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Ballistic transport experiment detects Fermi surface anisotropy of graphene
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Monolayer graphene and bilayer graphene have strikingly different properties. One such difference is the
shape of the Fermi surface. Although anisotropic band structures can be detected in optical measurements, they
have so far been difficult to detect in transport experiments on two-dimensional materials. Here we describe
a ballistic transport experiment using high-quality graphene that revealed Fermi surface anisotropy in the
magnetoresistance. The shape of the Fermi surface is closely related with the cyclotron orbit in real space.
Electron trajectories in samples with triangular lattices of holes depend on the anisotropy of the Fermi surface.
We found that this results in magnetoresistance that is dependent on crystallographic orientation of the antidot
lattice, which indicates the anisotropic Fermi surface of bilayer graphene that is a trigonally warped circle in
shape. While in the monolayer, the shape of magnetoresistance was approximately independent of the orientation
of antidot lattice, which indicates that the Fermi surface is a circle in shape. The ballistic transport experiment is
a different method of detecting anisotropic electronic band structures in two-dimensional electron systems.

DOI: 10.1103/PhysRevB.99.035440

I. INTRODUCTION

The electronic band structures of monolayer graphene
and bilayer graphene are strikingly different [1], and the
difference appears in various properties. One example is the
bandgap between the conduction and valence band. Mono-
layer graphene is a semimetal and does not have a band gap.
However, in bilayer graphene, a band gap appears by applying
a perpendicular electric field [2–5]. The difference in the
band structure can be directly revealed in the Landau level
structures in the measured magnetoresistance. The difference
between mono- and bilayer graphene lies in the shape of the
Fermi surfaces as well. Fermi surfaces of graphene are more
or less trigonally warped circles; i.e., the Fermi surfaces are
deformed circles with threefold rotational symmetry. How-
ever, trigonal warping of monolayer graphene is negligible in
the low-energy regime, E < 250 meV, where samples used
in transport experiments typically have carrier densities of
|n| < 4 × 1012 cm−2. On the other hand, band calculations
indicate that the Fermi surface of bilayer graphene is a
rounded triangle [see Fig. 1(a)] except in the vicinity of the
charge neutrality point. The shape of the Fermi surface is
closely related with the shape of the electron orbit in real
space in the presence of a magnetic field. In the semiclassical
picture, the wave vector of an electron varies according to
the semiclassical equation of motion under the influence of
Lorentz force. The wave vector evolves along the Fermi
surface. If the Fermi surface is circular, the real space orbit
of the electron becomes a circle, and if the Fermi surface is
a deformed circle, the real space orbit of the electron is a
deformed circle [see Fig. 1(a)]. This shape of orbit would be
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able to be detected by measuring magnetoresistance due to the
ballistic transport of an electron in a magnetic field in samples
with electron reflectors that interfere with electron cyclotron
motion. An example of such samples is triangular graphene
antidot lattices with holes drilled in the graphene to form a
triangular lattice.

The electron trajectory in the antidot lattice would vary
significantly if the cyclotron orbit is a circle or deformed
circle because of the reflection at the antidots. The differ-
ence between electron trajectories due to reflections can be
detected by using the commensurability magnetoresistance of
the antidot lattices. If the density of impurity in the conductor
is sufficiently low, the electron mean free path (l f ) becomes
sufficiently long, and the electron’s motion in the conduc-
tor becomes ballistic and its orbit becomes a circle in the
magnetic field. Collisions with antidots generally complicate
trajectory of the electrons. However, at the magnetic field
where cyclotron diameter Rc satisfies the condition

2Rc = a, (1)

a peak appears in the magnetoresistance that is due to the com-
mensurability of the lattice period and the cyclotron diameter
[6–10]. Here, a is the distance between centers of neighboring
antidots. This is condition 1 illustrated in Fig. 1(b), where
an electron starting from an antidot collides with the next
nearest antidot. More resonant conditions are possible, e.g.,
conditions 2 and 3 in lower magnetic fields.

