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Van Hove scenario of anisotropic transport in a two-dimensional spin-orbit
coupled electron gas in an in-plane magnetic field
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We study electronic transport in two-dimensional spin-orbit coupled electron gas subjected to an in-plane
magnetic field. The interplay of the spin-orbit interaction and the magnetic field leads to the Van Hove singularity
of the density of states and strong anisotropy of Fermi contours. We develop a method that allows one to exactly
calculate the nonequilibrium distribution function for these conditions within the framework of the semiclassical
Boltzmann equation without using the scattering time approximation. The method is applied to calculate the
conductivity tensor and the tensor of spin polarization induced by the electric field (Aronov-Lyanda-Geller-
Edelstein effect). It is found that both the conductivity and the spin polarization have a sharp singularity as
functions of the Fermi level or magnetic field, which occurs when the Fermi level passes through the Van Hove
singularity. In addition, the transport anisotropy dramatically changes near the singularity.
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I. INTRODUCTION

The interplay of spin-orbit interaction (SOI) in two-
dimensional (2D) electron systems and an in-plane magnetic
field attracts significant interest because the magnetic field
allows one to manipulate the Fermi contours in a controllable
way, which can be an effective tool to study the electronic
states and scattering processes. In the general case, in which
the magnetic field is directed at an arbitrary angle with respect
to the system plane, the spectrum and orbital motion of elec-
trons undergo diverse changes [1]. The in-plane configuration
is attractive since the magnetic field does not disturb the
orbital wave functions but changes only the Fermi contours
due to which it becomes possible to study how the Fermi-
contour topology affects the electronic transport.

Under this condition, there appear such effects as the
longitudinal magnetoresistance and the planar Hall effect,
which have been widely studied in recent years in many in-
teresting but rather complicated systems. In LaAlO3/SrTiO3

heterojunctions, a strong reconstruction of the Fermi surface
occurs near the Lifshitz transition between d orbitals with
different symmetry in the presence of an external magnetic
field [2,3], due to which a giant magnetoresistance [4] and
anisotropic conductivity appear [2,5–10]. In Al2O3/SrTiO3

heterostructures the magnetic field produces a strong addi-
tional anisotropy of conductivity [11]. The planar Hall effect
was recently found in the 2D system of Dirac electrons,
which is formed by surface states in topological insulators
[12]. The negative longitudinal magnetoresistance and planar
Hall effect are studied also in other situations, where they
are not directly related to the SOIs, such as Dirac and Weyl
semimetals [13–17] and even conventional centrosymmetric
and time-reversal symmetric semiconductors and metals [18].

Another aspect of the anisotropic transport in spin-orbit
coupled systems is related to anisotropic phases that are
formed because of spontaneous breaking of spatial symmetry
in strongly interacting electron systems with SOI [19–23].

Though an external magnetic field is absent, the anisotropic
state of the electron liquid is formed due to a self-consistent
magnetic field that is oriented in the plane of the 2D system
[19]. For these systems, the electronic transport anisotropy has
not yet been studied.

One of the main problems in the study of the anisotropic
transport within the semiclassical approach is that in this
case the relaxation-time approximation cannot be used to
solve the Boltzmann equation [24]. In the present paper, we
develop a method that allows one to solve this problem exactly
for arbitrary Fermi contours in the case of elastic scattering
of electrons by impurities with short-ranged potential. The
method is applied to a model system that makes it possible
to study the anisotropy effects for various forms and configu-
rations of Fermi contours.

We consider a 2D gas of noninteracting electrons with
Rashba SOI subjected to an in-plane magnetic field. An im-
portant effect produced by the magnetic field is the appearance
of a Van Hove singularity of density of states [25] that strongly
affects the transport properties and enhances the anisotropy
of Fermi contours. We calculate the conductivity tensor and
the spin polarization induced by an in-plane electric field (the
Aronov-Lyanda-Geller-Edelstein effect [26,27]) and study
their variation with increasing magnetic field. It is found that
(i) the conductivity tensor components and the nonequilibrium
spin polarization have sharp singularities arising when the
Fermi level passes through the Van Hove singularity point,
and (ii) the axis of the highest conductivity as well as the
vector of nonequilibrium spin polarization strongly change
their direction near this point.

