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Two-dimensional electron dispersions with peculiar band crossings provide a platform for realizing topolog-
ical phases of matter. Here, we theoretically show that the eg-orbital manifold of honeycomb-layered transition
metal compounds accommodates a plethora of peculiar band crossings, such as multiple Dirac point nodes,
semi-Dirac point nodes, quadratic band crossings, and line nodes. From a tight-binding analysis, we find that the
band topology is systematically changed by the orbital-dependent transfer integrals on the honeycomb network of
edge-sharing octahedra, which can be modulated by distortions of the octahedra as well as chemical substitutions.
The band crossings are gapped out by spin-orbit coupling, which brings about a variety of topological phases
distinguished by the spin Chern numbers. The results provide a comprehensive understanding of the previous
studies on various honeycomb compounds. We also propose another candidate materials by ab initio calculations.
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Two-dimensional materials with a layered structure have
attracted considerable attention as a good playground for
topological states of matter. The representative example is
monolayer graphene composed of a purely two-dimensional
honeycomb network of carbon atoms [1]. The low-energy ex-
citation in graphene is governed by π electrons in 2p orbitals,
whose energy dispersion has linear band crossings with the
Dirac point nodes (DPNs) at the Fermi level, called Dirac
cones. Stimulated by a theoretical proposal that the Dirac
electron system is potentially changed into a Z2 topologi-
cal insulator by relativistic spin-orbit coupling (SOC) [2,3],
graphene and similar honeycomb-monolayer forms of Si and
Ge have been studied [4,5]. In addition, few-layer graphene
has also received attention as the low-energy spectrum takes a
peculiar form depending on the stacking manner. For instance,
in a bilayer system with so-called AB stacking, DPNs turn
into quadratic band crossings (QBCs). As the QBCs possess
an instability toward a quantum anomalous (spin) Hall state
[6,7], the effect of electron correlations has been intensively
studied in bilayer graphene [8–11].

Recently, transition metal (TM) compounds with a similar
honeycomb-layered structure have gained great interest from
the peculiar band topology in their d-orbital manifolds. For
instance, DPNs, QBCs, and topological phases were found in
systems with a corner-sharing network of octahedral ligands,
e.g., [111] layers of the perovskite structure [12–16], and with
edge-sharing octahedra, e.g., trichalcogenides [17], trihalides
[18–21], corundum [22,23], and rhombohedral materials
[24–26]. Interestingly, the number and position of the DPNs as
well as the shape of the Dirac dispersions strongly depend on
the materials. This indicates that the honeycomb-layered TM
compounds potentially provide a variety of the band crossings
and topological phases with controllability by the d-orbital
degrees of freedom.

In this Rapid Communication, we theoretically show that
eg-orbital systems with edge-sharing octahedra can host a
plethora of peculiar band crossings and associated topolog-
ical phases of matter. Analyzing a tight-binding model for

the eg manifold, we find that a variety of band crossings
appears at half filling of the eg electrons, such as multiple
DPNs, semi-DPNs, QBCs, and line nodes. We find that the
band topology changes systematically for orbital-dependent
transfer integrals, which can be controlled by distortions of
the ligand octahedra as well as chemical substitutions. We
also show that the SOC turns the electronic states with the
different band crossings into different types of topological
phases characterized by spin Chern numbers, some of which
are unusually high or Z2 nontrivial. Our results provide a
systematic understanding of the existing ab initio studies for
honeycomb-layered TM compounds. Furthermore, we pro-
pose candidate materials by using ab initio calculations, which
potentially realize a wide variety of peculiar band topologies.