That the cyclotron orbit from one antidot to the other
affects magnetoresistance properties suggests that the antidot
lattice could be used to detect anisotropy of the Fermi surface
[11]. To illustrate the basic idea, here we consider the simplest
cases in panels (i)–(iii) of Fig. 1(b). Panel (i) is for an isotropic
Fermi surface. Rotating the antidot lattice would not result in
a significant change in the electron trajectories, so that the
magnetoresistance would be unchanged. On the other hand,
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FIG. 1. (a). Dispersion relation of graphene (i), shapes of Fermi surface (ii), and cyclotron orbit (iii) are displayed for bilayer (2L) and
monolayer (1L) graphene. K and K ′ indicate the valley. (b). (Left) Cyclotron orbits showing commensurability peaks in a triangular antidot
lattice. (Panels i–iii) Shapes of electron trajectories in magnetic field and antidot lattice.

in the case of a trigonally warped Fermi surface, rotation of
the antidot lattice results in a significant difference in the
electron trajectory from one antidot to another, as shown in
panels (ii) and (iii). In panel (ii), long partial cyclotron orbits
from one antidot to the other are possible as shown by the
arrows. However, no such long trajectories are possible in
panel (iii). The rotation of the antidot lattice results in a
difference in the possible partial cyclotron orbits and would
result in a different magnetoresistance. This kind of Fermi
surface anisotropy has not been reported, to our knowledge,
in past studies on graphene antidots [12–14].

II. SIMULATION BASED ON A MODEL FERMI SURFACE

Before we show our experimental results, we verify the
above expectations through numerical simulations. We per-
formed a numerical calculation of magnetoresistance in a
triangular antidot lattice. The conductivity of this system in
the presence and in the absence of magnetic fields can be
calculated from [15],

σij = A
∫ ∞

0
〈vi(0)v j (t )〉ave−t/ τ dt . (2)

Here, vi and v j are the i and j components of the group
velocity of the wave packet and are calculated by using the
semiclassical equation of motion. 〈· · · 〉av is an average over all
possible initial states in phase space, τ is the relaxation time
associated with impurity scattering, and A is a constant. The
conductivity calculated with Eq. (2) is strongly influenced by
the deformation of the Fermi surface. In the actual calculation
we evaluated Eq. (2) using a model Fermi surface that has an
analytic form,

k = k0(1 + α · cos(3θ )). (3)

Here (k, θ ) denotes polar coordinates describing the mag-
nitude of the wave vector and azimuthal angle. The parameter
α tunes the degree of trigonal warping. When α = 0, the
Fermi surface is circular and isotropic. A slight trigonal warp-
ing in monolayer graphene can be expressed by α ≈ 0.01. The

resultant shape of the Fermi surface is virtually unchanged
from the case of α = 0. The model Fermi surface with α =
0.1 is approximately that of bilayer graphene calculated by a
band calculation for carrier densities at which experiments are
usually done (see the Appendix).

Electron (or hole) trajectories were calculated semiclas-
sically assuming that the electrons (or holes) are specularly
reflected at the boundary of the antidots. The antidot lattice
can be characterized by d/a, where a is the distance between
the center of adjacent antidots and d is the diameter of the
antidot. In the calculation, d/ a = 0.2 was used.

Figure 2(a) shows results for α = 0.01. The horizontal axis
a/Rc = eaB/(h̄k0) is proportional to the magnetic field. This
is the case for monolayer graphene which has an approxi-
mately circular Fermi surface. The magnetoresistance does
not significantly vary with θ . Oscillatory peaks are visible at
l f > a. The highest peak, marked with an arrow at a/Rc =
2 is the commensurability peak associated with the nearest
neighbor antidots [case 1 in Fig. 1(b)].

