis of this quantity
and found that it decreases in an oscillatory way, enveloped by a
monotonically decaying function. This suggests that, in the thermo-
dynamic limit (where there is no overlap between the well-localized
inner and outer MZMs), N01(ϕ) vanishes, with the local fermion
parity a fully well-defined quantum number at low energies.

where ρ(x) =: ψ
†
RψR : (x)+ : ψ

†
LψL : (x) and the colons in-

dicate normal ordering. The terms in Eq. (26) coincide with
those one would write for an interacting QSH edge with TR
symmetry. This establishes the equivalence between the QSH
JJ and the Kitaev chain JJ at the interacting level. The first
nonoscillating terms on the right-hand side of Eq. (26) are
known to renormalize the velocities of left- and right-moving
fermions [28], without opening spectral gaps. The second
line of Eq. (26) (umklapp/pair-backscattering terms) and the
third line (Friedel oscillating terms) are rapidly oscillating
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FIG. 5. Exact diagonalization of the interacting Kitaev chain JJ.
The parameter values are μ = 0, �0 = t/2, NL = 8, V = 2t , and
N = 26. (a) Many-body spectrum. Colored states form the four-
fold ground-state multiplet. Gray states are excited states. (b) Off-
diagonal matrix elements of the total number operator N̂ between
the i = 0 (blue) band and the rest of the states forming the ground-
state multiplet. The matrix elements between states of opposite local
fermion parity vanish. The matrix elements between states of the
same parity are nonzero, except when they cross. At the crossing
points, the effective TR symmetry enforces the vanishing of the
matrix element of N̂ . (c) Parity of occupation of the nonlocal fermion
in Eq. (24) for the states forming the ground-state multiplet.

away from μ = 0 and ±2t , respectively. In perturbative renor-
malization group analyses, only the umklapp terms at half-
filling (μ = 0) are seen to lead to a strong-coupling flow that
indicates a gap opening in the low-energy degrees of freedom.

Figure 5(a) displays the energy dispersion as a function of
ϕ for the eight lowest-energy many-body states, obtained from
exact diagonalization. The blue, orange, green, and red curves
form the ground-state multiplet, separated from the excited
states (in gray) by a many-body gap. This gap develops at the
fourfold crossing of Fig. 3 and scales as ∼(V − Vc )γ , with
Vc/t � 0.94 and γ � 0.25 obtained by a power-law fit of the
numerical data (see Fig. 6).

We remark that V/t > 1 is a strong interaction regime,
likely hard to achieve in real systems. Also, even in this
strong-coupling regime, the many-body gap is a small fraction
of the bandwidth. We have checked numerically that the
many-body gap is not reduced when μ �= 0. At first sight, this
finding is surprising from the point of view of a perturbative
analysis. One possible explanation is that the gap may be
originating from oscillatory umklapp or Friedel terms because
these oscillations are not sufficiently fast to average out in our
weak links of mesoscopic size. Another possible explanation
is that the perturbative arguments arguing for the irrelevance
of the oscillatory Friedel and umklapp terms break down in
the strong-coupling regime, where the interaction strength
exceeds the bandwidth.
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FIG. 6. Many-body gap of the interacting Kitaev chain JJ, cal-
culated by exact diagonalization (blue disks). The parameter values
are μ = 0, �0 = t/2, NL = 8, and N = 26. The gap scales as ∼
(V − Vc )γ , where Vc is the critical interaction strength for the gap
opening. Vc � (0.94 ± 0.02)t , and γ � (0.25 ± 0.03) are obtained
from a power-law fit of the numerical data (orange solid curve).

