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Optimization of quantized charge pumping using full counting statistics
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We optimize the operation of single-electron charge pumps using full counting statistics techniques. To
this end, we evaluate the statistics of pumped charge on a wide range of driving frequencies using Floquet
theory, focusing here on the current and the noise. For charge pumps controlled by one or two gate voltages,
we demonstrate that our theoretical framework may lead to enhanced device performance. Specifically, by
optimizing the driving parameters, we predict a significant increase in the frequencies for which a quantized
current can be produced. For adiabatic two-parameter pumps, we exploit that the pumped charge and the noise
can be expressed as surface integrals over Berry curvatures in parameter space. Our findings are important for the
efforts to realize high-frequency charge pumping, and our predictions may be verified using current technology.
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I. INTRODUCTION

Single-electron pumps are important for a wide range of
quantum technologies, and they have been proposed as precise
current sources for metrological purposes [1–3]. The central
goal is to transfer single electrons between two leads via a
nanoscale island as accurately and as fast as possible. The
gate voltages of the island are modulated periodically in time
with the aim to generate a current given by the electron charge
times the frequency of the drive; see Fig. 1. Single-electron
pumping has been demonstrated in several experimental ar-
chitectures, and both the accuracy and the driving speed have
been significantly increased during recent years [1–26].

To achieve reliable loading and unloading of single elec-
trons, it is generally favorable to operate the pumps at low
frequencies [27,28]. This regime can be elegantly described
using adiabatic theories [29–35]. However, to produce an ap-
preciable current, the driving should be fast while maintaining
faultless single-electron control. Moreover, pumps operating
with a single modulated gate voltage only deliver a quantized
current well beyond the adiabatic regime [15–25]. Various
techniques have been developed to improve the accuracy of
such nonadiabatic pumps at the quantized-current plateau
[36,37]. On the other hand, efficient tools to optimize the
driving frequency are still lacking, as it is challenging to
develop theories that extend beyond the adiabatic approxima-
tion. Instead, nonadiabatic pumps have mainly been investi-
gated using numerical approaches [16,38–40].

In this work, we employ full counting statistics techniques
to optimize the operation of single-electron charge pumps. We
use Floquet theory to evaluate the current and the fluctuations
of the pumped charge order-by-order in either the frequency
or the period of the drive and thereby develop a systematic
understanding of charge pumps beyond the adiabatic approxi-
mation. For single-parameter pumps, we optimize the driving
frequency by minimizing the noise over the pumped charge
(the Fano factor) at high frequencies. For adiabatic pumps, the
full counting statistics can be expressed as a surface integral
over a Berry curvature in parameter space [41–44], which

we use to optimize the driving protocol. Moreover, from the
high-frequency expansion we can estimate the breakdown
frequency for which a quantized current can no longer be
generated. Although, we focus here on the average and noise
of the pumped charge, our theoretical framework is versatile,
and it can readily be adapted to other quantities such as the
higher cumulants or even the large-deviation statistics of the
current [45].

II. QUANTIZED CHARGE PUMPING

The Floquet theory that we develop below is applicable to
a large class of open quantum systems that exchange particles
(or heat) with external reservoirs and whose dynamics can
be described by a Markovian (generalized) master equation.
To be specific, we consider here periodically driven single-
electron pumps that ideally transfer one electron from a source

FIG. 1. Single-electron pumping. (a) Nonadiabatic charge pump-
ing can be achieved by modulating a single gate voltage periodically
in time as indicated by the red line. In this case, mainly the left
barrier of the gate-defined potential is periodically modulated, as
illustrated by the insets. The dashed line separates the stable charge
configurations of the island (0 or 1 electrons). (b) Adiabatic pumping
can be achieved by slowly modulating both gate voltages periodically
in time as indicated by the positively oriented contour in red. The
insets illustrate how both barriers are periodically modulated.
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electrode to a collector in every single operation cycle. A
charge pump consists of a nanoscale island whose dynamics
is governed by the master equation

d

dt
|P(t )〉 = L(t )|P(t )〉, (1)

where the vector |P(t )〉 = [p0(t ), p1(t ), p2(t ), . . .]T contains
the probabilities for the island to be occupied by 0, 1, 2, . . .

electrons. The rate matrix L(t ) = L(t + T ) describes the
transitions between different charge states of the island, and T
is the period of the external drive. At all times, the product of
the tunneling amplitudes to the source and the collector is kept
so small that cotunneling processes can safely be ignored and
we may consider sequential single-electron tunneling only.