II. ELECTRONIC STATES AND FERMI CONTOURS

In this section, we present the electronic states and Fermi
contours, which will be used to calculate the transport prop-
erties. The spectrum of eigenstates of 2D electrons subjected
to an in-plane magnetic field in the presence of both Rashba
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and Dresselhaus SOIs was considered early [25,28]. For our
purpose, it is enough to restrict ourselves to a simplified
situation, in which only the Rashba SOI is present, and to
neglect the bands of transverse quantization. Therefore, we
omit the details and focus on the Fermi contours and density
of states.

The Hamiltonian is written as follows:

H = p2

2m
σ0 + α

h̄
(pxσy − pyσx ) − 1

2
gμBBσy, (1)

where p = (px, py) is the electron momentum, m is the ef-
fective mass, α is the SOI constant, σx and σy are the Pauli
matrices, B is the magnetic field directed along the y axis,
μB is the Bohr magneton, and g is the effective Landé factor,
which is supposed to be isotropic and independent of B.

There are two types of eigenstates with opposed spins,
which we mark with an index λ = ±. Their energies and wave
functions are

ελ(k) = k2 + 2λ

√
(kx − b)2 + k2

y (2)

and

ψkλ(r) = 1√
2A

(
1

iλeiϕ

)
ei(kxx+kyy), (3)

where here and below we use dimensionless quantities: ε

is the energy normalized to the characteristic energy of the
SOI, Eso = mα2/(2h̄2); k is the wave vector normalized
to the characteristic wave vector of the SOI, kso = αm/h̄2;
b = gμBBh̄2/(2mα2) is the dimensionless magnetic field; A
is a normalization area. The phase ϕ(k) is defined by the
equations

cos ϕ = k cos φ − b√
k2 + b2 − 2bk cos φ

,

sin ϕ = k sin φ√
k2 + b2 − 2bk cos φ

,

(4)

with k and φ being the modulus and the azimuthal angle of
the wave vector k.

Due to the presence of a magnetic field, the energy disper-
sion becomes anisotropic in k-space, as is shown in Fig. 1.
The energy landscape in the k-space has a saddle point
at kx = b/|b|, ky = 0. Its energy position is εs = −1 + 2|b|.
The saddle point exists in the interval of magnetic field
−1 < b < 1. The Dirac point is located at the energy εD = b2

in the point (kx = b, ky = 0) of the k-space. With increasing
magnetic field, the saddle point comes up from the band
bottom to the Dirac point.

In what follows, the Fermi contours will be important.
They are defined by the equation ελ(k) = εF . We denote its
solutions by kλ,r (φ), where the index r numbers possible
solutions at a given λ. The Fermi contours have a very diverse
shape depending on the Fermi energy and magnetic field, as
shown in Figs. 2(a)–2(c) for energy regions below the saddle
point, above the saddle point but below the Dirac point, and
above the Dirac point.

In the energy range below the Dirac point, the Fermi
contours are formed by the states with λ = −1. If the Fermi
level lies below the saddle point in the interval −1 − 2|b| <

εF < εs, there is one Fermi contour for a given εF , Fig. 2(a).

FIG. 1. Energy dispersion in the 2D k-space. Blue and orange
surfaces are the branches of the spectrum, given by Eq. (2), with
λ = +1 and −1 for b = 0.3. The saddle point on the λ = −1 branch
is located at kx = 1, ky = 0.

In the interval εs < εF < εD, there are two Fermi contours
shown in Fig. 2(b). When the Fermi energy is above the Dirac
point, εD < εF , each branch of the spectrum with λ = ±1
gives one contour demonstrated in Fig. 2(c).

In the saddle point, the density of states has logarithmic
Van Hove singularity, D(ε) ∼ ln |ε − εs|, in accordance with
the general theory [29]. As the magnetic field goes to zero,
the saddle point disappears and the Van Hove singularity
transforms to the well-known singularity D(ε) ∼ (ε + 1)−1/2

at the band bottom. In the interval 0 < |b| < 1, the energy of
the Van Hove singularity is controlled by the magnetic field.