The colors in Fig. 5(a) are in one-to-one correspondence
with the mean values of Pout in Figs. 5(c) and 5(d). This parity
conservation protects the band crossings at ϕ = π mod 2π ,
while the crossings at ϕ = 0 mod 2π are preserved by TR
symmetry. Thus, the ground-state multiplet is 8π periodic
and so is the Josephson effect. In anticipation to the next
section, let us once again consider the off-diagonal elements
of the total number operator N̂ for the states belonging to
the ground-state multiplet, as displayed in Fig. 5(b). The
fact that N01(ϕ) � N02(ϕ) � 0 for all values of ϕ can be
attributed to the conservation of the local fermion parity.
Indeed, the extended Hubbard interactions, which act again
locally and only inside the weak link, commute with Pout.
In contrast, N03(ϕ) is finite for all values of ϕ away from
ϕ = 2π mod 4π because the states j = 0 and 3 carry the
same parity. The crossings between j = 0 and 3 are, however,
still protected by the effective low-energy TR symmetry T−,
and that translates into the vanishing of N03(ϕ) at ϕ = 2π, 6π .

III. FRACTIONAL JOSEPHSON EFFECTS
IN CQED ARCHITECTURES

Due to their high sensitivity, flexibility, and noninvasive
probing, cQED platforms have been proposed for the study
and detection of topological phases in Josephson junctions
[17–19]. The general approach of cQED, as illustrated in
Fig. 7, consists of two steps: (i) the placement of the circuit
one wishes to study inside a cavity resonator and (ii) the mea-
surement of reflectances and transmittances between input
and output microwave modes inserted in the cavity through
a waveguide. The in/out modes couple to the cavity photons,
whose dynamics is in turn influenced by the dynamics of the
circuit of interest.

In this section, we present an exact diagonalization calcu-
lation of certain cQED observables in a topological JJ. Our
study goes beyond earlier theoretical works by incorporating
strong short-range Coulomb interactions, crucial for the emer-
gence of the 8π -periodic Josephson effect.
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FIG. 7. Cartoon of a cQED architecture. A cavity resonator of
frequency ω0 and linewidth κ0 contains an interacting topological JJ.
The cavity is partially transmitting on a single side, so that it can be
probed by input/output fields.

A. Input/output formalism

We consider a Hamiltonian with three components: prob-
ing fields, a cavity, and a topological Josephson junction:

H = HS + HI + ω0a
†a +

∑
n

�nb
†
nbn

− i
∑

n

λn(a†bn − ab†n). (27)

Here, a(†) and b
(†)
n are the annihilation (creation) operators

for cavity photons and the mode n of the probing field,
respectively; �n and λn are the frequencies of the probe fields
and the cavity-probe coupling constants, respectively; ω0 is
the resonance frequency of the empty cavity. The Hamiltonian
HS describes the JJ,

HS = HJJ(ϕ) + Hα, (28)

where α = SB [cf. Eq. (23)] or EH [cf. Eq. (25)], depending
on whether we are dealing with the Z2 or Z4 fractional
Josephson effect. Also, we consider a capacitive coupling
between the junction and cavity,

HI = gN̂ (a + a†), (29)

where g is a coupling constant, and N̂ = ∑
i c

†
i ci is the total

number operator.
The dynamics of the cavity fields can be obtained by the

standard input/output formalism [29], yielding

˙̃a(t ) = −i[ã(t ), H̃I ] −
(

iω0 + κ0

2

)
ã(t ) + √

κ0b̃in(t ). (30)

Here, tildes denote operators written in the Heisenberg pic-
ture, κ0 is the cavity damping constant due to the coupling
with the probe, and

b̃in(t ) ≡
∑

n

λnb̃n(t0)e−i�n(t−t0 ) (31)

is the input field with t0 a reference time. In Eq. (31), the sum
over the modes is constrained to �n ≈ ω0. The input field is
related to the output field bout by the boundary condition

b̃in(t ) + b̃out (t ) = √
κ0ã(t ). (32)

When bin is used to drive the cavity, the readout of bout

enables to measure the cavity frequency and linewidth. The
commutator in Eq. (30) forecasts that the dynamics of the
junction will be intertwined with that of the cavity. To second
order in g and in the rotating-wave approximation, Eq. (30)

becomes (cf. Appendix B)

