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Driven quantum circuits and conductors: A unifying perturbative approach
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We develop and exploit an out-of-equilibrium theory, valid in arbitrary dimensions, which does not require
initial thermalization. It is perturbative with respect to a weak time-dependent (TD) Hamiltonian term, but
is nonperturbative with respect to strong coupling to an electromagnetic environment or to Coulomb or
superconducting correlations. We derive unifying relations between the current generated by coherent radiation
or statistical mixture of radiations, superimposed on a dc voltage Vdc, and the out-of-equilibrium dc current
which encodes the effects of interactions. We extend fully the lateral band-transmission picture, thus quantum
superposition, to coherent many-body correlated states. This provides methods for a determination of the carrier’s
charge q free from unknown parameters through the robustness of the Josephson-like frequency. We have derived
similar relations for noise (I. Safi, arXiv:1401.5950) which have been exploited, recently, to determine the
fractional charge in the fractional quantum Hall effect (FQHE) within the Jain series [M. Kapfer et al., Science
(to be published)]. The present theory allows for breakdown of inversion symmetry and for asymmetric rates for
emission and absorption of radiations. This generates rectification exploited here to propose methods to measure
the charge q, as well as spectroscopical analysis of the out-of-equilibrium dc current and the third cumulant
of non-Gaussian source of noise. We also apply the theory to the Tomonaga-Luttinger liquid (TLL), showing
a counterintuitive feature: A Lorentzian pulse superimposed on Vdc can reduce the current compared to its dc
value, at the same Vdc, questioning the terminology “photoassisted.” Beyond a charge current, the theory applies
to operators such as spin current in the spin Hall effect or voltage drop across a phase-slip Josephson junction.
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I. INTRODUCTION

Out-of-equilibrium time-dependent (TD) transport offers
valuable methods to explore out-of-equilibrium statistical
physics, for which novel situations can be monitored. It
can reveal dynamical properties, characteristic time scales,
the carrier’s charge [1–3], or their statistics unveiled by the
average current under a DC bias. It has benefited from ex-
perimental advances into the high-frequency domain [4,5]
or subnanosecond time resolution [6]. One can distinguish
between, on one side, spontaneous generation under a DC
bias, such as finite frequency noise [4,5,7–18], and, on the
other side, phenomena arising from external TD fields, such as
pumping [19,20], mixing [21–24], or rectification [3,21,25–
28]. One can as well combine both, such as current noise
generated by TD fields [2,29–33]. The so-called photoassisted
transport has been interpreted through a key picture, the side-
band transmission, expressing quantum superposition of one-
particle states [21,25–28]. A coherent radiation at a frequency
�0 induces inelasticity, as electrons can exchange any number
l of photons at the frequency �0. The photoassisted current is
a superposition of replicas of the dc current at an effective dc
drive ωJ + l�0, where [34]:

ωJ = qVdc

h̄
(1)

defines a Josephson type frequency, with q = e. This picture
has some analogy with Shapiro steps in a Josephson junction
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(JJ), where q = 2e, inspiring the notation. But it has been
restricted to: independent quasiparticles with charge q = e, in
isolated normal or superconducting junctions (for the quasi-
particle current) [21,25], a cosine TD voltage, leading to
symmetric probabilities of emitting or absorbing l photons,
and inversion symmetry, with an odd dc current. Indeed, it is
frequently believed, as expressed by Platero and Aguado in a
review paper [28], that, “for many-body correlated systems,
there is no simple picture in terms of side-band transmission.”

Here we show that it is still possible to extend such a
picture within a unifying theory, restricted by its perturbative
nature, but releasing the above restrictions, as it includes
simultaneously strongly correlated systems, coherent or statis-
tical mixtures of coherent radiations, and broken symmetries
which generate a rectified current [2,3]. It does not seek
necessarily an explicit solution, which can be quite involved,
but rather relations between the average current under radia-
tions and its average under a dc voltage. The relations unify
systems where Coulomb interactions play a fundamental role,
such as the fractional quantum Hall effect (FQHE), and those
where interactions with an electromagnetic environment lead
to phenomena such as the dynamical Coulomb blockade
[35–46]. They can be viewed as perturbative quantum laws
for TD transport which offer alternatives to classical laws of
transport, breaking down. This is in tune with the initial spirit
of many-body physics, as exemplified by the phenomenolog-
ical relations derived by Landau independently on details of
Coulomb interactions.

The current can refer to a tunneling current be-
tween strongly correlated electrodes with mutual Coulomb
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interactions, a Josephson current in a JJ with a weak Joseph-
son energy and strongly coupled to an electromagnetic en-
vironment, or a weak backscattering current between edge
states in the FQHE with possible mutual inhomogeneous
interactions as well. It can also refer to a spin current between
spin Hall edges or a voltage drop across a phase-slip JJ [47].

The perturbative relation for the rectified current extends
the side-band transmission picture in terms of the coherent
many-body eigenstates of the unperturbed Hamiltonian, ex-
changing continuous amounts of energy h̄ω′ with the radia-
tions. This leads to a robust frequency locking through the
combination ωJ + ω′, where ωJ is given by Eq. (1), where q

is not necessarily given by e; q is fractional in the FQHE or
q = 2e in a JJ.

A first application arises from this robustness: a determi-
nation of q, linking Vdc to ωJ , independently of the detailed
microscopic description of the system. This is especially
useful for the FQHE at various series of filling factors ν whose
states are not so well understood and where nonuniversal
features are not easily modelized [48]. The best theoretical
description has been achieved for ν = 1/(2n + 1) with integer
n, thus within the Laughlin series, where one predicts q =
e/(2n + 1). If, in addition, lateral confinement is abrupt, the
Tomonaga-Luttinger liquid (TLL) is expected to be appropri-
ate for the edges, the unique model for which photoassisted
transport has been addressed so far [49–53].

An important issue we can also address is the generation of
on-demand electrons. Even though many works [54–60] went
beyond a cosine TD voltage, they have considered periodic
voltages within an independent electron picture. In the limit of
a weak current, our theory unifies them with the Tien-Gordon
theory and allows us to address and revisit the minimal exci-
tations in strongly correlated systems or circuits on one hand
and for nonperiodic Lorentzian pulses on the other hand [57].

We will apply our theory to a simple but rich example of
ac voltages: a Lorentzian pulse superimposed on Vdc. In par-
ticular, in a TLL with repulsive interactions, or in a coherent
conductor connected to an ohmic environment [44], the pulse
can reduce the current compared to its dc average at Vdc,
even for moderate interactions or resistance. This questions
the terminology “photoassisted” but also the the claim by L.
Levitov et al. [58] that the transferred charge is not modified
by the pulse.

Another application consists of exploiting the rectified
current to propose spectroscopic methods for the out-of-
equilibrium dc current and the third cumulant of a non-
Gaussian statistical mixture of radiations. The theory leads
to numerous relations [2,3,18] which have been tested and
exploited experimentally [16,16,33,61,62], in particular to
determine the fractional charge in the FQHE within the Jain
series [1]. They have been also confirmed by specific theoret-
ical approaches for a periodic TD drive [47,63].

This is the plan of the paper. Section II is devoted to the
Hamiltonian and to define the operator Ĉ(t ). Section III gives
its formal perturbative average under a constant drive, then
under TD drives, first at arbitrary frequencies, then at zero
frequency, a limit on which we will focus, and for which spe-
cial caution is needed. Then we propose some applications, in
Sec. IV, by selecting three profiles of nonperiodic TD drives,
keeping the generality of the Hamiltonian: a Gaussian pulse,

a Lorentzian pulse, and a non-Gaussian statistical mixture of
radiations (see Appendix D for some periodic profiles). We
specify further to a power law dc characteristics in Sec. V
and discuss methods of charge determination in Sec. VI. We
provide the conditions ensuring the validity of the theory in
Sec. VII and some examples of unified formal Hamiltonians
obeying such conditions in Sec. VIII.

II. MODEL

The system we aim to study can contain many entities with
mutual couplings, such as electrodes, elements of a quantum
circuit, or edges/channels. The basic ingredients of the theory
are: a time-independent Hamiltonian H0 and a perturbing
small TD Hamiltonian HÂ(t ), whose TD is factorized through
a periodic or nonperiodic complex function f (t ), independent
on position or entities of the system. We express it through a
weak operator Â and a free dc drive ωJ :

HÂ(t ) = e−iωJ tf (t ) Â + eiωJ tf ∗(t ) Â†. (2)

H(t ) = H0 + HÂ(t ). (3)

H0 and Â are not specified but have to obey few conditions ex-
posed in Sec. VII. Even though the theory is naturally adapted
to a tunneling junction, for which Â would be the tunneling
operator, one can deal here with many features not included
within theories of photoassisted tunneling [21,26,27], for in-
stance (see also Fig. 1):

(i) Strong Coulomb or superconducting correlations.
(ii) Strong coupling to an electromagnetic environment.
(iii) The global Hamiltonian H0 has not to be split into

terms for left and right electrodes, or upper and lower edge
states in the Hall regime, thus can include mutual Coulomb
interactions, possibly inhomogeneous.

(iv) HÂ(t ) could describe nonlocal processes with re-
spect to entities or space, such as fixed/random tunnel-
ing/backscattering processes due to extended impurities or
Coulomb interactions [see Eq. (63)].

We can assume f (t = 0) = 1 by renormalizing Â, thus
the stationary regime corresponds to f (t ) = 1. Let’s now

V(t)

Zenv ω

Quantum conductor

q

Γ(t) Venv(t)

FIG. 1. Family of quantum circuits to which the perturbative
theory might apply. A tunneling junction between similar or different
electrodes with strong internal and mutual Coulomb interactions,
coupled strongly to an electromagnetic environment which could
possibly include another quantum conductor. The tunneling ampli-
tude �(t ) depends on time, as well as, possibly, a local magnetic field,
gate voltages, or voltages across the conductor or the environment,
all being encoded into an effective complex function f (t ) in Eq. (2).
The box can refer to a Josephson junction (JJ) with a weak Josephson
energy or to a phase-slip JJ.
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introduce:

f (t ) = |f (t )|e−iϕ(t ) (4)

Wac(t ) = ∂tϕ(t ) (5)

W (t ) = ωJ + Wac(t ), (6)

where any constant in Wac(t ) is implicitly translated to ωJ ,
so that Wac(t ) becomes integrable. Our aim is to express, to
second order with respect to Â, the average of the generalized
force derived from HÂ(t ):

ih̄Ĉ(t ) = δHÂ(t )

δϕ(t )
= e−iωJ tf (t ) Â − eiωJ tf ∗(t ) Â† . (7)

The observable associated with Ĉ(t ) depends on the model.
It could be charge or spin currents in quantum Hall, super-
conducting, or magnetic conductors, or a voltage operator
in phase-slip JJs. It could also provide a weak correction,
induced for instance by weak impurities described by HÂ, to
a finite average current or voltage in the presence of H0 only.
We define average with respect to an initial density matrix ρ̂0

at time = −∞: 〈...〉 = T r (ρ̂0...)/T rρ̂0.
The present model forms a particular family within the

domain of validity of the nonperturbative theory in Ref. [32],
which is almost free of any conditions on a TD Hamiltonian.
Being also nonperturbative with respect to strong correlations
or coupling to an electromagnetic environment, the main
restrictions on the present theory reside in its perturbative
nature and its restriction to a unique operator Ĉ(t ), in Eq. (7),
deriving from HÂ(t ). But paying such a “price” has the advan-
tage to offer analysis of its weak average. Still both theories
[2,3,32] have in common that they provide quantum laws for
TD out-of-equilibrium transport which are respectively exact
and perturbative.