We consider a tight-binding model for the eg-orbital elec-
trons on a honeycomb network of edge-sharing octahedra as
shown in Fig. 1(a). In this structure, the important contribu-
tions to the transfer integrals come from the indirect paths via
the ligand p orbitals, as the wave functions of the eg orbitals
have large amplitudes in the ligand directions. We take into ac-
count the two types of dominant transfer integrals between the
same eg orbitals for nearest and third neighbors, t1 and t3, as
shown by the magenta and cyan lines in Fig. 1(a), respectively,
and construct a tight-binding Hamiltonian compatible with the
trigonal symmetry of the honeycomb lattice. The Hamiltonian
is given as

H = t1
∑

〈ij〉mnσ

(γ̂αij
)mnc

†
imσ cjnσ + t3

∑

〈ij〉′mnσ

(γ̂αij
)mnc

†
imσ cjnσ ,

(1)

where c
†
imσ (cimσ ) is the creation (annihilation) operator of an

electron for site i, orbital m = d3z2−r2 or dx2−y2 , spin σ =↑ or
↓; 〈ij 〉 (〈ij 〉′) denotes the nearest (third) neighbors, and αij =
1, 2, or 3 denotes the bond direction between the sites i and
j in Fig. 1(a). The matrices γ̂αij

are obtained as γ̂1 = (0 0
0 1),

γ̂2 = �̂γ̂1�̂
−1, and γ̂3 = �̂γ̂2�̂

−1, where �̂ is the threefold
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FIG. 1. (a) Schematic picture of a monolayer of honeycomb-
layered TM compounds. The gray and yellow spheres represent
the TM cations and the ligand ions, respectively. The magenta and
cyan dotted lines denote indirect paths of nearest- and third-neighbor
transfers t1 and t3, respectively, between the dx2−y2 orbitals repre-
sented by the red and blue ovals. The arrows 1, 2, and 3 indicate the
bond directions in Eq. (1). (b) Schematic picture of the indirect paths
for neighboring octahedra. θ denotes the deviation of the cation-ion-
cation angle from 90◦, which is caused by a trigonal distortion of
the octahedra. The overlapping faint square represents an undistorted
case with θ = 0◦. (c) θ dependence of the nearest-neighbor transfer
t1 in units of (pdπ )2/�dp; see Eq. (2) and the text. Schematic images
of distorted octahedra are shown in the inset.

rotational operation in the eg manifold. We will discuss the
validity of this model by ab initio calculations later. We note
that the t1-t3 model is particle-hole symmetric.

An interesting aspect in this model is that the transfer
integrals are sensitively modulated by distortions of the oc-
tahedra. Let us demonstrate this by considering t1 for a
trigonal distortion by the compression or expansion of the
octahedra perpendicular to the honeycomb plane as shown
in Fig. 1(b). The modulation of the d-p-d transfer integral is
approximately given as

t1 = −4(pdπ )2 + [−2(pdπ ) + √
3(pdσ ) cos2 θ ]2

2�dp

sin θ,

(2)

where (pdπ ) and (pdσ ) are the Slater-Koster parameters [27]
and �dp (> 0) is the energy level splitting between the d

orbitals of the TM cations and the p orbitals of the ligands.
This relation shows that not only the magnitude but also the
sign of t1 is changed by θ . Assuming (pdσ ) = −2.2(pdπ )
[28], we plot t1 as a function of θ in Fig. 1(c). Note that t1
vanishes in the ideal octahedral case with θ = 0. Considering
this aspect, we investigate the electronic structure by taking t1
and t3 as free parameters in the following analysis.

Figure 2(a) displays the phase diagram for model (1).
We find 12 states distinguished by the number, position, and
form of band crossings at half filling (two electrons per site
on average). The representative band structures in each state
are shown in the Supplemental Material [29,33]. The band
crossings evolve systematically while changing t1 and t3. For
instance, from state No. 1 to No. 3, peculiar band crossings
appear on the �-K lines at t3/t1 	 0.408 in addition to the
two DPNs at the K points (K and K ′), and they split into
two DPNs each by increasing t3. The peculiar band crossing

at state No. 2 is quadratic along the �-K lines but linear along
the perpendicular directions; we call this type the semi-Dirac
point node (sDPN) following previous works [34,35]. On the
other hand, from state No. 3 to No. 7, four DPNs at and around
the K point merge into a QBC, which is described by the
standard effective Hamiltonian [29], and they split again into
four; two of them merge again into an sDPN at the M point
and finally disappear (gapped out). Similar changes are seen
from state No. 10 to No. 12. In state No. 8 at t1/t3 = 0.5,
the six DPNs on the �-K lines are interconnected to form a
line node enclosing the � point. Meanwhile, in state No. 9
at t1/t3 = −1, the four DPNs merge with the DPN at the K