˙̃a(t ) = −
(

iωR + κR

2

)
ã(t ) + √

κ0b̃in(t ) − igNi (t ), (33)

where ωR = ω0 + ω̄(ϕ) and κR = κ0 + κ̄ (ϕ) are the renor-
malized cavity frequency and linewidth, whereas Ni (t ) is the
number operator in the interaction picture. Thus, the junction
induces a ϕ-dependent pull ω̄(ϕ) in the resonance frequency
of the cavity, in addition to a ϕ-dependent change κ̄ (ϕ) in the
cavity linewidth [19]. The explicit expressions for ω̄(ϕ) and
κ̄ (ϕ) are shown below. The last term in Eq. (33) is an extra
driving term for the cavity which, as shown in Appendix B,
may be ignored because it contributes only at zero frequency.

The fractional Josephson effects manifest themselves in the
ϕ dependence of ωR and κR . If the rate at which ϕ is varied is
faster than all the energy relaxation rates of the quasiparticles
but smaller than the topological energy gap, ωR and κR are
4π - (8π -) periodic functions of ϕ when the junction hosts a
Z2 (Z4) Josephson effect. One way to realize this condition
is through the application of an appropriate dc voltage bias V

across the junction, under which ϕ = ϕ0 + 2eV t/h̄ evolves
with time t . In the remainder of this section, we compute
ω̄(ϕ) and κ̄ (ϕ) and propose an experiment to capture their
anomalous periodicities via the input/output fields.

B. Cavity frequency pull

At zero temperature, the expression for the cavity fre-
quency pull reads as (cf. Appendix B)

ω̄(ϕ) = 2g2
∑
j �=0

|N0j (ϕ)|2 �E0j (ϕ)

(�E0j (ϕ))2 − ω2
0

, (34)

where �E0j (ϕ) = E0(ϕ) − Ej (ϕ), N0j (ϕ) = 〈0; ϕ|N̂ |j ; ϕ〉,
and |0; ϕ〉 is the many-body state whose energy is the lowest of
all when ϕ = 0 [the blue band in either Fig. 4(a) or Fig. 5(a)].
Replacing the state |0; ϕ〉 by any other states in the ground-
state multiplet amounts to an inconsequential shift of ϕ by a
multiple of 2π in Eq. (34). The sum in j is over all other states,
scattering states included. In our numerical calculations, we
truncate the sum to the eight lowest-energy many-body states.

Figure 8 displays ω̄(ϕ) for JJs hosting Z2 and Z4 Joseph-
son effects. The cavity frequency pull is either 4π or 8π

periodic in ϕ. For the 8π scenario, ω̄ can actually become
positive, in contrast with the 4π -periodic case. The origin of
this difference comes from transition matrix elements between
states of the same local fermion parity. In JJs hosting the
Z4 Josephson effect, the fact that N03(ϕ) �= 0 for generic ϕ

and �E03(ϕ) > 0 for certain intervals of ϕ (cf. Fig. 5) is
responsible for ω̄(ϕ) > 0 in those intervals. This situation is
not realized in JJs that host the Z2 Josephson effect, where
the conservation of the local fermion parity forbids transitions
with �E0j > 0.