III. OUT-OF-EQUILIBRIUM AVERAGES OF Ĉ(t )

A. A constant drive

We address first the stationary regime, under a constant
drive ωJ , thus we let f (t ) = 1 in Eq. (2). We denote the
average of Ĉ(t ), or, more precisely, its second-order term with
respect to Â, by:

Cdc(ωJ ) = 〈ĈH(t )〉f (t )=1, (8)

where the subscript H refers to Heisenberg representation
with respect to the total Hamiltonian H(t ) in Eq. (2). Notice
that ωJ is not fixed to its value in Eq. (2) when combined with
f (t ) but plays rather the role of a continuous variable.

Though we don’t restrict ρ̂0 to a standard thermal distribu-
tion, we assume nonetheless that:

[ρ̂0,H0] = 0, (9)

i.e., that ρ̂0 is diagonal in the basis of eigenstates of H0,
denoted |n〉 with energy En. Thus ρ̂0 is stationary in the
absence of HÂ [Eq. (2)], which ensures, partly, that equation
(8) is stationary. A spectral decomposition of Cdc(ωJ ) in this
basis, letting ρn = 〈n|ρ̂0|n〉 and Am,n = 〈m|Â|n〉, reads:

Cdc(ωJ ) =
∑
n,m

(ρn − ρm)|Âm,n|2δ(En − Em − h̄ωJ ). (10)

We don’t require inversion symmetry, thus one might have
Cdc(ωJ ) + Cdc(−ωJ ) �= 0.

Let us discuss now the limit of vanishing ωJ , if located
within the perturbative regime. Cdc(ωJ ) might contain a sin-
gularity of the form δ(ωJ ) due to degenerate states. Even
though this would be interesting to study, we simplify the
discussion by assuming further that ρn is entirely determined
by the energy En of |n〉:

En = Em ⇒ ρn = ρm. (11)

Therefore, using Eq. (10), we get :

Cdc(ωJ = 0) = 0. (12)

This can be interpreted, when Ĉ refers to a current operator,
as a negligible supercurrent. This is ensured for instance in
a JJ coupled to a dissipative environment, where, at energies
below the gap, Ĉ(t ) refers to a weak Josephson current, or in
SIN junctions at energies above the gap, where Ĉ(t ) refers to
the quasiparticle current, q = e, and the supercurrent is made
negligible by applying a magnetic field.

Let us now express the average of Ĉ(t ) under TD drive:

Cf (ωJ ; t ) = 〈ĈH(t )〉f (t )�=1, (13)

whose functional dependence on the complex function f (t )
is recalled through the subscript f . The conditions given in
Sec. VII allow us to express Cf (ωJ ; t ) to second order with
respect to Â or its Fourier transform at a finite frequency
ω, Cf (ωJ ; ω). Indeed, even though Cf (ωJ ; ω) and Cdc(ωJ )
in Eq. (8) are out-of-equilibrium observables, they can be
expressed, owing to the perturbative approach, in terms of an
equilibrium retarded correlator [given by Eq. (B2)] forming
the bridge between them. Then, without knowledge of the
many-body eigenstates nor of the initial diagonal elements
of ρ̂0, we show that the dc average Cdc(ωJ ) is sufficient
to incorporate features of the Hamiltonian and to determine
Cf (ωJ ; ω):

Cf (ωJ ; ω)= i
∫ +∞

−∞

∫ +∞

−∞
dω′dω′′f ∗(ω′ − ω/2)f (ω′ + ω/2)

× (ω/2 + iδ)Cdc(ωJ + ω′′ + ω′)
ω′′2 − (ω/2 + iδ)2

, (14)

with f (ω′) the Fourier transform of the complex f (t ). This
is a first central relation of the paper, which we keep at this
formal level.

We rather focus on the limit of low frequencies ω, the most
accessible experimentally, which obeys the second central
relation of the paper (see also Appendix B):

Cf (ωJ ; ω → 0) =
∫ +∞

−∞

dω′

2π
f ∗(ω′ + ω)f (ω′)Cdc(ωJ + ω′).

(15)

We have kept the small frequency ω on the r.h.s. because
f (ω′), thus Cf (ωJ ; ω), are not necessarily regular at zero
frequency.

We have to stress that we don’t compute the function
Cdc(ωJ ), which would provide information on H(t ), as is the
usual task of theoretical studies. We are indeed showing that
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we don’t gain more information on the underlying Hamilto-
nian by studying Cf compared to Cdc, which is, in some sense,
disappointing. Indeed, the relation in Eq. (19) holds even in
case Cdc(ωJ ) becomes inaccessible, due to the complexity of
H(t ). It will also lead us to very interesting observations and
applications throughout the paper, which arise, roughly, along
three ways, depending on whether the unknown function to
be determined using the two others is Cdc(ωJ ), f (ω), or
Cf (ωJ ; ω).

The integral on the r.h.s. of Eq. (15) is assumed implicitly
to run over frequencies within the domain of validity of the
perturbative theory. Its convergence criteria depends on each
specific model and profile of f (t ) but can be facilitated by a
finite measurement time T0, as we discuss now.

Zero-frequency measurement

Here, we address a feature we have not yet clarified in
our previous related works, which is relevant to a nonperiodic
f (t ) for which f (ω) contains a delta function:

f (ω) = 2πfdcδ(ω) + fac(ω). (16)

fdc is a complex number and fac(ω) is regular, possibly
finite, at ω = 0. This is the case when W (t ) [see Eq. (5)]
is formed by a single Lorentzian pulse (see Sec. IV) or if
f (t ) = fdc + fac(t ), with fac(t ) integrable. Given a function
g(t ) = gdc + gac(t ), with gac(t ) integrable, one expects the dc
value to induce averaging over a measurement time T0:

g(0) = 1

T0

∫ T0
2

− T0
2

g(t ) = gdc + 1

T0
gac(ω = 0). (17)

If g(t ) is periodic, T0 would be simply its period, and one
is free to choose gdc = 0. We have implicitly made a similar
decomposition of W (t ) in Eq. (6), so that its effective dc
component is given, using Eq. (17):

W (0) = ωJ + 1

T0
Wac(ω = 0). (18)

Following again Eq. (17) to define the zero-frequency average
C

(0)
f (ωJ ) in terms of Cf (ωJ ; t ), in Eq. (13), we can infer it

from Eq. (15) [64]:

C
(0)
f (ωJ ) =

(
|fdc|2 + 2

T0
Re[fdcf

∗
ac(0)]

)
Cdc(ωJ )

+ C
(0)
fac

(ωJ ), (19)

where:

C
(0)
fac

(ωJ )=
∫ +∞

−∞

dω′

2π
p(ω′)Cdc(ωJ + ω′), (20)

and:

p(ω′) = 1

T0

∫ T0
2

− T0
2

dt

∫ ∞

−∞
dt ′eiω′(t−t ′ )fac(t )f ∗

ac(t ′). (21)

Notice that for fdc = 0, equation (19) reduces to C
(0)
f (ωJ ) =

C
(0)
fac

(ωJ ). p(ω′) in Eq. (21) has a precise probabilistic meaning
only for |fac(t )| = 1, for which

∫
dω′p(ω′) = 1. But even

if |fac(t )| depends on time, p(ω′) can still be viewed as a
transfer rate for emitting (resp. absorbing) an energy h̄ω′

for positive (resp. negative) ω′, generally different as p(ω′)
is not necessarily even. Indeed, even when the one-electron
picture is inappropriate and Ĉ(t ) does not refer to a current,
we can interpret C

(0)
fac

(ωJ ) in Eq. (20) [the contribution due
to fac in Eq. (16)] once we inject the spectral decomposition
of Cdc(ωJ ) in Eq. (10). We can extend simultaneously two
pictures: lateral side-band transmission in terms of global
many-body eigenstates |n〉 of H0 and dynamical Coulomb
blockade, the nonperiodic radiations acting as a classical elec-
tromagnetic environment. In addition to the energy furnished
by the dc drive h̄ωJ , there are transitions between many-body
eigenstates |n〉 by exchanging energy h̄ω′ with fac(t ), leading
to an effective dc drive ωJ + ω′. C

(0)
fac

(ωJ ) in Eq. (20) is
obtained by integrating over ω′ the dc average Cdc(ωJ + ω′),
modulated by the transfer rate p(ω′). This is a quantum super-
position of many-body eigenstates, global quantum coherence
being maintained with Coulomb interactions or dissipation
due to an ohmic environment. The frequency locking through
the combination ωJ + ω′ on the r.h.s. of Eq. (20), thus the way
the Josephson-type frequency ωJ intervenes, is independent
on details of the Hamiltonian (2) and the nature of the operator
Ĉ(t ).

B. Rectification

Let us now discuss the limit when ωJ = 0, if located
within the perturbative domain [65]. The expression for the
zero-frequency average in Eq. (19) is now independent on
whether f (ω) is singular or not, and using Eq. (12), it reduces
to Eq. (20):

C
(0)
f (ωJ = 0) = C

(0)
fac

(ωJ = 0). (22)

Now we observe that C
(0)
f (ωJ = 0) = 0 whenever one has

simultaneously:

Cdc(ωJ ) = −Cdc(−ωJ ) (23)

p(ω) = p(−ω). (24)

As soon as one of those two symmetries is broken, a rectified
average is obtained,

C
(0)
f (ωJ = 0) �= 0.

