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The thermal Hall conductance is a universal and topological property which characterizes the fractional
quantum Hall (FQH) state. The quantized value of the thermal Hall conductance has only recently been measured
experimentally in integer quantum Hall (IQH) and FQH regimes, however, the existing setup is not able to detect
if the thermal current is counterpropagating or copropagating with the charge current. Furthermore, although
there is experimental evidence for heat transfer between the edge modes and the bulk, the current theories do
not take this dissipation effect into consideration. In this Rapid Communication, we construct phenomenological
rate equations for the heat currents which include equilibration processes between the edge modes and energy
dissipation to an external thermal bath. Solving these equations in the limit where the temperature bias is small,
we compute the temperature profiles of the edge modes in a FQH state, from which we infer the two-terminal
thermal conductance of the state as a function of the coupling to the external bath. We show that the two-terminal
thermal conductance depends on the coupling strength, and can be nonuniversal when this coupling is very
strong. Furthermore, we propose an experimental setup to examine this theory, which may also allow the
determination of the sign of the thermal Hall conductance.

DOI: 10.1103/PhysRevB.99.041302

I. INTRODUCTION

The fractional quantum Hall (FQH) state is a topological
state of matter, and therefore it is described by universal
and topological properties [1,2]. Two such properties are the
Hall conductance and the thermal Hall conductance [3]. In
Abelian FQH states, which are described by an integer valued
symmetric matrix, termed the K matrix, these two topological
properties relate to the edge modes and the K matrix in
different ways. The Hall conductance, given by σH = ν e2

h
,

where ν is the filling fraction, is governed by the downstream
charge mode [2–5]. However, the thermal Hall conductance,
given by

κH = nnetκ0T , (1)

where κ0 = π2k2
B

3h
is the quantum of thermal conductance [6]

and T is the temperature, is governed by the net number of
edge modes, nnet = nd − nu, which is the difference between
the number of downstream and upstream modes in the edge
theory [7].

An interesting phenomenon occurs in holelike states,
which have 1

2 < ν < 1. Theory suggests that these states are
characterized by nu � nd . In the case of nu > nd , when the
modes are at equilibrium, charge and heat flow are on different
edges of the FQH liquid, whereas in the case of nu = nd , the
heat flow is diffusive [7–9].

The thermal Hall conductance has only recently been mea-
sured in integer quantum Hall (IQH) states [10,11], in FQH
states [11,12], and in the magnetic material α-RuCl3 [13].
However, the current setups used in these experiments cannot
determine which edge carries the heat current. Hence, the
thermal Hall conductance still holds more information about
the K matrix, which has yet to be realized. Furthermore, it was
shown experimentally that there is energy dissipation from the

edge modes of a QH state [14]. Energy dissipation can arise
from different mechanisms. The electron-electron interaction,
for example, which is accountable for the appearance of the
charge and neutral modes [15–24], may cause interedge-mode
energy relaxation [16,17], but may also account for energy
loss to puddles in the bulk. Electron-phonon interactions may
lead to energy dissipation from the edge modes [14,16,25].
Nonetheless, the present theories [7,26–29] neglect such a
contribution to the heat transport of the QH state. Such energy
dissipation, which may alter the thermal Hall conductance of
the state, should therefore be incorporated into the theory.

In this Rapid Communication, we develop a phenomeno-
logical theory for the heat transport in the edge modes of a
FQH state, which elaborates on the phenomenological equa-
tions derived in Ref. [11], and on the theoretical analysis
performed in Refs. [8,9], in order to include dissipation from
the edge modes to an external thermal bath. We note that
recent theoretical analyses of the observation of quantized
thermal Hall conductance in the magnetic material α-RuCl3
[30,31] take into account coupling to phonons. However, in
this three-dimensional system, and in the experimental setup
employed in Ref. [13], energy transferred to the phonons is
not lost, and is included in the measured heat current. In
this Rapid Communication, and in the experiment carried
out in Refs. [11,12], energy transferred to phonons, or any
other mode of dissipation, leaks out of the system and is
not measured. By solving the heat transport rate equations
for a small temperature difference between the two sides of
the FQH liquid, we find the temperature profiles of the edge
modes as a function of the equilibration length ξe between
the modes, the dissipation length ξd for energy dissipation
to the external bath, and the system size L. We then define
and calculate the two-terminal thermal conductance, and show
that its measurement may strongly depend on the dissipation
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FIG. 1. An illustration of the lower edge of a FQH liquid in a
two-dimensional system with nd downstream modes (solid lines)
and nu upstream modes (dashed lines), propagating in the oppo-
site direction. The temperature difference, �T = Tm − T0 > 0, is
applied between the right and left contacts. The black vertical arrows
represent the equilibration current density between the edge modes
on the same edge. The blue wiggly arrows represent the dissipation
current density, to the external thermal bath.

