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Binding energy and lifetime of excitons in metallic nanotubes
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The difficulty of describing excitons in semiconducting single-wall nanotubes analytically lies with the fact
that excitons can neither be considered strictly one- nor two-dimensional objects. However, the situation changes
in the case of metallic nanotubes where, by virtue of screening from gapless metallic subbands, the radius
of the exciton becomes much larger than the radius of the nanotube Rex � R. Taking advantage of this, we
develop the theory of excitons in metallic nanotubes, determining that their binding energy is about 0.08v/R, in
agreement with the existing experimental data. Additionally, because of the presence of the gapless subbands,
there are processes where bound excitons are scattered into unbound electron-hole pairs belonging to the gapless
subbands. Such processes lead to a finite exciton lifetime and the broadening of its spectral function. We calculate
the corresponding decay rate of the excitons.
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I. INTRODUCTION

An exciton is a bound state of an electron and a hole formed
by their Coulomb attraction—the solid-state analogy of a
hydrogen atom, but with a larger size and a smaller binding
energy. The smaller binding energy is due to the screening
of the mutual Coulomb interaction by bound electrons of the
medium, described by its dielectric constant. Excitons typi-
cally exist in insulators and weakly doped semiconductors.
Metallic and strongly doped semiconducting materials disfa-
vor formation of excitons. This is the result of two factors.
First, as the conduction band is populated (e.g., by doping),
screening by free charges strongly reduces the magnitude
of the electron-hole Coulomb interaction and decreases its
binding energy. Second, population of the conduction band
reduces the number of quantum states available to accom-
modate the electron after its (virtual) scattering off the hole,
further decreasing the binding energy to the point where no
meaningful bound state may be formed anymore.

This situation changes in quasi-one-dimensional systems,
such as metallic nanotubes [1], where formation of excitons
occurs in subbands different from the subbands that are re-
sponsible for metallic screening. Such separation occurs as
a result of quantization of the circumferential momentum.
This makes an exciton a well-defined excitation. Excitons
in metallic single-walled carbon nanotubes (SWNTs) were
experimentally observed in Refs. [2,3]. Their binding energy
was found to be about 50 meV, an order of magnitude smaller
than the typical band gaps � of semiconducting nanotubes.
Theoretically, excitons in metallic SWNTs were first studied
by Ando under the effective-mass approximation [4]. Later,
the binding energy of the exciton was addressed by first-
principles calculations [5–7], and also by the density matrix
theory [8], with the latter results being in agreement with ex-
perimental measurements. A brief review of excitonic effects
in metallic SWNTs was given in Ref. [9]. However, to our
knowledge, no simple analytical description of excitons in
metallic nanotubes has been developed. It is the purpose of
the present paper to fill this gap.

Let us illustrate the difficulty of describing excitons analyt-
ically in semiconducting SWNTs, stemming from the fact that
excitons can neither be considered one-dimensional (1D) nor
two-dimensional (2D) excitations. Indeed, consider the lowest
energy subbands with the spectrum ε(p) = ±

√
�2 + v2 p2,

and expand it near the bottom of the subband,

√
�2 + v2 p2 ≈ � + p2

2μ
, μ = �

v2
. (1)

The band gap is typically � ∼ v/R, where R is the radius
of the nanotube. For convenience, we set h̄ = 1 throughout
the paper. (In particular, in the zone-folding tight-binding
approximation both the (8,0) and (10,0) zigzag nanotubes
have � = v/3R.)