It is therefore interesting to trace how the transport prop-
erties change when the Fermi level is changed at a given
magnetic field, and also when the magnetic field is changed
at a given Fermi level. The first regime, in which the magnetic
field is fixed, has the advantage that the energy dispersion
ελ(k) remains unchanged when scanning the Fermi level. It
can be expected that the transport properties have a sharp
feature when the Fermi level crosses the Van Hove singularity.
The transport anisotropy can also change dramatically since
the saddle point is located asymmetrically with respect to the
center of the Brillouin zone.
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FIG. 2. The Fermi contours for a variety of the Fermi energy at
magnetic field b = 0.3 in the following energy regions: (a) below the
saddle point, (b) between the saddle point and the Dirac point, and
(c) above the Dirac point. The band bottom is located at εb = −1.6,
the saddle point is εs = −0.4, and the Dirac point is εD = 0.09.
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III. BOLTZMANN EQUATION

Now we turn to the transport induced by an in-plane
electric field. The electron current and spin polarization are
studied using the semiclassical Boltzmann equation. For a
small homogeneous electric field E , the distribution function
f (k) is determined by the Boltzmann equation, which we
present in a familiar linear form [30],

−eEvλ(k)[−∂ε f0(ε)] =
∑
λ′

∫
d2k′

4π2
Wλk,λ′k′[ fλ(k,E )

− fλ′ (k′,E )], (5)

where vλ(k) is the group velocity in the state |λ, k〉, f0 is the
equilibrium distribution function, and Wλk,λ′k′ is the scattering
probability.

The anisotropy of the electron dispersion leads to the
scattering anisotropy, because of which the collision integral
on the right-hand side of Eq. (5) cannot be simplified by
introducing a relaxation time. This problem was debated
in the recent literature [24,31–34]. Using a relaxation time
that depends on the direction of k is certainly not precise,
though it captures some aspects of the anisotropic transport.
An improved approach based on introducing two relaxation
times, τ‖ and τ⊥, was proposed by Schliemann and Loss
[32] and applied to the study of anisotropic transport and
magnetotransport in a 2D electron gas in the presence of both
Rashba and Dresselhaus SOIs [32,33]. However, Výborný
et al. [24] have shown that this approach not only fails to
exactly calculate the distribution function, but in some cases
leads to erroneous results. Instead, the Boltzmann equation
should be solved as an integral equation. We proceed in this
way.

We consider the scattering by impurities with short-ranged
potential approximated as V (r) = V0δ(r). The impurity con-
centration N is assumed to be small, so that their potentials
do not overlap and the scattering processes from different
impurities are not correlated.

Having calculated the scattering probability in the Born
approximation by using the wave functions (3), we arrive
at the following equation for the nonequilibrium part of the
distribution functions 
 fλ(k):

∑
λ′

∫
d2k′

π
(1 + λλ′ cos[ϕ(k) − ϕ(k′)])δ(ελ(k) − ελ′ (k′))

× [
 fλ(k) − 
 fλ′ (k′)] = eEvλ(k)

R

∂ f0

∂ε
, (6)

where the dimensionless variables are used. The electric field
E is normalized to Esokso/e, the group velocity is vλ = ∇kελ,
and R is a unique parameter that appears for this system:
R = V 2

0 N/α2.
The nonequilibrium distribution function 
 fλ(k) can be

written in the form


 fλ(k) = eE
R
Fλ(k)

∂ f0

∂ε
. (7)

The function Fλ(k) introduced here is determined by an
equation that can be readily obtained in the case of zero
temperature by integrating with respect to the modulus of k
in Eq. (6). In this case, the integration is carried out along

the Fermi contours. Since in some cases the contours have a
complicated shape, such that k(φ) is in general a multivalued
function of φ, we have to divide the contour into parts within
which k(φ) is a single-valued function. Each part will be
marked by index r, which can vary from 1 to 4 depending
on the contour shape. Keeping this in mind, we will add this
index to the notations of the functions and integrals defined on
the Fermi contours.

The function Fλ,r (k) is defined on the corresponding part
of the Fermi contour k = kλ,r (φ) by the following equations:

∑
λ′,r′

∫
dφ′

π
(1 + λλ′ cos[ϕλ,r (φ) − ϕλ′,r′ (φ′)])Mλ′,r′ (φ′)

× [Fλ,r (φ) − Fλ′,r′ (φ′)] = Gλ,r (φ), (8)

where

Mλ,r (φ) =
[

k/
∂ελ(k)

∂k

]
k=kλ,r (φ)

, (9)

ϕλ,r (φ) = ϕ(k)|k=kλ,r (φ), (10)

Gλ,r (φ) = vλ(k) cos[ξ (k) − θ ]

R

∣∣∣∣
k=kλ,r (φ)

. (11)

Here ξ (k) is the angle between vλ,r (φ) and the x-axis, and θ

is the angle between E and the x-axis. The values Mλ,r (φ),
ϕλ,r (φ), and Gλ,r (φ) are defined on the corresponding Fermi
contours. They are easily calculated using Eqs. (2) and (3).

