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Self-organizing maps as a method for detecting phase transitions and phase identification
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Originating from image recognition, methods of machine learning allow for effective feature extraction
and dimensionality reduction in multidimensional datasets, thereby providing an extraordinary tool to deal
with classical and quantum models in many-body physics. In this study, we employ a specific unsupervised
machine learning technique—self-organizing maps—to create a low-dimensional representation of microscopic
states, relevant for macroscopic phase identification and detecting phase transitions. We explore the properties
of spin Hamiltonians of two archetype model systems: a two-dimensional Heisenberg ferromagnet and a
three-dimensional crystal, Fe in the body-centered-cubic structure. The method of self-organizing maps, which
is known to conserve connectivity of the initial dataset, is compared to the cumulant method theory and is shown
to be as accurate while being computationally more efficient in determining a phase transition temperature. We
argue that the method proposed here can be applied to explore a broad class of second-order phase-transition
systems, not only magnetic systems but also, for example, order-disorder transitions in alloys.
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Introduction. Recently, machine learning has been sug-
gested as a tool to investigate many-body quantum systems
[1–31]. In essence, machine learning deals with systems with
an extremely huge number of degrees of freedom in data space
rather than in phase space of quantum statistics. It is therefore
not surprising that even networks of simple architecture can be
trained by means of supervised learning to detect very peculiar
phases in a variety of systems [5,6], including topological and
many-body localization phase transition [14]. The technique
relies on sampling a physical system in a weighted way, and
projecting the data onto hidden layers which filter out the irrel-
evant local fluctuations in the system, leaving only the large-
scale behavior determining the macroscopic properties [2,24].
Further, it was demonstrated [7] that restricted Boltzmann
machines can be used to formulate a very efficient many-body
wave-function ansatz depending on a relatively small number
of parameters even for a large number of spins (∼102), self-
adjusting via gradient descent-based reinforced learning. This
allowed for computing both ground states and dynamically
evolved states of large many-body systems, with excellent
accuracy. Furthermore, this algorithm has been generalized to
bosonic and fermionic Hubbard models [10,22]. The appli-
cation of machine learning to quantum-information problems
in condensed-matter physics has also received significant
interest recently, opening avenues for the direct experimental
observation of the entanglement entropy [25].

In the meantime, there is a growing interest toward a
versatile methodology that, on one hand, reduces the dimen-
sionality of the data space, while preserving its topology on
the other. In this Rapid Communication we propose a method

for determining phase transitions which, in contrast to the
previous studies handling Ising-like models, makes it possible
to associate the symmetry breaking during a second-order
phase transition with a noticeable change in the topology of
a certain space. We construct this target space based on a
number of microscopic states generated with Monte Carlo
simulations for two archetypal examples, namely, a two-
dimensional ferromagnet on a square lattice (2DFM) and bcc
iron (bcc Fe). We further apply an unsupervised machine
learning method in the form of self-organizing, or Kohonen,
maps (SOMs) and compare the obtained results with those
from cumulant method theory. We show that SOMs are able
to correctly produce relevant two-dimensional representation
of microscopic states, which allows one to visually observe
symmetry breaking through a phase transition. The machine
learning algorithms proposed here allow for a direct way for
determining the critical temperature, while an intuitive inter-
pretation of phase transitions in terms of principal component
analysis (PCA) is also possible.

Model systems. For a vast class of magnetic compounds
the microscopic description with high level of accuracy can be
achieved within the Heisenberg exchange model. Whereas the
Mermin-Wagner theorem establishes that an isotropic Heisen-
berg spin system in two dimensions cannot have a long-range
ordering, the addition of anisotropy to the model changes
the situation. The case of easy-plane exchange anisotropy is
commonly referred to as the XXZ model, a system which
akin to the XY model can display a Berezinskii-Kosterlitz-
Thouless transition [32]. With easy-axis exchange, or single-
ion, anisotropy, the system exhibits a second-order phase
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transition [33]. In the following we consider 2DFM on a
square lattice with single-site easy-axis anisotropy, as well as
the Heisenberg model for Fe in its ground state crystal struc-
ture (bcc). For 2DFM we consider a square lattice of classical
spins with edge length L, corresponding to a total number
N = L×L of sites, and use periodic boundary conditions. The
nearest-neighbor Heisenberg exchange is assumed to have a
typical strength for transition-metal systems, J = 1 mRyd,
and the parameter of easy-axis anisotropy is Kanis = 0.2
mRyd (see Supplemental Material, Sec. A [39]). For bcc Fe,
one may neglect the tiny magnetocrystalline anisotropy, and
the spin Hamiltonian is of pure Heisenberg type. However,
the exchange coupling parameters are long ranged, and have
here been obtained from first-principles electronic structure
calculations. Including up to the fourth coordination shell, we
use the same set of exchange couplings J1 = 1.3377 mRyd,
J2 = 0.7570 mRyd, J3 = −0.0598 mRyd, and J4 = −0.0882
mRyd as calculated and used in Refs. [34,35] for a L×L×L

conventional bcc lattice with periodic boundary conditions
as a simulation cell, corresponding to a number N = 2L3 of
spins (see Supplemental Material, Sec. A [39]).

