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Coulomb drag between quantum wires: A nonequilibrium many-body approach
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We present a real-space theoretical formalism and its numerical implementation for investigating nonequi-
librium quantum Coulomb drag between parallel two-terminal transport structures in quasi-one-dimension. In
addition to the Coulomb interaction and the finite external potential bias, our formalism takes into account the
effects of impurity disorder. The theory is formulated in the nonequilibrium Green’s function formalism, with
the long-range Coulomb interaction treated at the many-body GW approximation level and the disorder-average
carried out at the coherent potential approximation (CPA) level. The coupled GW and CPA equations are solved
self-consistently so that the fundamental conservation laws are ensured. The effects related to the electron-hole
symmetry in the Coulomb drag physics have been generalized to the nonlinear transport regime. A set of
symmetry-induced relations linking physical quantities with the particle distribution were established on generic
footing and, remarkably, they are found robust against uniformly distributed impurities. As an application, the
theoretical formalism is employed to analyze the Coulomb drag transport physics in quasi-one-dimensional
systems. The dependencies of the drag current on external bias, chemical potential, temperature, and the system
sizes are predicted.
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I. INTRODUCTION

Two conductive many-electron systems placed closely
while kept insulated from each other can exhibit a quantum
drag phenomenon due to the Coulomb interaction between
the electrons [1]. Namely, a charge current passing through
one of the subsystems—called the active layer (AL)—exerts a
“frictional” force on the other subsystem called the passive
layer (PL). If the two ends of the PL are connected to
the outside world, a drag current emerges in the PL circuit
(Fig. 1). This drag phenomenon has been ubiquitously ob-
served in systems of different dimensions and geometries,
including parallel metallic plates [2], quantum wells [3], wires
[4,5], dots [6,7], and dimensionally hybrid systems [8,9].
The underlying physical mechanism for the Coulomb drag
effect depends on the specific system dimension and the
experimental setup. As suggested in early theoretical works
regarding bilayer quantum wells, the drag effect was attributed
to the interlayer momentum transfer due to the long-range
Coulomb interaction [10,11] whereas in parallel quantum dots
it was more natural to interpret the induced drag current as
a rectification effect due to intrinsic fluctuations in the AL
[12,13]. These two seemingly different points of view, usually
referred to as the conventional drag mechanism as a whole,
turn out to be closely related [1,13,14]. On the other hand,
unconventional mechanisms that take into account physical
processes of different origins or exotic effects in non-Fermi-
liquid systems were also studied in a variety of contexts
[5,15–21].

The theory of Coulomb drag physics is commonly based on
the Kubo formula [10,22] and the kinetic equations [23–27].
The former is applicable in the linear response regime and
the latter is most conveniently used in translational invari-
ant or spatially continuous models. To handle the nonlinear

regime far from equilibrium for nanoscale devices where the
microscopic structural details can significantly influence the
transport, a real-space formalism is needed that takes atom-
istic level parameters as input and handles an explicit voltage
drop across the device. In this regard, attempts of using the
quantum master equation [12,18,28] and the nonequilibrium
Green’s function (NEGF) theory under random phase approx-
imation (RPA) [29] have recently been made for analyzing the
drag phenomenon in small quantum dots.

It is the purpose of this paper to further develop the real-
space nonequilibrium transport formalism for the Coulomb
drag problem in geometries elongated along the transport
direction, and to take into account the possible coexistence
of random impurities in the drag system. On the one hand,
disorder exists in realistic samples but its effect on the drag
phenomenon has not been predicted at nonequilibrium. On
the other hand, the rich physics lying in the interplay be-
tween disorder and Coulomb interaction generated persistent
interests for a long time [30]. In the presence of disorder,
one usually requests the averaged physical quantities over
an ensemble of samples to draw general conclusions. Al-
though modeling a disordered system under a given impu-
rity distribution merely amounts to adjusting the single-body
Hamiltonian, the disorder-averaging problem is virtually at
the many-body level, which makes the theoretical problem
more involved [31]. To overcome the difficulty, perturbation
methods [10,14,32,33] and numerical statistics [22] were used
in previous works. For practical simulations at the atomistic
level, a more general and numerically efficient technique is in
order for the disorder-averaging purpose.

In this paper, we deal with the electron-electron inter-
action using the self-consistent GW approximation [34,35].
The GW approximation, derived from RPA, is one of the
classic methods for incorporating quantum effect of charge
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FIG. 1. Left panel: Schematic diagram of the Coulomb drag setup. A potential bias is applied across the active layer and the drag current is
measured in the passive layer. The lowest order process contributing to the drag is depicted with the corresponding Feynman diagram, where
solid lines with arrows denote the electron propagators and the wavy lines represent the Coulomb interaction. Right panel: Diagram of the
potential profile in individual subsystems. Blue line: Electrostatic potential. Red line: Chemical potential measured with respect to certain
reference points in the band structure.

fluctuations, which plays a central role in the Coulomb drag
physics [1,14,36]. Another virtue of GW is that the required
numerical self-consistency ensures a number of conservation
laws [37–39] which typically improve the reliability of the
numerical transport calculations. As for disorder-averaging,
we resort to the coherent potential approximation (CPA)
devised for the impurity disorder of diagonal type [40,41].
It is remarkable that CPA essentially shares the same spirit
as the dynamical mean-field theory and thus goes beyond
perturbative methods [31,42]. In conjunction with NEGF, GW
and CPA have recently been extended into the nonequilibrium
regime, respectively [43–45]. Both methods have been suc-
cessfully applied to the transport simulation of a wide variety
of nonequilibrium systems [45–52]. In this paper, we combine
GW and CPA together so that the electron-electron interaction
and disorder-average can be dealt with at the same time, and
we apply this formalism to the Coulomb drag problem in
disorder-containing quasi-one-dimensional transport systems.