To investigate the pumped current, we resolve the proba-
bility vector |P(t )〉 = ∑

n |P(n, t )〉 with respect to the number
of electrons n that have been transferred during the time span
[0, t] [46]. The charge-transfer statistics can then be expressed
as P(n, t ) = 〈1|P(n, t )〉 with all entries of the vector 〈1| being
1. We also write the rate matrix as L(t ) = L0(t ) + J+(t ) +
J−(t ), with J±(t ) describing charge transfers to and from
the collector [47]. The equations of motion, d

dt |P(n, t )〉 =
L0(t )|P(n, t )〉 + J+(t )|P(n − 1, t )〉 + J−(t )|P(n + 1, t )〉, are
decoupled by introducing the counting field χ via the defi-
nition |P(χ, t )〉 ≡ ∑

n |P(n, t )〉einχ . We then arrive at a modi-
fied master equation for |P(χ, t )〉,

d

dt
|P(χ, t )〉 = L(χ, t )|P(χ, t )〉, (2)

with L(χ, t ) = L(t ) + (eiχ − 1)J+(t ) + (e−iχ − 1)J−(t ).
Formally, the solution |P(χ, t )〉 = U(χ, t )|P(χ, 0)〉 is given
by the time-ordered exponential U(χ, t ) = T̂ {e

∫ t
0 dt ′L(χ,t ′ )}

[48,49]. The moments of the pumped charge n then
follow as 〈nm〉(t ) = ∂m

iχM(χ, t )|χ=0, where M(χ, t ) ≡∑
n P(n, t )einχ = 〈1|U(χ, t )|P(χ, 0)〉 is the moment

generation function. Similarly, the cumulant generating
function S (χ, t ) ≡ lnM(χ, t ) delivers the cumulants as
〈〈nm〉〉(t ) = ∂m

iχS (χ, t )|χ=0. Below, we focus on the first two
cumulants, namely the mean 〈〈n〉〉 = 〈n〉 and the variance
〈〈n2〉〉 = 〈n2〉 − 〈n〉2, although higher cumulants can easily be
obtained with little added effort.

III. FLOQUET THEORY

We now make use of the periodicity of the drive. Building
on the Floquet theorem [50], the time-evolution operator
can be expressed as U(χ, t ) = ∑

i eλi (χ )t |pi(χ, t )〉〈pi(χ, 0)|,
where |pi(χ, t )〉 = |pi(χ, t + T )〉 solves the Floquet eigen-
value problem1[

L(χ, t ) − d

dt

]
|pi(χ, t )〉 = λi(χ )|pi(χ, t )〉. (3)

We then obtain S (χ, t ) = ln
∑

i eλi (χ )t 〈1|pi(χ, t )〉 and im-
mediately see that the charge-transfer statistics after many

1We note that the left and right eigenvectors, 〈pi(χ, t )| and
|pi(χ, t )〉, are not related by simple Hermitian conjugation, since the
rate matrix L(χ, t ) is not Hermitian.

periods N � 1 is fully encoded in the Floquet eigenvalue
φ(χ ) ≡ max

i
[λi(χ )] with the largest real part

S (χ,NT ) � NT φ(χ ). (4)

Generally, however, it is a daunting task to determine φ(χ )
and its dependence on the counting field. Nevertheless, as we
go on to show, the eigenvalue can be found perturbatively in
the frequency or the period of the drive.

IV. ADIABATIC EXPANSION

We first evaluate the Floquet eigenvalue φ(χ ) and the cor-
responding eigenvector, denoted as |p(χ, t )〉, perturbatively
in the driving frequency. In the adiabatic expansion, we treat
the time derivative − d

dt in Eq. (3) as the perturbation [51].
Our adiabatic expansion can be formulated in terms of the
instantaneous eigenvalue of L(χ, t ) with the largest real part
λ(0)(χ, t ) and the corresponding eigenvectors 〈p(0)(χ, t )| and
|p(0)(χ, t )〉. To begin with, we find from Eq. (3)

