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The sensitivity of charge, heat, or momentum transport to the sample geometry is a hallmark of viscous
electron flow. Therefore hydrodynamic electronics requires a detailed understanding of electron flow in finite
geometries. The solution of the corresponding generalized Navier-Stokes equations depends sensitively on the
nature of boundary conditions. The latter can be characterized by a slip length ζ with extreme cases being
no-slip (ζ → 0) and no-stress (ζ → ∞) conditions. We develop a kinetic theory that determines the temperature
dependent slip length at a rough interface for Dirac liquids, e.g., graphene, and for Fermi liquids. For strongly
disordered edges that scatter electrons in a fully diffuse way, we find that the slip length is of the order of the
momentum conserving mean free path lee that determines the electron viscosity. For boundaries with nearly
specular scattering, ζ is parametrically large compared to lee. Since for all quantum fluids lee diverges as
T → 0, the ultimate low-temperature flow is always in the no-stress regime. Only at intermediate T and for
sufficiently large sample sizes can the slip lengths be short enough such that no-slip conditions are appropriate.
We discuss numerical examples for several experimentally investigated systems. To identify hydrodynamic flow
governed by no-stress boundary conditions, we propose the transport through an infinitely long strip containing
an impenetrable circular obstacle.
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I. INTRODUCTION

The fluid flow of liquids is governed by the laws of
hydrodynamics. If collisions are sufficiently strong and lead
to local thermalization, yet respect the laws of charge, energy,
and momentum conservation, hydrodynamics should apply
[1]. Inhomogeneous flow velocity profiles of the Couette
and Poiseuille type, vorticity of flow, or turbulent flow are
among the indicators of hydrodynamic behavior. Starting with
the pioneering work by Gurzhi [2] in 1968, the theoretical
foundations of electron hydrodynamics have been discussed
for a range of electronic systems [3–19]. For electron hy-
drodynamics to apply, electron-electron collissions should
dominate. Thus the temperature should be below Tph where
electron-phonon scattering starts violating energy and mo-
mentum conservation of the electronic subsystem. At the same
time, T should be above Timp where impurities dominate,
violating momentum conservation. Only if Timp < Tph there is
a window for hydrodynamic electronics, explaining the need
for ultraclean materials.

Examples for recent experimental investigations that sup-
port hydrodynamic electronics include the observation of
nonlocal momentum relaxation in the delafossite PdCoO2

[20] and the Weyl semimetal WP2 [21], systems that are
special because of their exceptionally low residual resistiv-
ity. In parallel, advances in the fabrication of high-quality
graphene led to the observation of hydrodynamic Coulomb
drag [22], violations of the Wiedeman-Franz law for the ther-
mal transport [23] and the Mott relation for the thermoelectric
transport [24], a negative local resistance due to flow with
vorticity [25], and superballistic flow [26]. In graphene at the
charge neutrality point and other Dirac systems, electron-hole

puddles form due to disorder effects [27]. These puddles result
in a local variation of the chemical potential δμ. To observe
hydrodynamic effects, |δμ| < kBT must hold—a condition
that seems to have been achieved in current experiments [23]
(for a more careful discussion see Ref. [17]). A key common
feature of all those experiments is the fact that finite geome-
tries strongly affect the electron flow. In fact, the sensitivity
of the flow profile to boundaries has been a key strategy to
identify hydrodynamic flow.

The theoretical modeling of viscous electron flow is often
based on the solution of kinetic equations [6,11–14,22,28]. A
very efficient description, particularly appropriate for com-
plex geometries is based on the Navier-Stokes equations for
the flow velocity u(r, t ). For Lorentz and Galilei-invariant
systems, the Navier-Stokes equations are dictated by symme-
try [1]. In the general setting, they can be derived from the
kinetic equation, see, e.g., Ref. [6,11]. Not surprisingly, the
solutions of these equations depend sensitively on the imposed
conditions at the sample boundaries. Let S be the boundary
of the sample. Popular boundary conditions are the no-slip
condition

ut
α

∣∣
S

= 0, (1)

where ut = u − (u · n)n is the tangential velocity of a bound-
ary with normal vector n, and the no-stress condition

nβ

∂ut
α

∂xβ

∣∣∣∣
S

= 0. (2)

The no-slip condition is the relevant one for most liquid-solid
interfaces. Liquid particles at the surface do not move with
the fluid flow, an effect either explained in terms of surface
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FIG. 1. Velocity profile u(y ) of an electron liquid near the edge
of a sample. The boundary condition for u(y ) is given by Eq. (3) so
that u(y = 0) = ζ ∂u

∂y
. The slip length ζ characterizes the behavior

of a liquid near the edge. It corresponds to the length where the
extrapolated velocity vanishes. Also depicted is the Knudsen layer—
an approximately one mean free path thin layer along the boundary,
where the collisions of particles with the wall are as important as
collisions among each other (see also Fig. 6).

roughness or due to attractive interactions between solid and
liquid particles, see Refs. [29,30]. On the other hand, the
liquid flow near a liquid-gas interface is often characterized
by the no-stress condition, i.e., the tangential stress at the
interface is continuous. As discussed by Maxwell [31], a
boundary condition, that includes both cases as limits is

ut
α

∣∣
S

= ζ nβ

∂ut
α

∂xβ

∣∣∣∣
S

, (3)

where ζ is the slip length. It corresponds to the length where
the extrapolated boundary velocity vanishes (see Fig. 1).
Clearly, ζ → 0 and ζ → ∞ correspond to no-slip and no-
stress conditions, respectively. Since the origin of tangential
stress in a fluid is purely viscous, one expects that the slip
length is another quantity that can be determined from kinetic
theory, like diffusivities or viscosities. Indeed, for rarified
gases, Maxwell found that ζ is essentially given by the
momentum-conserving mean free path, a result fully consis-
tent with numerical simulations [32]. Other systems where a
finite slip length is of relevance are classical fluids affected
by soft hydrodynamic modes [33,34], polymer melts [35],
phononic liquids [36], and 3He at low temperatures in the
normal and superfluid state [37–40]. Reference [41] reports
that in the quantum Hall regime no-stress conditions must be
applied to agree with known results for the quantized Hall
conductance.

Let us demonstrate the importance of a finite slip length
for the fluid flow in a simple example. Consider the flow
of a two-dimensional system that is governed by the
linear, stationary limit of the Navier Stokes equation. For
a strip of width w, oriented along the x direction, we have
∂p/∂x = −η∂2ux/∂y

2 [42]. Solving for ux with the boundary
condition (3), we obtain

ux = 1

8η
(w2 + 4ζw − 4y2)

∂p

∂x
, (4)

FIG. 2. Flow profiles of a wire of thickness w through which
passes a current I . For no-slip boundary conditions, a parabolic flow
profile, typical for Poiseuille flow, is realized. With growing slip
length, the flow profile becomes flat, i.e., more similar to Ohmic flow.

if ∂p/∂x is constant. The total heat current I is proportional
to the integral over the flow velocity

I ∝
∫ w/2

−w/2
dy ux = 1

2η

(
w3

6
+ ζw2

)
∂p

∂x
. (5)

The second contribution stems from a finite slip velocity at
the boundaries. Only if ζ � w, does the typical Poiseuille
scaling I ∝ w3 (or wd+1 for arbitrary dimensions) hold.
Clearly, any hydrodynamic effect, such as, e.g., the Gurzhi
effect (as the I ∝ wd+1 scaling is called in the context of
electron flow), that depends on stress created by momentum
dissipation at the boundaries, is critically influenced by ζ . To
illustrate the importance of boundary conditions, expressed
in terms of the slip length, we show in Fig. 2 the flow profiles
of a wire of thickness w through which passes a current I for
different slip lengths.

In the context of electron hydrodynamics, the nature of the
boundary conditions is unclear. On the one hand, Poiseuille
type flow, observed in Refs. [20,21] supports at the least a
very small slip length if compared to the characteristic size
of the system. On the other hand, the absence of such flow in
graphene was taken as evidence for a no-stress boundary with
a very large slip length [25].