Because the electron-hole interaction energy is U (r) =
−e2/r, the exciton binding energy Eb can be estimated by
minimizing,

−Eb ≈ min

[
v2 p2

2�
− e2

r

]
, (2)

taking into account the uncertainty relation, r ∼1/p. This
yields

Eb ∼
(

e2

v

)2

�. (3)

Since e2/v ∼1, we obtain that Eb ∼ � and, consequently, the
exciton radius Rex ∼ v/Eb ∼ R. Because to consider excitons
to be 1D one would need to have Rex � R, and conversely,
to view them as 2D one would require Rex � R, the semicon-
ducting problem falls instead between the two limits where
a numerical analysis is necessary. However, as we are going
to see below, the situation changes in the case of metallic
nanotubes where—by virtue of screening by the metallic
subbands—the exciton binding energy decreases significantly
(as already evidenced by the experimental data). As a result,
the radius of the exciton increases, Rex � R, and treatment
of the exciton as a quasi-one-dimensional object becomes
possible. This is what makes the analytic solution viable.
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TABLE I. Analytically and numerically calculated (or experi-
mentally measured) binding energies of the excitons in different
metallic carbon nanotubes (M-NTs). The values in parenthesis are
extrapolated from the binding energy for the (13,1) nanotube ob-
tained in Ref. [8] and reported in it Eb ∝ 1/R dependence of the
binding energy on the radius of a metallic nanotube.

Binding energies Eb (meV)

M-NTs (n, m) This paper Density matrix ab initio Exper.

(12,0) 86 (88) ∼50 [6] –
(13,1) 76 78 [8] – ∼50 [3]
(10,10) 60 (61) ∼50 [6] –
(21,21) 28 (29) – ∼50 [2]

In this paper, we determine the binding energy and lifetime
of an exciton in metallic SWNTs, taking into account the
screening effects within the random phase approximation
(RPA). A problematic feature of the 1D Coulomb problem
is the r−1 singularity in the potential energy, which is not
integrable (unlike in the three-dimensional situation). This
feature was first addressed by Loudon [10] and later further
extensively studied by others [11–15]. Loudon introduced the
truncated Coulomb interaction e2/(|x| + a0) with a positive
constant a0 to ensure that Coulomb potential is regular at
small distances x → 0. In our problem, the nanotube radius
R appears naturally and no other cutoff is needed. Using a
variational ansatz with a Gaussian trial function, we show
below that the binding energy is (the value of � corresponds
to an armchair metallic nanotube)

Eb ≈ 0.08 �, � = v

R
. (4)

The 1/R dependence of the binding energy exhibits a
good agreement with the results obtained in Ref. [8] with
the density matrix theory, see Table I. In contrast, ab initio
methods yield only rather crude estimates of the binding
energy [2,5,6]. This is because computational limitations do
not permit calculations for large nanotubes. In addition, the
technique of photoluminescence (PL) spectroscopy cannot
be applied to obtain binding energies of metallic nanotubes,
which makes it challenging to determine the binding energy
of excitons in metallic SWNTs. This is because the exciton
is likely to undergo a nonradiative decay to the nearby linear
subbands instead of an electron-hole recombination process
with a photon released. Nonetheless, the exciton binding
energies experimentally observed [2,3] have the same order
of magnitude as predicted by our calculations.

Furthermore, we explore the stability of excitons in metal-
lic SWNTs—the question that is of fundamental interest but
which remains unexplored in the existing theoretical works.
The mechanism of a finite lifetime of the exciton can be
illustrated by Fig. 1. The mth subband, corresponding to the
integer angular quantum number m, has the energy εm(p) =
±v

√
m2/R2 + p2. Exciton bound states are formed between

gapped, m �= 0 subbands, and the lowest m = ±1 exciton is
indicated by a dashed line in Fig. 1. This energy overlaps with
the gapless m = 0 subbands. Accordingly, an elastic transition
of the electron and the hole from gapped to gapless subbands
opens up a decay channel for the exciton.

FIG. 1. Exciton state emerges due to the final state interaction of
the electron and hole with energy below the parabolic subband.