φ(χ ) = φ(0)(χ ) −
∫ T

0

dt

T 〈p(0)(χ, t )| d

dt
|p(χ, t )〉, (5)

where φ(0)(χ ) = ∫ T
0

dt
T λ(0)(χ, t ) is the average of the instan-

taneous eigenvalue. Without a voltage bias, the contribution
to the mean current from φ(0)(χ ) vanishes and the noise can
be related to the conductance according to the fluctuation-
dissipation theorem [52]. To proceed to higher orders, we
expand the eigenvalue and eigenvector in the perturbation as
φ(χ ) = ∑∞

k=0 φ(k)(χ ) and |p(χ, t )〉 = ∑∞
k=0 |p(k)(χ, t )〉 and

collect terms of the same order in Eq. (5). To first order, we
find φ(1)(χ ) = − ∫ T

0
dt
T 〈p(0)(χ, t )| d

dt |p(0)(χ, t )〉 as previously
established within a different framework [41–44]. For a device
controlled by a single parameter, this term vanishes as we
discuss below. To second order, we find

φ(2)(χ ) = −
∫ T

0

dt

T 〈p(0)(χ, t )| d

dt
R(χ, t )

d

dt
|p(0)(χ, t )〉

(6)
having used |p(1)(χ, t )〉 = R(χ, t ) d

dt |p(0)(χ, t )〉 as in stan-
dard perturbation theory, where R(χ, t ) is the pseudoinverse
of L(χ, t ) − λ(0)(χ, t ) [53]. Equation (6) is important as it
allows us to evaluate the charge transfer statistics for single-
parameter pumps to first nontrivial order in the driving fre-
quency. Before demonstrating its usefulness with specific
applications, we discuss our high-frequency expansion of the
cumulant generating function.

V. HIGH-FREQUENCY EXPANSION

The high-frequency expansion proceeds differently. Here,
we write the time-evolution operator as U(χ,NT ) =
[U(χ, T )]N := eNT LF (χ ) and identify the Floquet eigen-
value φ(χ ) as the eigenvalue of LF (χ ) with the largest
real part. Using a Floquet-Magnus expansion LF (χ ) =∑∞

k=0 L
(k)(χ ), we can then evaluate φ(χ ) perturbatively in

the period. The first two terms read L(0)(χ ) = ∫ T
0

dt
T L(χ, t )

and L(1)(χ ) = ∫ T
0

dt
2

∫ t
0

dt ′
T [L(χ, t ), L(χ, t ′)] [50,54,55]. In

the high-frequency expansion φ(χ ) = ∑∞
k=0 ϕ(k)(χ ), the first

term ϕ(0)(χ ) is given by the eigenvalue of L(0)(χ ) with the
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FIG. 2. Single-parameter pump. (a) Average pumped charge per period as a function of the driving frequency f . The solid lines are
numerical results, while the dashed lines are the low- and high-frequency expansions. The red line is obtained with driving parameters that
minimize the Fano factor at high frequencies. The shaded area indicates the quantized-current plateau for the optimized driving parameters. The
system parameters are C = 10 aF, G = 1.0 × 10−4 �−1, T = 0.2 K, and � = G/4C = 2.5 × 1012 s−1. The driving parameters are V 0

L = 4 mV
(blue), 24 mV (red), V 0

R = 0.8 mV, Vs = 5 μV, Ng = 0.2. (b) The Fano factor F = 〈〈n2〉〉/〈n〉 of the pumped charge as a function of the driving
frequency.

largest real part. Denoting the corresponding eigenvectors by
〈p(0)(χ )| and |p(0)(χ )〉, the next term becomes ϕ(1)(χ ) =
〈p(0)(χ )|L(1)(χ )|p(0)(χ )〉. Thus, with the eigenvectors of
L(0)(χ ) at hand, we can evaluate the charge-transfer statistics
perturbatively in the period.

VI. SINGLE-ELECTRON PUMP

We can now analyze a charge pump which is similar
to those from recent experiments [2,7,10–13,15,17–20,22–
25]. The pump consists of a metallic island operated in the
Coulomb-blockade regime, where the island is either empty
or occupied by one electron. The rate matrix then takes the
simple form

L(χ, t ) =
(−�+

L (t ) − �+
R (t ) �−

L (t ) + �−
R (t )eiχ

�+
L (t ) + �+

R (t )e−iχ −�−
L (t ) − �−

R (t )

)
,

where �±
α (t ) = Gα (t )

q2
±
E (t )

exp[±β
E (t )]−1 is the rate at which tunnel-
ing occurs between the island and the leads, changing the
occupation by ±1 electron with charge −q. No voltage bias
is applied, and β = 1/kBT is the inverse temperature. The
change of the electrostatic energy due to the addition of an
electron reads 
E (t ) = −Ec[Ng + 2{CLVL(t ) + CRVR(t )}/q],
where Cα are the gate capacitances, Ec = q2/2(CL + CR) is
the charging energy, and the offset Ng can be controlled with a
backgate [3]. The barrier conductances depend exponentially
on the gate voltages, Gα (t ) = Gα exp[Vα (t )/Vs], where Vs is
known as the subthreshold slope [11].