In this paper, we develop a kinetic theory to determine
the slip length ζ for Dirac and Fermi liquids in two limits.
In the first limit, only a small fraction of tangential mo-
mentum is transferred to the wall in electron-wall collisions,
which are assumed to be elastic. This limit we call the
nearly specular limit. In the opposite, the diffuse, limit all
tangential momentum is lost. The two limits correspond to
samples with almost smooth and strongly disordered edges.
We find that the slip lengths grow with decreasing tem-
peratures. For graphene at charge neutrality, in the nearly
specular limit ζ ∼ ln6 (T�/T )/T 4, whereas in the diffuse
limit, ζ ∼ lee ∼ ln3 (T�/T )/T . The logarithmic, factors stem
from a renormalization of the group velocity of electrons
caused by interaction effects [46]. T� = �/kB , where �

is an energy cutoff. For realistic parameters of graphene,
the slip lengths are larger than 1μm below 100 K, which
leads us to the conclusion that for most geometries used so
far it is more appropriate to assume no-stress than no-slip
conditions at the boundaries. In addition we discuss the slip
length of three- and two-dimensional Fermi liquids, the latter
describing graphene at a finite chemical potential μ � kBT

and potentially the delafossite PdCoO2 of Ref. [20]. We find
that in three dimensions the slip length grows as T −2 in
both the diffuse scattering and the nearly specular scattering
limits, yet with a coefficient that depends on the nature
of the boundary scattering. For a two-dimensional Fermi
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liquid, the slip length behaves as T −2/ ln (εF /kBT ), due to
the well-known logarithmic suppression of the quasiparticle
lifetime [43]. Comparing Dirac and Fermi liquids, we find
that in the diffuse scattering limit, the slip lengths of graphene
away from charge neutrality are larger then those of charge
neutral graphene below 100 K. In the nearly specular limit,
the slip length of charge neutral graphene is larger than
that of graphene away from charge neutrality at very low
temperatures, however, here ζ is very large for both systems.
If the momentum dissipation is due to edge roughness, we
find that graphene at a finite chemical potential μ is more
susceptible to the magnitude of the roughness, because here
the electron wavelengths—governed by the energy scale μ—
are smaller than the thermal electron wavelengths of charge
neutral graphene. Summing up, we find that the slip length for
electronic flow can always be written in the form

ζ = f (κ )lee (6)

with dimensionless ratio κ = h2h′d−1/λd+1. κ depends on
the two lengthscales h and h′ that characterize the interface
scattering [see Eq. (21) and Fig. 4] and the electron wave-
length λ, respectively. The latter is strongly temperature de-
pendent for graphene at the neutrality point [λ = h̄v/(kBT )],
while it corresponds to the Fermi wave length in the case of
Fermi liquids (λ = 1/kF). Here, v is the renormalized group
velocity of the electrons [see Eq. (11) and the discussion
below Eq. (12)]. For the dimensionless function f (κ ), we find
f (κ � 1) = f0/κ , while f (κ → ∞) → f∞. We determine
f∞ using the assumption of diffuse scattering. The numerical
values for the coefficients f0 and f∞ depend sensitively
on the electronic dispersion relation and dimensionality of
the system, but the overall behavior is found to be generic.
We find for two-dimensional Dirac liquids at the neutrality
point f0 ≈ 0.008 and f∞ ≈ 0.6. For two-dimensional Fermi
liquids, f0 ≈ 1.1 and f∞ ≈ 1.2, while for three-dimensional
Fermi liquids we obtain f0 ≈ 3 and f∞ ≈ 0.5. For a bound-
ary with intermediate scattering strength, we expect f (κ ) to
smoothly interpolate between the two limits, with a crossover
for κ ∼ O(1).

Thermal currents in charge neutral graphene

In a Galilei-invariant system, the drift velocity u is propor-
tional to the electric current:

j = neu, (7)

where n is the particle density. This means that the hydrody-
namic flow of a Fermi liquid can be probed by measuring the
electric current j . A key aspect of electron hydrodynamics in
graphene at charge neutrality is that here the heat current takes
the place of mass or charge current in conventional systems.
The heat current is proportional to the momentum density
and therefore conserved in electron-electron interactions. As
a result, the thermal conductivity at the neutrality point is infi-
nite, if the momentum is not dissipated by other mechanisms
such as impurities or boundary scattering [44]. This is a direct
consequence of the linear dispersion of graphene. The drift
velocity u is connected to the heat current [11] via

jE = 3nEu
2 + u2/v2

. (8)

Furthermore, at charge neutrality, no hydrodynamic flow u
can be excited by applying an electric field because the
same number of holelike excitations flows in one direction as
electrons in the other. A temperature difference, however, can
be thermodynamically related to a pressure difference. This
qualitatively different behavior of the thermal and electric
ac conductivity is the reason for the dramatic violation of
the Wiedemann-Franz law observed in Ref. [23]. Thus a
temperature gradient must be applied to a graphene sample
in order to excite a drift flow u [28]. To see this, we use the
differentials of the grand canonical potential and the Gibbs-
Duhem relation � = −pV . One easily finds ∇p = s∇T +
n∇μ, where n is the particle density and s is the entropy
density. Both quantities, s and n, are spatially uniform. The
density n vanishes at charge neutrality (see Appendix A) and
we are left with

∇p = s∇T . (9)

Then, in the linear and stationary regime, the Navier-Stokes
equation governing the incompressible hydrodynamic flow
[5,11] reads

s∇T = η�u, (10)

and the temperature gradient is playing the role of the external
stress that causes the flow. Such a situation is considered
in Sec. IV, where we investigate the heat flow through an
infinitely long strip with an impenetrable circular obstacle.
No-stress boundary conditions are applied and viscous forces
alone create a temperature gradient.

Finally, we add that the optical conductivity of Dirac
systems [4,5] can be considered to be a bulk signature of
hydrodynamic behavior, because the current relaxation mech-
anism is unrelated to momentum conservation and therefore
independent of boundary scattering. Furthermore, the second-
order nonlinear conductivity of a Dirac electron system is
expected to have unusual properties in the hydrodynamic
regime [45].

II. THEORY

A. Boundary conditions for the distribution function

We now discuss how to obtain a boundary condition of the
form of Eq. (3) from a kinetic theory. The technical aspects of
the determination of the viscosity are outlined in Appendix B.
Our program is to first determine the boundary conditions
for the underlying kinetic theory of the electron distribution
function, developing an understanding of how the kinetic
distribution behaves at the boundary, and then to connect to
hydrodynamics. To be specific, we perform the subsequent
analysis for graphene at the neutrality point. Below, we also
summarize the corresponding results for Fermi liquids.

The behavior of electrons in graphene is governed by the
massless Dirac Hamiltonian in two spatial dimensions,

H0 = v0h̄k · σ ab, (11)

and the Coulomb repulsion between electrons. Here, v0 is the
bare group velocity and a and b are sublattice (pseudospin)
indices. Here and hereafter, we suppress the valley degree
of freedom. Together with the spin degeneracy, we take it
into account in the final results as a global prefactor N = 4.
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FIG. 3. We consider the flow of an electron liquid through a
graphene sample that extends over the region y > 0. The drift
velocity is oriented along the x axis. The sample edge at y = 0 is
a source of momentum dissipation.

The noninteracting part of the graphene Hamiltonian (11) is
diagonalized by a unitary transformation

Uk = 1√
2

[
ok −ok

1 1

]
, (12)

where ok = (kx + iky )/
√

k2
x + k2

y , which results in a spectrum

ελk = λv0h̄k. λ = ±1 is the band index. This spectrum ex-
hibits a fourfold spin-valley degeneracy. In the remainder of
the text, whenever we are concerned with graphene at the
charge neutrality point, we use the approach of Ref. [46] in
which interaction effects give rise to a renormalization of
the velocity v0 → v = v0(1 + α ln (�/kBT )), accompanied
by the renormalization of the coupling constant α0 → α =
e2/(4πεh̄v).

Consider a semi-infinite graphene sheet in the region y > 0
with an edge along the x axis (Fig. 3). At a formal level the
kinetic equation for graphene electrons in the presence of a
boundary contains two collision terms: the electron-electron
collision term Ce.e.[f ] due to the Coulomb interaction and
the electron-edge collision term Cedge[f ]. In the absence of
electric and magnetic fields, the kinetic equation takes the
form(

∂

∂t
− vλ · ∇

)
fλ,k(r ) = −Ce.e.λk[f ] − Cedgeλk[f ], (13)

where vλ = λvk/|k| is the group velocity. The problem of
solving Eq. (13) seems rather challenging. It is, however,
possible to reduce Cedge[f ] to a boundary condition for
fλ,k(x = 0) [47]. This boundary condition relates the distri-
bution function of reflected electrons f >

k , which is defined
for v

y

λ > 0, to that of the incident electrons f <
k , defined for

v
y

λ < 0. Once f >
k and f <

k are found as solutions of the kinetic
equation with the appropriate boundary condition, the hydro-
dynamic boundary condition in the form of Eq. (3) follows
from the fact that the momentum current perpendicular to the
impenetrable edge must vanish at y = 0:

0 = 2N

∫
<

ddk

(2π )
v

y

+,kkxf
<
+,k(y = 0)

+ 2N

∫
>

ddk

(2π )
v

y

+,kkxf
>
+,k(y = 0). (14)

FIG. 4. The disordered edge of a graphene sample is described
by the function ξ (x ) and characterized by its mean height h and
correlation length h′. Both are much smaller than the thermal
wavelenght of the graphene electrons. On average, the edge can be
described by the distribution ξ (x1)ξ (0) = h2 exp (− x2

h′2 ).

Here, the factor of two accounts for the particle and hole bands
and the factor of N is due to the spin-valley degeneracy. The
subscripts ≷ denote that the integrals have to be taken over
the regions in momentum space where v

y

λ,k > 0, or v
y

λ,k < 0,
respectively. In order to derive (3), we must take into account
that the distribution functions f

≶
k depend on u, as well as on

its spatial derivatives.

1. Nearly specular limit

Under the assumption that the relevant momentum re-
laxation at the wall stems from the irregular shape of the
boundary, the boundary conditions can be obtained from the
scattering behavior of the electronic wave function near a
rough surface. Early phenomenological parametrizations of
the scattering behavior near such a surface go back to Maxwell
[31] and Fuchs [48]. Here, we follow a more microscopic
approach along the lines of Refs. [49,50].