To better understand the role of the Coulomb interaction in
the formation and decay of the exciton, the following picture
is helpful. The exciton is produced by multiple virtual scatter-
ing events of the electron and the hole within the gapped sub-
bands. Such transitions are controlled by the Coulomb cou-
pling V0, the subscript indicating that no angular momentum
change takes place. These intrasubband transitions determine
the binding energy of the exciton (see Fig. 2, left panel). The
intersubband transitions (shown on the right panel in Fig. 2)
appear as a result of the “dipolar” Coulomb interaction V1

and occur with a change ±1 of the angular momentum of
the electron (and with the opposite change of the angular
momentum of the hole). We obtain that the ratio of the binding
energy to the half-width of the exciton spectral function is

� ≈ 0.015 �. (5)

Such a ratio indicates that excitons in metallic SWNTs are
well-defined excitations. This is consistent with experimental
results obtained through ultrafast luminescence [16].
Below we derive our main results, Eqs. (4) and (5).

II. THE HAMILTONIAN OF THE SYSTEM

The Coulomb interaction potential between two electrons
located on the surface of a nanotube of radius R at (x1, ϑ1) and
(x2, ϑ2) is given by

V (x, ϑ ) = e2√
x2 + 4R2 sin2(ϑ/2)

, (6)

where x = x1 − x2 and ϑ = ϑ1 − ϑ2 are the relative dis-
tance along the nanotube axis and the relative angle around
the circumference of the nanotube. [In the case of an

FIG. 2. Scattering processes shown within the massive subband
(via U0 coupling) and between massive and massless subbands (via
U1 coupling).
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electron-hole pair, the sign of the interaction (6) is reversed.]
If R becomes large compared with a characteristic distance
of the electron and the hole trajectories, the interaction ap-
proaches the Coulomb potential on a flat two-dimensional
plane. On the other hand, if R becomes small, Eq. (6) reduces
to the “1D hydrogen” problem studied by Loudon [10]. The
Coulomb interaction on the cylinder—the problem interpo-
lating between 1D and 2D—was previously considered by
Mahan [17] and Petersen [18].

What is different in our case is the need to take into account
screening, introduced by the gapless subbands of metallic
SWNTs.

This is most conveniently done by transitioning to the
momentum space. The Fourier transform of the Coulomb
interaction (6) yields the following expression [4,19]:

Vm(q) =
∫ ∞

−∞
dx e−iqx

∫ π

−π

dϑ

2π
e−imϑ e2√

x2 + 4R2 sin2(ϑ/2)
,

= 2e2K|m|(qR)I|m|(qR), (7)

where m is an integer number, and Im and Km are the modified
Bessel functions of the first kind and second kind, respec-
tively. However, because of the presence of conduction elec-
trons in the gapless subbands, which move around in response
to the “bare” Coulomb interaction Vm(q), the actual (screened)
interaction is modified: Vm(q) → Um(ω, q). This screened
interaction disturbs the equilibrium of the system and in-
duces density variations, which within the linear response
are proportional to the strength of the interaction, nm(ω, q) =
�m(ω, q)Um(ω, q), with the coefficient �m(ω, q) referred to
as the polarization function (i.e., density-density correlation
function) associated with the change m in the angular momen-
tum and the change q in the linear momentum. The central
tenet of RPA is the assumption of the mean field, which pre-
dicts that the variation of the density nm(ω, q) induces the ad-
ditional potential in the system: eϕ(ω, q) = Vm(q)nm(ω, q) =
Vm(q)�m(ω, q)Um(ω, q). This additional potential together
with the bare potential constitutes the total interaction:
eφ(ω, q) + Vm(q) = Um(ω, q). This gives

Um(ω, q) = Vm(q)

1 − Vm(q)�m(ω, q)
. (8)

The formation of the exciton is mostly facilitated by
the strongest interaction V0, which at low qR � 1 becomes
logarithmically strong, V0(q) ≈ −2e2 ln (qR). In contrast, the
higher interaction harmonics, m �= 0, remain constant in this
limit, Vm → e2/|m|.The screening of the V0 interaction is
determined by the uniform harmonics of the polarization
function with no change in the angular momentum, given by

�0(ω, q) = N

πv

q2v2

ω2 − q2v2
, (9)

where N = 4 accounts for two spin directions and the pres-
ence of the two Dirac points within the Brillouin zone (see
Appendix for details).