We note in passing that the capacitive coupling we con-
sider here describes a junction fully embedded in a cavity.
Other possibilities exist, like coupling only either side of the
junction, the remaining side being grounded, or even coupling
only to the number of electrons inside the weak link. We
find that the largest contributions to the cavity pull come
from couplings around the weak-link region, which is also the
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FIG. 8. Renormalization of the cavity resonance frequency (blue,
full lines) and linewidth (red, dashed lines), calculated by exact
diagonalization of the Kitaev chain JJ at V = 2t . (a) Noninteracting
JJ with broken time-reversal symmetry. (b) Interacting JJ with time-
reversal symmetry. The bare cavity resonance frequency is chosen
as ω0 = 4 × 10−3�c, parametrically smaller than the energy gaps
separating the ground-state multiplets from the excited states. The
broadening of the delta functions in Eq. (35) is taken to be of
the order of the bare cavity linewidth κ0 � 10−3ω0. For the cavity-
junction coupling strength, we use g = ω0/10 [30]. The periodicity
of the cavity pull in the superconducting phase difference follows
that of many-body wave functions of the problem. When ω0 is
large compared to the disorder broadening of the ABS, but smaller
than the energy gaps separating the ground-state multiplet from the
excited states, the conservation of the local fermion parity (as well
as time-reversal symmetry, in the case of the Z4 Josephson effect)
results in a negligible renormalization of the cavity linewidth.

region that is not screened from electromagnetic interactions
by the SC leads. Qualitatively, our analysis is preserved as
long as the weak-link region contributes to the coupling.

C. Cavity linewidth renormalization

At zero temperature, the renormalization of the cavity
linewidth is given by

κ̄ (ϕ) = 4πg2
∑
j �=0

|N0j (ϕ)|2[δ(�E0j (ϕ) + ω0)

− δ(�E0j (ϕ) − ω0)]. (35)

The Dirac deltas are to be broadened into Lorentzians by
effects such as disorder and feedback of the cavity dynamics
into the junction energies, which will be considered here only
phenomenologically.4

4More sophisticated treatments of disorder have been employed
recently, but only for noninteracting junctions; see, e.g., M. Trif, O.
Dmytruk, H. Bouchiat, R. Aguado and P. Simon, Phys. Rev. B 97,
041415(R) (2018).

The values of κ̄ calculated by exact diagonalization are
presented in Fig. 8 (red dashed lines). Importantly, when ω0

is large compared to the disorder broadening of the ABS
but smaller than the TR-breaking gap from δμ or the TR-
preserving gap due to interactions (a circumstance believed
to be realistic), we find κ̄ � 0. This null result has a simple
explanation. Because ω0 is small compared to typical ABS
energy scales, the Dirac delta functions in Eq. (35) are satis-
fied only very close to the crossings. But, the matrix elements
of N0j (ϕ) are vanishingly small at the crossings, due to the
conservation of either the local fermion parity or time reversal.

D. Phase shift

Having found how the topological JJ influences key physi-
cal properties of the cavity, we now focus on how to access
these. The Fourier transform of Eq. (33) and the boundary
conditions in Eq. (32) allow to relate the outgoing signal and
incoming signals in a single-sided partially transparent cavity.
Neglecting zero-frequency contributions, we obtain

〈b̃out (ω)〉 = reiα〈b̃in(ω)〉, (36)

where r is the reflection coefficient obeying

r2 = (ω − ωR )2 + (
κ0−κ̄

2

)2

(ω − ωR )2 + (
κR

2

)2 (37)

and

α = arg
[(

κ2
0 − κ̄2

)
/4 − (ω − ωR )2 + iκ0(ω − ωR )

]
(38)

is the phase shift. The quantities r and α are directly mea-
surable in experiments. As κ̄ = 0 (cf. preceding subsection),
r2 = 1 for all values of ϕ. Hereafter, we concentrate on α.

Figure 9 shows the behavior of α as function of ϕ at
frequencies around ω0. The phase shift changes sign as the
frequency of the probe crosses the resonance frequency. This
enables a precise determination of ωR and its anomalous
periodicity through reflectrometry measurements.

One approach to carry out the experimental verification of
Fig. 9 consists of the following steps: (1) Measure α as a
function of the probing frequency ω in the absence of current
and bias voltages. The value of ω at which α changes sign con-
stitutes ωR at ϕ = 0. (2) Choose a window of frequency δω0

around the ϕ = 0 value of ωR . For each value of frequency
inside this window, let ϕ evolve in time while continuously
measuring α. The phase evolution is best accomplished by
a dc-voltage bias V , under which ϕ̇ = 2eV/h̄ is constant.
This has the advantage of knowing how much ϕ has wound
in a given measurement time, thereby allowing to extract the
periodicity of α in ϕ.