This rectification will be exploited later on to propose some
probing methods. Here we will choose asymmetric p(ω),
while the dc average respects the inversion symmetry in
Eq. (23), whose breakdown is reported to a separate work.

C. Case of a current operator

To obtain a charge current operator, one needs a renormal-
izing charge q ′, possibly effective and depending on H0:

Î (t ) = q ′Ĉ(t ). (25)

One needs also a renormalizing charge q of the voltage,
possibly different from q ′ [see Eqs. (5) and (6)]:

h̄ωJ = qVdc. (26)

h̄Wac(t ) = qVac(t ). (27)
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We also introduce the total voltage:

V (t ) = Vdc + Vac(t ). (28)

As in Eq. (18), V (0) refers to the average of V (t ) over one
period, and to Eq. (17) for a nonperiodic V (t ):

V (0) = Vdc + 1

T0
V (ω = 0). (29)

The relation in Eq. (19), replacing C by I on both sides,
provides I

(0)
f (ωJ ) in terms of Idc(ωJ ), which is determined

in a nontrivial way by both |f (t )| and Vac(t ).
I

(0)
f (ωJ ) could also give (up to a possible renormalization)

a perturbative correction induced by HÂ(t ) to a nonvanishing
average current in the presence of H0. This is the case when
Î (t ) corresponds to the current operator in one branch of a
quantum circuit [66] or to the weak backscattering current
induced by impurities (as in Sec. V).

Using Eq. (19), one can also obtain the expression of
the differential photoconductance Gf (ωJ ) = dI

(0)
f (ωJ )/dVdc

in terms of the differential dc conductance: Gdc(ωJ ) =
dIdc(ωJ )/dVdc (see Appendix B). Notice that for a nonlinear
dc current, Gf (ωJ ) is different from differentials of I

(0)
f (ωJ )

with respect to Vac(ω �= 0) [2,3]. Indeed, the validity of the
perturbation has to be expressed by the weakness of Gdc(ωJ ).
If it provides the correction to a finite conductance G0(ωJ ) in
the presence of H0 only, one needs: |Gdc(ωJ )| 
 |G0(ωJ )|.

We address the case of a linear dc current, thus Gdc(ωJ ) =
Gdc constant, in Appendix C. We show that I

(0)
f (ωJ ) is

determined in a nontrivial way by |f (t )| and V (t ) but vanishes
whenever V (t ) = 0. It is only when |f (t )| = 1 that I

(0)
f (ωJ )

is determined only by V (0) in Eq. (29) and that Gf = Gdc.
Let’s now comment on the case of a periodic f (t ) with

period T0 (see Ref. [3] and Appendix D). Then p(ω) takes
discrete values pl , the rates at which many-body eigenstates
of H0 exchange l photons of frequency �0 = 2π/T0:

p(ω) =
∞∑

l=−∞
plδ(ω − l�0). (30)

The integral in Eq. (19) reduces now to a discrete sum [3]:

I
(0)
f (ωJ ) =

∞∑
l=−∞

pl Idc(ωJ + l�0). (31)

We can express similarly the differential photoconductance in
Eq. (B6) in terms of Gdc (see Appendix D).

Let’s now specify to the frequently adopted profile:
Wac(t ) = W�0 cos �0t with a constant |f (t )| = 1, so that pl

are given by Bessel functions Jl of the first kind:

pl =
∣∣∣∣Jl

(
W�0

�0

)∣∣∣∣
2

. (32)

The relation in Eq. (31), now similar to the Tien-Gordon
formula for photoassisted tunneling current [21,25] at ωJ =
eVdc/h̄, unifies numerous works with explicit models and
derivations, either for independent carriers [21,25–27] or
within the TLL model [49–53]. It is now extended to a
much larger domain of validity. The charges q, q ′ entering in
Eqs. (26) and (25), thus in ωJ = qVdc/h̄, can be different from

e, for instance fractional in the FQHE and 2e in JJs, and the dc
current is not necessarily odd, thus we can obtain a rectified
current, contrary to Tien-Gordon theory.

IV. SELECTED PROFILES OF f (t ):
SPECTROSCOPIC METHODS

For all applications, we consider, for familiarity and com-
parison to related works, the case Ĉ(t ) in Eq. (7) refers to a
current operator Î (t ), thus we exploit the relation in Eq. (19)
replacing C by I . Without specifying the Hamiltonian terms
in Eq. (2), thus keeping undetermined the dc current Idc(ωJ ),
we choose three nonperiodic profiles of f (t ):

(i) Wac(t ) is a Lorentzian pulse, and |f (t )| = 1 constant.
(ii) |f (t )| is a Gaussian pulse, with a constant phase, thus

Wac(t ) = 0.
(iii) Wac(t ) is a non-Gaussian.

We obtain formal results, which will be detailed (for a
Lorentzian and Gaussian pulses) in the next section, when
the dc characteristics is a power law. We show also, in
Appendix D, how periodic pulses generate a Josephson-type
oscillation, without need to any superconducting correlations.

A. A Gaussian pulse

To illustrate some advantages of nonperiodicity, we choose
f (t ) such that p(ω) in Eq. (21) is peaked around a frequency
ωp. We also let fdc = 0 in Eq. (16), thus f (ω) = fac(ω).
For instance, if fac(t ) is real [or at least ϕ(t ) constant, i.e.,
Wac(t ) = 0] and Gaussian with a large width in time, using
a TD gate voltage and a Gaussian filter, the transfer rate in
Eq. (21) is also Gaussian with a small width σ (compared to
other frequency scales):

p(ω) = 1√
2πσ

e
− (ω−ωp )2

2σ2 . (33)

Then, using Eq. (20), the induced current is related in a simple
way to the dc current:

I
(0)
f (ωJ )=Idc(ωJ + ωp ). (34)

Again, even when the dc current Idc(ωJ ) is too complicated
to compute, this relation holds without a precise knowledge
of Hamiltonian terms in Eq. (2). It offers a promising method
to infer the dc out-of-equilibrium current from a measurement
of I

(0)
f (ωJ ). This is especially convenient for a thermal initial

distribution, when the out-of-equilibrium domain corresponds
often to high dc voltages, h̄ωJ � kBT , which can nonetheless
cause heating. Thus, in Eq. (34), one could keep h̄ωJ 
 kBT

but choose ωp � kBT . Taking further a vanishing dc voltage,
one gets the rectified current,

I
(0)
f (ωJ = 0)=Idc(ωp ), (35)

whose measurement at ωp � kBT /h̄ provides Idc(ωJ = ωp ).
One needs nonetheless to vary ωp in order to explore a large
interval of dc voltages.

B. A Lorentzian pulse

For Wac(t ) in Eqs. (5) and (6) formed by an arbitrary
series of periodic or nonperiodic Lorentzian pulses, we can,
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in principle, obtain I
0)
f (ωJ ) from Eq. (19) (replacing C by I ).

If we specify to |f (t )| = 1, thus we let:

f (t ) = e−iϕ(t ), (36)

where ∂tϕ(t ) = Wac(t ), the contribution of either positive or
negative ω′ to the integral in Eq. (19) vanishes. We can also
show, for a nonperiodic Wac(t ), that Wac(ω = 0) is still an
integer multiple of 2π , even when q is fractional, as noticed
in Ref. [67] for a periodic Wac(t ).

For simplicity, we specify here to a single Lorentzian pulse
centered around a time t1, with a width τ1:

Wac(t ) = 2τ1

(t − t1)2 + τ 2
1

. (37)

Now the dc component of Wac(t ) is given by:∫ +∞
−∞ dt Wac(t ) = Wac(ω = 0) = 2π , and, as we add a

free dc drive ωJ to Wac(t ) [see Eqs. (2) and (6)], the dc
component in Eq. (18) becomes:

W (0) = ωJ + �0, (38)

where �0 = 2π/T0. The Fourier transform of Eq. (36), given
Eq. (37), is:

f (ω) = 2πδ(ω) + fac(ω), (39)

where:

fac(ω) = −4πτ1θ (ω)e−ω(τ1−it1 ), (40)

θ being the Heaviside function. Using Eq. (19) with fdc = 1,
we find:

I
(0)
f (ωJ ) = (1 − 2τ1�0)Idc(ωJ ) + Ifac

(ωJ ), (41)

where:

Ifac
(ωJ ) = 4�0τ

2
1

∫ ∞

0
dω′e−2ω′τ1Idc(ωJ + ω′). (42)

We recall that this relation is independent on the Hamiltonian
terms in Eq. (2) and the initial diagonal ρ̂0, which intervene
only through Idc(ωJ ).

Let’s now take the limit ωJ = 0 in Eq. (41):

I
(0)
f (ωJ = 0) = 4τ 2

1

∫ ∞

0

dω′

2π
e−2ω′τ1Idc(ω′), (43)

which can be interpreted as follows. As a dc voltage Vdc =
h̄ω′/q injects elementary charges q with period 2π/ω′, the
integral on the r.h.s. is dominated by the contribution of dc
voltages for which this period is smaller than the width of
the pulse: 2π/ω′ < 2τ1. Notice that it is only when Idc(ω′) =
Gdch̄ω′/q is linear (Appendix C) that we recover the result
by L. Levitov et al. [58] (who adopt Vdc = 0), mainly that
I

(0)
f (ωJ = 0) in Eq. (43) is determined only by the area of the

pulse Vac(ω = 0), given here by e.

C. Non-Gaussian statistical mixture of radiations:
Probing the third cumulant

Here we consider cases in which f (t ) is generated by
a statistical mixture of coherent radiations. This arises, for
instance, in the classical regime of a nongaussian electro-
magnetic environment, not included in the Hamiltonian to
avoid redundancy. For simplicity, we assume that fdc = 0 in

Eq. (16), |fac(t )| = 1 and ϕ(t ) is a fluctuating phase with a
random distribution D(ϕ). Therefore, one needs to perform
the average of Eq. (20) over D, denoted by 〈...〉D, and included
in the definition of the rate transfer p(ω), Eq. (21):

p(ω) =
∫ T0/2

−T0/2

dt

T0

∫ ∞

−∞
dt ′eiω(t−t ′ ) < eiϕ(t )−iϕ(t ′ ) >D . (44)

One can write the average on the r.h.s. as exponential of
cumulants of ϕ(t ).

Jm(t, t ′) = im

m!
〈(ϕ(t ) − ϕ(t ′))m〉D. (45)

The expression, not given here, is simpler compared to a
quantum phase operator [68], as ϕ(t ) is classical.