The shape of the background magnetoresistance (low
field magnetoresistance without peaks for commensurability)
is relevant to the degree of the anisotropy of the Fermi
surface. Figures 2(b)–2(d) show the results of the numer-
ical simulation for different values of α. It is clear that,
with increasing anisotropy parameter α, positive background
magnetoresistance appears in low magnetic fields, and it
shows a significant θ -dependence. In addition, for small α

(�0.2), magnetic fields for commensurability peaks are
approximately unchanged while they show variations for
larger α.

III. EXPERIMENTAL RESULTS

In order to detect Fermi surface anisotropy, we performed
an experiment on samples of antidot lattices with primitive
vectors having different directions as shown in Fig. 3(a).
Fermi surface anisotropy can be detected through the relative
orientation of the crystal lattice and reciprocal lattice. In the
effective mass approximation, the x-axis is often used as a
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FIG. 2. Numerical simulation of magnetoresistance of antidot
lattices. Magnetoresistance calculated for different values of α. Inset
in upper part of each panel shows the shape of the model Fermi
surface. l f /a = 2. Data were offset. (a) Results for α = 0.01. The
Fermi surface is approximately isotropic. Upper left inset shows
results of simulation for different values of l f /a. α = 0. (b) The case
of α = 0.1. Upper right inset shows definition of rotation angle θ

between the honeycomb lattice of graphene and the antidot lattices.
(c) The case of α = 0.2. (d) The case of α = 0.3.

zigzag direction, and the y axis is the armchair direction.
The directions of the kx and ky axes in reciprocal space are
the same as those of the x and y axes in real space so that
orientation of the Fermi surface can be relatively determined
by the zigzag or armchair directions [see Fig. 1(a)]. Me-
chanically exfoliated graphene flakes often have straight sam-
ple edges. These edges are presumably zigzag or arm chair

(a)
(b)

FIG. 3. Sample structure. (a) Schematic diagram of sample struc-
ture of graphene antidot lattice samples. (b) Optical micrograph of
graphene antidot device. The thick white line in the lower panel in-
dicates a cleave line of graphene. The primitive vector of a triangular
antidot lattice was rotated by 0◦ and 30◦ from the cleave line. Probe
numbers are indicated by 1–5.

types [16–18]. We fabricated two set of antidot lattices with
the same lattice constant but with different orientations on
the same graphene flake [Figs. 3(a) and 3(b)]. One of the
antidot lattices has a primitive vector parallel to the cleaved
line (possibly a zigzag edge). The other has a primitive vector
tilted by 30◦ relative to the cleaved line. The distance between
the centers of the antidot was 700 nm and the diameter of the
antidots was about 200 nm.

Our high-quality graphene sample is encapsulated by high-
quality h-BN flakes. An optical micrograph of a sample is
displayed in Fig. 3(b). The mobility μ = σ/ ne was estimated
to be about μ = 60 000 cm2/Vs at large carrier densities. The
mean free path of the graphene was about a few μm, which
was larger than the lattice constant of the antidot.

The magnetoresistance results for the bilayer graphene
antidot samples with θ = 0◦ and θ = 30◦ showed qualita-
tively different behavior. First, we checked that the sample
is bilayer graphene. In high magnetic field, a Shubnikov–de
Haas oscillation was observed as shown in the top and middle
panels in Fig. 4(a), which is a map of the derivative of the lon-
gitudinal resistivity with respect to magnetic field (dRxx/dB)
measured at T = 4.2 K, as a function of gate voltages and
magnetic field. θ = 0◦ and 30◦ denote experimental results
for antidot lattice samples whose angle between crystal axes
of graphene and antidot lattice are 0◦ and 30◦, respectively.
The fan-shaped structure appearing above about 1 T originates
from the Landau levels of bilayer graphene. The zero-mode
Landau level appears near Vg = 0 V. It has twice the carrier
density compared with other Landau levels, as can be seen in
the positions of energy gaps between the Landau levels shown
by bars at the top of the figure. This is consistent with the
fact that the zero-mode Landau level of bilayer graphene has
eightfold degeneracy, whereas the other Landau levels have
fourfold degeneracy. A plot of Landau level index N vs 1/B
shows that an extrapolation of the linear relation to 1/B = 0
gives an intersection of N = 0 as shown in the bottom panel
in Fig. 4(a), which indicates bilayer graphene [1].