In general, characterizing a phase transition requires a
proper identification of the temperature point where the order
parameter M (T ) goes to zero. For ferromagnetic Heisenberg-
like models the order parameter is defined as the average
magnetization per spin and in finite size systems the latter is
not sharp enough at high-temperature regime where the role
of fluctuations becomes important. To subdue this limitation
and correct for finite size scaling one can apply the cumulant
crossing method [36,37]. Direct application of this approach
to second-order phase transitions suggests that for Ising-like
models in the thermodynamic limit the Binder cumulant
U (T ) → 0 for T > Tc, whereas U (T ) → 2/3 for T < Tc as
the lattice size increases [36]. For large enough systems U (T )
for different lattice sizes cross at a fixed point which can be
identified with the critical temperature.

Dataset. To generate the appropriate spin configurations,
we employed Monte Carlo simulations, with a heat bath
algorithm for Heisenberg spin systems [38] as implemented
in the UPPASD software [35]. We use 105 Monte Carlo
steps for equilibration, and 106 Monte Carlo steps for the
measurement phase. A sampling interval of ten steps was used
for averages, susceptibility, total energy, and Binder cumulant
measurements. Moreover, a sampling interval of 1000 (or
10 000) steps was used for snapshots of the whole spin
configuration, resulting in up to 1000 (or 10 000) snapshots
for each system and size. The results of these simulations
are presented in the Supplemental Material, Sec. A [39]. We
note here, however, that they show a phase transition between
ferromagnetic and paramagnetic phases for both 2DFM and
bcc Fe. The critical temperature for the 2DFM is estimated
from Binder cumulants to be around Tc ≈ 222 K and for
bcc Fe Tc ≈ 915 K. For the machine learning method, we
use as our training set data from the cells with edge length
L = 80, L = 120, and L = 200 (with the total number of
spins being 6400, 14 400 and 40 000, respectively) for the
2DFM, and L = 24, L = 28, and L = 36 (with 27 648,
43 904, 93 312 spins) for bcc Fe.

Ideology of SOM. A SOM, first introduced by Kohonen
[40,41], represents a neural network that performs visualiza-

FIG. 1. Training of a self-organizing map (SOM). The distribu-
tion of the training data is depicted by a blob, and the small white
dot is the current training data chosen from that distribution. At first
(leftmost) the SOM nodes are arbitrarily located in the data space.
The highlighted node which is nearest to the training data is selected.
It is moved toward the training data, as are its neighbors on the
grid (but to a lesser degree). After many iterations the grid tends to
approximate the data set (rightmost).

tion and clusterization by projecting a multidimensional space
onto a lower dimensional one (most often, two-dimensional),
and is trained using unsupervised learning. A SOM consists
of components called nodes, or neurons, whose number is
specified by the analyst. Each node is described by two
vectors: the first one is the so-called weight vector, w, of the
same dimension as the input data, and the second vector, r ,
is the one which gives the coordinates of the node on the
map. The Kohonen map is visually displayed using an array of
rectangular or hexagonal cells, associated with the respective
node. During the training process, depicted schematically in
Fig. 1, the weight vectors w(r ) of the nodes approach the input
data: for each observation (sample), the node with the closest
weight vector is chosen, and its value moves toward the
sample, together with the weight vectors of several neighbor
nodes. The update formula for a weight vector w(r ) is

wn+1(r ) = wn(r ) + θn(r ′, r ) · αn · [dm − wn(r )], (1)

where n is the step index, m stands for an index in the training
set, dm is the sample vector, r ′ denotes the coordinates of
the node with the closest weight vector to the dm, and αn is
a monotonically decreasing learning coefficient. In Eq. (1),
θn(r ′, r ) is the neighborhood function which depends on
the grid distance between the neurons at r ′ and r . In the
simplest form it equals 1 for all neurons close enough to
r ′ and 0 otherwise, though the Gaussian function could be
an alternative option (regardless of the functional form, the
neighborhood function shrinks as n increases). Thus, if two
observations are close in the set of input data, they would
correspond to nearby nodes on the map. The repeating training
process, enumerating the input data, ends when the SOM
reaches an acceptable error (predetermined by the analyst), or
if a specified number of iterations is done. As a result, the
SOM classifies the data into clusters and visually displays
the multidimensional input onto a two-dimensional plane,
relating the vectors of similar characteristics to neighboring
cells (an illustration of training process is shown in Fig. 1).

