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Charger-mediated energy transfer for quantum batteries: An open-system approach
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The energy charging of a quantum battery is analyzed in an open quantum setting, where the interaction
between the battery element and the external power source is mediated by an ancilla system (the quantum
charger) that acts as a controllable switch. Different implementations are analyzed putting emphasis on the
interplay between coherent energy pumping mechanisms and thermalization.
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I. INTRODUCTION

A battery is a physical system that is capable to store
energy supplied by an external source, making it available
to other devices. Its performance is characterized by several
figures of merit gauging the amount of energy it can store
and/or deliver as a function of its mass/volume and how these
quantities vary over time. Motivated by the constant progress
of miniaturization of electronic devices and stimulated by the
success obtained in other sectors by adopting analogous ap-
proaches [1,2], increasing interest has been recently devoted
to analyze the performances of “quantum batteries,” i.e., en-
ergy storing systems which, at least in principle, could exploit
genuine quantum effects to obtain improved performances
with respect to conventional (say classical) schemes [3–10].

The core of this idea ultimately relies on the possi-
bility of achieving superior performances in the manipu-
lation of energy by cleverly exploiting quantum resources
[11–17]. Starting from the seminal, but abstract, works of
Refs. [3–6], concrete implementations of quantum batter-
ies have been proposed [7,8]. At the same time, more so-
phisticated modelizations of the charging process have been
presented [9,10] which put emphasis on the problems that
could arise at the interface between a quantum battery B and
its external energy supply A, the “quantum charger” (also
modeled as a quantum system). In particular, in Ref. [10] it
was pointed out that quantum correlations between B and A,
while possibly playing an important role in speeding up the
charging of the battery, could result in a net detrimental effect
by reducing the amount of energy that one could transform
in useful work once having access to B alone (a reasonable
scenario in any relevant practical applications). Building up
from these observations, in this work we introduce a further
generalization of the quantum battery/quantum charger model
by explicitly embedding the whole system into an external
environment E whose action is effectively described in terms
of a master equation [18]. Accordingly, and at variance with
previous proposals [7,9,10] which deal with quantum battery
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models which are intrinsically closed, in our approach the
energy meant to be transferred to the quantum battery is
not assumed to sit initially on the charger A. Instead, it is
dynamically injected into the system thanks to the presence
of E, either via thermalization or via coherent driving induced
by external control, the ancilla A merely playing the role
of an effective transducer capable to convert such inherently
classical inputs into “quantum signals” for B. In this context,
for different implementations of the A and B systems, we ex-
plicitly compute the total energy transferred to the battery and,
using the results of Refs. [10,19], the fraction of it that turns
out to be useful in terms of extractable work. Specifically,
we are interested in studying the different ways in which the
thermal and coherent driving mechanisms contribute to the
process, enlightening possible cross-talking effects between
the two. Interestingly enough, while typically the presence of
thermal pumping tends to reduce the fraction of stored energy
which can be extracted as work, in some implementations
which exhibit effective nonlinearities in the coupling between
A and B, we find evidences of a positive interplay which, for
an assigned intensity of the coherent driving force, tends to
increase the performances of the quantum battery, an effect
which is reminding us of the noise-assisted energy transfer
observed in quantum biology [20,21].

Our paper is organized as follows. In Sec. II we introduce
the general model and the figures of merit we are going to
analyze. Section III reports the results we obtained when both
the charger A and the battery B are harmonic oscillators, while
Sec. IV deals instead with the two-qubit scenario. Finally,
results for the hybrid case where A is a harmonic oscillator
and B is a qubit are reported in Sec. V.