Equation (8) is solved analytically since it is merely a linear
Fredholm equation with a degenerate kernel. We represent the
kernel as the sum of the products of two functions, one of
which is a function of φ and the other is a function of φ′. In
our case, these functions are simply sines and cosines. As a
result, we arrive at the following form of the function Fλ,r :

Fλ,r (φ, θ )= Gλ,r (φ)+A+λB cos[ϕλ,r (φ)]+λC sin[ϕλ,r (φ)]

A + λB cos[ϕλ,r (φ)] + λC sin[ϕλ,r (φ)]
,

(12)

where the coefficients A, B, C, A, B, and C are directly
determined from Eq. (8),

A =
∑
λ,r

∫
dφ

π
Mλ,r (φ), (13)

B =
∑
λ,r

λ

∫
dφ

π
Mλ,r (φ) cos[ϕλ,r (φ)], (14)

C =
∑
λ,r

λ

∫
dφ

π
Mλ,r (φ) sin[ϕλ,r (φ)], (15)

A(θ ) =
∑
λ,r

∫
dφ

π
Mλ,r (φ)Fλ,r (φ, θ ), (16)

B(θ ) =
∑
λ,r

λ

∫
dφ

π
Mλ,r (φ)Fλ,r (φ, θ ) cos[ϕλ,r (φ)], (17)

C(θ ) =
∑
λ,r

λ

∫
dφ

π
Mλ,r (φ)Fλ,r (φ, θ ) sin[ϕλ,r (φ)]. (18)

The coefficients A, B, and C can be straightforwardly
calculated if the electron dispersion is known. However, the
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coefficients A, B, and C are defined by integrals containing
the function Fλ,r (φ, θ ), which is still unknown. To obtain
equations that allow one to find the coefficients A, B, and
C, we substitute Eq. (12) into Eqs. (16), (17), and (18). As a
result, we arrive at a system of linear algebraic equations for
these coefficients. In this way, the problem is solved.

Further calculations are simplified using the symmetry
properties of the Fermi contours and the integrands. In the
specific situation considered in this paper, the values kλ,r (φ),
Mλ,r (φ), and cos ϕλ,r (φ) are even functions of φ. The values
sin ϕλ,r (φ) and sin ξλ,r (φ) are odd functions. In this case,
C = 0 and the function Fλ,r (φ, θ ) is simplified to

Fλ,r (φ, θ ) = {vλ,r cos[θ − ξλ,r (φ)] + A + λB cos[ϕλ,r (φ)]

+ λC sin[ϕλ,r (φ)]}D−1
λ,r (φ), (19)

where

Dλ,r (φ) = A + λB cos[ϕλ,r (φ)]. (20)

The system of equations for the coefficients A, B, and C

splits into a separate system of two equations for A and B

and a separate equation for C.
The coefficients A and B are defined by the equations

(1 − a0)A(θ ) − a1B(θ ) = g0 cos θ,

−a1A(θ ) + (1 − a2)B(θ ) = g1 cos θ. (21)

The coefficient C is equal to

C(θ ) = C0 sin θ, (22)

where

C0 = g2

1 − b2
. (23)

Here, the following notations are introduced:

a0 =
∑
λ,r

∫
dφ

π

Mλ,r (φ)

Dλ,r (φ)
,

a1 =
∑
λ,r

λ

∫
dφ

π

Mλ,r (φ)

Dλ,r (φ)
cos[ϕλ,r (φ)],

(24)

a2 =
∑
λ,r

∫
dφ

π

Mλ,r (φ)

Dλ,r (φ)
cos2[ϕλ,r (φ)],

b2 =
∑
λ,r

∫
dφ

π

Mλ,r (φ)

Dλ,r (φ)
sin2[ϕλ,r (φ)],

g0 =
∑
λ,r

∫
dφ

π

Mλ,r (φ)vλ,r (φ)

Dλ,r (φ)
cos[ξλ,r (φ)],

g1 =
∑
λ,r

λ

∫
dφ

π

Mλ,r (φ)vλ,r (φ)

Dλ,r (φ)
cos[ϕλ,r (φ)] cos[ξλ,r (φ)],

g2 =
∑
λ,r

λ

∫
dφ

π

Mλ,r (φ)vλ,r (φ)

Dλ,r (φ)
sin[ϕλ,r (φ)] sin[ξλ,r (φ)].