VII. SINGLE-PARAMETER PUMPING

We first consider a single-parameter pump, where the
right gate voltage is kept constant, VR(t ) = −V 0

R , while
the left one is subject to the harmonic drive, VL(t ) =
−V 0

L [cos(2π f t ) + 1]. For low frequencies, the average of the
pumped charge is obtained from Eq. (6). At low temperatures,
where the tunneling rates �−

L (t ) � �+
R (t ) � 0 are small, we

find

〈n〉
N � f

∫ 1

0
ds

[�+
L (s)]4

(
d
ds [�−

R (s)/�+
L (s)]

)2

[�+
L (s) + �−

R (s)]5
, (7)

having introduced the dimensionless time s = f t to show that
the pumped charge is proportional to the driving frequency f .
We also find that the variance can be expressed as 〈〈n2〉〉/N =
2kBT

∫ 1
0 dsG(s)/q2 f in terms of the instantaneous linear con-

ductance G(t ) in accordance with the fluctuation-dissipation
theorem. Combined with Eq. (7), we see that the Fano factor
F = 〈〈n2〉〉/〈n〉 must be proportional to f −2 at low frequencies.

For high frequencies, we find the pumped charge from the
first term in the Floquet-Magnus expansion,

〈n〉
N � �

f

⎡
⎣ qeV 0

R /Vs

2C
(
V 0

L + V 0
R

) − qNg
+

q
√

2πV 0
L /Vs

qNg − 2CV 0
R

⎤
⎦

−1

. (8)

Here, we have taken CL = CR = C and GL = GR = G with
� = G/4C being an inverse RC-time. The gate voltage must
change considerably compared to the subthreshold slope to
open and close the left barrier, while being smaller than the
charging energy, so that 2CV 0

R < qNg < 2C(V 0
L + V 0

R ). The
Fano factor thus becomes

F �
e− 2V 0

R
Vs

[
2C

(
V 0

L + V 0
R

) − qNg
]2+ Vs

2πV 0
L

(
qNg − 2CV 0

R

)2

(
e− V 0

R
Vs

[
2C

(
V 0

L + V 0
R

) − qNg
]+√

Vs

2πV 0
L

(
qNg − 2CV 0

R

))2
.

(9)

Figure 2 shows numerical results for the pumped charge
and the Fano factor together with our approximations. The
blue curves illustrate the good agreement between the nu-
merics and our perturbative results. With Eqs. (7) and
(8) we quantitatively explain the low- and high-frequency
dependence of the pumped charge, which previously has
been observed in numerical calculations [16]. Moreover,
our results allow us to optimize the driving parameters.
By inspecting Eq. (9), we see that the Fano factor takes
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FIG. 3. Pumped charge (a) and the Fano factor (b) for the two-parameter pump. The driving protocol V(t ) = −V 0[cos(2π f t ) +
α, cos(2π f t + ϑ ) + α]T is shown together with the Berry curvatures F ( j) in the insets, where the stable charge configuration of the island is
also indicated (0 or 1 electrons). The solid lines are numerical results, while the dashed lines are the low- and high-frequency approximations.
The system parameters are given in Fig. 2. The driving parameters are V 0 = 8 mV, ϑ = 1.02π , Ng = 2, and α = 1.01 (blue), α = Ng/2 = 1
(red).

the minimal value of 1/2 if e− V 0
R

Vs [2C(V 0
L + V 0

R ) − qNg] =√
Vs

2πV 0
L

(qNg − 2CV 0
R ). We then obtain an optimal ratio of the

noise over the pumped charge, which simplifies to 〈n〉/N �
(�/2 f )

√
Vs/2πV 0

L (Ng − 2CV 0
R /q). The red lines in Fig. 2

show the results of this optimization. Importantly, compared
to the generic blue curve, we obtain an order-of-magnitude
increase in the frequencies, for which a quantized current can
be produced. Interestingly, the Fano factor dips below 1/2 at
the end of the quantized-current plateau and almost reaches
1/4, signaling a transition to a new transport regime.