In order to observe the anomalous periodicities, the mea-
surement time in step (2) must be shorter than the energy
relaxation rate, longer than 4πh̄/(eV ) (so that the phase
winds at least by 8π ), and much longer than the inverse of
the data acquisition rate (which is �1 ns in state-of-the-art
experiments [31]). In addition, 2eV must be smaller than
(i) the energy gap separating the ground-state multiplet from
the excited states (to avoid Landau-Zener tunneling away
from the ground state), and (ii) h̄ω0 (to prevent that the
inelastic tunneling of Cooper pairs generates photons at the
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FIG. 9. Phase shift α(ω) between input and output signals for
a single-sided cavity containing a Kitaev chain JJ. We show α for
ω ∈ (ω0 − δω0, ω0 + δω0 ), where ω0 is the resonance frequency of
the empty cavity and δω0 = 10−1κ0. Top panel: noninteracting JJ
with broken time-reversal symmetry. Bottom panel: interacting JJ
with time-reversal symmetry.

cavity’s frequency). All of these conditions are simultaneously
satisfiable in view of recent reports [20] of long (�0.1 ms)
energy relaxation times in Al-coated InAs nanowires.

IV. SUMMARY AND CONCLUSIONS

We have presented an exact diagonalization study of frac-
tional Josephson effects in interacting topological Josephson
junctions (JJs). By a careful comparison with a continuum
low-energy version of the problem, we have established that
JJs created out of Kitaev chains can be used to simulate JJs
created at the edges of quantum spin Hall insulators. Central to
this equivalence is an emergent time-reversal symmetry squar-
ing to −1 in the low-energy description of the lattice problem.
The existence of this effective symmetry is contingent on (i)
the expansion of fermionic field operators around the two
normal-state Fermi points, located at wave vectors ±kF and
(ii) ξ0kF � 1, where ξ0 is the superconducting coherence
length. These conditions allows to neglect oscillating terms
that would otherwise break the effective time-reversal sym-
metry. These two conditions are readily satisfied deep in the
topological phase of Kitaev chains, provided that the junction
is, in sum, perfectly transparent. They, however, fail as one
approaches the phase transition toward the trivial phase, as kF

becomes gradually smaller, vanishing at the critical point. In
sum, given the absence of a Fermi surface in the trivial regime,
the effective time-reversal symmetry is an attribute of Kitaev
chains in the topological phase.

The use of Kitaev chain JJs to simulate quantum spin Hall
JJs offers two advantages. First, it extends the 8π -periodic
Josephson effect to systems other than quantum spin Hall
insulators, where it was originally proposed. In this regard, the
ongoing advances towards the engineering of Kitaev chains

[32–34], together with gate-tuned transparencies of up to
98% reported in Al-coated InAs nanowires [20], presage the
realization of Kitaev chain JJs of high transparency.

Another advantage of our lattice simulations is that they
give access to physical observables that are difficult to com-
pute using continuum analytical approaches from earlier
works. To illustrate this point, we have considered an inter-
acting Josephson junction coupled to a microwave resonator
and have calculated the renormalizations of the cavity’s reso-
nance frequency and linewidth. We have found that the cavity
linewidth is approximately unchanged by the presence of the
junction for a reasonable range of physical parameters, while
the cavity frequency displays 4π - and 8π -periodic features
that may be accessed by measuring the phase shift between
incoming and outgoing signals.