(25)

It is easy to show that there are simple relations between
the coefficients a0, a1, and a2 and the coefficients g0 and g1

that simplify the calculations:

a1 = A

B
(1 − a0), a2 = 1 − A2

B2
(1 − a0), (26)

g1 = −A

B
g0. (27)

One should note that these relations are proven by analyzing
only Eqs. (24), (25), and (15) without using any specific
dispersion equation. Therefore, they are quite general.

A peculiarity of the equation system (21) is that both
equations are not independent. This follows directly from the
above relations (26) and (27). It is seen that the equations
differ only by a factor. This means that Eqs. (21) establish
only a relation between A and B, and an additional equation
is required to determine both coefficients. It is clear that
this equation should be obtained from the requirement of
electroneutrality of the system, which is not violated under
nonequilibrium conditions considered here. The fact that this
additional condition is necessary is not surprising, since the
Boltzmann equation in the form (5) does not automatically
guarantee the neutrality. So we should use the equation

∑
λ,r

∫
dφ Mλ,r (φ)Fλ,r (φ, θ ) = 0, (28)

which allows one to determine the coefficients A and B.
Thus, using Eqs. (21) and (28) we find

A = 0, B = B0 cos θ, (29)

where

B0 = −g0

a1
. (30)

Thus the distribution function in the final form reads

Fλ,r (φ, θ )

= vλ,r (φ) sin[ξλ,r (φ)] + λC0 sin[ϕλ,r (φ)]

Dλ,r (φ)
sin θ

+ vλ,r (φ) cos[ξλ,r (φ)]+λB0 cos[ϕλ,r (φ)]

Dλ,r (φ)
cos θ. (31)

Here the first term on the right-hand side is an odd function of
φ and the second term is an even one. The coefficients B0 and
C0 are defined by Eqs. (30) and (23).

Note that in contrast to the method developed in Ref. [24],
we find the angular dependence of the distribution func-
tion exactly. There is no need to expand it in the Fourier
series and calculate harmonics. Thus, we can take fully
into account the asymmetry of the scattering processes for
arbitrary Fermi contours and include electron transitions
both within each contour and between different contours in
k-space.

To test this approach, we have calculated the conductivity
and the spin polarization in the case of zero magnetic field
when the system is isotropic, but the SOI essentially affects
electron scattering processes. This problem was considered in
the recent literature [35,36]. In particular, it was found that
the conductivity deviated from the standard Drude’s law if
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the Fermi level lay below the Dirac point [35]. Using our
approach greatly simplifies the calculations and leads to the
results coinciding with those of Refs. [35,36].

IV. ANISOTROPIC TRANSPORT

A. Conductivity tensor

Conductivity is calculated in the standard way. Using
Eq. (31) for the distribution function and taking into account
the symmetry relations for kλ,r , Mλ,r , ϕλ,r , and ξλ,r with
respect to φ, we get the following tensor of the conductivity
in dimensionless form:

Gxx =
∑
λ,r

∫
dφ

2π

Mλ,r (φ)vλ,r (φ)

Dλ,r (φ)
cos[ξλ,r (φ)]

× {vλ,r (φ) cos[ξλ,r (φ)] + λB0 cos[ϕλ,r (φ)}, (32)

Gyy =
∑
λ,r

∫
dφ

2π

Mλ,r (φ)vλ,r (φ)

Dλ,r (φ)
sin[ξλ,r (φ)]

× {vλ,r (φ) sin[ξλ,r (φ)] + λC0 sin[ϕλ,r (φ)}, (33)

with the conductivity being normalized to e2/(hR). The off-
diagonal components are absent, Gxy = Gyx = 0.

If the electric field is directed at the angle θ 	= nπ/2, a
planar Hall effect appears, with the Hall resistance being a
π -periodic function of the angle between the electric and
magnetic fields.

It is not difficult to analyze analytically Eqs. (32) and (33)
in the limiting case when the Fermi level is near the bottom of
the band, εF = −(1 + 2|b|) + 
ε, by expanding in 
ε. We
get the following result:

Gxx ≈ 
ε

2
, Gyy ≈ 
ε

2

b

1 + b
. (34)

Hereafter, we assume for definiteness that b > 0. As can be
seen, the ratio of conductivities Gxx and Gyy is Gxx/Gyy =
b/(1 + b). This result is easy to understand, given that accord-
ing to Eq. (2) the electron dispersion near the band bottom is


ε ≈ q2
x + b

1 + b
q2

y , (35)

with qx and qy being the wave-vector components measured
with respect to the energy minimum. Thus, the ratio of con-
ductivities is exactly equal to the ratio of the components of
the effective-mass tensor, as one would expect.