We stress that all the models we discuss here are exper-
imentally realizable and of current interest. Coupling two
qubits is nowadays routine in circuit quantum electrodynam-
ics experiments, where superconducting qubits can be put
in interaction via lumped circuit elements. In particular, the
coupling is capacitive in case of charge and phase qubits, and
inductive for flux qubits allowing nearest-neighbor interaction
between qubits and the intensity of the coupling can be
modified via detuning techniques [22]. The case of two quan-
tum harmonic oscillators can be realized either by coupling
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FIG. 1. Pictorial representation of the model analyzed in this
work. Here, energy from the external world E flows into the ancillary
system A, which acts as a classical-to-quantum transducer for B
(the quantum battery). The subsystems A and B interact via a
time-dependent coupling, which is switched on during the charging
interval [0, τ ] only. In our model, the EA coupling may either occur
via the interaction with a thermal source (represented by the yellow
lamp) or coherently via the modulation of the local Hamiltonian of
A (represented by the green laser), or both.

an optical cavity with a mechanical resonator via radiation
pressure [23,24] or using cavity array schemes implemented
via transmission line resonators [25–27]. Finally, the case of
a qubit coupled with a quantum harmonic oscillator is an
open version of the well-known Jaynes-Cummings model [28]
which has a plethora of experimental realizations [29–31].

A brief summary and our main conclusions are re-
ported in Sec. VI. Useful technical details can be found in
Appendices A–C.

II. GENERAL THEORY

The model we are interested in studying consists in three
separate elements: a quantum battery B, an external energy
supply E, and an ancillary quantum system A that acts as
mediator between the other two elements (see Fig. 1). Alter-
natively, one can interpret A as that part of a structured global
bath AE, which is directly interacting with B, E representing
instead the nonlocal degree of freedoms of the environment.
In our treatment we shall represent A and B as actual quantum
systems whose dynamics is determined by a Markovian mas-
ter equation (ME) which effectively accounts for the presence
of E. We thus describe the temporal evolution of the density
matrix ρAB(t ) of the AB system as (h̄ = 1 throughout this
paper):

ρ̇AB(t ) = −i[HA + HB, ρAB(t )] + λ(t )LAB(t )[ρAB(t )], (1)

where [. . . , . . . ] denotes the usual commutator. In Eq. (1),
the first term contains the free Hamiltonian of the system
composed by the local (time-independent) contributions of A
and B which, for sake of convenience, we shall assume to
have zero ground-state energy. The second term, instead, is
explicitly time dependent and refers to the AB interactions and
to the charging terms of the model induced by the coupling
between the external energy supply E and A. Here, λ(t )
is a dimensionless function equal to 1 for t ∈ [0, τ [ and 0
elsewhere, which we use for turning “on/off” such contri-
butions, τ representing the charging time of the protocol.
LAB(t ) is instead a Gorini-Kossakolski-Sudarshan-Lindblad
(GKSL) superoperator [32–34] that contains both coherent
and dissipative contributions. Explicitly, we write it as

LAB(t )[. . . ] ≡ −i
[
�HA(t ) + H

(1)
AB, . . .

] + D(T )
A [. . . ], (2)

where H
(1)
AB is the interaction Hamiltonian between the charger

and the battery, �HA(t ) is a local modulation of the energy of
A which is externally driven by classical fields that may inject
energy into the system, and finally D(T )

A is a purely dissipative
contribution that acts locally on A and which accounts for
the local thermalization of A induced by a bosonic bath at
temperature T (no direct dissipation being assumed for B). In
this scenario, we assume that for t < 0, when A and B do not
interact and are isolated from the rest, they are prepared in the
ground state of the local terms HA and HB, respectively, i.e.,

ρAB(t � 0) = |0〉 〈0|A ⊗ |0〉 〈0|B. (3)

At time t = 0, A is attached to the external supply E by
switching on the dissipator D(T )

A and (possibly) the modula-
tion �HA(t ), while A and B begin to interact with each other.
In the time window [0, τ [, part of the energy coming from the
outside, and going only to A at short timescales, flows to B
thanks to the nonzero internal coupling term H

(1)
AB, which we

assume to commute with the free Hamiltonian HA + HB:[
H

(1)
AB,HA + HB

] = 0. (4)

At the end of the charging process, namely, at time τ when
λ(t ) returns to zero, we isolate again the system and turn the
interaction between A and B off.