A large spatial radius of the exciton Rex makes it sufficient
to consider only the static limit of Eq. (9), where ω is disre-
garded compared with qv. Indeed, frequencies involved are of
the order of the exciton binding energy, ω ∼ Eb = 1/(μR2

ex ),
where the effective mass μ ∼ 1/(vR), according to Eq. (1).

On the other hand, the involved momenta are q ∼ 1/Rex.
Accordingly, the ratio ω2/q2v2 ∼ R2/R2

ex � 1. The screened
Coulomb interaction in this static limit assumes the form

U0(q) = 2e2K0(qR)I0(qR)

1 + αK0(qR)I0(qR)
, α = 2Ne2

πv
≈ 6.9, (10)

where we introduced the dimensionless interaction strength
α = 2Ne2/πv, where v is taken to be the same as the velocity
of electrons propagating in graphene, v = 8 × 105 m/s.

To similarly calculate the screening of the V1 interaction,
one needs to know the polarization function associated with
the ±1 change of the angular momentum. While the intra-
subband value of �0(ω, q) at low ω and qv, as seen from
Eq. (9), depends on which one of the two quantities tends
to zero faster than the other, there is no such ambiguity for
the intersubband polarization function �1(ω, q): as shown
in Appendix, �1(0, 0) = −1.16N/(πv). This gives, for the
screened intersubband interaction,

U1 = e2

1 + 1.16 e2N
πv

≈ 0.2 e2. (11)

In the limit of large wavelengths, qR � 1, the two interactions
approach each other, U0(0) ≈ U1. It should be pointed out,
however, that while the U1 interaction remains almost constant
for finite but small q, the interaction U1(q) is rather sensitive
to q, with the derivative dU1(q)/dq diverging at q → 0.

Note that in the absence of spectrum curvature, the po-
larization function �0(ω, q) of one-dimensional subbands
is independent of temperature. It is also unmodified by
the electron-electron interactions [20]. On the other hand,
the polarization constant �1(0, 0), which involves gapped
subbands, has a negligible temperature dependence. Indeed,
the population of thermally excited electron-hole pairs is
∼ exp(−�/kBT ), where � is much larger than the thermal
energy at room temperature. For these reasons it is sufficient
to consider the screening of the Coulomb interaction at zero
temperature. Similarly, small levels of doping, μ � �, do not
affect the strength of the Coulomb interaction.

Having determined the magnitude of the electron-electron
(and, therefore, electron-hole) interaction, we can proceed
to calculate the energy and the lifetime of the exciton. The
Hamiltonian of the system has the following form:

Ĥ =
∑

p

(
p2

2μ
+ �

)
(â†

pâp − b̂†
pb̂p) +

∑
p

vp (R̂†
pR̂p − L̂†

pL̂p)

+ 1

L

∑
p,k

U0(p − k)â†
kb†

pb̂kâp

+ U1

2L

∑
p,k

(R̂†
kb†

pL̂kâp + a†
pL̂†

k b̂pR̂k )

+ U1

2L

∑
p,k

(L̂†
k b†

pR̂kâp + â†
pR̂†

k b̂pL̂k ). (12)

Here âp and b̂p are the operators for the particles residing
on the upper and lower subbands with m = 1 (or m = −1);
the operators R̂p and L̂p correspond to right- and left-moving
particles of massless (m = 0) subbands; the U0(q) interaction
describes scattering within the massive subbands, whereas
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U1 coupling describes processes where scattering occurs be-
tween massive and massless subbands. Note that of all of the
Coulomb interaction terms, we have retained only those that
are responsible for the formation of the exciton with zero total
momentum: for example, the U0 term describes scattering
of the electron with momentum p (âp) and the hole with
momentum −p (b̂†

p) into a pair of new states with momenta
k and −k.