The rest of the paper is organized as follows. The theoret-
ical model, analysis, and the numeric simulation methods are
formulated in Sec. II. The generic features of quantum drag
transport are analyzed and we present a set of electron-hole
symmetry relations in terms of nonequilibrium quantities. In
Sec. III, we apply the formalism to a tight-binding model with
different geometries. The dependence of drag currents on a
number of physical parameters is studied.

II. THEORY

In what follows, the term “current” refers to the negatively
charged current unless otherwise specified: its unit is e/h. To
lighten the notation, we set e = h̄ = kB = 1. Spin degeneracy
is assumed in this paper.

A. Model Hamiltonian and general formulation

In our nonequilibrium drag model, the two-terminal con-
figuration for quasi-one-dimensional transport is adopted for

both AL and PL (Fig. 2). Each semi-infinite lead is assumed
to be maintained in its thermal equilibrium while the finite
central region is treated quantum mechanically [53]. The
noninteracting Hamiltonian of AL (label a) and PL (label p)
has the quadratic form

H
(a/p)
0 =

∑
i,j∈cen

τij d
†(a/p)
i d

(a/p)
j +

∑
k,l∈L,R

γklc
†(a/p)
k c

(a/p)
l

+
∑

k∈L,R;i∈cen

(βkic
†(a/p)
k d

(a/p)
i + H.c.), (1)

respectively, where d
†(a/p)
i (d (a/p)

i ) denotes the creation (anni-
hilation) operator for an electron on the ith site in the central
region of AL/PL, c† (c) creates (annihilates) an electron in the
left (L) or right (R) leads, and the Greek letters denote the
corresponding hopping matrices. Since interlayer hopping is
prohibited, electrons are constrained in their respective layers.
The disorder effect is considered present in the central regions
of AL and PL, and it is modeled by uncorrelated random
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FIG. 2. Schematic drawing of a one-dimensional ribbon sliced
from a square lattice. The width of the ribbon (number of rows) is
denoted by W and the length of the central region is denoted by L.
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variables added to the diagonal of the hopping matrix τ :

Himp =
∑
i∈AL

ε
(a)
i n̂

(a)
i +

∑
j∈PL

ε
(p)
j n̂

(p)
j , (2)

where n̂
(a/p)
i = d

†(a/p)
i d

(a/p)
i . Finally, the interlayer inter-

action, assumed to be confined within the central region
[22,39,53], is modeled by

Hee =
∑

i∈AL, j∈PL

u∣∣�ri − �rj

∣∣ n̂(a)
i n̂

(p)
j , (3)

where the parameter u scales the interaction strength. The
intralayer Coulomb interaction is not explicitly considered as
we assume that its effect has been absorbed into the band
structure renormalization for the quasiparticles [22]. With
these considerations, the total Hamiltonian of the drag system
reads H = H

(a)
0 + H

(p)
0 + Hee + Himp.

The central task of a nonequilibrium many-body problem
is to calculate the retarded (R), lesser (<), and greater (>)
components of NEGF, which can be obtained from the Dyson
and the Keldysh equations [53]:

GR (ω) = [
ωI − H0 − �R

lead − �R
CPA − �R

GW

]−1
, (4a)

G</>(ω) = GR
[
�

</>

lead + �
</>

CPA + �
</>

GW

]
GR†

. (4b)

In our notation, quantities without explicit indices are un-
derstood as matrices in the real-space basis representation of
the central region. � denotes self-energies of different origins.
The lead’s self-energy �lead(= �L + �R) originates from the
open boundary condition at both ends of the transport system
and can be computed with the standard numerical algorithm
as detailed in Ref. [54]. �CPA and �GW, to be introduced
in Secs. II B and II C, respectively, are associated with the
disorder-average and the electron-electron interaction effects.

To calculate the drag effect, a voltage bias is applied across
AL (Fig. 1), v

(a)
L/R = ±v(a): They are set at opposite values,

which is always doable due to the gauge invariance. The
electrostatic potential in the central region (cf. right panel of
Fig. 1) is assumed to be linear since electrons are subjected
to frequent scattering in the presence of impurities and the
Coulomb interaction [55]. On top of the bias voltage, we
define another variable μ(a) representing the relative position
of the chemical potential with respect to the band structure
of respective leads. Throughout this paperwork, the relative
chemical potentials are set to be equal in both leads. For the
PL, a flat potential is applied (i.e., no bias) and again μ(p) is set
equal in both leads. Thus, in the setup displayed in Fig. 1, one
expects the Coulomb drag to induce a steady current flowing
through PL in response to the nonequilibrium bias applied
across AL.