Let the rough surface be oriented along the x axis and its
shape be given by the function ξ (x) (see Fig. 4).

Before we can address the question of the boundary
conditions for the distribution function, we need to know
the behavior of the Dirac wave function, i.e., that of low
energy excitations, at the sample edge. It was shown in
Ref. [51] within a tight-binding approach that for almost any
cut through the honeycomb lattice the appropriate boundary
condition is quantitatively very similar to that of the zigzag
edge. The only exception would be an armchair edge that
extends without disturbance over a large distance—something
which is unprobable for a disordered edge and is excluded
here. This means that the wave function on one sublattice
a = 1 vanishes at the boundary, whereas the wave function
on the other sublattice a = 2 remains undetermined, or vice
versa. The valley degrees of freedom are not mixed. To derive
the boundary condition for the distribution function fλ,k, it
suffices to impose the condition

ψa=1(x, y = ξ (x)) = 0. (15)

The deviations ξ (x) must be larger than the interatomic dis-
tances, but small compared to the typical wavelength of Dirac
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electrons at low temperatures. The boundary condition (15)
can then be expanded in ξ (x):

ψ1(x, 0) + ξ (x)
∂ψ1(x, y)

∂y

∣∣∣∣
y=0

= 0. (16)

We consider elastic scattering at the boundary only, therefore
it is usefull to introduce the projection of a wave function onto
quasifree plane-wave states with a given energy ε:

ψ1,ε (x) =
∑

λ

∫
d2k

(2π )2
δ(ε − ελ,k )γk,λU1,λ(k)eik·r . (17)

Here, ελ,k = λvh̄k is the electron dispersion and Ua,λ(k)
transforms the wave functions γk,λ from the band basis into
the sublattice basis. ψk,a = ∑

λ γk,λUa,λ(k) is the Bloch func-
tion projected onto the sublattice. Inserting ψ1,ε (x) into (16),
carrying out the kx integration, and performing a Fourier
transform, we obtain to second order in ξ (x) a relation
between the wave functions γkx,|ky |,λ and γkx,−|ky |,λ on the
boundary. This relation holds for λ = ±1 separately, because
of the elasticity of the scattering process. Then, an average
over the edge shapes ξ (x1)ξ (x2) is taken, so that translation
invariance along the edge is restored:

ξ (k1)ξ (k2) = 2πδ(k1 + k2)W (k1). (18)

Thus W (k) describes the correlation of the surface roughness.
The squared moduli of the wave functions are directly related
to the kinetic distribution function on the boundary:

fk,λ = (
2πv

y

kx,λ

)−1|γkx,ky (ε,kx ),λ|2. (19)

The prefactor (2πv
y

kx,λ
)
−1

stems from a variable change
kx, ε → k. In this fashion, we arrive at the boundary condition

f >(kx, ky ) = f <(kx,−ky ) − 4f <(kx,−ky )ky

×
∫

dk′
x

2π
k′
yW (kx − k′

x ) + 4ky

×
∫

dk′
x

2π
k′
yW (kx − k′

x )f <(k′
x,−k′

y ), (20)

where ≷ stands for the sign of the velocity component in the
y direction. Except for the matrix elements Ua,λ(k), which
ultimately cancel out, and the fact that two bands λ = ±1 have
to be kept track of, the calculation is completely analogous
to the one presented by Falkovsky in Ref. [50]. The domain
of integration in (20) ranges from k′

x = −ε/v to k′
x = ε/v

where ky =
√

(ε/v)2 − k2
x . Interchanging the sublattice index

in Eq. (15) does not alter the result of Eq. (20).
We assume that the edge correlation function ξ (x1)ξ (x2) is

given by a Gaussian distribution

ξ (x1)ξ (0) = h2e
− x2

h′2 , (21)

where h is the typical amplitude of ξ (x) and h′ is their
correlation length. We then have

W (kx ) = √
πh2h′e− 1

4 k2
xh

′2
. (22)

In graphene at charge neutrality, the characteristic energy of
excitations is εT ∼ kBT . If the lengths h, h′ are of the order

of a few interatomic distances, we can safely assume for the
thermal wavelength λT = vh̄/εT that

h′ � λT , (23)

and therefore that W (kx ) is a flat function:

W (kx ) ≈ √
πh2h′. (24)

The presence of the small parameter h2h′/λ3
T is the reason,

why our analysis of the slip length in the nearly specular limit
is well controlled. The boundary condition (20) does conserve
the number of particles and has essentially the form of the
boundary condition proposed by Fuchs [48], where

p(k) = 1 − 4ky

∫
dk′

x

2π
k′
yW (kx − k′

x ) (25)

takes the role of a specularity parameter, which depends on
the angle of incidence.

2. Diffuse limit

An alternative boundary condition is valid in the limit of
totaly diffuse boundary scattering. Here, it is sufficient to
assume that the distribution of electrons departing from the
wall does not depend on the particle directions, i.e.,

f >
λ,k = f >

λ (|k|). (26)

Clearly, in such a case, all tangential momentum is lost in an
electron-wall collision. The diffuse limit is appropriate, if the
sample edge is very rough and one makes no assumption on
the elasticity of the scattering processes.

B. Kinetic equation at a boundary

Next, we determine the electron flow behavior that charac-
terizes the transfer of momentum near the surface within a ki-
netic theory. Generally, within the Chapman-Enskog approach
[52], the bulk kinetic distribution function has the form

f
∣∣
b

= f l.e. − ∂f 0

∂ε
�, (27)

where f l.e. is the local equilibrium distribution function,
which is found by setting the collision integral to zero, and
f 0 the distribution function for the global equilibrium. For
graphene electrons,

f l.e.
λ,k = 1

eβ(ελ,k−u(r,t )·k−μ) + 1
(28)

and f 0 is the Fermi-Dirac distribution. The inverse tempera-
ture β = 1/(kBT ) is not to be confused with the coordinate
index β. � is a nonequilibrium contribution describing the
response to shear and other forces. The response to shear
forces is characterized by the viscosity η of a system, defined
via the relation

ταβ = −η
∂uα

∂xβ

(29)

between the stress (momentum current) tensor ταβ =
Nh̄v

∑
λ

∫
d2k

(2π )2 (λkαkβ/k)fkλ and the gradient of the drift
velocity. In the absence of a wall, the kinetic distribution
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function for graphene at charge neutrality and due to electron-
electron Coulomb interaction was calculated in [6] (the main
points are summerized in Appendix B). In the presence of
shear forces only, the bulk distribution to leading order in the
fine structure constant α = e2/(εh̄v) (not to be confused with
the coordinate index α) and the drift velocity u is given by

fλ,k|b = f l.e.
λ,k + βf 0

λ,k

(
1 − f 0

λ,k

)
�, (30)

where

� = λ

2
√

2
(C0 + C1βvk)IαβXαβ,

Xαβ = ∂uα

∂xβ

+ ∂uβ

∂xα

− δαβ∇ · u,

Iαβ =
√

2

(
kαkβ

k2
− 1

2
δαβ

)
. (31)

Here, C0 and C1 are dimensionless numerical coefficients—
the ψ0 and ψ1 of Appendix B— that are found by solving the
kinetic equation [6] (see Appendix B). C0 and C1 correspond
to the zero modes of the collinear part of the collision integral
and are dominant at leading order in the fine structure constant
α. The expression (30) can be used to determine the viscosity
of graphene electrons

η = N
(π3C0 + 27ζ (3)πC1)

48π2β2v2h̄
≈ 0.449N

4α2v2h̄
(kBT )2, (32)

with N = 4 being the spin valley degeneracy.
In the presence of the sample edge, we expect corrections

of the order h2h′ to the bulk distribution function stemming
from the edge, therefore we make for the distribution function
f <

λ,k(y = 0) of particles impinging on the edge the ansatz

f <
λ,k(y = 0) = fλ,k|b + O

(
h2h′k3

T

)
A(IαβXαβ ), (33)

where A(IαβXαβ ) is some function of gradients of the drift
velocity u and momenta ki . As we will show later, this
correction contributes to the slip length only to second order in
h2h′ and we can ignore the contribution A(IαβXαβ ). In other
words, one can safely assume that the distribution function of
the electrons that move towards the sample edge is governed
by the bulk distribution function. Thus the loss of tangential
momentum is described by the boundary condition (20) and
we do not need to make any assumptions on the influence of
the boundary on momentum currents. Inserting (33) into (20),
we obtain an expression for f >

λ,k(y = 0). In this way, we know
the distribution function at the edge fλ,k(y = 0).