The intersubband terms in the Hamiltonian (12) have the
extra prefactor 1/2 compared with the intrasubband transi-
tions. The origin of this difference lies in the pseudospin
nature of the underlying Hamiltonian of the two-dimensional
graphene crystal that forms the nanotube. (The pseudospin
arises from the existence of two atomic sublattices in the
graphene honeycomb arrangement of carbon atoms.) As a
result, two states of the same energy and opposite momenta
are orthogonal to each other. More generally, the amplitude
of the transition between the states having momenta p and
p + q and the same sign of energy is suppressed by the factor
cos[(θp+q − θp)/2], where θp is the angle that the momentum
p makes with the x axis. When graphene is rolled into a
nanotube, the circumferential momenta are quantized, py =
m/R. The gapless states m = 0 are those that move along the
x axis: p = (p, 0) with θp = 0 or π . In contrast, in the gapped
subbands, p = (p, m/R), with the relevant momenta are near
the bottom/top of the subbands: p � 1/R. Accordingly, the
relevant states are those that have θp ≈ ±π/2. Correspond-
ingly, each particle transitioning between a gapless state and a
gapped state (close to the bottom of the subband) introduces a
factor cos (π/4) = 1/

√
2 into the amplitude of the scattering.

For the two-particle Coulomb interaction U1, the total addi-
tional coefficient is, therefore, 1/2.

III. BINDING ENERGY AND LIFETIME

The wave function of the exciton is sought in the form

|ψ〉 =
∑

q

fqâ†
qb̂q|0〉 +

∑
q>0

gqR̂†
qL̂q|0〉 +

∑
q<0

gqL̂†
qR̂q|0〉,

(13)

where |0〉 is the ground state of the system where all individual
electron states with the positive energy are empty and all
states with the negative energy are occupied. The function
fp describes the amplitude of the electron-hole pair to be
in the gapped states, whereas the function gq describes the
likelihood of the pair to reside in the massless states. Note
that in the last two terms we have explicitly taken into account
that in the ground state |0〉 the left-moving states are occupied
as long as q is positive whereas the right-moving states are
occupied if q is negative. Because the system is symmetric
with respect to the symmetry between left- and right-moving
states, the function gq must be symmetric: gq = g−q.

The Schrödinger equation Ĥ |0〉 = E |0〉 separates into two
coupled equations for the functions fq and gq:

(E − 2� − q2/μ) fq = − 1

L

∑
p

U0(q − p) fp − U1

2L

∑
p

gp,

(E − 2v|q|)gq = −U1

2L

∑
p

fp. (14)

Excluding gq from these equations and replacing the sums
by the integrals,

∑
p → L

∫
d p/2π , we arrive at the following

integral equation for the function fq:

(E − 2� − q2/μ) fq =
∫ ∞

−∞

d p

2π
fp

[
−U0(p − q),+U 2

1

4

×
∫ ∞

−∞

d p′

2π

1

E − 2|p′|v + iη

]
. (15)

The singularities at E = 2|p′|v lead to the imaginary part
in the energy E − i�/2 of the exciton. Because the resulting
imaginary part is small compared with the band gap, � � �,
it is sufficient to keep the infinitesimal η in the denominator
and utilize the Sokhotski identity, Im 1/(E − 2|p′|v + iη) =
−iπδ(E − 2|p′|v), for the calculation of the integral’s imag-
inary part. In contrast, the real part, which arises from the
principal value of the integral, can be ignored. Although the
real part appears to diverge logarithmically, such divergence
is the artefact of our assumption that U1 is constant. This
approximation, in any case, fails for transferred momenta
of the order 1/R, which should, therefore, be used as the
upper cutoff for the logarithmic integral. Finally, because
the energy involved is large, E ∼ 2� = 2v/R (rather than the
small binding energy Eb), the logarithm is of the order 1 and
the real part of the last term in the brackets in Eq. (15) merely
adds a contribution ∼U 2

1 /8πv. This second-order correction
is small compared to the main contribution from the U0 term
and may be ignored. Hence, we obtain from Eq. (15),(

E − 2� − q2

μ

)
fq = −

∫ ∞

−∞

d p

2π

[
U0(p − q) + i

U 2
1

8v

]
fp.