B. Coherent potential approximation

In this subsection, we present our CPA approach to the
disorder-average. In the Green’s function theory for the dis-
order problem, one usually seeks an effective medium where
the dressed propagator characterizes the typical behavior of
a real particle encountering random scatterers in the lattice.
Consider a single site in the medium denoted by i. All degrees
of freedom in the rest of the lattice can be integrated out,

so that the coupling between this site and the rest can be

parameterized by a single variable �i , expanded as (�
R
i �<

i

0 �R∗
i

)
in the Keldysh space [31]. This single-site problem can be
solved readily by computing the mean value of the Green’s
function [31,44]:

Gi (ω) =
∫

dεip(εi )[ωI2×2 − εiI2×2 − �i (ω)]−1, (5)

where εi is the random impurity potential and p(εi ) denotes
its probability distribution. Alternatively, one can think of this
site being occupied by an artificial atom with the complex
potential σi satisfying

Gi (ω) = [ωI2×2 − σi (ω) − �i (ω)]−1. (6)

CPA consists of approximating the effective medium self-
energy �CPA with

∑
i σi , which, together with Eqs. (4), (5),

and (6), forms a closed set of equations given a fixed �GW

[44].

C. GW approximation

In this section, we outline the main procedure of the
nonequilibrium GW approximation for the Coulomb interac-
tion. Details can also be found in Ref. [45]. We start with the
lesser and greater polarizations,

P
</>

ij (ω) = −2i

∫
dω′

2π
G

</>

ij (ω + ω′)G>/<

ji (ω′), (7)

which serve as an intermediate quantity for the GW calcula-
tion. The retarded polarization is obtained from the Kramers-
Kronig relation [56]:

P R
ij (ω) = i

∫
dω′

2π

P >
ij (ω′) − P <

ij (ω′)

ω − ω′ + i0+ . (8)

Note that in our problem, as particle interchange is prohibited
between AL and PL, the real-space indices attached to the
polarization or the Green’s functions must lie in the same
layer. Next, the screened interaction is computed as

WR (ω) = [I − V P R (ω)]−1V, (9a)

W</>(ω) = WR (ω)P </>(ω)WR (ω)†. (9b)

Exploiting the bipartition nature of the drag system, these
quantities can be viewed as in the two-by-two matrix form:

W =
(

Waa Wap

Wpa Wpp

)
, P =

(
P a 0
0 P p

)
, V =

(
0 U

U † 0

)
,

where Uij = u/| �ri − �rj | [see Eq. (3)], and hence the matrix
operations in Eq. (9) can be resolved with smaller matrices.
The GW method consists of approximating the interaction
self-energy as

�
</>

GW,ij (ω) = i

∫
dω′

2π
G

</>

ij (ω − ω′)W</>

ij (ω′). (10)

The retarded self-energy is again derived from the Kramers-
Kronig relation Eq. (8), with P replaced by �GW. Finally, the
self-energy is inserted into the Dyson and the Keldysh Eqs. (4)
to obtain the Green’s functions. This closes the loop of one
GW iteration.
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In terms of numerical implementation, all the quantities
are stored as matrices aligned on an energy grid with equal
spacing. The convolution integrals in Eqs. (7), (8), and (10) are
computed with the fast Fourier transform (FFT) [45,57], and
a parallelization over the real-space indices is implemented.
The computations of Eqs. (4) and (9), as well as the CPA cal-
culation, are parallelized over the energy points. In practice,
to arrive at the simultaneous convergence of the GW and the
CPA calculations, our numerical program proceeds as follows.
It starts with an initial guess for the GW self-energy and
solves the CPA equations iteratively until convergence. The
outcome Green’s function is then used to carry out the GW
calculation. Next, the GW self-energy is updated with a Pulay
mixer [58,59] followed by a repeated CPA calculation since
the underlying �GW has been changed. The entire procedure
is iterated until an overall convergence (in both CPA and GW
self-energies) is achieved.

D. Drag current

Having established the combined formalism of CPA and
GW for the drag system, one can easily understand the
central question of how the PL “crosstalks” with the AL
and hence “knows” about its nonequilibrium status. The GW
theory provides a concrete physical picture to answer this
question. First, the nonequilibrium statistical information in
the AL is encoded in its charge fluctuation, represented by the
polarization [Eq. (7)]. Then, through the dynamical screening
process [53] the fluctuation reshapes the Coulomb interaction
[Eq. (9)] so that the interlayer medium carries the information
about AL. PL receives this information from the medium via
the process described by Eqs. (4) and (10), and hence makes
response to the driving “force.”

In the NEGF formalism, the current through lead α(= L or
R) of either subsystem can be calculated as

I (a/p)
α =

∫
dωJ (a/p)

α (ω),

where the energy resolved current density J
(a/p)
α (ω) is defined

as [53]

J (a/p)
α (ω) = Tr

(
G>(a/p)�<(a/p)

α − G<(a/p)�>(a/p)
α

)
.

The first and the second terms on the right-hand side represent
the electron and the hole current, respectively. The three
typical profiles of J

(p)
L (ω) are sketched in Fig. 3. In our

calculations, we find that the electron drag current is always
accompanied by a codirectional hole current of about the
same magnitude, and vice versa. Therefore, the measurable
drag current merely arises from the slight difference between
the two currents. This manifests the different origin of the
Coulomb drag current compared to the regular field driven
current.

As both GW and CPA have proven to be �-derivable
approximations, charge conservation is ensured as long as the
GW and CPA equations are solved self-consistently [31,39].
As a result, we have the identity I

(a/p)
L + I

(a/p)
R = 0, which

has been checked throughout our calculations to provide a
very strict verification of the numerical procedure.