length. Since we are interested in exploring the effect of
dissipation on the topological thermal Hall conductance, it is
required that L � ξe. While L usually varies between tens to
hundreds of μm, it was found experimentally that typical ξe

can vary between 3 μm [16] and 20 μm [11], depending on
the temperature, and that ξd is bounded from below by 30 μm
[16]. We find that for ξd � ξe the two-terminal conductance
approaches the topological and universal value of Eq. (1),
whereas for ξd � ξe the two-terminal thermal conductance
is no longer universal, and is sensitive to edge reconstruction
processes.

Furthermore, we propose an experimental setup to test this
phenomenological theory, and to determine the sign of the
thermal Hall conductance. This experimental setup relies on
quantum dots (QDs) which are coupled to the edges of a FQH
state. By exploiting a relation between the thermoelectric
coefficient and the electric conductance of the QDs [32],
we point out that they can be used as local thermometers
for electrons on the FQH edge state. The local temperatures
of the edge states can be deduced from a measurement of
the thermoelectric current through the QDs, and thus the
temperature profiles can be measured. We show that the sign
of the thermal Hall conductance may be determined from the
measured temperature profiles.

II. PHENOMENOLOGICAL HEAT TRANSPORT THEORY
IN ABELIAN FQH STATES

Without loss of generality, we assume the directions of
flow of the edge modes on the lower edge of a FQH state
are as depicted in Fig. 1. On the upper edge nu ↔ nd and
the directions of flow of the edge modes are reversed. In this
situation the FQH state has nd downstream modes and nu

upstream modes, which for this analysis are assumed to obey
nd �= nu. We shall consider the case nu = nd = 1 when we
discuss the ν = 2

3 FQH state. The downstream modes on the
lower edge are emanating from an ohmic contact at position
xm at temperature Tm, and the upstream modes are emanating
from another ohmic contact at position x0 at temperature T0.
Both ohmic contacts are at the same chemical potential. For
Tm > T0, the downstream modes are expected to be hotter
than the upstream modes. Thus energy will be transferred
from the downstream to the upstream modes, through a
heat current density jt , in order to achieve equilibration. In

addition, in order to model dissipation, we assume the edge
modes are coupled to an external thermal bath kept at temper-
ature T0, such that there are dissipation current densities jd

b

and ju
b from the downstream and upstream modes to the bath.

Assuming that energy is conserved in the system composed of
the edge modes and the external bath, the heat currents flow-
ing through the one-dimensional (1D) downstream modes and
the 1D upstream modes, denoted by Jd and Ju, respectively,
are described by the following rate equations,

Jd (x + δx) = Jd (x) − jt (x)δx − jd
b (x)δx

Ju(x) = Ju(x + δx) + jt (x)δx − ju
b (x)δx. (2)

A. Temperature profiles

The temperature dependencies of the heat currents in
Eq. (2) are modeled as follows. The heat current flowing
in the 1D downstream and upstream edge modes is mod-
eled as Ji (x) = 1