C. The slip length

1. The nearly specular limit

Knowing the functions f <
λ,k(y = 0) and f >

λ,k(y = 0) as a
function of ux (y = 0) and ∂yux |y=0, we find the hydrody-
namic boundary condition with the help of Eq. (14). It is also
possible to obtain a boundary condition of the form (3) by

averaging over the momentum:

3nE

2v2
ux = 2N

∫
<

ddk

(2π )
kxf

<
+,k(y = 0)

+ 2N

∫
>

ddk

(2π )
kxf

>
+,k(y = 0). (34)

Note that the drift velocity is related to the momentum density
gk = ∑

λ

∫
d2k′/(2π )2(h̄k)fλ,k via (3nE/2v)u ≈ gk, where

nE is the energy density [11]. In the nearly specular limit,
the two approaches (34) and (14) give the same result. In
the diffuse scattering limit, the second equation (14) will give
the better result, because the additional factor sin (ϕ) in the
integrands—due to v

y

+,k—gives more weight to contributions
from particles with an incidence angle near π/2. These par-
ticles are least influenced by the Knudsen boundary layer—a
one mean free path broad region along the sample edge where
the distribution function significantly deviates from its bulk
values. Therefore our assumption that the loss of tangential
momentum is determined directly at the wall, by the boundary
condition (20), is appropriate here.

Performing the average, we see that only those parts of
fλ,k(y = 0) contribute, which are proportional to cos (ϕ).
Therefore, for a flat W (kx ), the last right-hand -side term of
(20) does not contribute to the momentum current average
(14). After performing the integrations, we have from (14),

0 = −
(

h2h′

λ3
T

)
Aux + η

∂ux

∂y
−

(
h2h′

λ3
T

)
B

∂ux

∂y
, (35)

where we have defined the thermal wavelength λT = βvh̄ and
A = N31π11/2

672β3v3 h̄2 . It is again clear that h2h′/λ3
T plays the role of

a small dimensionless parameter. Physically, the presence of
the small parameter h2h′/λ3

T shows that the edge behaves as
if it was smooth, if its roughness is on average much smaller
than the typical wavelength of scattered electrons. Solving for
ux , we write the above equation in the form of (3). To leading
order in h2h′/λ3

T , the slip length is given by

ζ =
(

λ3
T

h2h′

)
χ ≈ 0.008

(
λ3

T

h2h′

)
lee, (36)

where χ = 672β3v3 h̄2

N31π11/2 η. We used lee = vh̄/(κ1α
2kBT ) for the

mean free path due to electron scattering with numerical
coefficient κ1 = 1.950 (see Appendix B).

2. The diffuse limit

The overall procedure to find the boundary condition in
the diffuse limit is analogous to the nearly specular case.
Due to the condition (26), only impinging particles with
a negative velocity contribute to the average over the mo-
mentum current. In distinction to the nearly specular case,
however, we do not have a small parameter and therefore
assume that the incident electron’s behavior is described by
the bulk distribution function up to right at the edge. In the
theory of classical gases, this assumption leads to the famous
Maxwell boundary condition [31] for rarified gas flow (see
also Refs. [53,54]). The momentum current averaged over the
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FIG. 5. The figure shows the temperature dependence of the slip
length ζ for (a) diffuse scattering at the boundary for graphene at
charge neutrality (continuous line) and at finite chemical potential
μ = 0.25 eV (dashed line) and (b) scattering at a microscopi-
cally rough edge with a typical roughness of h = h′ = 250 Å for
graphene at charge neutrality. With decreasing temperature, ζ grows
as T −4 ln6 (T�/T ) in the nearly specular limit and as T −1 ln (T�/T )
in the diffuse limit at charge neutrality. Away from charge neutrality,
the slip length behaves as ζ ∼ T −2/ ln (εF /T ) in both limits, but is
parametrically larger in the nearly specular case.

distribution function given in Eq. (26) yields

ζ = π2β3v3h̄2

3Nζ (3)
η ≈ 0.6lee. (37)

Again, we used the electron mean free path lee =
vh̄/(κ1α

2kBT ).

3. Discussion

In the diffuse limit, as well as in the nearly specular
limit, the slip length ζ approaches infinity as T → 0. While
in the diffusive limit, ζ ∼ T −1 ln3 (T�/T ) with T� = �/kB ,
in the nearly specular limit, ζ ∼ T −4 ln6 (T�/T ), showing
clearly that the mechanism of scattering on a rough boundary
is ineffective for electrons with large wavelength. The slip
lengths as functions of temperature are shown in Fig. 5.

In the renormalization of the velocity v0 → v =
v0(1 + α ln (�/kBT )) and the coupling constant α →
αr = e2/(4πεh̄v) we used a cutoff of � ∼ 1 eV. Also, we
assumed a permittivity ε = 5ε0. Our small parameter for the
nearly specular limit h/λT remains, below 100 K, small up to
an h ≈ 250 Å (where it is ≈ 1/5 at 100 K).

In the diffusive limit, for the same parameter values as
above, ζ ranges from 100 μm at K to 0.4 μm at 100 K.
In the nearly specular limit, for a small roughness of the
order of h = h′ = 10 Å, ζ is comparable to the length of the
Trans-Siberian Railway at T = 1 K and ranges to 1 mm at
T = 100 K. For a fairly rough edge of h = h′ = 250 Å, we
have at 1 K ζ = 3.5 km and at T = 100 K the slip length
ζ ≈ 0.6 μm approaches the diffuse limit. Such large values
for ζ imply that one can effectively use no-stress boundary
conditions.

We finally note that the specularity of different kinds of
edges of different materials is well studied [55]. For oxygen-
plasma-etched graphene specifically, values of 0.2 to 0.5
were reported for the specularity parameter q (which gives
the probability that a single scattering event at the edge is
specular) [56]. Therefore, under these particular conditions,
the slip lengths are expected to lie somewhere between the
nearly specular and the diffuse scattering limits.

D. Fermi liquids and graphene away from charge neutrality

Our derivation of boundary conditions for the hydrody-
namic flow of a Dirac liquid can also be applied to the
Fermi liquids, which includes graphene far away from charge
neutrality. Let us again assume that the y axis is orthogonal to
the boundary of the sample that the Fermi liquid is contained
in the region y > 0 and that the flow is tangential to the
boundary.

Following Ref. [57], we write the distribution function of
quasiparticles as

f = f0(ε) − ∂f0

∂ε0
�. (38)

Here, ε is the full quasiparticle energy, which itself depends
on the occupation numbers and ε0 = vF h̄(k − kF ) + εF . The
function � describes the response to gradients of the drift
velocity u. In the considered geometry, it can be parametrized
as

� = +q(p)px

∂ε

∂py

∂ux

∂y
. (39)

The stress tensor is given by

τxy =
∫

ddk

(2π )d
(
pxv

y

F

) ∂f0

∂ε0
�. (40)

Comparing to the relation τxy = −η∂ux/∂y, we find for the
viscosity the expression

η = −
∫

ddk

(2π )d
(
pxv

y

F

)2
q(p)

∂f0

∂ε0
. (41)

For d = 3, we then have

η = 2
15v2

F ρF εF m∗τ (42)

and for d = 2,

η = 1
4v2

F ρF εF m∗τ, (43)

where ρF is the density of states at the Fermi surface and

τ =
∫ ∞

−∞
dx

q(x)(
2 cosh

(
x
2

))2 , (44)
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with the dimensionless integration variable x = ε − εF /

(kBT ). The quantity q(x) must be found by solving the
linearized kinetic equation.

For d = 3, it was shown in Ref. [57] that q(x) can be
assumed constant. This yields that the leading temperature
dependence at εF � kBT is η ∝ q ∝ T −2, where vF is the
Fermi velocity. The detailed expressions for the kinetic dis-
tribution function and viscosity can be found in Ref. [57].
Compared to the case of graphene, the boundary condition
(20) holds as it is, except for the fact that the integrations have
to be performed over a two-dimensional surface and only the
λ = +1 part is relevant. Furthermore, N = 2 due to the spin
degeneracy.

In the nearly specular limit, the role of the thermal wave-
length λT is played by the Fermi-wave vector kF , as it
determines the characteristic wavelength of the excitations.
The slip length as derived from (14) to leading order in the
parameter 1/h2h′2k4

F and to leading order in temperature is

ζ =
(

1

h2h′2k4
F

)
χ ≈

(
1

h2h′2k4
F

)
3lee, (45)

where χ = 45π2

k4
F h̄

η. In the diffuse scattering limit, we find

ζ = 8π2

k4
F h̄

η ≈ 0.5lee. (46)

We used lee = vF τ and ρF = m∗kF /(h̄π )2. The temperature
dependence of the slip length in the diffuse scattering limit as
well as in the nearly specular limit is ζ ∼ 1/T 2.

Poiseuille type flow was observed in the delafossite
PdCoO2 [20]. The same publication reports a viscosity of
up to 6 × 10−3 kg/ms. With the help of Eq. (46) we find
a slip length of ζ = 0.45 μm. This length is indeed small
compared to the sample widths of up to 60 μm, meaning that
the slip velocity at the boundaries is negligible, which, again,
is fully consistent with the observed Poiseuille behavior. A
comparable value for the electron viscosity and Poiseuille
type flow in the Weyl material WP2 was reported in Ref. [21].
The sample widths exceeded the slip length as given by
(46) and the observations were consistent with our theory. A
typical Fermi liquid, however, is expected to have a higher
viscosity and a larger slip length.