point, and at the same time, the upper and lower bands meet
at the � point to form a new DPN; the eigenstate of each DPN
at the � or K point is eightfold degenerate, (spin 2)×(orbital
2)×(sublattice 2). We note that the six DPNs in state No. 7
originate in the “band folding” by the dominant t3; suppose
t1 = 0, as the lattice sites connected by t3 form a honeycomb
structure with the twice larger lattice constant, the DPNs at
the K points are copied to the midpoints of �-K lines, as
discussed in a previous study [17].

The peculiar band crossings that we found can host topo-
logically nontrivial states in the presence of the SOC. Al-
though the orbital angular momentum is quenched in the eg

manifold, the eg manifold is influenced by the SOC through
the eg-t2g mixing in distorted octahedra. In particular, under a
trigonal distortion, the leading contribution is given as [12]

HSOC = − λ̃

2

∑

i

∑

mn

∑

σσ ′
c
†
imσ (τ̂y )mn(σ̂z)σσ ′cinσ ′ , (3)

where τ̂y (σ̂z) is the Pauli matrix in orbital (spin) space; here,
the xyz axes are taken as shown in the inset of Fig. 1(a) and the
quantization axis of spin is taken along the [111] direction.
The coupling constant is given as λ̃ = λ2�tri/�

2
cub, where λ

is the atomic SOC for the d orbitals, �tri is the trigonal field
splitting of the t2g orbitals, and �cub is the eg-t2g splitting
under the cubic crystal field.

In the presence of the effective SOC in Eq. (3), the elec-
tronic bands are split into four (twofold degenerate each). The
band splitting is shown by plotting the minimum direct gap be-
tween the adjacent bands in Fig. 2(b); � denotes the value for
the second- and third-lowest bands, while �′ for the first and
second (common to the third and fourth because the energy
bands are symmetric with respect to zero energy). We also
calculate the spin Chern number Cn for the nth-lowest band to
characterize the topological nature of each gapped state [36].
Note that Cn is well defined as the effective SOC does not mix
the different spin bands in the present case.

As shown in Figs. 2(b)–2(d), we find ten gapped states
I–X with distinct spin Chern numbers in the presence of the
effective SOC in Eq. (3). Between the gapped states, a band
crossing occurs (i.e., � or �′ vanishes), and the spin Chern
numbers for the crossed bands change their values. Around
t1/t3 = 0.5 and t1/t3 = −1, where the system realizes states
No. 8 and No. 9 in the absence of the SOC, respectively, � and
�′ change in a complicated manner, as shown in the enlarged
figures in Figs. 2(c) and 2(d). Our results indicate that the
model (1) exhibits various types of topological transitions in
the presence of the SOC.
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FIG. 2. (a) Phase diagram of the eg-orbital tight-binding model without SOC at half filling. There are 12 states categorized by the number,
position, and form of band crossings, which are schematically depicted in momentum space (the gray hexagons represent the first Brillouin
zone). The results remain the same by changing the signs of t1 and t3 simultaneously. Candidate materials are also listed (see the main
text). (b) The minimum direct gap opened by the effective SOC λ̃ = 0.1 in Eq. (3); � (solid curve) is the value between the second- and
third-lowest-energy bands, while �′ (dotted curve) between the first and second (common to the third and fourth). We also represent the values
of the spin Chern number Cn for the nth-lowest band, which distinguish ten states labeled by I–X. (c) and (d) show the magnified pictures of
(b) near the region with t1 = 0.5 and t3 = 1.0 and the region with t1 = −1.0 and t3 = 1.0, respectively.