2κ0niT
2
i (x) [7], where i = d, u. The equi-

libration current density jt is modeled by Newton’s law of
cooling, jt (x) = 1

2
κ0
ξe

[T 2
d (x) − T 2

u (x)], where ξe is the relax-
ation length, similarly to Ref. [11]. The dissipation current
to the external thermal bath is modeled by a temperature
power law relative to the bath temperature, j i

b(x) = 1
2κ0niB

[T α
i (x) − T α

0 ]. The exponent α has different values depend-
ing on the mechanism of dissipation. Energy transfer from
electron to phonons, for example, may lead to α = 5, but
also to smaller values depending on the details [33]. The
electron-electron interaction gives 1 < α < 2, depending on
the extent to which impurities are involved [34]. To simplify
the solution and further treatment, we write the equations us-

ing the dimensionless parameter τi (x) = T 2
i (x)
T 2

0
, and we denote

β = BT α−2
0 . Then, the equations can be written as a set of

coupled differential equations for τu and τd ,

dτd

dx
= − 1

ndξe

[τd (x) − τu(x)] − β
[
τ

α
2

d (x) − 1
]
,

dτu

dx
= − 1

nuξe

[τd (x) − τu(x)] + β
[
τ

α
2

u (x) − 1
]
. (3)

The temperature dependence of the heat currents to the ther-
mal bath and the exchange current are expected to hold for a
small temperature difference, �T = Tm − T0. The boundary
conditions are

τd (xm) = τm = T 2
m

T 2
0

, τu(x0) = 1 = T 2
0

T 2
0

. (4)

An analytic solution to Eqs. (3), with the boundary condi-
tions given by Eq. (4), can be obtained for a small temperature
difference from T0, i.e., �T � T0, such that τi (x) = 1 +
δτi (x). Linearizing the equations, we find a new interaction
parameter, 1

ξd
= βα

2 , which we call the dissipation length.
Integrating the linearized differential equations with the ap-
propriate boundary conditions, τd (x) and τu(x) of the lower
edge are obtained,
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τ lower
d (x) = 1 +

(
N
2n̄

+ ξe

ξd

)
sinh [�(x0 − x)] + �ξe cosh [�(x0 − x)](

N
2n̄

+ ξe

ξd

)
sinh [�L] + �ξe cosh [�L]

e
− x−xm

2n̄ξe (τm − 1), (5a)

τ lower
u (x) = 1 + 1

nu

sinh [�(x0 − x)](
N
2n̄

+ ξe

ξd

)
sinh [�L] + �ξe cosh [�L]

e
− x−xm

2n̄ξe (τm − 1), (5b)

where L = x0 − xm, n̄ = nund

nu−nd
, N = nu+nd

nu−nd
, and � =

1
2n̄ξe

√
1 + 4n̄2 ξe

ξd
( N

n̄
+ ξe

ξd
). To determine τd/u(x) on the upper

edge, the number of edge modes needs to be interchanged,
nu ↔ nd , and for consistency with the direction of chirality
also τd ↔ τu, such that τ lower

d (x; nd, nu) = τ
upper
u (x; nu, nd ).

Numerically, we can go beyond the linearized regime, how-
ever, in doing so we found that small deviations from that
regime do not change the qualitative picture.

B. Normalized two-terminal thermal conductance

Assuming that heat can be transported from the hot contact
to the system only through the edge modes, the normalized
two-terminal thermal conductance κ is defined according to

JQ = 1
2κ0κ

(
T 2

m − T 2
0

)
, (6)

where JQ is the total heat current emanating from the hot
contact to the system, due to �T . This κ is composed of
two parts, corresponding to the heat flowing along the upper

and lower edges, which by assumption do not interact. Due to
energy conservation, the sum of the heat flowing in the edge
modes and the integrated heat dissipated to the thermal bath
should not depend on the position along the edge. Therefore,
the contribution of the lower edge to the two-terminal thermal
conductance is

κlower = Jd (x) − Ju(x) − Jp + ∫ x

xm

[
jd
b (x ′) + ju

b (x ′)
]
dx ′

1
2κ0

(
T 2

m − T 2
0

) ,

(7)

where Jp = 1
2κ0(nd − nu)T 2

0 is the persistent heat current in
the system at equilibrium, which has no divergence because
the upper edge has an opposite term. It is subtracted from both
edges in order to expose the net current above the equilibrium
current flowing in the system due to the chirality.