Consider first the case when D is symmetric:

D(ϕ) = D(−ϕ), (46)

in which case only cumulants with even m survive. Changing
ϕ → −ϕ in Eq. (44) amounts to permute t and t ′ on the
r.h.s. of Eq. (44), thus one has p(ω) = p(−ω). This holds in
particular whenever D is a Gaussian functional of ϕ(t ):

p(ω) =
∫ T0/2

−T0/2

dt

T0

∫ ∞

−∞
dt ′eiω(t−t ′ )e−J2(t,t ′ ). (47)

Consider secondly the case when the symmetry in Eq. (46) is
broken, leading to finite Jm with odd m, thus an asymmetry of
Eq. (44): p(ω) �= p(−ω). Let us further assume that ϕ(t ) =
λφ(t ), where λ is a small (coupling) parameter and φ(t ) a
fluctuating field. Expanding Eq. (44) to order λ3 yields:

p(ω) = −J2(ω) + J3(ω), (48)

where J2, J3 are the second and third cumulant of ϕ(t ), given
by Eq. (45), and:

Jm(ω) =
∫ T0/2

−T0/2

dt

T0

∫ ∞

−∞
dt ′eiω(t−t ′ )Jm(t, t ′). (49)

We see that J2(t, t ′) = J2(t ′, t ), while J3(t ′, t ) = −J3(t, t ′),
so that:

J2(ω) = J2(−ω)

J3(ω) = −J3(−ω). (50)

The relation in Eq. (20) opens the path to probe the third
cumulant J3(ω) by measuring I

(0)
f (ωJ ).

One way to proceed would be to let ωJ = 0, thus to exploit
the rectification. It is then convenient to choose a dc current
which respects inversion symmetry, Idc(ω) = −Idc(−ω). Us-
ing Eqs. (20), (48), and (50), we obtain a relation between the
rectified current and the third cumulant:

I
(0)
f (ωJ = 0) = 2

∫ +∞

0

dω′

2π
J3(ω′)Idc(ω′). (51)

If one knows the dc characteristics Idc(ω′), one could in
principle make a deconvolution to obtain J3(ω′); since ωJ = 0
is fixed, one needs an additional variable.

The simplest choice for the dc current would be a symmet-
ric resonant structure at an energy h̄ωres varied, for instance,
through a gate voltage:

Idc(ω′) = 2πQ0[δ(ω′ − ωres ) − δ(ω′ + ωres )], (52)
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where Q0 is a constant. Then one could have a direct access
to the third cumulant through the rectified current in Eq. (51):

2iJ3(ω′ = ωres ) = I
(0)
fac

(ωJ = 0)

Q0
.

We will discuss in separate papers the possibility of this
resonant behavior and detail further such a method for a
mesoscopic conductor whose third cumulant is detected by a
tunnel junction [69].

V. APPLICATION TO A POWER LAW DC
CHARACTERISTICS

We will, through this section, explicit the formal results
obtained previously for a Gaussian and a Lorentzian pulse in
the case of a power law behavior of the dc current Idc(ωJ ),
with an exponent α. Assuming it’s odd, we write it at positive
dc voltages:

Idc(ωJ ) =
(

ωJ

ωc

)α

I (α)
∞ . (53)

Here ωc is a frequency cutoff and I
(α)
∞ is the value of the

current at this cutoff, which depends on the exponent α and
is of second order with respect to the operator Â [see Eq. (2)].
Then the differential conductance:

Gdc(ωJ ) = αq

h̄ωc

(
ωJ

ωc

)α−1

I (α)
∞ , (54)

has the same sign as α. This is relevant to the impurity
problem in a TLL with interaction parameter K . We focus
on the weak-backscattering regime, for which α = 2K − 1,
so that Idc(ωJ ) in Eq. (54) corresponds to the backscattering
current, reducing the perfect current G0Vdc:

Itotal(ωJ ) = G0Vdc − Idc(ωJ ). (55)

We address the dual strong backscattering regime (or tunnel-
ing barrier) in Appendix E. We also focus here on K < 1, thus
−1 < α < 1. In a nonchiral wire with repulsive interactions,
or equivalently, a coherent conductor connected to a resis-
tance R, for which 1/K = 1 + Re2h [44], one has q = e and
G0 = e2/h. In the FQHE at a simple fractional filling factor
(Laughlin series) ν = 1/(2n + 1) with integer n, one has K =
ν < 1/2, thus −1 < α < 0, q = νe, and G0 = νe2/h.

One gets Eq. (53) in the limit kBT 
 h̄ωJ , but arbitrary
temperatures could be considered as well (the theory holds
even without an initial thermal distribution). In principle,
periodic or nonperiodic profiles of f (t ) could be implemented
in Eq. (19) in order to obtain the current induced by f (t ). The
arguments of Idc in the integral must be within the perturbative
domain, which gives limitations on the profiles of f (t ) or
energy scales one can use.

As α < 1, requiring |Gdc(ωJ )| 
 G0 imposes a lower
bound which defines the perturbative domain:

ωJ > ωB 
 ωc

∣∣I (α)
∞

∣∣ −2
α . (56)

Thus the transfer rate function p(ω′) in the integrand of
Eq. (20) must have its support at:

|ω′ + ωJ | > ωB. (57)

Nonperiodicity of f (t ) can make it easier to reach this criteria,
as we illustrate it through the pulses considered in the previous
section, the Lorentzian [Eqs. (37) and (41)] or the Gaussian
one [Eq. (33)].

A. A Gaussian pulse

We consider now p(ω) peaked around a frequency ωp,
such as Eq. (33) with a small enough σ . One gets, from
Eq. (34):

I
(0)
f (ωJ ) =

(
ωJ + ωp

ωc

)α

I (α)
∞ . (58)

For an undetermined dc characteristics, we have already
discussed the advantage of this relation to probe it in the
out-of-equilibrium domain. Indeed, it is precisely in the latter
that for high voltages compared to temperature, that the power
law in (53) holds. One can choose vanishing dc voltage, to
avoid heating for instance, but high ωp � kBT /h̄, so that the
power law is probed through the rectified current I

(0)
f (ωJ = 0)

with respect to ωp.
A similar advantage holds if the dc voltage is too low

to be inside the perturbative domain, defined by Eq. (56),
thus if 0 < ωJ < ωB . One can rather increase ωp to get
ωJ + ωp > ωB .

B. A Lorentzian pulse

Consider now the Lorentzian pulse with width 2τ1 given
by Eq. (37). It induces the current in Eqs. (41) and (42),
independently on the dc characteristics, replaced now by the
power law in Eq. (53). We subtract the dc current at the same
Vdc, and rescale by its value at 1/2τ1:

I
(0)
f (ωJ ) − Idc(ωJ )

Idc

(
1

2τ1

) =2ατ1�0e
2τ1ωJ �(α, 2τ1ωJ xs). (59)

� is the incomplete gamma function, and �0 = 2π/T0, T0

being the measurement time. This difference has the sign of α,
thus adding a pulse to Vdc increases (resp. reduces) the current
when α > 0 (α < 0). This can be explained by the fact that
the dc current increases (resp. decreases) by increasing Vdc.
As a consequence, in the TLL, the total current in Eq. (55) is
reduced (resp. increased) by the pulse when K > 1/2 (resp.
K < 1/2). But now the dc average Itot (ωJ ) always increases
with ωJ , as Idc(ωJ ) is only a small correction to G0Vdc and
G0 > 0. Thus the reduction of the total current due to the
pulse for K > 1/2 is rather counterintuitive.

In Fig. 3, we have plotted Eq. (59) as a function of
the dimensionless variable 2τ1ωJ , implicitly above 2τ1ωB

[Eq. (57)]. We choose a small width of the pulse compared
to T0, 2τ1�0 = 0.1, and two values K = 1/3 < 1/2 and
K = 3/4 > 1/2 for which the Lorentzian pulse reduces (resp.
increases) the backscattering current. In Appendix E, we show
that the photoconductance [see Eq. (B6)], gets reduced by the
pulse for 0 < α < 1: 0 � Gf (ωJ ) < Gdc(ωJ ), even though
Idc(ωJ ) increases with ωJ . The total photoconductance in
the TLL nonetheless increases. We also discuss the rectified
current, which can probe the fractional charge and the power
law behavior with respect to τ1.
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VI. DETERMINATION OF THE FRACTIONAL CHARGE

Here we discuss some methods of charge determination
provided by the perturbative theory. For generality, we have
introduced two renormalizing charges q and q ′ into Eq. (26)
and Eq. (25), which could be effective, determined for in-
stance by H0.

On one hand, in case ρ̂0 is a thermal density matrix, we
have shown [2,18] that the shot-noise Sdc(ωJ ) at high dc
voltages h̄ωJ � kBT is universally poissonnian, Sdc(ωJ ) =
q ′Idc(ωJ ), which provides q ′. This generalizes to a full extent
the work of Kane and Fisher in a TLL [70,71] assumed to
describe unreconnstructed edges of the Laughlin states in the
FQHE, at ν = 1/(2n + 1), as well as that by L. Levitov and R.
Reznikov for two decoupled and interacting electrodes [74].

On the other hand, only q appears in HÂ(t ) [unspecified,
in Eq. (2)] as a parameter which links the Josephson-type
frequency to the dc part of the voltage, ωJ = qVdc/h̄. Then
the robustness of this relation, through which Vdc enters in
Eq. (19), gives access to the charge q, independently on the
underlying many-body eigenstates.

This is especially interesting for the FQHE for filling
factors lacking a well-established Hamiltonian [in Eq. (2)]
or with nonuniversal features such as reconstructed edges,
inhomogeneous filling factors, or Coulomb interactions be-
tween edges. The fractional charge q determining ωJ is
then a parameter which depends on the dominant process
at the quantum point contact and the coupling to the TD
voltage. Compared to the poisson shot noise [2,18], which
requires a large dc bias qVdc � kBT , thus can induce heating,
our methods have the advantage to be based on the easier
current measurement, and to be adapted to both weak Vdc

and Vac(t ), which prevents heating [3]. The robustness of
the fractional Josephson frequency ωJ = qVdc/h̄ provides
promising methods to determine the charge q, independently
on the underlying Hamiltonian (obeying the minimal condi-
tions). For a periodic f (t ) at frequency �0, addressed in Ref.
[3], one method consists of exploiting the frequency locking,
especially that zero-bias anomaly yields singularities in the
differential conductance Gdc(ωJ + n�0) (indeed in its deriva-
tive). For nonperiodic f (t ) addressed here, we have clarified
and extended the lateral side-band transmission picture to
many-body eigenstates exchanging continuous energy h̄ω′, so
that Vdc intervenes through the argument Gdc(ωJ + ω′). Thus
robustness of the relation ωJ = qVdc/h̄ still holds, and one
can extend our previous methods [3] to a nonperiodic f (t ).