(16)

Below, the binding energy and the lifetime of the exciton,

E = 2� − Eb − i�/2, (17)

are determined from the ground-state eigenvalue E of this
equation.

A. The shallow potential approximation

The fastest way to estimate the exciton binding energy is
by utilizing the well-known in quantum mechanics shallow
well approximation which in the momentum space amounts to
replacing the interaction U0(q) with its zero-momentum value
U0 ≡ U0(0). Equation (16) then becomes exactly solvable and
yields

Eb + i�/2 = μ

4

[
U0 + i

U 2
1

8v

]2

≈ μ

4

[
U 2

0 + i
U0U 2

1

4v

]
. (18)

The effective mass, cf. Eq. (1), can now be expressed via the
band gap, μ = �/v2 and the interaction constants U0 ≈ πv/4
and U1 ≈ 0.2 e2, given by Eqs. (10) and (11). This gives,

Eb = π2

64
�, �/Eb ≈ 0.19. (19)

It is clear, however, that the value Eb = 0.15� that follows
from Eq. (19) significantly overestimates the binding energy
of the exciton: as evidenced by Eq. (10), the function U0(q)
is irregular at q → 0 where it has an infinite derivative. For
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this reason, the integrand in Eq. (16) in fact contributes much
less to the integral where p departs from q than predicted
by the shallow potential approximation. To make a better
approximation, we are now going to utilize the variational
approach.

B. The variational solution

To apply the variational approach to Eq. (16), we choose
the Gaussian trial function,

f (x) =
(

β

π

)1/4

e−βx2/2, (20)

or, equivalently, in the momentum space, fp = (4π/β )1/4

e−p2/2β . According to Eq. (16), the ground-state energy of the
exciton is the sum of the kinetic energy,

T =
∫ ∞

−∞

d p

2π

p2

μ
f 2

p = β

2μ
, (21)

and the expectation value of the potential energy. The latter

is a complex quantity: U0(x) − iU 2
1

8v
δ(x). The imaginary part

determines the exciton lifetime,

�/2 = U 2
1

8v
[ f (0)]2 = U 2

1

8v

√
β

π
, (22)

while the real part yields, with the help of the momentum
representation, the following integral:

U0 =
∫ ∞

−∞
dx U0(x)[ f (x)]2 =

∫ ∞

−∞

d p

2π
U0(p)e−p2/4β. (23)

The binding energy should be found by minimizing the
sum T − U0 with respect to β. The integral in U0 cannot be
calculated exactly but can be approximated rather accurately.
First, it is convenient to utilize the dimensionless variables
s = pR and t = √

βR to recast the average potential energy
(10) in the form

U 0 = 2e2

πR

∫ ∞

0
ds e−s2/4t2 K0(s)I0(s)

1 + αK0(s)I0(s)
. (24)

Next, we anticipate that for the large-radius excitons the small
values of t < 1 (and hence the small values of s) are relevant.
(This expectation is supported by the final result.) The
function I0(s) ≈ 1, whereas the Macdonald function has a log-
arithmic singularity, K0(s) ≈ ln (2/s) − γ , where γ = 0.577
is the Euler constant. Finally, we notice that the logarithm
depends on its argument s rather weakly, in comparison with
the exponential e−s2/4t2

, and hence can be approximated as a
constant within the relevant range of the s integration,

∫ ∞

0
ds e−s2/4t2 K0(s)I0(s)

1 + αK0(s)I0(s)
≈

√
π t ln (C/t )

1 + α ln (C/t )
, (25)

with some fitting parameter C. Numerical calculation
demonstrates that the value C = 3/2 provides an excellent fit
between the exact numerical integration of the left-hand side
of Eq. (25) and its right-hand side for the value α = 6.9 stated
in Eq. (10), which corresponds to N = 4 gapless modes.