It should be pointed out that the formalism presented here
only takes into account the delocalized electronic states in

FIG. 3. Typical profiles of the energy-resolved current density in
the left lead of the passive layer (J (p)

L (ω)). Black curve: J (p)
L (ω) at the

electron-hole symmetric point where the hole current (shaded area
below the zero axis) cancels out the electron current (shaded area
above the zero axis). Red curve: J

(p)
L (ω) of electron-electron (e-e)

drag where the electron current exceeds the hole current, yielding
a positive total current. Blue curve: J

(p)
L (ω) of electron-hole (e-h)

drag, which yields a negative total current. J
(p)
L (ω) switches its sign

at ω = μ(p).

the transport system [45]. Note that, since charge fluctuation
involves all the quantum states within the relevant energy win-
dow, the localized states lying in there should also participate
in the drag process [60]. In this paper, we consider disorder
scattering effects away from any localization regime.

E. Electron-hole symmetry

Within the linear response or the kinetic equation approach,
it has been theoretically confirmed that the direction of the
drag current can be influenced by varying the relative occupa-
tion of electrons and holes in the system and that, particularly,
according to the conventional Coulomb drag theory, the drag
current vanishes when the chemical potential is set right at the
electron-hole symmetric point [1,14,23,61]. In this paper, such
phenomena have been generalized for the nonequilibrium
drag where analyses from previous works, solely based on
the band structure symmetry, cease to be valid. This emergent
nonequilibrium electron-hole symmetry has been confirmed
in our numerical simulation.

The central result of this subsection is that the drag current
is an odd function with respect to either μ(a) or μ(p):

I
(p)
L (μ(a), μ(p) ) = −I

(p)
L (−μ(a), μ(p) )

= −I
(p)
L (μ(a),−μ(p) ) = I

(p)
L (−μ(a),−μ(p) ),

(11)

given the sufficient condition that (i) the atomic structure and
the hopping Hamiltonian of both AL and PL subsystems bear
inversion symmetry about the center of the device, (ii) the
electrostatic potential in AL is odd about the center of the
device while that in PL is zero everywhere, and (iii) the leads
of respective subsystems are identical and have a symmetric
band structure. Remarkably, Eq. (11) remains true even for
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the disorder averaged current, providing that the probability
distribution of the impurity potential is even: p(εi ) = p(−εi ).
The detailed derivation for Eq. (11) is presented in the
Appendix.

III. NUMERICAL RESULTS

In this section, we present numerical results for the tight-
binding model of Fig. 2. The structures of AL and PL are
chosen to be identical. The interlayer distance is set to be
equal to the site spacing a. Hopping is allowed only be-
tween nearest neighbors with an identical amplitude t . The
resulting band structure is plotted in Fig. 11 of Appendix B
for reference. This model can be interpreted as a real-space
finite-difference representation for the effective Hamiltonian
of semiconductor wires [22,55]. To be specific, the hopping
amplitude is estimated from t = h̄2/2m∗a2, where m∗ is the
effective mass, and the interaction strength u = e2/4πε0εra.
As a concrete example to illustrate the parametrization of our
model, when a grid spacing of 2.5nm is used the u parameter
for a GaAs wire would become u = 0.5t [62]. To lighten the
notation, t is taken as the energy unit henceforth, and the half-
filling point of the band structure is chosen as the reference
point. To simulate the disorder effect, we allow the on-site
energy of each atom to take either of the two values, ε or
−ε, with an identical probability. The temperature parameter
is set at kBT = 0.001 in all leads, unless otherwise specified.
In addition, the relative chemical potentials in all leads are set
equal: μ(a) = μ(p). The numerical accuracy of our formalism
is essentially controlled by the range and the spacing of the
energy grid used in the GW calculation. For the numerical
results presented in this section, a proper grid ranging from
−18.0 to 18.0 with a spacing no larger than 0.01 is tested to
be adequate. In addition, extra zero-padding is added when
the FFT facilitated convolutions are carried out [45,57].

A. Drag current versus bias and chemical potential

We first present results for the simplest chain model (W =
1) with four interacting sites in the central region (L = 4).
The interaction and disorder strengths are set at u = 2.0 and
ε = 0.2, respectively. We sweep the AL bias v(a) from 0.0
to 1.0, and the chemical potential μ(a/p) from 0.0 to 1.8. At
each pair of v(a) and μ(a/p), a self-consistent calculation is
performed and the computed drag current I (p) (in units of
e/h) is recorded. The numerical results are presented in Fig. 4.

Regarding the bias dependence of the drag current at a
fixed μ(a/p), the negative differential conductance previously
reported in Ref. [29] is not found in our model. The system
studied in Ref. [29] consists of quantum dots weakly coupled
to the leads, so that the transport property is rather sensitive to
the position of individual energy levels in the dot. In contrast,
our drag model closely mimics the transport in quantum
wires rather than dots. The dependence of I (p) on μ(a/p) at
a few selected v(a)′s is shown in the right panel of Fig. 4.
The drag current starts at zero, as required by the electron-
hole symmetry at μ(a/p) = 0, increases monotonously and
then decreases as μ(a/p) approaches the vicinity of the band
edge. Numerically, it is unclear whether the drag current will
continue decreasing all the way up to the band edge, since

FIG. 4. Drag current in the chain model (L = 4) versus the bias
voltage v(a) and chemical potential μ(a/p). The interaction and the
disorder strengths are set at u = 2.0 and ε = 0.2, respectively. Left
panel: 2D plot of the drag current I (p) versus v(a) and μ(a/p). Right
panel: Cuts at a few selected v(a).

some earlier theoretical works [26,27] suggested that the drag
current should sharply peak at the band edge. We found that
our self-consistent GW calculation became very hard and even
failed to converge at certain points when μ(a/p) is extremely
close to the band edge, which is plausibly caused by such
sharp discontinuity.