Nonetheless, the present work provides two additional ad-
vantages. On one hand, we were not aware, in Refs. [2,3], that
the relations we have obtained, respectively, for the average
current and noise were indeed independent on the initial
diagonal elements of ρ̂0. This offers an additional advantage
compared to the poisson shot noise, rather based on a thermal
density matrix, as edges can lack thermalization between them
or with the contacts.

On the other hand, nonperiodicity of p(ω) facilitates
charge determination, as we illustrate it now through the sim-
ple peaked pulse at ωp, such as the Gaussian one in Eq. (33)
for small σ . This leads to the relation in Eq. (34), which goes
well beyond the TLL model, and should apply to the FQHE
at arbitrary series of filling factors, with possible Coulomb

interactions between edges and different initial temperatures.
We see that the r.h.s. of Eq. (34) singles out a unique combina-
tion of the fractional ωJ with ωp, which provides promising
methods to determine q. Depending on the freedom to vary,
respectively, ωp or Vdc, one can generally plot both members
of Eq. (34) as functions of ωp or Vdc, respectively, and guess
the charge q as a free scaling parameter which ensures their
equality.

On one hand, fixing ωp and varying Vdc, one seeks the good
scaling charge which enters through ωJ = qVdc/h̄. On the
other hand, by fixing Vdc and varying ωp, we propose two con-
venient methods. First, fixing Vdc = 0, equation (35) yields
the rectified current I

(0)
f (Vdc = 0) = Idc(Vdc = h̄ωp/q ). Thus

q scales ωp in Idc to get the observed dependence of
I

(0)
f (Vdc = 0) on ωp. Secondly, one can fix Vdc < 0, then vary

ωp to reach a vanishing value of I
(0)
f (Vdc ), corresponding

to ωp = −qVdc/h̄, because Idc(ωp + ωJ = 0) = 0. Such a
method requires the dc current to vanish only at a zero dc
voltage. It could be relevant, more generally, to conversion
of a frequency into a dc voltage, as more precision is reached
on frequencies.

One gains another advantage if the perturbative theory
is defined by a lower bound, similar to Eq. (56) obtained
at simple filling factors. One can choose small Vdc, outside
the perturbative domain, provided the frequency ωp is high
enough so that ωp + ωJ obeys Eq. (56).

VII. CONDITIONS FOR THE THEORY

Starting from the Hamiltonian (2), the theory requires
merely two conditions, in addition to Eq. (9). First, we need,
as it must, a weak operator Â, with respect to which second-
order perturbation is valid and gives a finite result.

Secondly, we require the following cancellation:

〈Â0(t )Â0(0)〉 = 0, (60)

where the subscript 0 refers to the interaction representation
with respect to the Hamiltonian H0, which, for a given opera-
tor B, is given by:

B0(t ) = eiH0tB e−iH0t . (61)

Indeed, one should cancel the first order term in Cf , thus:

〈Â0(t )〉 = 0. (62)

But even not, the theory is still valid for the second-order term
of Cf .

We can now formulate a sufficient condition to get
Eqs. (60) and (62), which makes it easier to distinguish a
family of models described by the theory. For that, it is
convenient to assume that a vertex operator enters into Â.
Allowing for nonlocal processes, we use a multidimensional
vector x to denote simultaneously various discrete entities and
continuous spatial vectors within a region C and a phase field
ϕ̂(x):

Â =
∫
C
dx e−iϕ̂(x) Â′(x). (63)

Then ϕ(t ) [see Eq. (5)] could correspond, fully or partly, to
a position-independent average of a TD phase field (a kind
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of adiabatic approximation), with a fluctuating part given by
ϕ̂(x), whose TD is due only to the Hamiltonian dynamics
[such as in Eq. (61)].

In case ϕ̂(x) and Â′(y) commute, the sufficient condition
ensuring Eq. (60) reads:

S0(ϕ̂ + c)=S0(ϕ̂) (64)

for any real c, where S0 is the action associated with H0, and
ϕ̂ refers rather to its associated function of time, which is a
global U (1) gauge symmetry with respect to ϕ̂. For instance,
it holds whenever S0 depends on ϕ only through its time
or space derivatives. As explained in Appendix A, such an
hypothesis is stronger than condition in Eq. (60). For many
independent phase operators [see for instance Eqs. (67) and
68)], associated for instance with many elements of a quantum
circuit or quantum channels, gauge invariance with respect to
one among them is sufficient.

We now notice two interesting consequences of Eq. (64).
First, if the TD forces can be implemented through translating
ϕ̂ → ϕ̂ + ϕ(t ), the invariance of S0 in Eq. (64) guarantees
systematically that H0 does not acquire any time dependence,
thus only the perturbing Hamiltonian HÂ(t ) in Eq. (2) de-
pends on time. Second, we can show, using Eq. (64), that the
dc average vanishes at ωJ = 0 to all orders with respect to Â,
i.e., equation (12) becomes nonperturbative.

VIII. UNIFIED EXAMPLES

Here, we choose to keep a certain degree of generality
and synthesis by writing a form for H(t ) which is common
to many physical problems with N “entities” labeled by i =
1...N . Referring to elements of a quantum circuit, electrodes,
channels, or edge modes in the integer, fractional, or spin
Hall effect, they are described by commuting Hamiltonians
Hi . We might add coupling terms Hi,j , for instance Coulomb
interactions between electrodes in a junction or between edge
modes in the Hall regime, so that the Hamiltonian H0 in
Eq. (2) reads:

H0 =
N∑

i=0

Hi +
∑
i �=j

Hi,j . (65)

Let’s provide now an example of a diagonal initial density
matrix obeying Eq. (9). We can describe the case when
the entities have different initial temperatures, with inverse
values β1, . . . βN . But we need to assume [Hk,Hi,j ] = 0 for
all indices i, j, k; this holds in particular at Hi,j = 0, when
mutual couplings are ensured only by Â. Then the initial
global density matrix:

ρ̂0 = 1

Z
∏

i

e−βiHi , (66)

where Z = T r[
∏

i e
−βiHi ], verifies the commutation relation

in Eq. (9).
Now, independently on the choice of ρ̂0, we choose to

factorize Â into mutually commuting operators Âi associ-
ated with the N entities, dropping any space dependence in

Eq. (63) for simplicity:

Â = �

N∏
i=1

Â
εi

i . (67)

Here � is a complex amplitude, and εi = −1, 1 for Âi , Â
†
i ,

respectively, while εi = 0 in the absence of Âi . Then Â

induces couplings between the N entities of the system, in
addition to those through Hij , with a different nature. In many
situations, Âi corresponds to a vertex operator expressed in
terms of a phase operator ϕ̂i and a real number αi :

Âi = eiαi ϕ̂i . (68)

Then Â is a vertex associated with the total phase operator:

ϕ̂ =
N∑

i=1

εiαi ϕ̂i . (69)

Let’s also introduce π̂i , the momentum conjugate to ϕ̂i :
[π̂i , ϕ̂i] = i, so that Â

εi

i in Eq. (67) translates π̂i by εiαi . Each
Hamiltonian term Hi is a functional of ϕ̂i and π̂i , as well as of
other operators. The invariance condition in Eq. (64) has to be
ensured by either ϕ̂ in Eq. (69) or by a unique phase operator
we choose, by permuting the indices, to be ϕ̂1 [75].

A particular case where the invariance becomes trivial is
for S0 independent on ϕ̂1. Then the dynamics of π̂1(t ) is due
only to HÂ(t ) in Eq. (2), and one can identify Eq. (7) with:

Ĉ(t ) = ε1

α1
∂t π̂1(t ). (70)

In general, π̂i or ϕ̂i can be associated to operators of charge,
spin current or voltages, for which the average of Ĉ(t ) might
as well provide a correction to their average. We now specify
to more typical systems for which H0 in Eq. (65) is relevant,
with Â given by Eq. (63) or Eq. (67).

1. Normal, Josephson, or Hall junctions

A tunnel junction, coupling normal or superconducting
conductors or edge states in the quantum Hall regime, is a
corner stone of transport studies, detection setups, or density
of states measurements, to mention only few examples. Even
though they have facilitated explicit solutions for current av-
erage, previous studies of photoassisted tunneling have often
adopted the following restrictions:

(i) H0 (respectively, Â) in Eq. (2) is specified, split (re-
spectively, factorized) into operators associated with two in-
dependent electrodes and single particle states [21,25].

(ii) For superconducting electrodes, only quasiparticle
current, with q = e is considered and not Josephson current.

(iii) A cosine ac voltage is typically considered, with a
constant tunneling amplitude (|f (t )| = 1).

(iv) The initial density matrix ρ̂0 is thermal.
(v) The inversion symmetry is adopted:

Idc(ωJ ) = −Idc(−ωJ ). (71)

Within our present theory, the perturbative relation in Eq. (19)
is derived without any of those restrictions. We have seen
that once specialized to a current operator, a cosine voltage, a
constant modulus |f (t )| = 1 and q = e, it reduces to Eq. (31)
with pl given by Eq. (32), extending largely the validity of
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FIG. 2. A quantum point contact (QPC) in the FQHE at ν = 2/5.
This corresponds to the first Jain filling factor series, ν = p/(2p + 1)
with integer number p, where one expects q = e/(2p + 1). To
experimentally determine q, [1] a RF excitation at frequency f is
added to the dc voltage Vdc applied to contact (0). This contact
injects carriers at the bulk filling factor νB = 2/5 into two chiral
fractional edge modes (red lines). The carriers are partitioned by
the QPC into transmitted and reflected current measured at contacts
(1) and (2), from which the current fluctuations are recorded and
their cross-correlation performed. The charge q = e/3 has been
determined through the Josephson relation fJ = qVdc/h̄. The charge
q = e/5 has been also measured for a weak backscattering of the
inner edge. The charge determination is based on the robust relation
for the photoassisted noise within our perturbative theory [2], the
first to address photoassisted transport beyond the TLL description of
abrupt edges and simple fractions. As it is independent on the precise
model for the edges, all series of filling factors, mutual Coulomb
interactions, inhomogeneities at the QPC, or edge reconstruction
could in principle be also addressed.

the Tien-Gordon theory [21,25]. Furthermore, our theory [2,3]
unifies the latter with two families of works devoted explicitly
to barriers in the TLL, without any established connection so
far, and whose results are special cases of Eq. (31): a cosine
ac voltage [49–53,76–78], cosine modulated barriers [79–87].
In order to illustrate some of the additional features the theory
could treat, we let N = 2 in Eq. (65) and assign H1 and H2

to two electrodes or sets of edge states in the integer, spin, or
fractional quantum Hall regime. Those don’t reduce to kinetic
terms and can encode similar or different processes, such as
Coulomb interactions or superconducting correlations. As we
don’t assume any initial thermalization, we could adopt the
form in Eq. (66) with different initial temperatures, which
offers an interesting situation to address, even within an in-
dependent quasiparticle framework. Even more, mutual finite-
range and inhomogeneous Coulomb interactions are encoded
within H12, which is quite realistic for Hall edges states at
the quantum point contact (see Fig. 2). In addition, for filling
factors of the FQHE which are not in the Laughlin series,
microscopic descriptions are often subject to debates, so that
keeping those Hamiltonian terms undetermined is extremely
useful.