TABLE II. The binding energies of the excitons in (21,21) arm-
chair nanotubes for different dielectric constants κ .

Substrates Dielectric constant κ Binding energy Eb (meV)

SiO2 2.5 22.4
SiC 3.75 18.7
Si/SiO2 4.4 17.9
GaAs 7 13.8

Accordingly, we arrive at the following value of the bind-
ing energy, −Eb = T − U0,

Eb = − t2

2μR2
+ 2e2

√
πR

t ln (C/t )

1 + α ln (C/t )

= �

[
− t2

2
+

√
π

N

αt ln (C/t )

1 + α ln (C/t )

]
, (26)

where in the last line we used the definition of the coupling
constant α from Eq. (10) and also replaced the effective mass
μ = �/v2 in terms of the band gap � = v/R.

The binding energy (26) has a maximum at t = t0 = 0.36,
where the value Eb stated in Eq. (4) is reached. This bind-
ing energy agrees well with the experimental measurements
[2]. In turn, the obtained result justifies the approximations
of a large exciton radius. Indeed, according to the wave
function (20), the radius of the exciton is Rex ∼ √

2/β =√
2R/t0 ≈ 4R.
The exciton radius increases when the Coulomb interaction

is further reduced if the nanotube is located on the surface
of a dielectric substrate. Correspondingly, the dimensionless
interaction strength will be modified as α = 4Ne2/πv(κ + 1),
where κ is the dielectric constant of the substrate. The binding
energy can still be calculated using Eq. (26). Table II shows
the calculated binding energies for several substrates.

The decay of the exciton into the linear subbands was first
studied numerically in Ref. [7], which concluded that such
decay processes lead to a negligible broadening. Our result
indicate otherwise and are also in a good agreement with
experiments reported in Ref. [16].

The value of the inverse lifetime now follows from
Eq. (22):

� = �t0
4
√

π

U 2
1

v2
, (27)

whose numerical value yields Eq. (5). The exciton acquires a
significant broadening but nonetheless remains a well-defined
excitation. Interestingly, this ratio is numerically very close to
the value predicted by the shallow potential approximation.

IV. SUMMARY AND CONCLUSIONS

Because of the presence of the gapless subbands, excitons
in metallic carbon nanotubes acquire unique features that
distinguish them from excitons in other solid-state systems.
First, the quasi-one-dimensional nature of nanotubes makes
screening by conduction electrons less effective than in con-
ventional metals. As a result, the electron-hole interaction
remains significant enough to ensure the formation of a bound
pair. Second, the separation (in the momentum space) of
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gapless states (m = 0) from the subbands where the exciton
is formed (|m| = 1) and the fact that the latter subbands are
fully gapped allow the electron and the hole to explore fully
the gapped subbands, unlike what happens in a conventional
doped semiconductor where filling of the conduction band
quickly depletes the number of available electron states.
Third, the screening by the gapless states is nonetheless signif-
icant enough so that the radius of the exciton is greater than the
nanotube radius with the binding energy of the order of 0.1�.
This allows one to treat excitons as quasi-one-dimensional ob-
jects, unlike excitons in semiconducting nanotubes which are
neither one-dimensional nor two-dimensional objects. Fourth,
the presence of the gapless subbands opens up a channel for
exciton attenuation where the electron and hole can scatter off
each other into the gapless states. The presence of this channel
leads to a considerable broadening of the exciton but not so
significant as to smear it away completely.
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APPENDIX: POLARIZATION FUNCTION
OF A METALLIC NANOTUBE