For future work, it will be interesting to investigate sig-
natures of the Z2 and Z4 Josephson effects in higher-order
photon correlation functions.
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APPENDIX A: SINGLE-PARTICLE MANY-BODY STATES

The knowledge of the single-particle Andreev bound states
allows for an explicit construction of noninteracting low-
energy many-body states. Without applying the Nambu con-
straint, these many-body states are obtained by the introduc-
tion of positive-energy particles and destruction of their cor-
responding negative-energy particle-hole symmetric partners.
The first six states read as

|0; ϕ〉 =
[∏

n<0

a
†
n,+

][∏
n<0

a
†
n,−

]
[a†

0,−]|�e〉,

|1; ϕ〉 = a
†
0,+a0,−|0; ϕ〉,

|2; ϕ〉 = a
†
1,−a−1,+|0; ϕ〉,

|3; ϕ〉 = a
†
1,−a

†
0,+a−1,+a0,−|0; ϕ〉,

|4; ϕ〉 = a
†
1,+a−1,−|0; ϕ〉,

|5; ϕ〉 = a
†
1,+a

†
0,+a−1,−a0,−|0; ϕ〉, (A1)

where |�e〉 is the nonsuperconducting electron Fermi sea and
the ϕ dependence of the operators has been omitted. These
states are pictorially represented in Fig. 10.

To incorporate the Nambu constraint, we have to define
a reference set of operators and enforce the particle-hole
operation

C�(x)C−1 = ρyτy[�†(x)]T = �(x). (A2)
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FIG. 10. Pictorial representation of the noninteracting many-body states in Eq. (A1). The first row displays states |0; ϕ〉, |1; ϕ〉, |2; ϕ〉 and
second row displays states |3; ϕ〉, |4; ϕ〉, |5; ϕ〉, from left to right in both cases. The dashed gray lines (red full lines) correspond to empty
(occupied) single-particle Andreev bound states. Scattering states are not shown.

The excitations can then be constructed as

|0; ϕ〉 =
[∏

n>0

an,+

][∏
n>0

an,−

]
[a0,+]|�e〉,

|1; ϕ〉 = a
†
0,+|0; ϕ〉,

|2; ϕ〉 = a
†
1,−|0; ϕ〉,

|3; ϕ〉 = a
†
1,−a

†
0,+|0; ϕ〉,

|4; ϕ〉 = a
†
1,+|0; ϕ〉,

|5; ϕ〉 = a
†
1,+a

†
0,+|0; ϕ〉. (A3)

Enforcing the Nambu constraint, the normal ordered
Hamiltonian for the junction reads as

: HJJ(ϕ) : = E0,+(ϕ)a†
0,+a0,+ +

∑
n>0,τ

En,τ (ϕ)a†
n,τ an,τ

− 1

2

[
E0,+(ϕ) +

∑
n>0,τ

En,τ (ϕ)

]

+ 1

2

[
E0,+(0) +

∑
n>0,τ

En,τ (0)

]
, (A4)

which means that one first has to choose a reference state (here
|0; ϕ = 0〉), normal order with respect to it, and then consider
the evolution of the phase ϕ to other values.

Figure 11 compares the results from the lattice and con-
tinuum models for the low-energy many-body spectrum. For
each value of ϕ, we plot the excitation energies with respect to
the ground state. For the continuum model, this is equivalent
to normal ordering at each value of ϕ separately. This has
the merit of canceling out the contribution from the scattering
states. Consequently, the agreement between the lattice and
continuum models is better than in Fig. 3. It is also worth

0 π 2π

Superconducting phase difference ϕ

0.0

0.5

1.0

E
/
Δ

c

FIG. 11. Comparison between the analytical and exact diago-
nalization results for the noninteracting many-body spectrum. Only
energy differences with respect to the lowest-energy states are con-
sidered at each ϕ. Black solid lines come from the continuum theory,
red dots from the single-body lattice diagonalization, and green
dashes from the many-body exact diagonalization; parameters are
the same as used in the main text. The absence of the contributions
from the continuum of scattering states leads to a better matching
between both approaches, in comparison with Fig. 3. Splittings at
ϕ = 0, π due to T−-breaking terms are reduced for the single-particle
calculation by considering scaled parameters such that ξ0/a is scaled
by a factor of 3.
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noting that Fig. 11 corresponds to the energy peaks in the
tunneling density of states of the junction [4], up to a selection
rule that bars transitions to excited states with the same total
fermion parity as the ground state.