Next, we move on to the study of a ribbon structure with
W = L = 4. The range of μ(a/p) is increased up to 3.0 for
adaption to the change in the band structure. Other parameters
remain the same as in the chain model. The results are shown
in Fig. 5. As can be seen, the dependence of drag currents
on v(a) and μ(a/p) becomes much more complicated than that
for the chain model. This mainly results from the underlying
multiband structure of the ribbon. An associated observation
is that, as shown in the right panel of Fig. 5, at a low bias (e.g.,
v(a) = 0.08) the drag current peaks close to the subband edges
of the noninteracting Hamiltonian (marked by dashed lines).
This interesting finding qualitatively agrees with the results
from the kinetic theory [26,27]. The noticeable broadening of
these peaks and their deviation from the exact positions can be
attributed to the many-body renormalization of the electronic
structure. On the other hand, in the far-from-equilibrium

FIG. 5. Drag current in the ribbon model (W = L = 4) versus
the bias voltage v(a) and chemical potential μ(a/p). The interaction
and the disorder strengths are set at u = 2.0 and ε = 0.2, respec-
tively. Left panel: 2D plot of the drag current I (p) versus v(a) and
μ(a/p). Right panel: Cuts at a few selected v(a). Subband edges of the
noninteracting Hamiltonian are marked by dashed lines.
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regime (e.g., v(a) = 0.48, 0.88) which has not been studied
before, these peaks cease to be distinguishable.

All the computations have been repeated for the same
structures under the condition ε = 0, and no qualitative dif-
ference has been found.

B. Drag current versus the length of the central region

It is well-known that Coulomb interaction and impurity
disorder conspire to complicate as well as enrich the Coulomb
drag physics [1]. On the one hand, the drag effect due to
Coulomb interaction should grow as the scattering region
enlarges [22]. On the other hand, impurity scattering hinders
electronic transport in general. Therefore, it is interesting and
necessary to investigate the dependence of drag currents on
the system length so as to explore the interplay between the
Coulomb interaction and the disorder effect.

We first present in Fig. 6 (left column) the numerical
results for the drag current (I (p)) calculated under a relatively
small bias (v(a) = 0.05). For each system (distinguished by
its width W ), the chemical potential and the Coulomb inter-
action strength are fixed at a certain value, respectively (see
the caption of Fig. 6) whereas the length of the scattering
region and the impurity energy are varied. It has been shown
with the kinetic approach that, in the ballistic limit, the drag
transconductance should grow monotonously with increasing
length (L) in the asymptotic regime [26]. As can be seen,
our result for the disorder-free (ε = 0.0) samples qualitatively
agrees. Furthermore, our numerical calculation suggests that,
even in the presence of impurities, the I (p) − L relation could
remain increasing up to a rather large L.

To investigate the I (p) − L relation in the far-from-
equilibrium regime, we have computed the drag currents un-
der a relatively large bias (v(a) = 0.5). The numerical results
are shown in the right column of Fig. 6. Interestingly, we
find that impurity scattering gets more pronounced in this
regime than in the low bias case: in the weak disorder regime
(ε < 0.2), the far-from-equilibrium drag current again grows
with increasing length, whereas in the presence of stronger
disorder the drag current tends to decrease after a certain
length [see Figs. 6(b) and 6(d), particularly]. Furthermore,
such disorder-induced impediment is found related to the
width of the system: in the chain model with ε = 0.5, the
point where the drag current starts to decrease is at L = 20
[Fig. 6(b)], whereas in the ribbon with W = 2 the turning
point shifts to a larger value L = 30 [ Fig. 6(d)]. Such ob-
servation is consistent with the classical size dependence of
the disorder-induced resistance.

Along with the drag currents, the drive currents in AL have
also been calculated in our simulations. Their typical behavior
is illustrated in Fig. 7, where the numerical result for the chain
model under v(a) = 0.5 is displayed [from the same calcula-
tion as for Fig. 6(b)]. The drive current can be hindered by
both Coulomb and impurity scattering processes. The effect
of the former is well manifested in the disorder-free limit (the
dark blue curve in Fig. 7). In this limit, the drive current is
found to decrease with increasing length in the monotonous
increasing region of the drag current, which is consistent with
the interlayer momentum transfer picture. In the presence of

FIG. 6. Drag currents versus the length of the central region
in systems of different widths. The chemical potentials are set at
μ(a/p) = 1.0, 2.0, 2.0 for W = 1, 2, 4, respectively. Both low (v(a) =
0.05) and high (v(a) = 0.5) bias voltages are applied. The interaction
is set at u = 0.5 and the impurity energy ε is varied from 0.0 to 0.5,
labeled with different colors.

disorder, both scattering processes contribute so that the drive
current decreases monotonously with increasing length.

C. Drag current versus temperature

It has been shown theoretically that the generic feature of
quantum drag transport is highly associated with temperature.
When the temperature is significantly higher than the voltage
bias (the linear regime), the drag effect mainly arises from
the rectification of nearly equilibrium thermal fluctuations and
thus it should grow with increasing temperature [1]. In the
opposite limit (the nonlinear regime), the drag transport is
determined solely by the intrinsic electronic structure of the
device [1].
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FIG. 7. Drive current versus the length of the central region of
the tight-binding chain model. The impurity energy ε is varied from
0.0 to 0.5, labeled with different colors. Other parameters: v(a) = 0.5,
u = 0.5, μ(a/p) = 1.0.