Constructing a target space. To apply the methods de-
scribed above, one has to correctly organize the input data
into a target space (in our case, the spin states of the system
obtained from Monte Carlo simulations). Importantly, we
demand an internal geometry that reflects the regularities
that are of interest. The results of Monte Carlo simulations
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provide us with an array of K spin states for each selected
temperature at which they have been extracted (a higher
number of states were generated in the vicinity of the phase
transition temperature), and these states are represented by
3N -dimensional vectors, where N is the total number of
lattice sites multiplied by three projections (in x, y, and z

directions) of the spins. For convenience, we reshape this
array of states into a rectangular K×3N matrix,

S =

⎛
⎜⎝

s1,1
x s1,1

y s1,1
z . . . sN,1

x sN,1
y sN,1

z

...
. . .

s1,K
x s1,K

y s1,K
z . . . sN,K

x sN,K
y sN,K

z

⎞
⎟⎠,

(2)

where s
i,k
j is the ith-site spin projection on the j th axis in

simulation k.
The first and most obvious way to form the target space

is to take the rows of the matrix S as its elements, thus
obtaining for each temperature a set of K 3N -dimensional
vectors (in other words, to use directly a set of spin states).
However, the angular distribution of vectors from any of these
sets is practically isotropic, since each spin state obtained
using Monte Carlo simulations has a random direction of the
average spin, and the only information that we can get by
observing the modification of the geometry of such space, is
a change of its diameter with temperature. A more practical
geometry can be obtained by forming the target space out of
the columns of this matrix. In the following, we show that if
the system is in the magnetically ordered phase, a clustering
of the vectors of the constructed target space takes place,
whereas for the disordered phase this does not happen.

Clustering of the target space. Let us fix the temperature
T , and consider Monte Carlo step k of the sampling phase.
We then consider two columns, y(i, j ) and y′(i ′, j ′), of the
matrix S,

y(i, j ) =

⎛
⎜⎝

s
i,1
j

...
s
i,K
j

⎞
⎟⎠, y′(i ′, j ′) =

⎛
⎜⎜⎝

s
i ′,1
j ′
...

s
i ′,K
j ′

⎞
⎟⎟⎠. (3)

To write down y and y′ without their arguments, we also fixed
the first site number i, its projection j , and do the same with i ′
and j ′. In this way, we have two vectors y, y′ ∈ RK , which
are close, if the Euclidean distance between them is small
enough relative to some characteristic value, which, in our
case, should be the diameter of the target space. The physical
meaning of this proximity is that the given projections of the
corresponding lattice site states, described by these vectors,
are close in each simulation.

If the vector characterizing the microstate of the system
is calculated by averaging over the lattice, and its length
increases during some process, then vectors, describing lattice
site states become more codirectional, and vice versa, an
increase in the proportion of relatively codirectional vectors
over the lattice sites leads to an increase in the modulus of
the microstate parameter. This obvious reasoning, together
with the target space constructed above, forms the basis of
the here proposed phase determination method: in the case of
a high magnetization, for each simulation k, the projections

of the lattice sites spins on the same axis (j = j ′) are close
for the majority of sites i, while such a proximity of different
projections (j �= j ′) would mean that in a significant part
of the observations, the average spin tends to some specific
directions, contradicting the isotropic distribution of data,
obtained by the Monte Carlo simulation, e.g., represented by
the criterion

|yk (i, j ) − y ′
k (i ′, j ′)|j=j ′ < |yk (ĩ, j̃ ) − y ′

k (ĩ ′, j̃ ′)|j̃ �=j̃ ′ , (4)

for all k, j, j ′, j̃ , and j̃ ′. Thus, we can expect that in
the ferromagnetic phase, the vectors in the target space
will be grouped into clusters, corresponding to the pro-
jections onto x, y, and z axes, while in the paramag-
netic phase such clustering should be absent because of the
much more isotropic distribution of the lattice site spins.
Noteworthy, an intuitively clear PCA-based [42] graphi-
cal analysis of the magnetic phase transition unambigu-
ously demonstrates three (for bcc Fe) or two (for 2DFM)
well-separated clusters in the target space in the ferro-
magnetic phase, which are merging together in the disor-
dered phase. This is illustrated in the Supplemental Material,
Sec. B [39].