VIII. TWO-PARAMETER PUMPING

Next, we modulate both voltages periodically in time,
V(t ) = [VL(t ),VR(t )]T . In the adiabatic regime, we can then
write φ(1)(χ ) = ± f

∫∫
S dVLdVRF (χ, V) by virtue of Stokes’

theorem. Here, the sign is given by the orientation of the
contour enclosing the surface S in the parameter space,
and F (χ, V) = [−∂VL , ∂VR ] · 〈p(0)(χ, V)|∇V|p(0)(χ, V)〉 is a
classical analog of the Berry curvature in quantum me-
chanics [41–44]. Clearly, if only one voltage is varied, the
surface area vanishes, and φ(1)(χ ) = 0. For the pumped
charge [56,57], we find 〈n〉/N � ± ∫∫

S dVLdVRF (1)(V) with
F (m)(V) = ∂m

iχF (χ, V)|χ=0 and

F (1) = qβe(VL+VR )/Vs

4Vs(eVL/Vs +eVR/Vs )2 cosh2 (β
E/2)
(10)

as shown in Fig. 3(a). For the variance 〈〈n2〉〉/N �
2kBT

∫ 1
0 ds G(s)/q2 f ± ∫∫

S dVLdVRF (2)(V), we have

F (2) = qβe(VR+VL )/Vs (eVR/Vs −eVL/Vs ) sinh4(β
E/2)

32Vs(eVR/Vs +eVL/Vs )3 sinh3(β
E )
(11)

as shown in Fig. 3(b). We can now position our con-
tour so that the pumped charge is maximized and the

noise is minimized. To this end, we exploit the symmetry
F ( j)(VL,VR) = F ( j)(−VC − VL,−VC − VR), j = 1, 2, about
the point (−VC/2,−VC/2) with VC = q/2C, together with the
symmetry F ( j)(VL,VR) = (−1) j−1F ( j)(VR,VL ) across the line
VL = VR. Specifically, for a fixed shape of the contour, the
contribution to the variance vanishes if the contour is placed
symmetrically across the line VL = VR. In that case, the noise
is due to equilibrium fluctuations only. Moreover, the pumped
charge is maximized if the contour is also symmetric about
the point (−VC/2,−VC/2).

Figure 3 shows the pumped charge and the Fano factor for
the driving protocols indicated in the insets together with the
Berry curvatures. As in the experiments of Refs. [7,11], we
consider elliptic contours in parameter space. Both the red
and the blue ellipse minimize the noise, while only the red
one also maximizes the pumped charge. In the high-frequency
regime, the pumped charge 〈n〉/N � T ∂iχϕ(1)(χ )|χ=0 de-
creases as 1/ f 2, since there is no contribution from ϕ(0)(χ )
without a voltage bias. The variance, by contrast, is dominated
by thermal fluctuations described by ϕ(0)(χ ). We then have
〈〈n2〉〉/N � T ∂2

iχϕ(0)(χ )|χ=0, implying that the Fano factor
is proportional to the frequency. These conclusions are sup-
ported by our numerical results in Fig. 3. At low frequencies,
the Fano factor is very small (not visible in the figure) and
inversely proportional to the frequency. Importantly, from our
high-frequency expansion, we get a good estimate of the
breakdown frequency for which a quantized current can no
longer be generated.

IX. CONCLUSIONS

We have employed full counting statistics techniques to
optimize the operation of charge pumps. To this end, we
have used Floquet theory to evaluate the cumulant generating
function for the distribution of pumped charge perturbatively
in the frequency or the period of the drive. For the device
optimization, we have focused on the average and the variance
(noise) of the pumped charge, but higher cumulants, or even
the large-deviation statistics, can be obtained along the same
lines with little added effort. Our theoretical framework covers
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a wide range of driving frequencies, in the adiabatic regime
and for fast driving, and it is useful for practical device
optimization. The advances reported here were made possible
due to the progress made in theories of driven systems. Our
work demonstrates that full counting statistics is a powerful
tool to optimize charge pumps, and our predictions may be
confirmed in future experiments.
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