In this subsection, by applying a low bias (v(a) = 0.01)
on AL and varying the temperature from low to high, we
investigate the temperature dependence of the drag transport
in both regimes plus the crossover in between. Systems of two
different geometries are considered: A chain with L = 25 and
a ribbon with W = 4, L = 10. The relative chemical potential
is set at μ(a/p) = 1.0 in the chain model and μ(a/p) = 2.0
in the ribbon. The disorder strength is varied from ε = 0.0
to 0.5 while the interaction strength is fixed at u = 1.0 in
both systems. The results are presented in Fig. 8. At interme-
diate temperatures (v(a) < kBT � μ(a/p)), for both systems
we observe a power law increase of the drag current versus
the temperature, which suggests that the drag transport is
more of a thermal rectification effect [1]. The rapidness of
such increase is found dependent on the disorder strength, as
clearly shown in Fig. 8(a). As the temperature decreases, the
system is then driven toward the nonlinear regime where the
thermal rectification ceases to play a major role [1]. As can
be seen, in the regime kBT � v(a) the drag current tends to

FIG. 8. The temperature dependence of the drag current under
v(a) = 0.01 in a chain model with L = 25 (left panel) and a ribbon
with W = 4, L = 10 (right panel). The relative chemical potential is
set at μ(a/p) = 1.0 in the chain model and μ(a/p) = 2.0 in the ribbon.
The interaction strength is set at u = 1.0 while the disorder strength
is varied from ε = 0.0 to 0.5.
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noitubirtsi
D
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Energy

0
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0.6

0.8

1
passiveactive

dashed: w/o interaction

FIG. 9. Respective energy distribution (particle occupation) at
the center of a pair of disorder-free chains of length L = 20a. The
active subsystem is driven out of equilibrium under v(a) = 0.5. Other
parameters: u = 0.5, μ(a/p) = −1.0.

saturate at a nonzero value, which indicates that the nonlinear
drag transport can exist even without thermal fluctuations [1].

D. Further discussions

An important aspect of the Coulomb drag physics is the
nonequilibrium distribution of electrons in the two wires.
The nonequilibrium distribution in the AL delivers a “driv-
ing force” for a steady-state drag current to flow in the
PL. This distribution has a tendency of equilibration due to
inelastic scattering which transfers energy between the two
subsystems. To this end, a self-consistent calculation of the
distribution is necessary [63] and in the NEGF formalism
presented above, it is done by self-consistently solving the
coupled Dyson-Keldysh equation [cf. Eq. (4)] for G< under
proper transport boundary conditions [53]. Figure 9 shows
the calculated particle occupation (the diagonal of ImG<) at
the center of a pair of disorder-free chains. The smearing of

10 20 30 40
Length

10-3

10-2

10-1

constant
linear

FIG. 10. Drag currents versus the length, computed under differ-
ing electrostatic potential profiles (i.e., constant versus linear). Model
parameters are same as in Fig. 6(b).
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the self-consistent distribution against sharp-steps (dashed)
signifies the energy relaxation effect which tends to equili-
brate the active chain while driving the passive chain out of
equilibrium.

So far, in the numerics we assumed a linear electrostatic
potential profile along the AL due to the external bias voltage.
To what extent could this profile affect the computed results?
To this end, we recalculate for the case of the dark blue curve
of Fig. 6(b), but this time with an electrostatic potential along
AL set to be a constant instead of linear. The comparison is
shown in Fig. 10 and the overall agreement of the two results
is qualitatively very good and semiquantitatively reasonable.
Nevertheless, we argue that the linear potential profile is qual-
itatively better for describing realistic situations because the
inevitable inelastic scattering tends to drive the profile away
from a constant shape. Ultimately, a quantitative solution of
the electrostatic potential profile can be obtained by solving
the Poisson equation [64].

IV. SUMMARY

We have presented a theoretical formalism for analyzing
the quasi-one-dimensional Coulomb drag problem in gen-
eral two-terminal transport systems. The input of our theory
consists of experimentally controllable variables only and no
phenomenological parameters such as relaxation time or mean
free path are needed for describing the elementary scattering
processes.

The dependence of the drag effect on a number of variables
has been investigated. For the temperature dependence, we
find that the linear drag current at kBT > v(a) exhibits a power
law decrease with decreasing temperature. At kBT ∼ v(a)

the drag effect crosses over toward the nonlinear regime as
the temperature decreases. At kBT � v(a) the drag current
saturates at a nonzero value. For the chemical potential depen-
dence, the drag current under low bias is found sensitive to its
position with respect to subband edges, whereas this behavior
fades out as the drive voltage increases.

Our real space formalism allows us to investigate the im-
portant problem of how the drag current varies with the length
of the disordered scattering region. Our numerical results
for drag currents under low bias qualitatively agree with the
theoretical prediction previously derived in the ballistic limit
[22,26]: The drag current increases with increasing length.
Our calculation suggests that such increasing trend could
persist even in the presence of disorder, as long as the drive
bias is relatively low. In contrast, in the far-from-equilibrium
regime, as the length increases the drag current exhibits a
downturn due to the impurity scattering and the turning point
is dependent on the system width.