The commensurability peak associated with the nearest
neighbor antidots is at about B = 0.6 T, which is marked
with the arrows in Fig. 4(a). In the bilayer case, the com-
mensurability condition is approximately given by Eq. (1).
Accordingly the magnetic field Bp for the peak is given by
Bp = 2h̄

√
πn/ (ea); i.e., Bp shows a square-root dependence

on carrier density because n ∝ Vg [13]. The square root depen-
dence on n of the commensurability peaks is thus a sublinear,
which is apparently distinct from the linear dependence of the
stripes due to Shubnikov–de Haas oscillations appearing at
higher magnetic fields.

Figure 4(b) shows magnetoresistance traces of the samples
with θ = 0◦ and θ = 30◦ for different gate voltages. In both
cases, we can see some peaks below B < 1 T. The largest
peaks indicated by the arrows are commensurability peaks
arising from matching of the cyclotron diameters with the
distance between the centers of the nearest-neighbor antidots.
The peaks obey the condition, Bp = 2h̄

√
πn/(ea). Peaks

that appear in lower magnetic fields are due to a similar
commensurability effect relevant to the next-nearest-neighbor
antidots, the second-nearest-neighbor-antidots [cases 2 and
3 in Fig. 1(b)], etc. Oscillations appearing between B = 1
and 2 T are due to the Shubnikov–de Haas effect. The most
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FIG. 4. Commensurability peak in bilayer antidot lattice sam-
ple. (a) (Top and middle) Maps of dRxx/dB with respect to mag-
netic field and gate voltage of bilayer graphene. Arrows indicate
commensurability peaks. (Bottom) A plot of Landau index vs
1/B for resistance minima of the Shubnikov–de Haas oscillations.
(b) Magnetoresistance traces for different gate voltages. Resistance
was normalized by that at B = 0. From bottom to top Vg was varied
from −50 to 40 V in 10 V steps. Data are shifted for clarity. Current
was applied by using probe 1 and 5. The voltage drop between probes
2 and 3 was measured for θ = 0, and that between 3 and 4 was
measured for θ = 30◦. (c) A similar plot as panel (a) for monolayer
graphene. (d) Similar plots as panel (b) for monolayer graphene.

important difference between these figures is in the overall
shapes of the low field magnetoresistance without peaks
for the commensurability (background magnetoresistance). In
particular, the sample with θ = 0◦ shows positive background
magnetoresistance in low magnetic field, while samples with
θ = 30◦ shows slightly negative background magnetoresis-

tance. The observed magnetoresistance is not due to Hall
resistivity arising from the sample geometry. Any contribution
from the Hall resistivity to the data is removed by averaging
the magnetoresistance traces for B and –B. Data in the vicinity
of the charge neutrality point (Vg = 0 V) showed different
behaviors from that of the simulation. Magnetoresistance is
affected by quantization of Landau levels with small Landau
indices and by the divergent magnetoresistance reported in,
for example, Refs. [19,20].

On the other hand, significant anisotropy was not observed
in the monolayer graphene antidot lattice samples. Results are
displayed in Figs. 4(c) and 4(d). As in the case of bilayer
graphene, a fan-shaped structure is discernible in the mapping
plot of dRxx/dB with respect to Vg and B. From this fan dia-
gram, one can verify that the measured sample is single-layer
graphene, because the zero-mode Landau level is fourfold
degenerated, as can be seen from the identical intervals be-
tween the adjacent gaps at high magnetic fields. A plot of the
index of Landau levels N vs 1/B showed the intersection of
N = 0.5 at 1/B = 0 as shown in the bottom panel in Fig. 4(c),
which indicates the Berry phase of π in monolayer graphene.
The commensurability magnetoresistance peaks appear at the
magnetic fields indicated by the arrows in the figure. There
is no significant difference between the results of the samples
with θ = 0◦ and θ = 30◦, and this contrasts with the results
for bilayer graphene.