By allowing for a simultaneous and nonperiodic TD of
both |f (t )| and Vac(t ), one could, for instance, choose three
different periods for |f (t )| and V1(t ), V2(t ) which could
determine Vac(t ) = V1(t ) − V2(t ). A time delay between

FIG. 3. Weak impurity in a TLL with K = 1/3, 3/4, subject to
a single Lorentzian pulse with width 2τ1 superimposed on a dc
drive ωJ = qVdc/h̄. The backscattering current is enhanced (resp.
reduced) for K > 1/2 (resp. K < 1/2).

V1(t ) and V2(t ) would allow us to address Hang Ou Mandel
(HOM) interferometry, whose results for noise are contained
formally within our relations [2].

The operator Â could couple many-body correlated states
or correspond to spatially extended tunneling, such as in
Eq. (63), provided a unique effective TD holds through f (t ).
We now consider only local processes, adopting Eqs. (68) and
(67), with commuting ϕ̂1, ϕ̂2 associated with both electrodes
or sets of edge states. Choosing α1 = −α2 = 1, the Hamilto-
nian in Eq. (2) reads:

H(t ) = H1 + H2 + H12 + f (t )�ei(ϕ̂1−ϕ̂2 ) + H.c. (72)

Now Eq. (69) reduces to:

ϕ̂ = ϕ̂1 − ϕ̂2. (73)

Then the condition in Eq. (64) has to be required for only one
phase operator among ϕ̂1, ϕ̂2, or ϕ̂.

Such phase operators and gauge invariance arise naturally
within bosonization, as S0 is a functional of time or space
derivatives of those fields. Â could refer to either strong
or weak backscattering regimes, with a spatial extension in
Eq. (63), or a superposition of various tunneling processes
between many couples of edge states, with either a common
charge and TD function f (t ) or with a unique dominant
process. For helical edge states in quantum spin Hall
insulators, Â could describe extended Umklapp processes, or

045101-10



DRIVEN QUANTUM CIRCUITS AND CONDUCTORS: A … PHYSICAL REVIEW B 99, 045101 (2019)

other backscattering processes due to Coulomb interactions,
and Ĉ(t ) in Eq. (7) could be a spin current operator.

The Hamiltonian in Eq. (72) is relevant to a JJ, for which
one has q = 2e. Then ϕ̂ in Eq. (73) corresponds to the
Josephson phase, � = EJ to a weak Josephson energy, and
Ĉ(t ) to the Josephson current operator. For the generic JJ,
one has simply H1 + H2 = EcQ̂

2/2, where Ec the charging
energy, thus the gauge invariance in Eq. (64) is trivial, but
more complicated forms could be adopted. EJ has to be
small compared to Ec, or to an energy scale defined by the
perturbative domain, which can be enlarged by coupling the
JJ to an electromagnetic environment.

2. Strongly correlated tunnel or Josephson
junctions in a quantum circuit

A strongly correlated tunnel or Josephson junction, such
as that addressed above, can, in addition, be strongly cou-
pled to an electromagnetic environment described by a third
Hamiltonian term H3, letting N = 3 in Eq. (65). This forms
a strongly correlated quantum circuit, with simultaneous ex-
change of photons associated with the electromagnetic en-
vironment, the classical radiations, and Coulomb interac-
tions. The junction and the environment can have nonther-
mal initial distributions, or two different temperatures, as in
Eq. (66).

If the coupling terms between the two electrodes and the
environment, H13 and H23, are linear, they can be absorbed
through a gauge transformation, adding a phase field ϕ̂3 in
Â, Eqs. (67) and (68). In the nonlocal form, Eq. (63), ϕ̂(x)
can be associated with the environmental degrees of freedom,
and Â′(x) with the electronic degrees of the freedom, but we
focus again on local processes only. We denote by Hel =
H1 + H2 + H12 and ϕ̂el = ϕ̂1 − ϕ̂2 [see Eq. (73)], thus the
total Hamiltonian in Eq. (2) reads:

H(t ) = Hel + H3 + f (t )�ei(ϕ̂el−ϕ̂3 ) + H.c. (74)

It’s now sufficient to ensure Eq. (64) for either Hel or H3

with respect to ϕ̂el or ϕ3, respectively. In Eq. (19), Idc(ω)
incorporates the effect of the environment. It is not odd for a
non-Gaussian environment, generating rectification [because
H3(ϕ̂3) �= H3(−ϕ̂3)].

The Hamiltonian in Eq. (74) applies as well to a JJ with
a small EJ , coupled strongly to an electromagnetic environ-
ment, for which Hel = HJ is the Hamiltonian of the isolated
JJ. It describes also the opposite limit of high EJ , thus the
dual phase-slip JJ, where current and voltage are permuted.
Ĉ(t ) = V̂ (t ) corresponds now to a voltage operator, and an ac
external periodic or nonperiodic current is imposed through
Wac(t ). The relation in Eq. (19) links the average of V̂ (t ) for
a TD current to its average for a constant current I0, with
ωJ = πI0/e. For a cosine current and a specific Hamilto-
nian of the phase-slip JJ, F. Hekking and collaborators [47]
have computed explicitly the average of V̂ (t ), using Keldysh
technique, then affirmed it to obey “the general theorem” in
Refs. [2,3] [i.e., Eq. (31) with pl given by Bessel functions,
Eq. (32)].

IX. DISCUSSION

Without recourse to Keldysh technique, a second-order
S-matrix expansion allows us to use properties of the un-
perturbed Hamiltonian at equilibrium. This led us to extend
the side-band transmission picture to strongly correlated sys-
tems or quantum circuits, reflecting quantum superposition
of many-body eigenstates of the unperturbed Hamiltonian.
Such a collective quantum coherence was indeed underlying
the plasmon scattering approach (within the inhomogeneous
TLL) [88]. It also emerges from the equivalence between
the strong back-action of a dissipative environment and the
microscopic impurity problem in the TLL [44–46,89,90]. We
have established here more common features to the two prob-
lems of different nature; they hold through out-of-equilibrium
relations, valid in a much larger context. The theory unifies
quantum circuits and strongly correlated conductors either in
1D, though special, with those in 2D or 3D. It allows poten-
tially to understand the interplay between inelasticity, non-
linearities, and decoherence due, simultaneously, to Coulomb
interactions, exchange of photons with radiations, and with an
electromagnetic environment.

The theory unifies also many works, based on different and
explicit models, and restricted to periodic drives, such as the
Tien-Gordon theory for photoassisted tunneling [21,25,30],
impurities in the TLL [49–53,77,78,86,87], minimal excita-
tions generated by Lorentzian pulses [58]. More recent works
with two specific models of the phase slip JJ [47] and the TLL
model (thus Laughlin series in the FQHE) [63] are also special
situations within our theory.

To our knowledge, inversion symmetry, thus an odd
Idc(ωJ ), related often to particle-hole symmetry, is implicitly
adopted in all those works. Then, for a cosine voltage, the rec-
tification is canceled [21,25,30], as pl , the probability of ex-
changing l photons, is symmetric: pl = p−l [see Eqs. (30) and
(31)]. This symmetry is broken for the periodic Lorentzian
pulses, for which plp−l = 0. But L. Levitov et al. do not con-
sider an additional free dc drive ωJ and assume that the area
of the pulse alone determines the current [58], which holds
only for a linear dc current, as shown in Appendix C. The
relation in Eq. (19) shows that I

(0)
f (ωJ ) is rather determined

in a nontrivial fashion by f (t ), even if we choose |f (t )| = 1,
and Vac(t ) is formed by periodic or nonperiodic series of
Lorentzian pulses. We have shown here how an asymmetric
p(ω) leads to rectification, while breakdown of the inversion
symmetry, thus asymmetric Gdc(ωJ ), will be discussed in a
separate paper.

Numerous other relations could indeed be derived for
the noise and the generalized admittance of first [2,3,18] or
second order, and will be detailed in separate publications.
Some have been tested experimentally within the dynamical
Coulomb blockade for normal [16,33,61] and JJs [16,62].
Within the FQHE with ν in the Jain series, subject a cosine
voltage, the relation we have obtained for the photoassisted
noise [2] has ben exploited in Ref. [1] to determine q through
the Josephson-type relation ωJ = qVdc/h̄ (Fig. 2); we hope
nonperiodic profiles, more advantageous as illustrated here,
could be implemented.

Indeed, the fractional Josephson frequency has been al-
ready introduced through the photoassisted current by X. G.
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Wen [49], but only for Laughlin series, thus ν = 1/(2n + 1)
for which q = νe, and for unreconstructed edges described
by the TLL model. Instead, we don’t need here to know the
underlying Hamiltonian for the edges, and all series and edge
reconstruction could in principle be addressed.

Indeed, through the present study of I
(0)
f (ωJ ), we have

also obtained the noise when the system is in its many-body
ground state and subject to one or a series of periodic or
nonperiodic Lorentzian pulses (for |f (t )| = 1), as we have
shown that: S

(0)
f (ωJ ) = qI

(0)
f (ωJ ) [2]. In particular, with a

delay between two Lorentzian series from the reservoirs, we
have potentially the HOM noise, especially useful to explore
the role of fractional statistics.