The conductivity tensor components Gxx and Gyy are stud-
ied in more detail using direct numerical calculations of the
integrals in Eqs. (32) and (33). Below, we present the results
of our calculations of conductivity for two regimes: when the
Fermi energy is changed at a fixed magnetic field, and when
the magnetic field is changed while the Fermi level remains
unchanged.

First consider Gxx and Gyy as functions of εF . The results
obtained for magnetic field b = 0.2 are shown in Fig. 3.
In this case, the lower boundary of the band spectrum is
εb = −1.4, the saddle point is located at εs = −0.6, and the
Dirac point is εD = 0.04. It is seen that the most striking
effect is a sharp dip in conductivity, which occurs when

0.5

1.0

-1.5 -1.0 -0.5 0.0

FIG. 3. The components of the conductivity tensor as functions
of the Fermi energy at b = 0.2.

the Fermi level is near the saddle point. Another interest-
ing feature is that the conductivity is strongly anisotropic.
The anisotropy can be characterized by a value δ = (Gxx −
Gyy)/(Gxx + Gyy). Near the band bottom, δ ≈ 0.7. As εF in-
creases, the anisotropy changes sign, and when εF approaches
the saddle point, δ reaches −0.3. In the immediate vicinity
of the saddle point, δ changes sign again and then decreases
monotonically.

The sharp drop in the conductivity near the saddle point
is undoubtedly caused by the strong increase in the scat-
tering rate because of the Van Hove singularity. The strong
anisotropy of the conductivity is caused by anisotropic dis-
tribution of the density of states and electron velocity in
k-space. The anisotropy is particularly large when the electron
energy is not high in comparison with the Zeeman energy
and the characteristic energy of the SOI. An important role
in the formation of transport anisotropy is played by the
Van Hove singularity. Since the saddle point is shifted along
the x axis in k-space relative to the band center, the Fermi
contours become strongly anisotropic when the energy is
close to the saddle point, as can be seen from Fig. 2. This
leads to a strong anisotropy of electron scattering, due to
which the conductivity along the magnetic field becomes
predominant as εF approaches the saddle point, but is below
it.

A noticeable feature is that the presence of a saddle point
in the energy dispersion stimulates the appearance of the
conductivity anisotropy of a different sign compared to the
anisotropy that exists outside the saddle region. As a result,
the anisotropy changes sign twice: below the saddle point
(εF = −1.03 in Fig. 3) and in close proximity to the point
singularity.

In the energy region above the Dirac point, the anisotropy
decreases rapidly and its magnitude is very small. This behav-
ior of the anisotropy is consistent with that found in Ref. [31].
At εF ∼ 1, the anisotropy is estimated on the level δ ∼ 10−3

and therefore seems not to be interesting.
The dependence of conductivity on the magnetic field at

a fixed Fermi level has qualitatively similar features. This
is easy to understand, keeping in mind that the position of
the saddle point changes upon changing the magnetic field,
and it can intersect the Fermi level. The conductivity tensor
components calculated as functions of b are shown in Fig. 4.
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FIG. 4. The conductivity tensor components as functions of
the magnetic field for the Fermi energy below the Dirac point
εF = −0.8.

B. Spin polarization

The spin density induced by an electric field is calculated
using the nonequilibrium distribution function as follows:

Si = h̄

2

∑
λ

∫
d2k

4π2
〈ψ†

λ,k|σi|ψλ,k〉
 fλ(k), (36)

where Si is the spin density component, i = (x, y, z), and σi

are the Pauli matrices. The spin susceptibility with respect to
electric field χi j , which is often called the Edelstein conduc-
tivity, is defined by the equation

Si =
∑

j

χi jE j . (37)

Using Eqs. (3), (7), and (31) and the symmetry properties
of the integrands, we arrive at the following expressions for
the Edelstein conductivity in dimensionless form:

χxy = −
∑
λ,r

λ

∫
dφ

2π

Mλ,r (φ)

Dλ,r (φ)
sin[ϕλ,r (φ)]

× {vλ,r (φ) sin[ξλ,r (φ)] + λC0 sin[ϕλ,r (φ)}, (38)
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FIG. 5. The off-diagonal components of the Edelstein conduc-
tivity as functions of the Fermi energy below the Dirac point at fixed
magnetic field b = 0.2.
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FIG. 6. The off-diagonal components of the Edelstein conductiv-
ity as functions of the magnetic field for the Fermi energy εF = −0.8.