An important feature of our experimental data on bilayer
graphene is approximately reproduced by the simulation with
α = 0.1, as shown in Fig. 2(b). It is clear that the magnetore-
sistance traces show significant θ dependence. In particular,
the results for θ = 0◦ show that a positive background mag-
netoresistance as compared with the result for θ = 30◦, which
even shows slightly negative background magnetoresistance,
is similar to the monolayer case. This indicates that the model
Fermi surface with α = 0.1 approximates the actual Fermi
surface of bilayer graphene for the carrier density regime of
the experiment, 1 − 3 × 1012 cm−2. This is consistent with re-
sults for the band calculation (see the Appendix). Shubnikov–
de Haas oscillations, which were observed above B = 1 T, do
not appear in our simulation based on the semiclassical model.

IV. DISCUSSION

Graphene nanoribbons are another kind of system in which
the crystal axis plays a crucial role, as in our system. The
electronic band structure is predicted to be highly dependent
on the edge structure (zigzag or armchair) of the nanoribbon
[21–25]. To date, there have been experiments on commen-
surability magnetoresistance in monolayer graphene, where
the rotation angle of crystal lattice relative to the antidot
lattice was not considered [13,14]. The present result is con-
sistent with the previous findings. On the other hand, we
previously reported on commensurability magnetoresistance
in monolayer and bilayer graphene antidot samples, where
rotation angles of the crystal lattice and antidot lattice were
not determined clearly [13]. In the study we found that the
shape of the magnetoresistance of bilayer graphene antidots
was qualitatively different from that of monolayer graphene,
but the origin of the difference remained unclear. Here we
have shown that it is possibly due to Fermi surface anisotropy.
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Graphene nanoribbons are another kind of system in which
the crystal axis plays a crucial role, as in our system. In
principle, it would be possible to detect the edge structure,
zigzag or armchair, by measuring the transport properties of
the nanoribbon, and determine the crystallographic orienta-
tion of the edge. However, at the present stage, the roughness
of the edge poses a significant problem to making transport
experiments [26–36]. On the other hand, one can extract
information on the orientation of the crystallographic axes by
using antidot lattices. Because we measured ballistic electron
transport, issues regarding edge roughness are virtually irrel-
evant.

A magnetofocusing experiment [37] is similar to the an-
tidot lattice experiment. In a local picture, the antidot ex-
periment is approximately the same as a transverse electron
magnetofocusing experiment [37]. An important difference
is the presence of many antidots in the sample. They serve
as reflectors during the magnetofocusing-like process from
one antidot to the other antidots. The electron trajectory is
determined by the magnetic field, antidot lattice parameters,
and the shape of the cyclotron orbit, which reflects the shape
of the Fermi surface, and it results in a different magnetoresis-
tance. It is not clear whether Fermi surface anisotropy can be
detected by using the magnetofocusing effect. We expect that
it can be observed by scanning gate microscopy to visualize
the spatial distribution of the cyclotron motion [38].

Regarding the methods of detecting the shape of the Fermi
surface through transport measurements, Shubnikov–de Haas
oscillations can be measured for various magnetic field angles
in three-dimensional samples [39]. Moreover, in the case
of a cylindrical Fermi surfaces, angular-dependent magne-
toresistance oscillations can be used to map out the shape
of the Fermi surface [40–43]. However, in two-dimensional
electron systems, a tilted magnetic field cannot be used to
get information on the shape of the Fermi surface. Ballistic
transport experiments using antidots are thus promising means
of probing the Fermi surfaces of a variety of two-dimensional
materials.