For d = 2, we can crudely estimate the time τ by the quasi-
particle lifetime τqp, which is known to be logarithmically
suppressed at low temperatures compared to the d = 3 result
[43]. From Refs. [58–60], we expect

τqp = A
εF h̄

(kBT )2

1

ln
(

εF

kBT

) , (47)

where A is a coefficient of the order of unity. From (14), we
obtain in the nearly specular limit:

ζ =
(

h̄3v3
F /ε3

F

h2h′

)
χ ≈

(
1

h2h′k3
F

)
1.1lee, (48)

with χ = 2√
π
vF τ , and in the diffuse limit ζ = 3π

8 vF τ , so that

ζ ≈ 1.2lee. (49)

These results also apply to graphene at finite chemical
potential. The viscosity of graphene can then be written:

η = 1
8ρG

F μ2τ . Using the quasiparticle lifetime (47) with A =
1 to estimate τ , the slip lengths for graphene at μ � kBT

in the diffusive limit are larger than for graphene at charge
neutrality. For μ = 0.25 eV, they range from 0.8 μm at
100 K to 3 mm at 1 K (see Fig. 5). The reason for the larger
slip lengths is the 1/(T 2 ln (εF /kBT )) temperature depen-
dence of τ . In the nearly specular case, the small parameter
h̄3v3

F /(h2h′ε3
F ) = 1/(h2h′k3

F ) does not depend on the thermal
wavelength λT , but instead on the wavelength at the Fermi
surface. Since the edge roughness h has to be compared to
k−1
F � λT , the diffusive limit—giving the minimal ζ , since

all tangential momentum is lost—can be saturated for much
smaller h than at charge neutrality. Still, ζ as given by
(49) is large enough to justify no-stress conditions for most
geometries.

Our result explains the findings of Ref. [25], where in
graphene samples with widths up to 4 μm no Gurzhi effect
was observed up to 100 K and strengthen the author’s conjec-
ture that the small deviation of the resistivity curves at about
100 K indeed stems from a small hydrodynamic contribution
due to the Gurzhi effect (supplement to Ref. [25]). The reason
is that at about 100 K the slip length drops below 1μm and
becomes smaller than the sample width.

Let us finally note that the diffusive boundary condition
gives the smallest possible slip length and is a “worst case
scenario” in the sense that all tangential momentum is lost;
be it due to elastic or inelastic scattering. While the nearly
specular scattering limit deals with the opposite scenario and
elastic scattering only, one could imagine that considering
larger and larger roughnesses h, the slip length would saturate
at some value ζmin, which is close to the slip length of the
diffusive scattering limit.

III. COMPARISON TO KNOWN RESULTS

Most calculations of slip in quantum fluids [36–40] model
interactions by a momentum conserving relaxation time
ansatz, similar to the one used in the Bhatnagar-Gross-Krook
equation [61]. The collision integral is replaced by the term
−g/τ , where g is the deviation of the distribution function
not from the global, but from the local equilibrium:

g = f − f l.e.. (50)

Within this approach, it was shown in Ref. [37] for a diffusely
scattering boundary that the slip length determined in analogy
to the Maxwell slip length (see Refs. [31,53,54]), i.e., by
assuming the validity of the bulk distribution function for
ingoing particles up to the boundary, gives a lower bound
on the slip length ζ as calculated within the Bhatnagar-
Gross-Krook-like approach. For completeness, we want to
summarize the logic of Ref. [37] briefly and discuss how it
relates to our results.

The analysis applies to two or three dimensions and to
arbitrary dispersion relations. Therefore we will not specify
dimensionality and dispersion until the end. Let the y axis be
orthogonal to the sample boundary and the quantum fluid be
contained in the volume y > 0. The kinetic equation becomes

vy

∂g

∂y
− vypx

∂f 0

∂ε

∂ux

∂y
= −g

τ
(51)
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and is a first-order differential equation for g, which is eas-
ily solved as soon as the appropriate boundary conditions
are formulated. The idea is to describe the physics of the
Knudsen layer right at the boundary, where the system is not
in local equilibrium, but it is significantly influenced by the
scattering of particles at the sample edge. At y → ∞, the
Knudsen layer ends and the system enters the hydrodynamic
regime described by the Navier-Stokes equations. Therefore
the gradient of the drift velocity u′ = ∂ux/∂y approaches a
finite value u′(∞) and it holds

g(∞) = τvypx

∂f 0

∂ε
u′(∞). (52)

In addition, one assumes that f (0) = f 0 for positive veloci-
ties vy > 0, which is equivalent to

g(0) = pxu(0)
∂f 0

∂ε
, (53)

again holding for vy > 0. With these boundary conditions,
(51) is solved by

gvy>0 = pxu(0)
∂f 0

∂ε
e
− y

τvy +
∫ y

0
dy ′pxu

′(y ′)
∂f 0

∂ε
e
− |y′−y|

τvy ,

gvy<0 = −
∫ ∞

y

dy ′pxu
′(y ′)

∂f 0

∂ε
e

|y′−y|
τvy . (54)

The influx current of tangential momentum into the Knudsen
layer is given by −ηu′(∞). The authors of Ref. [37] further
assume that this current is constant in the whole Knudsen
layer, and only at the boundary it is converted into a tangential
flow that creates a velocity slip. In our treatment of the kinetic
distribution at the nearly specular boundary in Sec. II B, where
we showed that the variation of the tangential momentum
current gives a contribution subleading in the small parameter
h2L/λ3

T , we explicitly saw that this assumption holds. If it
holds in the totally diffuse case as well, we can write

−ηu′(∞) =
∫

>

ddk

(2π )d
vyp

2
xu(0)

∂f 0

∂ε
e
− y

τvy

+
∫

>

ddk

(2π )d
vyp

2
x

∫ y

0
dy ′u′(y ′)

∂f 0

∂ε
e
− |y′−y|

τvy

−
∫

<

ddk

(2π )d

∫ ∞

y

dy ′vyp
2
xu

′(y ′)
∂f 0

∂ε
e

|y′−y|
τvy . (55)

Equation (55) is an integral equation for u′(y). Reference [37]
develops a method to extract from Eq. (55) information about
the slip length, without seeking an explicit solution. First, the
function Ln(y) is introduced such that

Ln(y) = gN

∫
>

ddk

(2π )d
vyp

2
x (τvy )n−1

(
−∂f 0

∂ε

)
e
− y

τvy . (56)

gN accounts for additional degeneracies. In the case of
graphene, a factor of gN = 2N in front of the integral will
account for excitations with positive and negative energies and
the spin-valley degeneracy. The viscosity can be expressed as

η = τ

∫
ddk

(2π )d
v2

yp
2
x

(
−∂f 0

∂ε

)
= 2L2(0). (57)

FIG. 6. The Knudsen layer—an approximately one mean free
path broad region along the momentum dissipating boundary of
a liquid—is depicted. The fluid behavior in the Knudsen layer is
not described by hydrodynamic equations. The reasoning behind
the introduction of the slip length ζ is to pass the information
about Knudsen layer physics to the hydrodynamic equations. While
the drift velocity u(y ) in the Knudsen layer is smaller than the
surface velocity uS of Eq. (3), the gradient ∂ux (y )/∂y approaches
the value prescribed by uS = ∂u/∂y|S at the very end of the layer.
Extrapolating this gradient up to zero velocity one obtains the slip
length ζ .

Defining the function �(z) via the equation u′(z) =
u′(∞)(1 + �(z)) and introducing y0 = u(0)/u′(∞), one can
reduce Eq. (55) to

z0L1(z) − L2(z) = −
∫ ∞

0
dz′�(z′)L1(|z − z′|). (58)

Notice that since the drift velocity is expected to drop com-
pared to the hydrodynamic boundary value uS = u′(∞)ζ , the
function �(z) is expected to be positive everywhere and to
vanish for y → ∞. For the slip length ζ , the following holds
(see Fig. 6):

uS = u′(∞)ζ = u(0) +
∫ ∞

0
u′(z′) − u′(∞)dy ′,

ζ = y0 +
∫ ∞

0
�(y ′)dy ′. (59)

Together with (58) this yields

ζL1(y) − L2(y) = −
∫ ∞

0
dy ′�(y ′)(L2(|y − y ′|) − L1(y)).