The screening of Coulomb interaction in a nanotube is
determined by its polarization function �m(iω, q), which in
the zone-folding approximation can be obtained from the

polarization function of the underlying two-dimensional
graphene crystal. The low-energy excitations in graphene are
described by the Dirac Hamiltonian, Ĥ = vσ · p, where σ

is the Pauli matrix acting in the pseudospin space of the
two triangular sublattices of carbon atoms. The polarization
function,

�(iω, q) = NT Tr
∑

iε

∫
d2 p

(2π )2
Ĝ(0)(iε + iω, p + q)

× Ĝ(0)(iε, p), (A1)

relates to the product of two Green’s functions of π electrons
consisting of the contributions from both the upper cone
(β = 1) and lower cone (β = −1),

G(0)(iε, p) = 1

iε − vp · σ̂
= 1

2

∑
β=±1

1 + βσ̂p

iε − βvp
, (A2)

where σ̂p = σ̂ · p/p is the projection of the pseudospin Pauli
matrix onto the direction of electron momentum. At zero
temperature the T = 0 β ′ = −β terms contribute,

�(iω, q) = −N

4

∑
β

∫
d2 p

(2π )2

β

iω + vβp + vβ|p + q|
× Tr[(1 − βσp)(1 + β σ p+q)]. (A3)

The retarded counterpart of the polarization operator can be
obtained through analytical continuation iω → ω + iη. How-
ever, since virtual transitions avoid all singular poles, a small
imaginary constant iη can be disregarded for our purposes,

�(ω, q) = N

8π2

∑
β

∫ ∞

−∞
d2 p

β[cos(θp+q − θp) − 1]

ω + vβp + vβ|p + q| . (A4)

Within the zone-folding approximation, which ignores any curvature effects on the electronic spectrum arising from the rolling
of the graphene sheet, the polarization function for a nanotube is obtained by quantizing the circumferential momenta, qy = m/R,
py = n/R, and replacing the integral with the sum, R

∫
d py → ∑

m. Additionally, to relate the resulting polarization function to
the one-dimensional density, the quantity (A4) should be multiplied by the factor 2πR. Expressing the cosine function in terms
of the momentum component, we obtain

�m(ω, qx ) = N

2π

∑
n

∫ ∞

−∞
d px

[
1 − (px + qx )px + (m + n)n/R2√

(p2
x + n2/R2)

√
(px + qx )2 + (m + n)2/R2

]

× v
√

(p2
x + m2/R2) + v

√
(px + qx )2 + (m + n)2/R2

ω2 − [v
√

(p2
x + m2/R2) + v

√
(px + qx )2 + (m + n)2/R2]2

. (A5)

Of interest to us here are the polarization function for m = 0
and m = ±1. For m = 0 and qx � 1/R, only the n = 0 terms
should be retained. For example, for qx > 0, the integral only
extends over the interval −qx < px < 1 (where the integrand
does not depend on px) and the expression (9) is recovered,
the subscript in qx being omitted. (The same result follows for
qx < 0.)

For m = 1, because only the static and homogeneous limit
is important for our purposes, one can set ω = 0 and qx = 0
in Eq. (A5). The remaining px integral is independent of R
and can be (together with the summation over m) calculated

numerically. This yields

�1(0, 0) = −1.16
N

πv
, (A6)

which yields the value of the screened U1 interaction as in
Eq. (11).

Note that the dominant contribution into the polariza-
tion function (A6) comes from the lowest-order virtual
transitions, n = −1 and n = 0. Retaining only these con-
tributions, one would obtain the estimate �1(0, 0) = − N

πv
.
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Another good order-of-magnitude estimate could be ob-
tained from the polarization function for graphene, �(ω, q) =
−Nq2/(16

√
q2v2 − ω2). In the static limit, ω = 0, replacing

q → 1/R, and multiplying the result by 2πR, as explained
above, one would obtain, �1(0, 0) = −πN

8v
, which overesti-

mates the exact value (A6) by only 6%.
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