Clustering detection by SOMs. The advantage of using
SOMs relies on the fact that they allow one to construct a
two-dimensional projection of the multidimensional data dis-
tribution, while preserving the topology [43]. For this purpose,
the target space vectors are normalized and centered, a SOM
of a certain size is selected, a uniform distribution of the
weight vectors of the nodes is set, and the SOM is trained
according to Eq. (1). We observed best results for square maps
of ∼15×15 nodes, providing thus the size for which cluster
formation can be clearly distinguished (for more information
about choosing the map size, see Supplemental Material,
Sec. C [39]). All nodes of the trained map can be divided
into two types: those that are not activated even once during
training process (so-called dead neurons) and those that are
activated at least once. In the case of the ferromagnetic phase,
when Eq. (4) is fulfilled, groups of activated nodes, separated
by a band of dead neurons, are clearly visible on the map
[see Figs. 2(a) and 2(d)], which reflects the topology of the
target space. The presence of dead neurons is due to the fact
that falling close to the middle of the region between clusters,
the neuron weight vector, in full agreement with Eq. (1),
undergoes a multidirectional displacement during the learning
process, caused by alternate attraction from the neighbors that
have fallen into different clusters. Such oscillations compen-
sate each other on average, as long as the distance between
the clusters is significantly larger than their amplitude, but
as the temperature increases, the clusters become closer and
this condition breaks down making the position of the weight
vector unstable [see Figs. 2(b) and 2(e)]. The probability of
attraction to one of the clusters increases, which leads to a
sharp decrease in the number of dead neurons and allows us
to consider it as a characteristic parameter that specifies the
phase of the system [see Figs. 2(c) and 2(f)], i.e., the critical
temperature (for a more rigorous mathematical analysis, see
Supplemental Material, Sec. D [39]). From Figs. 2(c) and 2(f)
we conclude that the Curie temperature Tc ≈ 220 K for the
2DFM and Tc ≈ 915 K for bcc Fe, which is in excellent
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(K) (K)

FIG. 2. Neural activity in the SOM close to the phase transition. The gray cells represent the activated neurons, whereas the white ones
mark the dead neurons. Below the critical temperature: at T = 215 K for 2DFM, L = 120 (a) and at T = 890 K for bcc Fe, L = 28 (d) the
well-separated clusters of activated neurons are clearly visible. Above the critical temperature: at T = 225 K for 2DFM, L = 120 (b) and at
T = 920 K for bcc Fe, L = 28 (e) no clusters are present. The ratio of the dead neurons to the total number of neurons, Ndead/N , for different
lattice sizes as a function of temperature is shown for 2DFM (c) and bcc Fe (f). The sharp drop of Ndead/N indicates the phase transition,
revealing minor sensitivity to lattice size.

agreement with the results obtained from the Binder cumulant
analysis [39] and also reproduces experimental values of bcc
Fe. The sharp change of the SOM neural activity at the critical
temperature makes applications of this method more precise
as compared to PCA [39] and easier than cumulant method
theory, because the simulation of the only one system of
representative size is demanded; as one can see from Figs. 2(c)
and 2(f), plots of neural activity are almost the same for
biggest lattices, representing the fact that obtained results are
independent of the model size, since it becomes big enough
(a brief explanation is given in the Supplemental Material,
Sec. B [39]). Whereas in the Binder cumulant technique, a
set of different sized systems are needed.

Conclusions. In this Rapid Communication we proposed
an approach for phase detection in systems with second-order
transition, where the state is described by a large number
of vectors. The method is based on constructing a special
multidimensional target space with phase-related topology
and an unsupervised learning algorithm of SOMs that is used
to determine and visually observe a phase transition. We
applied the method to characterize the phase transition and
for calculating the critical temperature of a two-dimensional
ferromagnet on a square lattice and bcc Fe. Our findings reveal
an excellent agreement, being compared with results obtained
with the conventional technique of the Binder cumulant the-

ory. As opposed to the cumulant method theory that requires
one to scale up the size of a system, the here suggested
method allows one to make realistic predictions having Monte
Carlo simulations for one copy of the system of a certain
size only. The latter makes it possible to further utilize the
method for various applications in statistical physics and
condensed-matter systems, not only in magnetism but also,
for example, for order-disorder transitions in alloy theory. A
possible extension of the method proposed here is to provide a
deeper understanding of short-range order around phase tran-
sitions, where experimental data exists, e.g., based on muon
spin spectroscopy. We believe the proposed method can be
generalized for the problems of purely quantum-mechanical
nature as long as the elements of the corresponding system
are described by certain vectors in multidimensional space,
while the phase transition is associated with a change in their
angular distribution.
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