V. SUMMARY

Commensurability magnetoresistance in antidot lattices re-
flects the shape of the cyclotron orbit, which again reflects the
shape of the Fermi surface. We found that this results in back-
ground magnetoresistance (low field magnetoresistance with-
out peaks for commensurability), which is strongly dependent
on the crystallographic orientation of graphene and antidot
lattice. By conducting magnetotransport measurements using
an antidot lattice, we have demonstrated an anisotropic Fermi
surface in bilayer graphene and an approximately isotropic
Fermi surface in monolayer graphene. The observed behavior
was explained by calculations within semiclassical theory.
This method can be used to detect Fermi surface anisotropy
in two-dimensional materials.
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APPENDIX: DETAILS OF EXPERIMENT AND
CALCULATION

1. Sample fabrication and magnetotransport
measurements

Our graphene antidot lattice samples were made using en-
capsulated graphene formed by using the technique described
in Ref. [44]. Figure 5 shows the steps of sample fabrication.
An exfoliated graphene was picked up with a thin h-BN
flake formed on a poly (propylene carbonate) (PPC) film
by using mechanical exfoliation of bulk h-BN crystal. Then
the h-BN-graphene stack was transferred onto an h-BN flake
on a SiO2/Si substrate to form encapsulated graphene. The
heavily doped Si substrate, which is conducting even at low
temperature, served as a back gate. An antidot lattice was
formed by using standard electron beam lithography. Organic
electron beam resist was coated on the encapsulated graphene,
and it was patterned into triangular lattices of small holes.
Then the encapsulated graphene was plasma etched with a
mixture of low pressure CF4 and O2 gas to form an antidot
lattice structure.

Electric contacts were formed by using the technique de-
scribed in Ref. [44]. Electric leads were formed by using
electron beam lithography and the lift-off technique.

The magnetoresistance of the samples was measured at
T = 4.2 K by applying a perpendicular magnetic field with a
superconducting solenoid. Resistance was measured by using
the standard lock-in technique.

FIG. 5. Sample fabrication process. G is graphene, B is a thin
h-BN flake, S is a SiO2/Si substrate, and P is a PPC film. The
dashed white line indicates a cleaved line. Numbers from 1 to 5
indicate fabrication steps. Step 1 and 1′: graphene and thin h-BN
flakes were made by mechanically exfoliating bulk crystals. Step
2: graphene was picked up with a thin h-BN flake on a PPC film.
Step 3: the graphene/h-BN stack was transferred on another h-BN
flake to form encapsulated graphene. Step 4: electron beam resist was
pattered to form masks for the plasma etching process. Samples and
antidot lattices were patterned by plasma etching. Step 5: samples
were patterned by using plasma etching. Two antidot lattices with
different orientations relative to the crystal axis were patterned using
the same encapsulated graphene.
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FIG. 6. Model Fermi surface of bilayer graphene. (a) Fermi
surface of bilayer graphene (left) and monolayer graphene (right),
which was calculated by the effective mass approximation. Constant
energy surface of the dispersion relation were plotted. Slonczewski–
Weiss–McClure parameters for this calculation were the same as
those of graphite. (b) A model Fermi surface described by k =
k0(1 + α cos 3φ) is compared with band calculation. Here, results for
a valley are displayed.

2. Model Fermi surface

Figure 6(a) shows a constant energy contour plot of
the dispersion relation for mono- (right) and bilayer (left)
graphene. The dispersion relation was calculated on the basis
of the effective mass approximation. Slonczewski–Weiss–
McClure parameters were the same as those of graphite,
γ0 = 3.16 eV, γ1 = 0.39 eV, γ2 = −0.02 eV, γ3 = 0.3 eV, and
	p = 0.037 eV. The energy for the contour plot is for carrier
densities of |n| < 4 × 10−12 cm−2. The Fermi surface of the
monolayer graphene is approximately circular while that of
the bilayer is a rounded triangle. To calculate the magneto-
conductivity component, we used a model two-dimensional
Fermi surface (kx, ky) which is described by the polar axis
(k, φ) as

k = k0(1 + α cos(3φ + φ0)). (A1)

Here, α is a parameter that describes trigonal warping. φ0

is a parameter that specify valleys, i.e., K or K′ point in the
reciprocal space. φ0 = 0, and π represents K and K′ valleys,
respectively. Figure 6(b) shows the shapes of the model Fermi
surfaces for different values of α. Monolayer graphene is for
α = 0, and the Fermi surface is a circle. The result with α =
0.1 approximates the shape of the Fermi surface of bilayer
graphene.