The normalized two-terminal thermal conductance of the
system is obtained by summing the contributions from both
edges. Plugging the temperature dependencies, given by
Eqs. (5a) and (5b), the two-terminal thermal conductance is
readily obtained,

κ (ξd, ξe, L) = κlower + κupper = 1

2n̄

nue
�L + nde

−�L

�ξe cosh (�L) + (
N
2n̄

+ ξe

ξd

)
sinh (�L)

+ (nu + nd )

(
�ξe − 1

2n̄

)
cosh (�L) + ξe

ξd
sinh (�L)

�ξe cosh (�L) + (
N
2n̄

+ ξe

ξd

)
sinh (�L)

. (8)

There are three competing length scales in our problem:
the system size L, the equilibration length ξe, and the dissi-
pation length ξd . Since we wish to discuss the thermal Hall
conductance, defined for a fully equilibrated edge system, it
is required that L � ξe, so that the edge modes are able to
equilibrate over the length of the system. Let us now elaborate
more on the temperature profiles and κ of the holelike states,
for both cases: (i) nu > nd and (ii) nd = nu = 1 (correspond-
ing to the ν = 2

3 state).

1. Hole-like states with nu > nd

The temperature profiles of the edge modes are given by
Eqs. (5a) and (5b), and κ is given by Eq. (8). To illuminate the
physics let us discuss the temperature profiles [Fig. 2(a)] and
κ in the following regimes:

Topological regime (ξd � L � ξe). The edge modes ex-
change energy with one another, and equilibrate to the temper-
ature of the upstream modes. In this regime their dissipation
of energy to the thermal bath is small. The normalized two-
terminal thermal conductance acquires the absolute value of

the topological value [7] with two corrections to leading
orders, κ = (nu − nd )[1 + 2 nd

nu
e
− L

n̄ξe ] + 4n̄nd
ξe

ξd
. The first ex-

ponential correction is due to the finite system size L, and the
second algebraic correction is due to dissipation to the bath,
that happens all along the edge.

Intermediate regime (L � ξd � ξe). Most energy is dissi-
pated to the thermal bath before arrival to the cold contact,
therefore the temperature profiles decrease to T0 on both
edges. However, the edge modes exchange energy before
dissipating it all to the thermal bath. Thus, to leading order,
κ acquires the absolute value of the topological value, with
an algebraic correction due to dissipation, κ = (nu − nd ) +
4n̄nd

ξe

ξd
. This correction can be of the order of (nu − nd ), so κ

is not universal in this case.
Nonuniversal regime (L � ξe � ξd ). The edge modes dis-

sipate all their energy to the thermal bath and therefore the
temperature profiles decrease to T0 very close to the hot
contact. The thermal conductance κ in this case is the total
number of edge modes leaving the hot contact, n = nu +
nd , with a correction due to a competition between ξe and
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(a)

(b)

FIG. 2. (a) Temperature profiles of the downstream and upstream modes on the upper and lower edges of a ν = 3
5 FQH state, described by

nd = 1 and nu = 2. The temperature profiles are plotted for different values of ξd relative to L and ξe, where L = 300 μm and ξe = 20 μm
[11]. (b) Temperature profiles of the downstream and upstream modes of a ν = 2

3 FQH state, described by nd = nu = 1. The upper and lower
edges exhibit the same temperature profile.

ξd , κ = (nu + nd ) − ξd

ξe
. This happens because the modes

emanating from the hot contact on both edges dissipate all the
energy to the external thermal bath, thus the heat conductance
is limited by the total number of modes emanating from the
hot contact. The number n = nu + nd is not universal, due to
processes such as edge reconstruction [35,36]. This limit and
the limit of a very short system, i.e., L � ξe, are qualitatively
similar.

2. ν = 2
3 state

The temperature profiles of the edge modes of the ν = 2
3

state are obtained by taking the limit of nu → nd = 1 in
Eqs. (5a) and (5b). Substituting the temperature profiles into
Eq. (7) we obtain κ for the ν = 2

3 state,

κ = 2

[
1 − 1

1 + ξe

ξd
+ � 2

3
ξe coth

(
� 2

3
L

)
]
, (9)

where � 2
3

= 1
ξe

√
ξe

ξd
(2 + ξe

ξd
). To illuminate the physics, let us

discuss the temperature profiles of the edge modes [Fig. 2(b)]
and κ in the corresponding three regimes:

The topological regime (ξd � L2

ξe
� ξe). The system is dif-

fusive, therefore the temperature profiles are linear along the
edges, with a constant difference. The thermal conductance
κ approaches the absolute value of the topological value [7]
with a leading order algebraic correction, due to a competition
between the equilibration length and the finite system size,
κ = 2

1+ L
ξe

.