Compared to our work in Ref. [3], we have shown that the
initial density matrix has not to be thermal but has only to
commute with H0, Eq. (2). We have given a sufficient condi-
tion in terms of a gauge invariance, and we have addressed
the case of nonperiodic or statistical mixture of coherent
radiations, which led us to define properly the zero-frequency
average of Ĉ(t ) in view of possible singularities of f (ω).

X. CONCLUSION

The paper gives an in-depth perturbative study [2] relevant
to strongly correlated conductors or quantum circuits driven
by coherent radiations, statistical mixture of radiations, or
superposed ac voltages with different periods or delays su-
perimposed on a free dc drive ωJ . We define a weak operator
which can refer to voltage, charge, or spin current operators in
Josephson, normal, magnetic junctions, or edge states in the
integer, fractional, or spin Hall effects. Its out-of-equilibrium
average is expressed as a continuous superposition of replicas
of its average under a dc drive, sufficient to encode interaction
effects. This relation reflects quantum superposition of global
many-body states exchanging photons at continuous frequen-
cies ω with a transfer rate p(ω). It extends largely the lateral
side-band transmission picture, usually restricted to a current
operator, a cosine voltage, and independent quasiparticles
with charge q = e.

We have selected some applications for a charge current.
First of all, the robustness of the frequency locking, where
the dc voltage Vdc intervenes only through the Josephson type
frequency ωJ = qVdc/h̄ with q a charge parameter, offers
various methods for determination of q which are free from
unknown parameters or microscopic descriptions. They are
especially relevant to the FQHE, especially for filling factors
ν beyond the simple fractions of the Laughlin series, ν �=
1/(2n + 1), still not well understood, and for nonuniversal
features difficult to solve, such as mutual inhomogeneous
interactions between the edges or their reconstruction. Our
methods derived for periodic radiations [3] can be extended
to nonperiodic radiations or their statistical mixture and to the
absence of initial thermalization. They are more convenient
to use than poissonnian noise, as current is easier to measure
than noise, and voltages can be low enough to avoid heating.
Nonperiodicity adds also advantages illustrated here [2].

Secondly, the relations we have obtained allow one to
infer the rectified current if both p(ω) and the dc current
are known. That’s the spirit of the application to the TLL,
relevant to abrupt edge states in the FQHE at ν = 1/(2n + 1),

one-dimensional interacting wire, or a coherent conduc-
tor connected to a resistance [44]. A counterintuitive fea-
ture arises, questioning the terminology “photoassisted:” A
Lorentzian pulse superimposed on Vdc reduces the current
at the same Vdc, even when the dc current is an increasing
function of Vdc (thus for moderate repulsive interactions or
resistance).

Thirdly, one can infer, inversely, the out-of-equilibrium dc
current or the transfer rate p(ω) from the rectified current,
which allows one to operate at very low dc voltages to avoid
heating. The latter can be finite within our theory, contrary
to previous works on photoassisted current, as inversion sym-
metry and symmetry of p(ω) can be broken. This provides
convenient spectroscopic methods of the out-of-equilibrium
dc current on one hand, by selecting p(ω) with its main weight
in the out-of-equilibrium domain, and of the finite-frequency
third cumulant of a non-Gaussian fluctuating source on the
other hand.

More generally, the perturbative relations offer consistency
tests of the underlying hypothesis of a given model, of numer-
ical simulations, or of experimental measurements. They are
especially relevant to two flourishing fields where interactions
play a crucial role, and one seeks to generate and manipulate
time-resolved excitations or to explore individual or collective
phenomena implying electrons and photons: The electronic
quantum optics, based mainly on the integer quantum Hall
effect with interacting edges [60,91–93], and on the FQHE,
more difficult to manipulate and the quantum circuit electro-
dynamics, where a JJ or a quantum dot coupled to the modes
of the electromagnetic environment simulate an atom-light
interaction under control [94–96], and where our theory has
proven to be relevant to squeezed states of photons [97,98]. It
would be interesting to address more precisely conditions of
relevance of the theory to quantum dots or TD disorder and its
interplay with correlations in cold atoms [99].
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APPENDIX A: A SUFFICIENT CONDITION

Here we explain why the sufficient condition of gauge
invariance with respect to one phase field, in Eq. (64),

S0(ϕ̂ + c) = S0(ϕ̂), (A1)

for any real c, leads to Eq. (60). S0 is the euclidian action
associated with H0. ϕ̂(x) appears in Eq. (63) and is assumed
to commute with ¯̂A′(x). The phase argument ϕ̂ of the action
refers to the associated function of imaginary time and the
multidimensional vector x.
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Using the interaction representation in imaginary time
with respect to H0 [see Eq. (61)], we consider the m-vertex
correlator:

X(m) = 〈e−ia1ϕ̂0(x1,τ1 ). . . . . e−iamϕ̂0(xm,τm )〉, (A2)

with a1, . . . , am real numbers. Writing its functional integral
version, and translating the function ϕ̂0((x, τ ) by an arbitrary
constant c, we get

X(m) = e−ic
∑m

j=1 aj X(m).

Thus X(m) vanishes whenever
∑m

j=1 aj �= 0. Being valid for
all integer numbers m and many series of ai , the condition
(A1) is stronger than that in Eq. (60), to which it leads by
letting m = 2 and a1 = a2 = 1. It leads as well to a first-order
vanishing term, for m = 1 and a1 = 1 in Eq. (62). Equation
(A1) is ensured when S0 depends only on gradients of first
or higher orders of ϕ̂(x), as is the case in generic quantum
circuits or bosonized models for which ϕ̂(x) is a bosonic field.

APPENDIX B: FORMAL DERIVATION OF
THE FINITE-FREQUENCY AVERAGE

Let’s now give the main steps of derivation to relate for-
mally the averages of the operator Ĉ(t ) in Eqs. (8) and (13).
We assume the energy scales used are within the perturbative
domain, and conditions in Eq. (60) and Eq. (9) hold. Then both
averages, Cdc(ωJ ) under a dc drive, in Eq. (8), and Cf (ωJ ; t )
under radiations, in Eq. (13), can be expressed through a
unique retarded correlation function:

h̄2XR (t ) = θ (t )〈[Â†
0(t ), Â0(0)]〉, (B1)

where Â0(t ) is given by Eq. (61) [see Eq. (2)]. The correlators
at different times depend only on their difference because H0

is independent on time and commutes with ρ̂0 [Eq. (9)].
Consider first the stationary regime, corresponding to

f (t ) = 1. Then, 〈ĈH(t )〉 = Cdc(ωJ ) in Eq. (8) is stationary
[or at least its second-order term whenever Eq. (62) is not
ensured], and is related to the Fourier transform of XR:

Cdc(ωJ ) = 2ReXR (ωJ ). (B2)

Let’s now consider now the average under radiations, in
Eq. (13), where the subscript f recalls its functional depen-
dence on f (t ), while dependence on ωJ is more explicit. Its
Fourier transform:

Cf (ωJ ; ω) =
∫ +∞

−∞
dt eiωtCf (ωJ ; t ), (B3)

can be again expressed through XR in Eq. (B1):

Cf (ωJ ; ω) =
∫

dω′

2π
f ∗(ω′ − ω/2)f (ω′ + ω/2)[XR (ωJ + ω′

+ω/2) + XR∗
(ωJ + ω′ − ω/2)]. (B4)

We can deduce the zero-frequency limit, in Eq. (15), using
Eq. (B2). For that, we need that XR (ω) has no singularities at
zero frequency, thus we require Eq. (11). But we have kept ω

on the r.h.s. of Eq. (15) in order to treat possible singularities
of f (ω). Then Cf (ωJ ; ω → 0) is expressed fully in terms of
f as well as Cdc.

This statement can be extended to finite frequencies. For
that, we notice that one can, inversely, express XR in terms of
Cdc, using Eq. (B2) and the Kramers-Kronig relation:

2XR (ω) = Cdc(ω) + iPP

∫
dω′ Cdc(ω′)

ω′ − ω
. (B5)

Upon substitution of Eq. (B5) into Eq. (B4), Cf (ωJ ; ω)
becomes determined fully and universally by the function
Cdc(ω). After some steps, we can cast it in the compact form
in Eq. (14), where the Hamiltonian enters only through the
out-of-equilibrium average Cdc(ωJ ), obtained for f (t ) = 1.

We can check that in the stationary regime, one has f (ω) =
2πδ(ω), so that, in view of Eq. (B2), one has: Cf (ωJ ; ω) =
2πδ(ω)Cdc(ωJ ). Using Eq. (19), and replacing Ĉ by a current
for familiarity, one could express the differential photocon-
ductance Gf (ωJ ) = dI

(0)
f (ωJ )/dVdc in terms of the differen-

tial dc conductance: Gdc(ωJ ) = dIdc(ωJ )/dVdc:

Gf (ωJ ) =
(

|fdc|2 + 2

T0
Re[fdcf

∗
ac(0)]

)
Gdc(ωJ )

+
∫ +∞

−∞

dω′

2π
p(ω′)Gdc(ωJ + ω′). (B6)

APPENDIX C: A LINEAR DC CURRENT

We consider here that Ĉ(t ) refers to a current, in Eq. (25),
whose dc average is linear:

Idc(ωJ ) 
 Gdc Vdc, (C1)

where Vdc = h̄ωJ /q and Gdc a linear dc conductance of
second order with respect to Â, as is clear from the spectral
decomposition in Eq. (10). Linearity can still hold within
strongly correlated systems, provided ωJ is within a certain
(low-frequency) domain where Idc(ωJ ) is analytic. For a
thermal ρ̂0, this domain corresponds often to ωJ 
 kBT /h̄,
and Gdc can then depend on temperature.

Now we use Eqs. (B4) and (B2), replacing C by I , and
Eq. (C1). Using a general identity:∫

dω′

2π
ω′f ∗(ω′)f (ω′ + ω) =

[
W ⊗ ¯|f 2| − ω

2
¯|f 2|

]
(ω),

where ⊗ denotes the convolution product and ¯|f 2|(ω) the
Fourier transform of |f (t )|2, we obtain:

If (ωJ ; ω) = Gdc
¯|f 2| ⊗ V (ω), (C2)

where V (ω) refers to the Fourier transform of the total voltage
V (t ) in Eq. (28).

Going back to time representation, the TD current average
is a simple product:

If (ωJ ; t ) = Gdc|f (t )|2V (t ). (C3)

In particular, whenever φac(t ) [the phase of f (t )] is constant,
and Vdc = 0, thus V (t ) = 0, If (ωJ = 0; t ) = 0, even though
the modulus of f (t ) varies in time. This feature is not gener-
ally valid for a nonlinear Idc.