The electron-hole symmetry/asymmetry is known to play
an important role in the Coulomb drag physics. On this
aspect, first we have demonstrated that the NEGF formal-
ism allows for computing the electron and the hole drag
currents individually. Based on our numerical results, we
argued that the cancellation between electron and hole drag
currents constitutes a major reason for the smallness of the net
drag current and that the individual contribution from either
species is significantly larger in magnitude. Therefore, the
key to increasing the drag current consists of enlarging the
electron-hole asymmetry, for example, by using electrodes
with distinct electronic properties. This insight should be
useful for Coulomb drag engineering. In addition, we have
derived a set of parity relations which associate the general
nonequilibrium drag current with the chemical potential. We
find that, provided that the underlying noninteracting Hamil-
tonian bears electron-hole symmetry and that the real-space
structure bears inversion symmetry, inverting either chemical
potential in AL or PL results in reversing the drag current.

Although the purpose of the formalism presented here is
to capture the main physical processes of nonequilibrium
Coulomb drag in the presence of disorder and it was applied
at relatively low temperatures in this work, it should also
be noted that, two additional effects would arise as tem-
perature goes higher, namely the plasmon enhancement and
the phonon mediation, which manifest on temperature scales
associated with the Fermi and Debye energies, respectively
[1]. An explicit treatment of intralayer electron-electron [65]
and electron-phonon interactions [66] would be required to
take into account these physical processes, for which we wish
to be able to report in a future opportunity.
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APPENDIX A: DERIVATION OF THE ELECTRON-HOLE
SYMMETRY RELATIONS

In this Appendix, we elucidate the symmetry relation
Eq. (11) on a generic basis.

The noninteracting Hamiltonian of a two-terminal trans-
port model has the following block-tridiagonal form:

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . H−m−1,−m

H−m,−m−1 H−m,−m + V−m H−m,−m+1

H−m+1,−m

. . . Hm−1,m

Hm,m−1 Hm,m + Vm Hm,m+1

Hm+1,m

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where m labels the principle layers, H denotes the corre-
sponding hopping matrices, and V represents the diagonal
potential matrices. In AL, we have imposed V−m = −Vm

while in PL we have V = 0. For a real-space model with
structural inversion symmetry, we have Hmn = H−m,−n. In
this case, eigenvectors of H0 emerge in pairs with opposite
eigenvalues: Providing �(κ ) is a certain eigenvector satisfying
H0�

(κ ) = ε (κ )�(κ ), one can derive its pairing eigenvector
�(−κ ) which satisfies H0�

(−κ ) = ε (−κ )�(−κ ), where ε (−κ ) =
−ε (κ ) and ψ

(−κ )∗
−i = ψ

(κ )
i ηi , i being a real-space index and η

being a vector whose explicit form, although mathematically
derivable, does not need to be known. Since H0 is real and
because of the inversion symmetry, we have |ψ (−κ )

−i | = |ψ (κ )
i |

and thus the value of ηi can only be −1 or 1. Such eigenvector
pairing reflects the physical picture that, if �(κ ) corresponds to
an electron scattering state [64] incident from one side of the
device, on the other half of the spectrum there should equally
exist a hole state, denoted by �(−κ ), incident from the other
side.

With the Lehmann representation, the retarded noninteract-
ing Green’s function can be formally written as [55]

GR
0,ij (E) =

∑
κ

ψ
(κ )
i ψ

(κ )∗
j

E − ε (κ ) + i0+ .

Using the symmetry of the wave function, we further get

GR
0,ij (E) = −ηiηj

[∑
κ

ψ
(−κ )
−i ψ

(−κ )∗
−j

−E − ε (−κ ) + i0+

]∗
.

The quantity in the bracket is easily recog-
nized as GR

0,−i,−j (−E). Thus we find GR
0,ij (E) =

−ηiηj [GR
0,−i,−j (−E)]∗. Similarly, taking into account the

respective Fermi-Dirac distributions in the leads, the lesser
Green’s function can be written as [67]

G<
0,ij (μ,E)= i

∑
α=L,R

nF (E−μα )
∑
κ∈α

δ(E−ε (κ ) )ψ (κ )
i ψ

(κ )∗
j .

With some straightforward algebra, we can continue writing

G<
0,ij (μ,E) = ηiηj

∑
α

i[1 − nF (−E + μα )]

×
∑
κ∈α

δ(−E − ε (−κ ) )ψ (−κ )∗
−i ψ

(−κ )
−j

= ηiηj [G>
0,−i,−j (−μ,−E)]∗,

where we have used the identities δ(x) = δ(−x) and 1/(ex +
1) = 1 − 1/(e−x + 1). In the particular case V = 0, in addi-
tion to the electron-hole symmetry, there emerges another pair
of scattering states incident from opposite directions with the
same energy and flipped wave functions. This leads to the
relations GR

0,ij (E) = GR
0,−i,−j (E) and G

</>

0,ij (E) = G
</>

0,−i,−j

(E).
Putting everything into context, upon flipping the sign of

the chemical potential in AL (μ(a) → −μ(a)) while keeping
μ(p) fixed, we have the noninteracting Green’s functions

changed in the following way:

G
R(p)
ij (μ(a), E) = G

R(p)
−i,−j (−μ(a), E), (A1a)

G
</>(p)
ij (μ(a), E) = G

</>(p)
−i,−j (−μ(a), E), (A1b)

G
R(a)
ij (μ(a), E) = −ηiηj

[
G

R(a)
−i,−j (−μ(a),−E)

]∗
, (A1c)

G
<(a)
ij (μ(a), E) = ηiηj

[
G

>(a)
−i,−j (−μ(a),−E)