The intermediate regime (L2

ξe
� ξd � ξe). The system dis-

sipates energy to the thermal bath, therefore the temperature
profiles are exponential, rather than linear. The thermal con-
ductance κ approaches the absolute value of the topological

value, with a leading order algebraic correction, due to the
competition between the equilibration and dissipation lengths,
κ = 2

1+
√

2 ξd
ξe

.

The nonuniversal regime ( L2

ξe
� ξe � ξd ). The edge modes

dissipate all their energy to the thermal bath, so the temper-
ature profiles decrease to T0 very close to the hot contact.
The thermal conductance κ approaches the nonuniversal value
of the total number of modes, with an algebraic correction
due to the competition between equilibration and dissipation,
κ = 2 − ξd

ξe
.

III. PROPOSED EXPERIMENTAL SETUP

This phenomenological theory may be tested by employing
quantum dots (QDs) as thermometers [14,37–39] for the
temperature at various points along the edge. The proposed
experimental setup, depicted in Fig. 3, couples QDs to the
edges of FQH liquids, and is based on measuring the resulting
thermoelectric current. To deduce the temperature profiles
from the thermoelectric current, the thermoelectric coefficient
needs to be known. Following Furusaki [40], the thermoelec-
tric coefficient GT of a QD in a normal state, weakly coupled
to two FQH liquids, can be calculated to linear order in the
temperature difference between the two FQH states. In this
regime, the thermoelectric coefficient is found to be related to
the conductance of the QD [32] as

GT = ε

e
G, (10)

where G is the linear electric conductance of the QD, e is the
electron charge, and ε is the energy difference between the
many-body ground-state energies of N + 1 electrons and N

electrons in the QD. Using this relation, the thermoelectric
coefficient of the QDs can be measured without applying
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FIG. 3. A schematic picture of the proposed experimental setup.
Two ohmic contacts are connected to a Hall bar at a FQH state,
with a chirality defined by the solid black arrow. A temperature
difference �T = Tm − T0 is imposed between the contacts [10,11].
Multiple numbers of QDs, depicted by the solid circles, are coupled
to both edges of the Hall bar. They are connected to ohmic contacts,
thus enabling measurement of the thermoelectric currents that pass
through them.

a temperature bias. Thus the temperature profiles can be
deduced from the thermoelectric current through the QDs,
upon introduction of a temperature difference �T .

A measurement of the temperature profiles allows for the
extraction of the dissipation length, the equilibration length,
and the sign of the thermal Hall conductance. For extraction
of the latter, the system needs to be in the topological regime
(ξd � L � ξe). In this regime, the edges are distinguished
by their temperature profiles, such that the edge which is
expected to carry the heat current, according to Ref. [7], is
hotter (Fig. 2).

IV. CONCLUSIONS

To conclude, the thermal Hall conductance is predicted to
be a universal and topological property of a FQH state, and

therefore can help determine the states in a more accurate way.
A recent experiment has managed to measure the absolute
value of the thermal Hall conductance of Abelian FQH states
[11], and is consistent with the prediction of Kane and Fisher
[7] regarding these states. It should be noted, however, that
Ref. [7] assumes the edge is a closed system with respect to
energy, while it was shown experimentally that there can be
energy dissipation from the edge [14].

In this Rapid Communication, we elaborated on the phe-
nomenological picture of the temperature profiles of the
edge modes of a FQH state with nd downstream modes
and nu upstream modes described in Ref. [11], by writ-
ing rate equations for heat transport through the edges, in-
cluding a dissipation term to an external thermal bath. By
solving the phenomenological equations, we found that the
two-terminal thermal conductance depends on the coupling
strength to the external thermal bath, in such a way that
when the coupling is extremely weak, the two-terminal ther-
mal conductance acquires a universal topological value, how-
ever, when the coupling is very strong, the two-terminal
thermal conductance is no longer universal, and is subject to
the influence of edge reconstruction effects [35,36].

Furthermore, we proposed to use QDs coupled to the edges
of a FQH state to, first, test the above theory and measure the
dissipation length and the equilibration length, and second, to
determine the sign of the thermal Hall conductance.
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