Figures of merit

Under the above conditions, we are interested in charac-
terizing how efficiently energy can be transferred into the
battery. For this purpose, we study the mean energy contained
in B at the end of the charging process and the corresponding
ergotropy [19], i.e., respectively, the quantities

EB(τ ) ≡ tr[HBρB(τ )], (5)

EB(τ ) ≡ EB(τ ) − min
UB

tr[HBUBρB(τ )U †
B], (6)

where ρB(τ ) ≡ trA[ρAB(τ )] is the reduced state of the battery
at time τ , and where minimization in Eq. (6) is performed
over all the unitaries UB acting locally on such system. The
first of these functions measures the total amount of energy
that has been transferred to B thanks to the mediation of the
charger A. The second, instead, provides us with the part of
EB(τ ) which can be turned into work while having access to
the battery alone, a reasonable scenario in many applications
where A and E are not available to a generic end user [10].
Indeed, it may happen that part of the mean energy of B
will be locked into correlations between such system and
the charging device, preventing one from accessing it via
local operations on the battery. The term we are subtracting
from EB(τ ) in right-hand side of Eq. (6) exactly targets such
contributions. It formally corresponds to the expectation value
E

(p)
B (τ ) ≡ tr[HBρ

(p)
B (τ )] of HB computed on the passive state

[19,35] ρ
(p)
B (τ ), obtained by properly reordering the spectrum

of ρB(τ ) and replacing the associated eigenvectors with those
of the system Hamiltonian (see Appendix A for details).

In what follows, we shall analyze the quantities EB(τ ) and
EB(τ ), their ratio

RB(τ ) ≡ EB(τ )/EB(τ ), (7)
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as well as their associated mean charging powers

PB(τ ) ≡ EB(τ )/τ, (8)

PB(τ ) ≡ EB(τ )/τ, (9)

for different choices of A and B systems and for different
energy-injection mechanisms. For all these models we shall
enforce resonant conditions of the local energies of A and B,
as well as for the driving term �HA(t ). This will allow us to
simplify the analysis by solving the ME in the time interval
[0, τ ] in the interaction picture representation where instead
of ρAB(t ) one focuses on its rotated version

ρ̃AB(t ) ≡ ei(HA+HB )t ρAB(t )e−i(HA+HB )t , (10)

for which Eq. (1) for t ∈ [0, τ [ reduces to

˙̃ρAB(t ) = LAB[ρ̃AB(t )]. (11)

Here, LAB is as in (2) but with �HA(t ) replaced by the
constant term �HA ≡ �HA(t = 0).

Most importantly, under the above conditions, both the
mean energy (5) and the ergotropy (6) of B will be then
directly computed on the reduced density matrix ρ̃B(τ ) =
trA[ρ̃AB(τ )] of ρ̃AB(τ ). Indeed, the latter differs from
ρB(τ ) by a unitary rotation induced by HB, i.e., ρ̃B(τ ) =
eiHBτ ρB(τ )e−iHBτ . Accordingly, we have tr[HBρ̃B(τ )] =
tr[HBρB(τ )] = EB(τ ) while, including eiHBτ into the mini-
mization over UB, we have

min
UB

tr[HBUBρ̃B(τ )U †
B] = min

UB

tr[HBUBρB(τ )U †
B],

which, via Eq. (6), ensures that ρ̃B(τ ) and ρB(τ ) possess the
same ergotropy value.

III. TWO-HARMONIC-OSCILLATOR MODEL

We begin by considering the case in which both the charger
A and the quantum battery B are described by resonant
harmonic oscillators assuming the following definitions for
the Hamiltonian contribution to Eq. (1):

HA = ω0a
†a, HB = ω0b

†b,

�HA(t ) = F (e−iω0t a† + eiω0t a), (12)

H
(1)
AB = g(ab† + a†b).