(60)

One property of the functions Ln(y) is dLn(y)/dy =
−Ln−1(y). Using this relationship, the above equation can be
integrated over the region y > 0 to yield

ζL2(0) − L3(0) =
∫ ∞

0
dy ′�(y ′)(L2(y ′) − L2(0)). (61)

Noticing that Ln(y > 0) < Ln(0) and remembering that �(z)
is positive one obtains from (60),

ζ >
L2(0)

L1(0)
(62)
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and from (61),

ζ <
L3(0)

L2(0)
. (63)

Equations (62) and (63) constitute a lower and an upper
bound on the slip length, which are typically not too far
apart and therefore give a good estimate for ζ . The lower
bound can even be improved with the help of the inequality
Ln+1Ln−1 > L2

n: realizing that d/dy(Ln(y)/Ln+1(y)) =
(L2

n − Ln+1Ln−1)/L2
n+1 < 0, we have Ln(y)/Ln(0) >

Ln−1(y)/Ln−1(0). The combination of Eqs. (60) and (61)
then yields

2ζ − L2(0)

L1(0)
− L3(0)

L2(0)
=

∫ ∞

0
dy ′�(y ′)

(
L2(y ′)
L2(0)

− L1(y ′)
L1(0)

)
(64)

and

ζ >
1

2

(
L2(0)

L1(0)
+ L3(0)

L2(0)

)
. (65)

As realized by the authors of Ref. [37], the lower bound
(62) is equivalent to the slip length of the Maxwell approach.
Remembering the general form of the distribution function
(27), one easily sees that in the case of diffuse scattering, and
assuming that particles at the boundary are described by the
bulk distribution, Eq. (14) reads

0 = −1

2
η
∂ux

∂y
+

∫
ddk

(2π )
vyp

2
xu(0)

(
−∂f 0

∂ε

)
, (66)

where we have omitted the summation over the two graphene
bands. Approximating ζlower = u(0)/(∂ux/∂y) [for the exact
slip length we need to replace u(0) by uS], one obtains

ζlower = η/2∫
ddk
(2π )vyp2

x

( − ∂f 0

∂ε

) = L2(0)

L1(0)
, (67)

which is the lower bound (62) and is, of course, identical
to our result of Eq. (37). For graphene, the upper and lower
bounds are very close: ζupper ≈ 1.15ζlower. A comparison of
the slip length for the classical kinetic gas given by (65)
and (63) with exact and numerical results was performed in
Ref. [37]. The authors report a deviation of less than 1%. For
completeness, we note that the ζ obtained from Eq. (34) is
equivalent to the lower bound set by ζ > L1(0)/L0(0), which
is worse than the lower bound (62).

IV. FLOW THROUGH A STRIP WITH
A CIRCULAR OBSTACLE

If the slip length of an electron liquid ζ is much larger
than the typical sample size, it is appropriate to use the no-
stress boundary condition of Eq. (2) to model the interaction
of the liquid with the wall. If this condition is applied, the
conductivity of a clean sample with a Poiseuille geometry is
infinite, as is clear from Eq. (5). However, if viscous shear
forces act somewhere in the sample, the conductivity becomes
finite. This can be used to identify hydrodynamic flow, even
when the Gurzhi effect should not be observable at large ζ .
Viscous shear forces arise, for example, if the fluid has to
bypass an impenetrable obstacle that is put somewhere in

the sample. As an illustration, we consider a graphene strip
that is infinitely extended in the x-direction and goes from
y = −w/2 to y = w/2. The obstacle shall be a disk of radius
a placed at the origin of the coordinate system. No-stress
boundary conditions shall apply at the interface of obstacle
and liquid as well as at y = ±w/2. We calculate the pressure
difference that arises due to viscous shear forces between the
ends of the strip at x = −∞ and x = ∞. In what follows,
graphene at charge neutrality is considered but the calculation
can be readily modified to suit the Fermi liquid case. In the
former case the flow should be probed using thermal transport,
while it is given by the electrical current in the latter case.

The full Navier-Stokes equation for graphene electrons
reads [6,11]

w̃

v2
(∂t u + (u · ∇ )u) + ∇p + ∂tp

v2
u − η∇2u = 0. (68)

w̃ is the enthalpy density w̃ = 3nE/2
2+|u|/v ≈ w̃0 = 3

2nE . To begin
with, we consider a liquid which is not bounded at y = w/2.
As is well known [62,63], in two dimensions, the flow around
a circular obstacle exhibits Stokes’ paradox: the flux u is
not a linear function of ∇p for small ∇p. The usual way to
circumvent this problem is to use Oseen’s equation [62] in
which the flow u is linearized around a spatially constant flow
U ∝ êx . The full flow u is then written,

u = U + q, (69)

and the linearized Navier-Stokes equation reads

w̃0

v2
(U · ∇ )q + ∇p − η∇2q = 0. (70)

In Appendix C, we give the general solution to Eq. (70)
following the analysis of Ref. [64]. We also calculate the flow
around the obstacle for an arbitrary ζ on an infinite domain.
If the flow is not confined to the strip, the pressure induced by
the obstacle vanishes at infinity, where p ∼ 1/r . If, however,
the flow is bounded at y = ±w/2, the obstacle does induce a
pressure difference along the strip. The boundary conditions
imposed on the electron flow by the two walls at y = ±w/2
are

qy (y = ±w/2) = 0,

∂qx (y = ±w/2)

∂y
= 0. (71)

These boundary conditions can be implemented using the
method of images, known from electrostatics. The expression

q tot =
∞∑

j=−∞
q(x, y + jw), (72)

with q(x, y) being the infinite domain solution obtained in
Eqs. (C1)–(C9), does satisfy Eq. (70) everywhere inside the
strip and matches the conditions of Eq. (71). It corresponds
to infinitely many image fields placed along the y-axis, sym-
metrically to the original obstacle at y = 0 (see Fig. 7). The
solution q tot is only approximate, since the boundary condi-
tion at the surface of the obstacle is not matched exactly. It
is matched, however, at r = a and y = 0. Therefore the error
is of order ∼ a

w
, i.e., small, if the obstacle is small compared
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FIG. 7. The method of images can be used to solve Eq. (70) for
a striplike sample geometry with a circular obstacle. The sample
and the electron flow are drawn in color, the image fields are
shown in light grey. Infinitely many image solutions must be placed
symmetrically around the obstacle in the middle of the sample.

to the width of the strip. The pressure distribution along the
sample can then be calculated from the function

φj = φ(x, y + jw), (73)

which solves the Laplace equation and is defined in
Eq. (C3). The pressure generated by every single image
field is p(x, y + jm) = U (w̃0/v

2)∂φj/∂x (for details see
Appendix C and Ref. [64]). The total pressure at y = 0 is

ptot =
j=∞∑

j=−∞
p(x, jm)

= πA0U
2

w

w̃0

v2
coth

(πx

w

)
+ sgn(x)

π2A1U
2

w2

w̃0

v2
sinh

(πx

w

)−2
. (74)

The constants A0 and A1 are given in Eqs. (C7) and (C8).
While the pressure of any single image field p(x, jm) van-
ishes for x → ±∞, the sum over all image fields remains
finite. The pressure difference across the sample is then

�p = ptot (x → ∞) − ptot (x → −∞) = 2
πA0U

2

w

w̃0

v2
.

(75)

Using Eqs. (C7) and (C9) and expanding B0 for small U

(small Reynolds numbers), as well as taking the limit ζ → ∞
for the slip length at the obstacle, we obtain

�p = − 8πU

3 − 2
(
log

(
aU
4ν

) + γ
) w̃0

v2

ν

w
. (76)

ν is the kinematic viscosity ν = (v2/w̃0)η. As expected, the
pressure arising due to a small flow velocity U cannot be
linearized, which is a manifestation of Stoke’s paradox. We
want to link this result to an experimental setup in which a heat

FIG. 8. Temperature difference induced by a heat current IE

through a 10-μm wide strip of charge neutral graphene at 50 K
with a circular obstace of radius 1 μm at the center of the strip (see
Fig. 7). At a heat current of 0.1 μW, the Reynolds number is ∼0.74,
approaching unity.

flow through the sample will induce a temperature difference.
With the help of Eq. (9) we can rewrite the pressure difference
as a temperature difference. The flow velocity U is connected
to the heat current density through the formula [11]

jE = 3nEU
2 + U 2/v2

≈ 3

2
nEU . (77)

With the total energy current being IE = jEw, we can write
for Eq. (76),

|�T | = 16πIEη/(nEw2s)

9 − 6
(

log
(

1
9

IEa
v2ηw

) + γ
) , (78)

where γ ≈ 0.58 is the Euler constant. This result can be used
to determine the viscosity η. The entropy density is given
by [6]

s = N
9ζ (3)

π
kB

(kBT )2

h̄2v2
.

Figure 8 shows the dependence of the induced temperature
difference on the heat current through a 10-μm wide graphene
sample at 50 K for an obstacle of radius a = 1 μm. The
dependence of the temperature difference |�T | on the radius
a is shown in Fig. 9. The scaling behavior of the current with

FIG. 9. Temperature difference for a fixed heat current of IE =
0.5 μW through a 10-μm wide graphene channel at 50 K as a
function of the obstacle radius a.
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a and w is nontrivial due to the presence of a third length
scale ν/U . Since no momentum is dissipated at the sample
boundaries, the temperature difference along the sample, far
enough from the disk, does not depend on the length of the
sample. The temperature difference is induced in the region
near the disk only.

V. CONCLUSIONS

Hydrodynamic flow sensitively depends on the nature of
the boundary conditions for the velocity flow field. These
boundary conditions can efficiently be characterized by the
slip length ζ introduced in Eq. (3). In order to obtain a
quantitative understanding of the slip length in electron fluids,
we have derived the slip lengths at different kinds of edges for
Dirac and Fermi liquids. We found that for viscous electronic
flow the slip length can always be written in the form

ζ = f (κ )lee (79)

with dimensionless ratio κ = h2h′d−1/λd+1. κ depends on
the two length scales h and h′ that characterize the inter-
face scattering and the electron wavelength λ, respectively.
For graphene at the neutrality point, the latter is strongly
temperature dependent [λ = h̄v/(kBT )], while it corresponds
to the Fermi wave length in the case of Fermi liquids (λ =
1/kF). The dimensionless function f (κ ) diverges for small κ:
f (κ � 1) = f0/κ , while it approaches a constant for strong
interface scattering: f (κ → ∞) → f∞. We determined f∞
using the assumption of diffuse scattering. The numerical
values for the coefficients f0 and f∞ depend sensitively on
the electronic dispersion relation and dimensionality of the
system.