3. Trigonal warping of monolayer graphene

Low energy band structure of monolayer graphene near the
K and K′ points can be described by the Hamiltonian based on

FIG. 7. Trigonal warping in monolayer graphene. (a) Energy
contours of the dispersion relation of monolayer graphene for dif-
ferent energies, which were calculated using Slonczewski–Weiss–
McClure parameters of graphite. ξ = 1. (b) Comparison of Fermi
surface shapes of monolayer graphene for E = ±0.25 eV. Solid and
broken lines are for calculations with and without trigonal warping.

the effective mass approximation [45]:

Ĥ =
(

0 v0(ξ p̂x − i p̂y)

v0(ξ p̂x + i p̂y) 0

)
. (A2)

Here, v0 = √
3aγ0/2h̄, and a is the lattice constant of

graphene. p̂x and p̂y are momentum operators, respectively. ξ

is a valley index for K (ξ = 1) and K ′ (ξ = −1) valleys. This
Hamiltonian leads to dispersion relations that are isotropic,
and hence the Fermi surface is circular. Trigonal warping of
monolayer graphene originates from a higher order term in the
kp scheme [46,47]. We have numerically calculated the dis-
persion relation considering the additional term [Eq. (3.6) in
Ref. [46] with θ = 0] using the Slonczewski–Weiss–McClure
parameter of graphite (γ0 = 3.16 eV, γ1 = 0.39 eV). The
energy contour is shown in Fig. 7(a). For large energies (E =
±1 eV), trigonal warping similar to that of bilayer graphene
is clearly visible. With decreasing |E |, the effect of trigonal
warping tends to vanish. Figure 7(b) is the energy contour at
E = ± 0.25 eV, at which the carrier density is expected to
be about 4 × 1012 cm−2, which is larger than the maximum
carrier density in the present transport experiments. The red
solid line is the results of calculation by considering trigonal
warping. This approximately coincides with a circular one
(blue dashed line), which is calculated without considering
trigonal warping.

4. Scatterings and magnetoresistance

How an electron wave packet is reflected at the graphene
edge is an important problem in graphene research. It is still
unclear experimentally because of the difficulty of forming
graphene samples that have particular edge inclinations. Tay-
chapatanat et al., by observing the magnetofocusing effect
with higher order peaks, found that the reflections of an
electron by the sample edge are specular [37]. Masubuchi
et al. reported that the reflections are diffusive, by performing
edge scattering experiments using nanowire [48]. The edge
structure of our antidot samples could be complicated, pre-
sumably very rough, rather than zigzag or armchair because
they were made by drilling holes with a plasma etching
process. Because the nature of the reflections at rough edges
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FIG. 8. Simulations with different scattering models. (Right)
Magnetoresistance for diffusive reflection. α = 0, l f /a = 2. (Left)
Results for specular reflection [the same as Fig. 2(b) in the main text].
α = 0, l f /a = 2.

is unknown, we studied two extreme cases. One was specular
reflection. The result of the simulation is displayed in the left
panel in Fig. 8. Here, we assumed the antidots to be circles
with the same diameter, and electrons are reflected specularly
at their boundary. The other case is diffusive reflection, where
electrons are reflected in a random direction. We assumed
that electrons are uniformly reflected to −(1 − δ) × π � θ ′ �
(1 − δ)π , where θ ′ is the angle measured from the direction
of the normal vector of the antidot, and δ is a small number
that was introduced for convenience, and was chosen to be
δ = 0.05. The right panel in Fig. 8 shows result for α =
0.1 and l f /a = 2. The results for specular reflection for the
same parameters are plotted in the left panel. The simulated
magnetoresistances in the cases of the diffusive and specular
scattering plots have approximately the same shape.
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