]∗
, (A1d)

where we have omitted the 0 subscript as later on we will
see that the interacting Green’s functions also follow these
relations. The argument μ(p) has also been omitted for simpler
notations. Plugging Eqs. (A1b) and (A1d) into Eq. (7) and
making use of the fact η2

i = 1, we get

P
<(p/a)
ij (μ(a), E) = P

<(p/a)
−i,−j (−μ(a), E)

= [−P
>(p/a)
−i,−j (−μ(a),−E)

]∗
. (A2)

Applying Eq. (A2) to the Kramers-Kronig relation Eq. (8),
we find

P
R(p/a)
ij (μ(a), E) = P

R(p/a)
−i,−j (−μ(a), E). (A3)

Next, we move on to the screened interaction. From the
recursive equivalent to Eq. (9a), we get

WR(aa)(μ(a), E) = UP R(p)U †

+ UP R(p)U †P R(a)UP R(p)U † + · · ·
Taking the first term as an example, we observe

UP R(p)U † = UikP
R(p)
kl (μ(a), E)U †

lj

= U−i,−kP
R(p)
−k,−l (−μ(a), E)U †

−l,−j ,

where we have utilized Eq. (A3) and the trivial fact U−i,−k =
Uik due to the structural symmetry of the system. Repeated in-
dices in the above equation should be summed over. Carrying
on the same analysis for all subsequent terms, we arrive at

W
R(aa)
ij (μ(a), E) = W

R(aa)
−i,−j (−μ(a), E).

With some straightforward algebra, one can verify that
WR(ap), WR(pa), and WR(pp) all follow the same relation.
Using the relations

W<(aa) = WR(aa)P <(a)WR(aa)† + WR(ap)P <(p)WR(ap)†,

W<(pp) = WR(pp)P <(p)WR(pp)† + WR(pa)P <(a)WR(pa)†,

derived from Eq. (9b) together with Eq. (A2), we find that
W<,> follows the same relation as Eq. (A2):

W
<(p/a)
ij (μ(a), E) = W

<(p/a)
−i,−j (−μ(a), E)

= [−W
>(p/a)
−i,−j (−μ(a),−E)

]∗
. (A4)

Putting Eqs. (A1b), (A1d), (A4), and (10) together, we find

�
</>(p)
GW,ij (μ(a), E) = �

</>(p)
GW,−i,−j (−μ(a), E),

�
<(a)
GW,ij (μ(a), E) = ηiηj

[
�

>(a)
GW,−i,−j (−μ(a),−E)

]∗
, (A5)
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FIG. 11. Band structures of the square lattice tight-binding model described in Fig. 2 with selected widths W . The nearest-neighbor hopping
amplitude is taken as the energy unit.

Using the Kramers-Kronig relation Eq. (8) again, we get

�
R(p)
GW,ij (μ(a), E) = �

R(p)
GW,−i,−j (−μ(a), E)

�
R(a)
GW,ij (μ(a), E) = −ηiηj

[
�

R(a)
GW,−i,−j (−μ(a),−E)

]∗
(A6)

Applying the relations Eqs. (A1), (A5), and (A6) to the
recursive form of the Dyson equation

GR = GR
0 + GR

0 �R
GWGR

0 + · · ·

and the Keldysh equation [53]

G< = (
1 + GR�R

GW

)
G<

0

(
1 + GR�R

GW

)† + GR�<
GWGR†,

we immediately get back to Eq. (A1) [68]. In the presence
of disorder, the CPA iteration needs to be carried out as well.
Using Eq. (A1) together with the equations in Sec. II B, one
can easily verify that �CPA follows the same relations as in
Eqs. (A5) and (A6), providing that the impurity potential
probability is an even function with respect to both the energy
and the spatial position. Therefore, the relations in Eq. (A1)
stay true throughout the self-consistent calculation. Now we
can draw conclusion about how the drag current changes when
μ(a) is flipped:

I
(p)
L (μ(a), μ(p) ) =

∫
dETr

[
G>(p)(μ(a), μ(p) )�<(p)

L

− G<(p)(μ(a), μ(p) )�>(p)
L

]

=
∫

dETr
[
G>(p)(−μ(a), μ(p) )�<(p)

R

− G<(p)(−μ(a), μ(p) )�>(p)
R

]
= I

(p)
R (−μ(a), μ(p) ) = −I

(p)
L (−μ(a), μ(p) ),

where we have used the charge conservation law and the
simple fact �

</>(p)
L,ij (E) = �

</>(p)
R,−i,−j (E) due to the structural

symmetry.
In the other situation where μ(a) is fixed while μ(p) is

flipped instead, one can derive

G
</>(p)
ij (μ(p), E) = ηiηj

[
G

>/<(p)
ij (−μ(p),−E)

]∗
,

�
</>(p)
L,ij (μ(p), E) = ηiηj

[
�

>/<(p)
L,ij (−μ(p),−E)

]∗
,

and hence J
(p)
L (μ(p), E) = −J

(p)
L (−μ(p),−E), which leads

to I
(p)
L (μ(a), μ(p) ) = −I

(p)
L (μ(a),−μ(p) ) upon being inte-

grated over energy. This completes our analytic verification
for the symmetry relation Eq. (11).

APPENDIX B: BAND STRUCTURE OF THE
TIGHT-BINDING MODEL

In this Appendix, we present the noninteracting band struc-
tures of our tight-binding model with differing widths W (see
Fig. 11).
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