APPENDIX B: CAVITY RENORMALIZATION AND
INPUT-OUTPUT CALCULATION

In this Appendix, we show the derivation leading to
Eqs. (33) and (36). The starting point is the Hamiltonian

H = HS (ϕ) + Hcav + HI , (B1)

where HS is the JJ Hamiltonian with many-body eigenstates
|j ; ϕ〉 and many-body eigenvalues Ej (ϕ),

Hcav = ω0a
†a (B2)

is the cavity Hamiltonian, and

HI = gN̂ (a + a†) (B3)

is the junction-cavity interaction.
The equation of motion for the cavity field reads as

˙̃a(t ) = −i[ã(t ),H ] = −i(ω0ã(t ) + gÑ (t )), (B4)

where tildes denote operators in the Heisenberg representation
[ã(t ) = eiHtae−iH t and Ñ (t ) = eiHt N̂e−iH t ]. It is convenient
to introduce the interaction picture via

Ñ (t ) = U †(t )Ni (t )U (t ), (B5)

where

U (t ) = exp

[
−i

∫ t

−∞
dt ′Hi

I (t ′)
]
. (B6)

Assuming weak interactions, we expand

Ñ (t ) ≈ Ni (t ) + i

∫ t

−∞
dt ′

[
Hi

I (t ′), Ni (t )
]
. (B7)

Consequently, Eq. (B4) becomes

˙̃a(t ) ≈ −i

(
ω0ã(t ) + gNi (t ) + gi

∫ t

−∞
dt ′

[
Hi

I (t ′), Ni (t )
])

= −iω0ã(t ) − igNi (t )

+ g2
∫ t

−∞
dt ′(ai (t ′) + ai†(t ′))[Ni (t ′), Ni (t )]

≈ −iω0ã(t ) − igNi (t )

+ g2
∫ t

−∞
dt ′(ã(t ′) + ã†(t ′))[Ni (t ′), Ni (t )], (B8)

where we neglected higher-order terms in g in the last line.
Next, we write ã(t ) = ãs (t )e−iω0t , where ãs (t ) evolves

slowly in time. Also, to lowest order in g, we replace
[Ni (t ′), Ni (t )] by its ground-state average. Then, Eq. (B8)
can be approximated as

˙̃as (t ) ≈ −igNi (t )eiω0t − g2[C−(t, ϕ)ãs (t )+C+(t, ϕ)ã†
s (t )],

(B9)

where

C±(t, ϕ) =
∫ t

−∞
dt ′eiω0(t±t ′)〈0; ϕ|[Ni (t ), Ni (t ′)]|0; ϕ〉.

(B10)

The correlation functions C± can be computed explicitly.
First, we consider

C−(t, ϕ) =
∫ ∞

0
dτ

∫
dω1dω2

(2π )2 ei(ω0−ω2 )τ ei(ω1+ω2 )t

×〈0, ϕ|[Ni (ω1), Ni (ω2)]|0, ϕ〉. (B11)

As usual, one writes

∫ ∞

0
dτ ei(ω0−ω2 )τ = lim

ε→0

∫ ∞

0
dτ ei(ω0−ω2+iε)τ

= P
i

(ω0 − ω2)
+ πδ(ω0 − ω2). (B12)

Therefore,

C−(t, ϕ) = iP

∫
dω1dω2

(2π )2

ei(ω1+ω2 )t

ω0 − ω2

×〈0; ϕ|[Ni (ω1), Ni (ω2)]|0; ϕ〉
+ 1

2

∫
dω1

2π
ei(ω1+ω0 )t 〈0; ϕ|

× [Ni (ω1), Ni (ω0)]|0; ϕ〉. (B13)