Interestingly, the spin Chern numbers take unusually high
magnitudes in some phases. This is conspicuous in the regions
where t3 is dominant, e.g., C = ±6 in state IV and C = ±4 in
states V and VI. The high spin Chern numbers can be traced
back to the increased number of band crossing points due to
the band folding by t3 in the absence of the SOC [Fig. 2(a)];
the folded bands contribute to enhance the Berry curvatures
[17]. Such a folding effect is seen, for instance, in C1 and C4

in state V that are four times larger than those in states I and X;
this is exactly shown at t1 = 0 where the folded band perfectly
overlaps with the original one. Thus, our results indicate
that the honeycomb materials with a substantial contribution
from t3 potentially realize high topological numbers. The high
topological number leads to the corresponding number of
edge modes, whose multivalent nature would be useful for a
practical application.

We also note that some bands have odd spin Chern num-
bers. An odd spin Chern number signals a nontrivial state
such as the Z2 topological insulator protected by time-reversal
symmetry [2]. Therefore, states I, VII, and X, where C1 and
C4 are odd, share topological features with the Z2 topological
insulators found in previous studies for [111] layers of the
perovskite structure [12]. In addition, our results show that
C2 and C3 in states II and VI and all Cn in states VI, VIII, and
IX are also Z2 nontrivial.

Let us compare our tight-binding analysis with the previous
ab initio studies for the honeycomb-layered TM compounds.

Since our analysis so far is limited to a paramagnetic state,
it would apply to weakly correlated materials such as 4d and
5d electron TM compounds. For instance, for the trichalco-
genides MPX3 (M = Pd, Pt, and X = S, Se), multiple DPNs,
similar to those in state No. 7, were found around the Fermi
level in the paramagnetic state for both 4d Pd and 5d Pt cases,
while the former is a metastable state [17]. We note that PdPS3

was synthesized in a bulk form about half a century before,
while the electronic state was not studied [37]. Although for
3d-electron systems electron correlations may play a crucial
role, a similar band structure was also seen for the eg manifold
in BaFe2(PO4)2 though the Fermi level is in the t2g manifold
[24–26]. We note that our analysis also applies to the strongly
correlated cases where the electron interaction stabilizes a
largely polarized ferromagnetic state and the exchange poten-
tial splits the electronic bands into majority- and minority-spin
manifolds. Indeed, for the trihalide NiCl3 [19] and the layered
corundum structure (M2O3)1/(Al2O3)5 [23], DPNs similar to
those in state No. 1 appear in the spin-polarized eg manifold.
These observations are summarized below the phase diagram
in Fig. 2(a) (for trihalides MX3, see also below). Thus, our
tight-binding analysis provides a systematic understanding of
the existing ab initio results, and, furthermore, a useful guide
for further material exploration.

To further confirm our scenario, we discuss the electronic
structures of monolayer trihalides, with a focus on the 5d

example AuX3 (X = F, Cl, Br, and I), based on the ab initio
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FIG. 3. Electronic band structures of monolayers of (a) AuF3, (b)
AuCl3, (c) AuBr3, and (d) AuI3. The black (red) solid lines denote
the nonrelativistic (relativistic) band structures in the paramagnetic
state, which is stable for AuI3 and metastable for others. The blue
dotted lines represent the nonrelativistic band structures of the stable
magnetic states: the Nèel antiferromagnetic states for AuF3 and
AuCl3 and the ferromagnetic state for AuBr3. The Fermi level is
set to zero. (e) and (f) present the paramagnetic band structures for
AuCl3 with 3.5% and 4.43% compression, respectively.