Since for all quantum fluids the mean free path diverges
as the temperature approaches zero, the ultimate behavior of
the slip length at low temperatures is ζ → ∞ and the no-
stress boundary conditions are appropriate. For Dirac fluids
in samples with weakly disordered edges even the ratio ζ/ lee
diverges as T → 0. At intermediate temperatures, the slip
lengths are such that no-slip boundary conditions may be
justified for large sample sizes. In particular, we show that
the electron viscosity inferred for PdCoO2 [20] and WP2

[21] is small enough, such that Poiseuille type flow can
manifest itself, as seen experimentally. The origin for this
small electron velocity is however an open question. The
linear Dirac spectrum and the typical sample sizes used imply
that graphene is essentially always in the regime of no-stress
conditions. If no-stress boundary conditions apply, it is no
longer possible to detect Poiseuille type flow and the Gurzhi
effect. However, hydrodynamic effects such as superballistic
flow [26] and the negative local resistivity due to vorticity
can still be observed [25]. In addition, we propose the flow
through a channel with a circular obstacle as an efficient
approach to identify hydrodynamic flow. Thus one of the most
characteristic features of the hydrodynamics of electron fluids
is the nature of the boundary condition of the flow velocity.
The fact that for a broad range of parameters the slip lengths of
quantum fluids are very large makes electron hydrodynamics
distinct from its well studied classical counterpart.

Note added. Recently, we became aware of measurements
of Poiseuille-type flow in graphene [65]. The experimental

estimates result in a micron scale slip-length and are in
agreement with our predictions.
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APPENDIX A: PRESSURE AND TEMPERATURE
GRADIENTS IN CHARGE NEUTRAL GRAPHENE

In this Appendix, we show how pressure gradients can
be related to temperature gradients in graphene at charge
neutrality. From the Gibbs-Duhem relation, we know that the
pressure of a system is equal to minus the grand potential
density,

�

V
= −p.

The standard expression for �/V can be integrated by parts
to give

�

V
= −β−1

∑
λ

∫
d2k

(2π )2 ln(1 + e−β(ελ,k−μ) )

= β−1
∑

λ

∫
d2k

(2π )2 ki

∂

∂ki

ln(1 + e−β(ελ,k−μ) )

− 1

4π
�2(v� − μ).

An upper cutoff � for the momentum integration over the λ =
−1 band was introduced. We therefore have

p =
∑

λ

∫
d2k

(2π )2

λviki

1 + eβ(ελ,k−μ)

+ 1

4π
�2(v� − μ).

The first right-hand-side term is the expression for pressure
pkin as it enters the kinetic theory, the second term is the Fermi
pressure p� of the occupied lower Dirac cone:

p = pkin + p�.

The pressure gradient can be written as

∇pkin = ∂pkin

∂T
∇T + ∂pkin

∂μ
∇μ.

Since p� does not depend on temperature, the relation

s = −∂ (�/V )

∂T
= ∂pkin

∂T

holds, where s is the entropy density. On the other hand, at
charge neutrality (μ = 0), we have

∂pkin

∂μ

∣∣∣∣
μ=0

= −
∑

λ

∫
d2k

(2π )2 (λviki )
∂

∂ελ,k

1

eβελ,k + 1

=
∑

λ

∫
d2k

(2π )2

1

eβελ,k + 1
− 1

4π
�2,
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where again the last term stems from the integration boundary
at λ = −1, k → ∞. Being aware that∑

λ

∫
d2k

(2π )2

1

eβελ,k + 1
=

∫ 2π

0

dϕ

(2π )2

∫ �

kdk 1,

we have

∂pkin

∂μ

∣∣∣∣
μ=0

= 0,

and therefore

∇pkin = s∇T .

For simplicity, in the main text we refer to pkin as p.

APPENDIX B: BULK DISTRIBUTION FUNCTION FOR
GRAPHENE AT CHARGE NEUTRALITY

In what follows, we summarize the main steps of the
calculation of the shear viscosity of graphene originally de-
termined in Ref. [6]. In addition to the analysis presented in
Ref. [6], we also show the behavior at finite frequency. The
Hamiltonian for electrons in graphene that interact via the
long-range Coulomb repulsion consists of the noninteracting
part

H0 = vh̄

∫
k

∑
αβ,i

ψ
†
ai (k)(k · σ )abψbi (k) (B1)

and the interaction

Hint = 1

2

∫
k,k′,q

∑
ab,ij

V (q)ψ†
k+q,a,i , ψ

†
k′−q,b,jψk′,b,jψk,a,i

(B2)

with V (q ) = 2πe2

ε|q| . Here, i = 1, . . . , N = 4 refers to the spin
and valley flavors. H0 is diagonalized by a unitary transforma-
tion Uk. The eigenvalues of H0 are εkλ = ±vh̄k, where k =
|k|. The quasiparticle states for the two bands are γk = Ukψk,
with

H0 = vh̄

∫
k

∑
λ=±,i

λkγ
†
k,λ,iγk,λ,i . (B3)

In the band representation, the Coulomb interaction is

Hint = 1

2

∫
k,k′,q

∑
λμμ′λ′,ij

Tλμμ′λ′ (k, k′, q)

× γ
†
k+q,λ′,iγ

†
k′−q,μ,j γk′,μ′,j γk,λ,i , (B4)

where

Tλμμ′λ′ (k, k′, q) = V (q )
(
Uk+qU

−1
k

)
λ′λ

(
Uk′−qU

−1
k′

)
μμ′ .

(B5)

The goal is to determine the distribution function

fkλ(x, t ) = 〈γ †
k,λγk,λ〉x,t (B6)

for a state with momentum k and band index λ at position x.
To this end, we solve the Boltzmann equation

∂fkλ(x, t )

∂t
+ vk,λ · ∂fkλ(x, t )

∂x
= −Ce.e.kλ(x, t ) (B7)

in the bulk of the sample. vk,λ = 1
h̄

∂εkλ

∂k = λv k
k

is the single-
particle velocity. The collision integral is

Ce.e.kλ(x, t ) = i�<
kλ(ελ(k))(1 − fkλ) + i�>

kλ(ελ(k))nkλ,

(B8)

where �
≷
kλ(ω) are the diagonal elements of the self-energies

for occupied and unoccupied states, respectively [66].
The distribution function is then determined from the ki-

netic equation using the Chapman-Enskog approach [4–6]. If
the system flows with velocity u(x), in the laboratory frame
we have

fkλ(x, t ) = 1

eβ(εkλ−h̄k·u(x)) + 1
+ δfkλ(x, t ). (B9)

The driving force for the shear viscosity is the velocity
gradient:

Xαβ = ∂uα

∂xβ

+ ∂uβ

∂xα

− δαβ∇ · u. (B10)

To leading order in the velocity gradients follows:

∂fkλ(x, t )

∂t
+ λβh̄vk

23/2

eβh̄vkIαβ (k)Xαβ

(eβh̄vk + 1)2
= −Cλ(k, t ) (B11)

with Iαβ (k) = √
2( kαkβ

k2 − 1
2δαβ ). To solve the linearized

Boltzmann equation, we make the following ansatz in the rest
frame of the fluid:

fkλ(x, t ) = f 0(λvk) + λβh̄

23/2

eβh̄vkIαβ (k)Xαβ

(eβh̄vk + 1)2
ψ (βh̄vk, βh̄ω),

(B12)

with Fermi function f 0(ε) = 1
eβε+1 . Similarly, ψ (K,�) is a

dimensionless function with dimensionless arguments K =
h̄vk
kBT

and � = h̄ω
kBT

. As shown in Ref. [6], ψ (K,�) is deter-
mined by the linearized Boltzmann equation

eK

(eK + 1)2
(−i�ψαβ (K,�) + KIαβ (K)) = 2πα2Jαβ (K),

(B13)

where ψαβ (K,�) = ψ (K,�)Iαβ (K), and is not to be con-
fused with the creation and annihilation operators ψ

†
ai (k),

ψai (k). The scattering integral is given by (we drop the
frequency argument for the moment)

Jαβ (K)=
∫

K ′Q
δ(K − |K + Q| + K ′ − |K′−Q|)F (K, K′, Q)

× eKeK ′

(e|K′−Q| + 1)(eK ′ + 1)(eK + 1)(e|K+Q| + 1)

× (ψαβ (K + Q) − ψαβ (K′)

+ψαβ (K′−Q) − ψαβ (K)). (B14)

Capital letters are used to denote dimensionless momenta, i.e.,
K = βh̄vk etc. The Coulomb interaction enters through the
matrix element

α2F (K, K′, Q) = F1(K, Q−K′, Q) + F2(K, K′, Q),
(B15)

where the functions Fi are the Ri=1,2 defined in Ref. [5].
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Next, we formulate the solution of the Boltzmann equation
as a variational problem. The operator Ĵ with