χyx =
∑
λ,r

λ

∫
dφ

2π

Mλ,r (φ)

Dλ,r (φ)
cos[ϕλ,r (φ)]

× {vλ,r (φ) cos[ξλ,r (φ)] + A0 + λB0 cos[ϕλ,r (φ)}.
(39)

The diagonal components are zero, χxx = χyy = 0. Here the
Edelstein conductivity is normalized to eh̄/(2παR). The z-
component of the spin polarization is absent, Sz = 0.

The main features of the Edelstein conductivity are similar
to those of the conductivity G, but the anisotropy is stronger.

When the Fermi level is near the band bottom, the compo-
nents of the Edelstein-conductivity tensor are approximated as
follows:

χxy ≈ 
ε

4(1 + b)
, χyx = O(
ε2). (40)

The component χxy is seen to be much larger than χyx. This
fact is explained by the strong equilibrium spin polarization
of electrons in the y-direction, which is caused by the external
magnetic field.

As the Fermi energy increases, both components of the
tensor χi j grow in magnitude and then sharply drop when
the Fermi level passes through the saddle point, as shown in
Fig. 5. Figure 6 shows the dependence of χxy and χyx on the
magnetic field.

The anisotropy of the Edelstein conductivity is manifested
in the fact that the spin polarization vector is not perpendicular
to the electric field that induces it, and the angle between the
spin polarization and the electric field depends on the Fermi
level.

V. CONCLUSION

We have provided a method of theoretical study of
anisotropic transport in 2D electron gas within the framework
of the semiclassical Boltzmann theory. This method allows
one to exactly find the nonequilibrium distribution function
without using the relaxation time approximation in the case
in which electrons are scattered by impurities with a short-
ranged potential at zero temperature. In the presence of a
complex structure of the Fermi contours, all possible elec-
tronic transitions are taken into account in calculations using
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this method, both within each contour and between different
contours.

The method has been used to study anisotropic transport
in a 2D electron gas with a SOI subjected to an in-plane
magnetic field. In this case, the most important factor that
determines the transport features is the Van Hove singularity
of the density of states, which appears due to a combined
effect of the magnetic field and the SOI. The singularity is
controlled by the magnetic field. It appears at the bottom
of the conduction band and rises to the Dirac point with
increasing magnetic field. The Fermi contours are strongly
anisotropic, especially when the Fermi energy is close to the
Van Hove singularity. The most interesting effects arise when
the singularity passes through the Fermi level.

Calculations of the conductivity tensor and the spin po-
larization induced by an in-plane electric field revealed two
main effects that arise due to the interplay of the SOI and the
magnetic field.

First, both the electrical conductivity and the Edelstein
conductivity drop sharply when the Fermi level crosses the
Van Hove singularity point. The presence of a minimum
of electrical conductivity in 2D systems with a Van Hove
singularity has been known for a long time [37], and it con-
tinues to attract a great deal of interest [38]. Our calculations
are qualitatively consistent with the results known for other
systems.

An interesting conclusion from our study of the conductiv-
ity minimum is that the magnetic field, at which the minimum

is attained, is related to the parameters of the system studied
here by a simple relation:

B = mα2

gμBh̄2 + 2μ

gμB
, (41)

where μ is the chemical potential controlled by external
conditions. This fact can be used, for example, to determine
the SOI constant from experiments.

Another interesting and unexpected result is that the
anisotropy of the electric conductivity and the Edelstein con-
ductivity is strongly changed as the Fermi level passes through
the Van Hove singularity. In the energy region below the
Dirac point, the conductivity anisotropy changes the sign
twice when the Fermi level or magnetic field are changed. The
anisotropy of the Edelstein conductivity leads not only to the
angular dependence of the amplitude of the spin polarization,
but also to the rotation of the spin polarization vector with re-
spect to the electric field. Study of the transport anisotropy as a
function of the Fermi energy or magnetic field in experiments
can provide information on the anisotropy of the density of
electronic states and scattering processes.
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