For a periodic f (t ), it is easy to convert the convolution
in Eq. (C2) into a discrete sum (see next Appendix). For a
nonperiodic f (t ), one needs to take care of possible singu-
larities in δ(ω) when considering the zero-frequency limit.
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We decompose f (t ) in Eq. (16), f (t ) = fdc + fac(t ), V (t ) in
Eq. (28), and we adopt Eq. (17) where T0 is the measurement
time. Then the measured rectified current is given, in view of
Eq. (C3), by:

T0

Gdc

I
(0)
f (ωJ ) = (|fdc|2T0 − 2Re(fdcf

∗
ac(ω = 0)))Vdc

+
∫ ∞

∞
dt |fac(t )|2Vac(t ). (C4)

Let us now specify further to |f (t )| = 1, in which case
equation (C3) reduces to:

If (ωJ ; ω) = GdcV (ω), (C5)

thus is simply linear with respect to V (ω), as expected. Its dc
measured component in Eq. (C4) reduces to:

I
(0)
f (ωJ ) = GdcV

(0), (C6)

fully determined by V (0), the average of V (t ) over one pe-
riod for a periodic V (t ), and V (0) = Vdc + V (ω = 0)/T0 [see
Eq. (29)] for nonperiodic V (t ). We see that for |f (t )| = 1, the
differentials of I

(0)
f (ωJ ) with respect to Fourier components

Vac(ω) vanish, but those are nontrivial when Idc(ωJ ) is a
nonlinear function [2,3].

APPENDIX D: PERIODIC DRIVING

Now we consider the case where f (t ) has a period T0 =
2π/�0 [see also Ref. ([3])]. We keep the dc drive ωJ free, thus
it has not to be commensurate with �0. The Fourier transform
of f (t ) reads:

f (ω) =
∞∑

l=−∞
fl δ(ω − l�0). (D1)

We consider the average over one time period T0 = 2π/�0

of Cf (ωdc; t ), in Eq. (13), the analogous of Eq. (20) for
nonperiodic TD:

C
(0)
f (ωdc) = 1

T0

∫ T0

0
Cf (ωdc; t ) dt

=
∞∑

l=−∞
pl Cdc(ωdc + l �0), (D2)

where pl = |fl|2.
At a finite frequency ω, equation (14) becomes:

Cf (ωJ ; ω) =
∞∑

n=−∞
δ(ω − l�0)C (l)

f (ωJ ), (D3)

where C
(l)
f (ωJ ), not explicited here, is an integral implying

Cdc and the Fourier components fl . If now has also ωJ =
ldc�0, then one can make the translation in the various sums:
l → l + ldc, which gives, for Eq. (D2) for instance:

C
(0)
f (ωdc) =

∞∑
l=−∞

pl−ldc
Cdc(l�0). (D4)

If we specify to a current operator, replacing C by I in
Eq. (D4), we get also the transferred charge during one cycle:

Q(ωdc) = T0I
(0)
f (ωdc) = T0

∞∑
l=−∞

pl Idc(ωdc + l�0). (D5)

For weak barriers with the same effective TD, this is nothing
but the pumped charge. A similar relation would hold if a
phase operator φ̂ determines Ĉ(t ) = ∂t φ̂(t ), as is the case for
a voltage operator in phase-slip JJs.

It is useful to write as well the photoconductance in
Eq. (B6), where, instead of ωJ , we use Vdc:

Gf (Vdc ) =
∞∑

l=−∞
pl Gdc(Vdc + lh̄�0/q ). (D6)

We stress that differentials of I (0)(ωJ ) with respect to Vac(ω)
are different.

Periodic series of pulses: Josephson-type modulation

It is worth recalling a very interesting application, per-
formed without specifying the Hamiltonian, neither the diag-
onal initial density matrixρ̂0 [3]. We choose |f (t )| = 1 and
Wac(t ) formed by a periodic series of pulses of area ϕ. For
sharp pulses Wac(t ) = ϕ

∑
l δ(t − 2πl/�0), we obtain [3]:

|fl|2 =
[

sin(ϕ/2)

πl − ϕ/2

]2

. (D7)

Without need to any superconducting type correlations, this
leads, interestingly, to a Josephson type oscillating term in
Eq. (D2), sin2(ϕ/2) :

C
(0)
f (ωJ ) = sin2(ϕ/2)

∞∑
l=−∞

4Cdc(ωdc + l�0)

(ϕ − 2πl)2
. (D8)

One needs that the sum over l on the r.h.s. doesn’t have a
peculiar behavior which would cancel the oscillations. For
instance, if Cdc has a power law behavior, such as is the case
for the average current in a TLL model with parameter K ,
where Idc(ωJ ) behaves as ω2K−1

J , the Josephson type oscil-
lating function is preserved, and the series above converges. It
would be interesting to address resonance conditions for either
ϕ or �0, for instance to determine K or the fractional charge
in the FQHE.

APPENDIX E: THE IMPURITY PROBLEM IN A TLL.
APPLICATION TO A LORENTZIAN PULSE

The TLL model, characterized by an interaction parameter
K , turns out to be relevant to a large variety of systems,
such as edge states in the FQHE or IQHE with interactions,
spin Hall edge states of topological insulators, or quantum
wires with reservoirs. We have also shown its relevance to a
coherent conductor connected to a resistive environment with
resistance R where K = 1/(1 + r ) and r = e2/hR [44].

For two edge states in the FQHE with a constriction created
by a gate, the TLL model is expected to be valid for an
abrupt confinement of the edges and at simple filling factors
ν = K = 1/(2n + 1) � 1/3 with integer n. Then the power
law in Eq. (53) is obtained, provided tunneling between edges
is local and mutual Coulomb interactions are neglected.
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The typical Hamiltonian corresponds then, in Eq. (2), to
H0 given by the TLL Hamiltonian, or to Eq. (72) where H1

and H2 are quadratic forms describing two chiral edge states.
We don’t explicit H0, which leads to the dc current already
given by Eq. (53). The operator Â in Eq. (2) describes one
among two dual processes:

(1) Weak-backscattering processes, for which:

α = 2K − 1. (E1)

In this regime, Idc(ωJ ) in Eq. (53) corresponds to the
backscattering current, inducing a correction to the perfect lin-
ear current [see Eq. (55)]. Whenever K < 1, thus α − 1 < 0,
the perturbative expression in Eq. (53) is limited by Eq. (56).
In the FQHE, one has tunneling of fractional charges between
the upper and lower edges, q = Ke. Furthermore K = ν <

1/2, thus α < 0, so Idc(ωJ ) decreases with the dc voltage
[Gdc < 0, Eq. (54)].

(2) For the strong-backscattering regime, corresponding
to ωJ < ωB , one starts from weak tunneling of (in general)
integer charges, q = e. The exponent in Eq. (53) is now given
by:

α = 2/K − 1. (E2)

Then Idc(ωJ ) corresponds to a tunneling current, and per-
turbation is not restricted as above for K < 1. For attractive
interactions, thus K > 1, one could have a criteria similar to
Eq. (56).

We have applied the relation in Eq. (19) to the weak-
backscattering regime, and to a Lorentzian pulse, yielding the
backscattering current in Fig. 3. In the dual regime, for which
one has Eq. (E2), taking K < 1 leads to α > 0, thus the pulse
always increases, or “photoassist” the current, as illustrated in
Fig. 4.

Let’s now express the photoconductance in Eq. (B6):

Gf (ωJ ) = Gdc(ωJ ) + 2(α − 1)τ1�0Gdc

(
1

2τ1

)
e2τ1ωJ

×�(α − 1, 2τ1ωJ ), (E3)

where Gdc(ωJ ) is given by Eq. (54). Since Gf (ωJ ) and
Gdc(ωJ ) have both the sign of α [100], we get:

|Gf (ωJ )| < |Gdc(ωJ )|. (E4)

A counterintuitive feature arises when 0 < α < 1, as Idc(ωJ )
increases with ωJ , while the pulse reduces the conductance:
0 � Gf (ωJ ) < Gdc(ωJ ), which questions the terminology
of “photoassisted” transport. But in the TLL, in the weak-
backscattering regime, the pulse always increases the total
conductance, in view of Eq. (55), whenever 1 > K > 1/2 or
K < 1/2.

Let’s now discuss the limit of a zero dc voltage, thus the
rectified current. No caution is required for α − 1 > 0, but, for
α − 1 < 0, Gdc(ωJ ) diverges, so that the limit ωJ = 0 cannot,
strictly speaking, be undertaken into Eq. (E3), as one leaves
the perturbative domain.

Nevertheless, if one takes from the beginning ωJ = 0,
so that the dc component of the voltage comes only from
Vac(ω = 0)/T0 = V (0) [see Eq. (29)], the result for Gf (ωJ =
0) is finite provided one chooses 1/2τ1 within the perturbative

FIG. 4. The strong backscattering regime (or a tunneling barrier)
in a TLL with K = 1/3, 3/4, subject to a Lorentzian pulse with
width 2τ1 superimposed on a dc drive ωJ = qVdc/h̄. The difference
between the induced current If (ωJ ) and the dc current Idc(ωJ ) at
the same ωJ , renormalized by Idc(ωJ = 1/2τ1), is positive K = 1/3,
and almost vanishing for K = 3/4.

domain, thus 2τ1ωB � 1 [see Eq. (56)]. Then, this amounts to
ignore the terms depending on ωJ in Eq. (E3), which reduces
to a power law with respect to τ1:

Gf (ωJ = 0) = 2τ1�0�(α)Gdc(1/2τ1), (E5)

where �(α) is the Gamma function.
In both regimes of weak or strong backscattering, this

power law with respect to the width of the Lorentzian pulse
2τ1 can also provide a complementary test of such a behav-
ior and method to measure α, thus K in the TLL. This is
especially useful if the out-of-equilibrium regime is difficult
to reach, as if high Vdc causes heating.

Similar lines as those for a peaked pulse in Eq. (33) could
be followed as well for charge determination (see Sec. VI),
replacing ω0 by 1/2τ1, and using the rectified current at
ωJ = 0 in Eq. (43). This is however less convenient due to
integration performed on its r.h.s.. But in case of the TLL, thus
for ν = 1/(2n + 1) in the FQHE, the expression in Eq. (43),
or its differential with respect to the dc drive, reduces to
Eq. (E5). So one would need to vary the width of the pulse 2τ1

and guess q as a scaling factor between the frequency 1/2τ1

and the natural argument of Gdc, the dc voltage.
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