calculations by OPENMX code [38] (see Supplemental Mate-
rial for the computational details [29]). Although previous
experiments for AuX3 reported other crystalline structures
in the bulk form [39–41], we here consider the honeycomb
monolayer form, which is obtained as a locally stable solution
by structural optimization in our ab initio calculations. In the
nonrelativistic calculations, we find that AuI3 is paramagnetic
but others are magnetic: the Nèel antiferromagnetic states

for AuF3 and AuCl3 and the ferromagnetic state for AuBr3

[blue dotted lines in Figs. 3(a)–3(c)] [29]. We show the band
structures including the paramagnetic solutions (black solid
lines) in Figs. 3(a)–3(d). Let us discuss the paramagnetic
band structures in comparison with our tight-binding results.
We find that AuF3 and AuCl3 possess DPNs at the K point,
similar to state No. 1, while AuBr3 and AuI3 possess multiple
DPNs on the �-K lines, similar to state No. 7 [see Fig. 2(a)].
Furthermore, as shown in Figs. 3(e) and 3(f), we find QBCs
and sDPNs in AuCl3 with a few percent compression of the
lattice structures, which are similar to states No. 4 and No.
6, respectively [29]. Table I summarizes the angle θ and
the transfer integrals estimated by the maximally localized
Wannier functions (MLWFs) [42,43] for these cases. These
results are explained by our tight-binding analysis: The DPNs
in AuF3 and AuCl3 are realized by the dominant nearest-
neighbor transfer t1 under a substantial compression of the
octahedra (large θ ), while those in AuBr3 and AuI3 result from
the dominant third-neighbor transfer t3 in almost ideal octa-
hedra (small θ ); the compressed AuCl3 locates in between.
We confirm that the other transfers, e.g., second- and fourth-
neighbor transfers, are less relevant compared to t1 and t3 [29],
which supports our t1-t3 model. The results demonstrate the
possibility of various band crossings in Fig. 2(a), through the
chemical substitution and lattice distortions, once the param-
agnetic state is stabilized. We note that the band crossings are
retained even for the stable ferromagnetic solution for AuBr3

in each exchange-split band, as shown in Fig. 3(c). When the
SOC is included in the relativistic calculations (red dotted
lines in Fig. 3), all the DPNs are gapped out, as predicted in
our tight-binding analysis. We note that the effect of the SOC
is relatively large on AuF3 and AuI3, which is also understood
by our tight-binding analysis with large �tri and small �cub in
Eq. (3), respectively.

To summarize, we have theoretically investigated the elec-
tronic structure of the honeycomb-layered TM compounds
with eg electrons. We found that the eg electronic dispersions
show a series of peculiar band crossings, and in the presence
of the SOC, they turn to be different topological states distin-
guished by the spin Chern numbers. These band crossings and
topological states can be realized and controlled by chemical
substitutions and distortions of octahedra. Indeed, we showed
that the previous ab initio results are understood in a com-
prehensive manner according to our analysis. Furthermore,
we proposed by ab initio calculations that trihalides MX3 are

TABLE I. The angle θ [see Fig. 1(b)] and the transfer integrals between MLWFs obtained by the nonrelativistic ab initio calculations for
AuX3 (X = F, Cl, Br, and I) with the optimized structures and for AuCl3 with the compressed structures in the paramagnetic solution. Each
value of the transfer integrals means 〈dm, 0| H |dn, r〉, where H is the Hamiltonian of the system and |dm, r〉 is the dm-like MLWF at site r (m
= 3z2 − r2 or x2 − y2). We take r = R1 and R3 in the left and right column, respectively [0, R1, and R3 are illustrated in Fig. 1(a)]. The unit
of transfer integrals is in meV.

AuCl3 AuCl3 AuCl3

AuF3 (opt.) (3.5%) (4.43%) AuBr3 AuI3

θ 17.5◦ 9.1◦ 5.1◦ 3.4◦ −0.4◦ −3.2◦

d3z2−r2 , d3z2−r2 −50 5 −16 0 −2 −3 1 −8 15 −22 53 −35
d3z2−r2 , dx2−y2 0 0 0 0 0 0 0 0 0 0 0 0
dx2−y2 , d3z2−r2 0 0 0 0 0 0 0 0 0 0 0 0
dx2−y2 , dx2−y2 313 10 85 17 53 32 39 48 21 96 41 163
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good candidates that realize a wide variety of the band topol-
ogy. Our findings would stimulate further material exploration
toward the exotic phases of matter in the honeycomb-layered
materials. They would also offer a interesting platform for
the study of electron correlation effects on various topological
states.
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