Ĵ [ψαβ](K)αβ = Jαβ (K) (B16)

is, indeed, self-adjoint with respect to the scalar product

〈ϕ|ψ〉 =
∑
αβ

∫
K

ϕαβ (K)ψβα (K). (B17)

If one uses that F (K, K′, Q) is invariant under the substitution
K → K′ − Q and K → K′ + Q, one finds that the solution of
the Boltzmann equation can be obtained from the minimum,
i.e., δQ[ψ]

δψ
= 0, of the functional

Q[ψ] = 1

2
〈ψ | − 2πα2Ĵ − i�

eK

(eK + 1)2
|ψ〉 + 〈S|ψ〉

(B18)
with

Sαβ (k) = KeK

(eK + 1)2
Iαβ (k). (B19)

We now turn to the collision integral. It can be divided into
two parts: the so-called collinear scattering part, where the
momenta of scattered particles are parallel, and the remaining
scattering processes. The former is dominant by a factor
log α−1, where α is the coupling constant. Separating the
operator Ĵ into a part describing only collinear scattering
processes (c) and the noncollinear part (nc), we write

α2Ĵ = α2 log (α)−1ĵc + α2ĵnc. (B20)

Assume that the collinear part projects m so-called zero modes
ψi , i ∈ {1, 2, . . . , m} onto zero, i.e.,

ĵc

[
ψi

αβ

] = 0. (B21)

We expand the function ψλ,k in eigenmodes of ĵc with eigen-
values bn:

ψαβ = γ0ψ
0
αβ + · · · + γmψm

αβ +
∑
n>m

γnψ
n
αβ. (B22)

Let us abbreviate the left-hand side of the Boltzmann equation
(B13) as Dαβ ,

Dαβ = eK

(eK + 1)2
(−i�ψαβ (K,�) + KIαβ (K)). (B23)

For the Boltzmann equation, we then have

Dαβ = 2πα2 log α
−1

∑
n>m

γnbnψ
n
αβ + 2πα2ĵnc

[∑
n

γnψ
n
αβ

]
= 2πα2 log α

−1
∑
n>m

γnbnψ
n
αβ + α2Cαβ . (B24)

The operator ĵc is Hermitian with respect to the scalar product
(B17). Thus its eigenfunctions are orthogonal to each other.
Taking the scalar product 〈D |ψn〉, one has

γn>m = 〈D |ψn〉 − α2〈C|ψn〉
α2 log (α)−1bn

, (B25)

so that in the expansion (B22) all eigenfunctions with n > m

are suppressed by a factor 1/ log (α)−1. In a first approxima-
tion, we therefore retain the zero modes only.

It turns out [6] that the zero modes of the collinear scatter-
ing operator are constant and linear in |K|:

ψ0
αβ = ψ0(�)Iαβ (B26)

and

ψ1
αβ = ψ1(�)KIαβ. (B27)

The ψ0 and ψ1 at � = 0 correspond to the coefficients C0 and
C1 of Eq. (31) of the main text. Thus we obtain to leading
order,

ψ (K,�) = (ψ0(�) + ψ1(�)K )Iαβ (K). (B28)

We can determine the functional Q within the space of the two
basis functions and obtain

Q = 1

2

∑
a,b=0,1

ψaXabψb +
∑
a=0,1

ψaSa (B29)

with

Xab = α2
0Rab − i�rab (B30)

and

Rab = −2πJab (B31)

and

rab = 〈ψb|i� eK

(eK + 1)2
|ψb〉, (B32)

where the indices a, b label the matrix elements of the corre-
sponding operators in the 2 × 2 Hilbert space spanned by the
modes ψ0 and ψ1. Once Xab and Sa are known, we obtain the
distribution function from the minimum of Q as

ψa =
∑

b

(X−1)abSb. (B33)

It holds ∑
a=0,1

ψaSa = 〈S|ψ〉 =
∑
αβ

∫
K

Sαβ (K)ψβα (K)

= π

12
ψ0 + 9ζ (3)

4π
ψ1, (B34)

which gives S0 = π
12 and S1 = 9ζ (3)

4π
. To determine rab, we

start from

〈ψ |i� eK

(eK + 1)2
|ψ〉

= i�
∑
αβ

∫
K

ψαβ (K)ψβα (K)
eK

(eK + 1)2

= i�

(
ψ2

0
log (2)

2π
+ 2ψ0ψ1

π

12
+ ψ2

1
9ζ (3)

4π

)
, (B35)

which gives

rab =
(

log (2)
2π

π
12

π
12

9ζ (3)
4π

)
. (B36)

Finally, for the analysis of the matrix Rab, we have to analyze
the collision integral 〈ψ |2πα2

0 Ĵ |ψ〉. This analysis can be done
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numerically and yields

Rab �
(

0.874 0.623
0.623 1.671

)
. (B37)

In order to determine the viscosity we then consider the
relation between the stress tensor

ταβ = Nh̄v
∑

λ

∫
d2k

(2π )2

λkαkβ

k
fkλ(x, t ) (B38)

and the forcing Xαβ , which yields the shear viscosity η with
ταβ = ηXαβ . Inserting Eq. (B12) for the distribution function
yields at zero frequency:

η = N (kBT )2

8πh̄v2

∫ ∞

0
dK

K2eK

(eK + 1)2
ψ (K )

= N (kBT )2

8πh̄v2

(
π2

6
ψ0(0) + 9ζ (3)

2
ψ1(0)

)
� 0.449

N (kBT )2

4α2
0 h̄v2

. (B39)

This is the result given in Ref. [6]. For completeness, we also
give the expression at finite frequency:

η(ω) = N (kBT )2

4h̄v2

2∑
i=1

aikBT

−ih̄ω + κiα2kBT
, (B40)

with a1 = 0.8598, κ1 = 1.9150 and a2 = 0.001159, κ2 =
21.182. The fact that the viscosity is governed by a sum of
two Drude contributions is a consequence having two relevant
modes in our analysis. It is curious that the second mode
is much smaller in weight and contributes only ∼10−4 to
the static viscosity. This second Drude contribution has a
characteristic scattering rate more than an order of magnitude
larger than the first one. For all practical purposes, the vis-
cosity is dominated by the first Drude peak, which yields a
characteristic scattering rate:

h̄τ−1
e.e. = κ1α

2kBT . (B41)

In our discussion, we use this scattering rate for electron-
electron scattering. For comparison, the scattering rate that
enters the conductivity is given by h̄τ−1

e.e. = 3.646α2kBT [5].
We also note that for finite frequencies the above derivations
of the slip lengths in the different limits are valid with the
replacement η → η(ω).

APPENDIX C: FLOW AROUND A CIRCULAR OBSTACLE:
SOLUTION ON AN INFINITE DOMAIN

The general solution in polar coordinates (r, θ ) to Eq. (70)
can be given in terms of modified Bessel functions of the first
and second kind, Im and Km:

qr = −U

∞∑
n=1

An

cos (nθ )

rn+1
− 1

4
U

∞∑
m=0

Bm

(
2

kr
+

∞∑
n=1

�m,n(kr ) cos (nθ )

)
,

qθ = −U

∞∑
n=1

An

sin (nθ )

rn+1
− 1

4
U

∞∑
m=0

∞∑
n=1

Bm�m,n(kr ) sin (nθ ), (C1)

�m,n(kr ) = (Km+1 + Km−1)(Im−n + Im+n) + Km(Im−n−1 + Im−n+1 + Im+n−1 + Im+n+1),

�m,n(kr ) = (Km+1 − Km−1)(Im−n − Im+n) + Km(Im−n−1 − Im−n+1 − Im+n−1 + Im+n+1), (C2)

with k = U/(2ν), where ν is the kinematic viscosity ν = (v2/w̃0)η [64]. The Bessel functions in the above equations have the
argument (kr ). The pressure is given by

p = U
w̃0

v2

∂φ

∂x
, (C3)

with

φ = UA0 log (r ) − U

∞∑
n=1

An

n

cos (nθ )

rn
. (C4)

For details of the calculation, we refer to Ref. [64]. The Reynolds number of the problem is

R = Ud

ν
= 4ka. (C5)

In our case, the general boundary condition of Eq. (3) reads

qr = −U cos (θ ), qθ = U sin (θ ) + ζ
∂qθ

∂r
. (C6)

Inserting the general solution (C1) into the boundary conditions (C6), we derive an infinite set of coupled equations for An, Bm.
If the set is truncated at some mmax and nmax = mmax + 1, the coefficients An�nmax , Bm�mmax are uniquely determined. The higher
the Reynolds number, the larger m, n have to be considered. Here, we restrict ourselves to m = 0. While it might be important to
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include terms with higher m, n to describe the behavior near the obstacle, the pressure far away is governed by the m = 0 term,
which decays slowest [see Eqs. (C3) and (C4)]. For completeness, we give the coefficients A0, A1, and B0:

A0 = −B0

2k
, (C7)

A1 = a2 − 1
2a2B0[(I0(ak) + I2(ak)K0(ak) + 2I1(ak)K1(ak)], (C8)

B0 = 2(a + ζ )

(a + ζ )I0(ak)K0(ak) + (a + 3ζ )I1(ak)K1(ak)
. (C9)
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