Using
∑

j |j ; ϕ〉〈j ; ϕ| = 1 and recognizing that

〈0; ϕ|Ni (t )|j ; ϕ〉 = e−i[E0(ϕ)−Ej (ϕ)]t 〈0; ϕ|N̂ |j ; ϕ〉
≡ e−i�E0j tN0j , (B14)

we obtain

〈0, ϕ|[Ni (t ), Ni (t ′)]|0, ϕ〉
= −2i

∑
j

sin[�E0j (ϕ)(t − t ′)]|N0j (ϕ)|2. (B15)

Fourier transforming to frequency space, this gives

〈0, ϕ|[Ni (ω1), Ni (ω2)]|0, ϕ〉
= (2π )2δ(ω1 + ω2)

∑
j

|N0j (ϕ)|2

× [δ(�E0j (ϕ) − ω1) − δ(�E0j (ϕ) + ω1)]. (B16)

Substituting Eq. (B16) in Eq. (B13), we get

C−(t, ϕ) = −2i
∑

j

|N0j (ϕ)|2 �E0j (ϕ)

ω2
0 − (�E0j (ϕ))2

+π
∑

j

|N0j (ϕ)|2[δ(�E0j (ϕ) + ω0) − (ω0 → −ω0)].

(B17)
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Proceeding similarly for C+, we find

C+(t, ϕ) = −2iei2ω0t
∑

j

|N0j (ϕ)|2 �E0j (ϕ)

ω2 − (�E0j (ϕ))2

+πei2ω0t
∑

j

|N0j (ϕ)|2

× [δ(�E0j (ϕ) − ω0) − δ(�E0j (ϕ) + ω0)].

(B18)

The fact that C+(t ) varies rapidly in time (∝ e2iω0t ) means
that it can be discarded in the rotating wave approximation.
We finally obtain, back in the original time frame,

˙̃a(t ) ≈ −iω0ã(t ) − igNi (t ) − g2C−(t, ϕ)ã(t ). (B19)

The imaginary part of C− renormalizes the cavity resonance
frequency ω0 → ω0 + ω̄, where

ω̄ = 2g2
∑

j

|N0j (ϕ)|2 �E0j (ϕ)

(�E0j (ϕ))2 − ω2
0

. (B20)

The real part of C+ describes the junction-induced decay of
cavity photons, with rate

κ̄ ≡ 2πg2
∑

j

|N0j (ϕ)|2

× [δ(�E0j (ϕ) + ω0) − δ(�E0j (ϕ) − ω0)]. (B21)

Therefore,

˙̃a(t ) ≈ −
(

i(ω0 + ω̄) + κ̄

2

)
ã(t ) − igNi (t ). (B22)

In the presence of input fields, their coupling with the cavity
induces an additional damping κ0 for the cavity photons [29],
so that

˙̃a(t ) = −
(

iωR + κR

2

)
ã(t ) − igNi (t ) + √

κ0b̃in(t ), (B23)

where ωR = ω0 + ω̄ and κR = κ0 + κ̄ . This completes the
derivation of Eq. (33) of the main text.

From Eq. (B23), one can readily derive Eq. (36) of the main
text. First, recall that the output field can be related to the input
field by the boundary condition

b̃out (t ) = √
κ0ã(t ) − b̃in(t ). (B24)

Combining the Fourier transforms of Eqs. (B24) and (B23),
we obtain

b̃out (ω) = −[
ω − ωR − i κ0−κ̄

2

]
b̃in(ω) + g

√
κ0N

i (ω)

ω − ωR + iκR/2
.

(B25)

Noting that 〈0; ϕ|Ni (ω)|0; ϕ〉 ∝ δ(ω), and recalling that we
are interested in the response at frequencies close to ω0, we
write

〈b̃out (ω)〉 = −[
ω − ωR − i κ0−κ̄

2

]〈b̃in(ω)〉
ω − ωR + iκR/2

. (B26)

From here, the expressions for the reflection coefficient and
phase shift quoted in the main text can be recovered.
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