Here, a, b (respectively a†, b†) are the bosonic annihilation
(creation) operators of the A and B systems, respectively, ω0

is the fundamental frequency of the model, while g and F are
coupling constants gauging the AB coupling and the driving
field acting on A. Regarding the GKSL dissipator we take

D(T )
A ≡ γ [Nb(T ) + 1]D[a]

A + γNb(T )D[a†]
A , (13)

where the rate γ fixes the timescale of the dissipation process,

Nb(T ) ≡ 1

exp [ω0/(kBT )] − 1
(14)

is the mean number of bath quanta at frequency ω0, and,
given a generic operator xA acting on A, D[x]

A represents the
superoperator [18]

D[x]
A [. . . ] ≡ xA . . . x

†
A − 1

2 {x†
AxA, . . . }, (15)

with {. . . , . . . } the anticommutator symbol. With this choice,
the first term on the right-hand side of Eq. (13) describes
energy flow from the system into the environment with spon-
taneous and stimulated emission terms, whereas the second
one describes energy flow from the environment into the
system and, consistently, gives a finite contribution to the ME
only at nonzero temperatures.

The associated interaction-picture-representation ME (11)
in this case reads as

˙̃ρAB(t ) = −i[g(ab† + a†b) + F (a† + a), ρ̃AB(t )]

+ γ [Nb(T ) + 1]D[a]
A [ρ̃AB(t )] + γNb(T )D[a†]

A

× [ρ̃AB(t )], (16)

which admits explicit integration. In particular, since the
generator on the right-hand side of Eq. (16) is quadratic in the
field modes, the dynamics preserves the Gaussian character
[36] of the ground state (3), which in this case is the zero
Fock state of the A and B modes. Accordingly, a complete
characterization of ρ̃AB(t ) can be obtained by simply deter-
mining the first and second momenta of the field operators,
i.e., by solving the sets (17), (18), and (19) of coupled linear
differential equations. Specifically, using 〈x〉 ≡ tr[xρ̃AB(t )]
to indicate the expectation value of a generic operator x on
ρ̃AB(t ), for the first momenta we have

˙〈a〉 = −i(g〈b〉 + F ) − γ

2
〈a〉,

(17)
˙〈b〉 = −ig〈a〉,

while, for the second momenta, we have

˙〈ab†〉 = i[g(〈a†a〉 − 〈b†b〉) − F 〈b〉∗] − γ

2
〈ab†〉,

˙〈b†b〉 = 2g Im〈ab†〉, (18)

˙〈a†a〉 = −2 Im[g〈ab†〉 + F 〈a〉] − γ 〈a†a〉 + γNb(T )

and

˙〈a2〉 = −2i(g〈ab〉 + F 〈a〉) − γ 〈a2〉,
˙〈ab〉 = −i[g(〈a2〉 + 〈b2〉) + F 〈b〉] − γ

2
〈ab〉, (19)

˙〈b2〉 = −2ig〈ab〉.
The above differential equations, together with the initial
conditions associated with (3), i.e.,

〈a†a〉|t=0 = 〈b†b〉|t=0 = 〈a2〉|t=0 = 〈b2〉|t=0 = 0,

〈a〉|t=0 = 〈b〉|t=0 = 〈ab†〉|t=0 = 〈ab〉|t=0 = 0, (20)

are all we need to solve for the evaluation of the figures
of merit introduced in Sec. II A. In particular, EB(τ ) simply
corresponds to ω0〈b†b〉|t=τ while for the ergotropy we can use
the fact that ρ̃B(τ ) is Gaussian so that we can use the results
of Appendix A to express it as

EB(τ ) = ω0

(
〈b†b〉 −

√
D − 1

2

)∣∣∣∣
t=τ

(21)

with

D ≡ (1 + 2〈b†b〉 − 2|〈b〉|2)2 − 4|〈b2〉 − 〈b〉2|2. (22)
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Analysis

The model exhibits an effective decoupling between ther-
mal and coherent pumping, which is reflected by the fact that,
for assigned values of T and F , each of the functions 〈x〉
entering Eqs. (17)–(19) can be expressed as the sum of two
contributions,

〈x〉 = 〈x〉|F=0,T + 〈x〉|F,T =0, (23)

with 〈x〉|F=0,T describing the solution of the differential equa-
tions in the absence of the coherent driving terms (i.e., with
F = 0), and with 〈x〉|F,T =0 describing instead the solution of
the same equations with a thermal bath at zero temperature
(i.e., T = 0) (see Appendix B). As a consequence of (23), for
generic values of T and F we have

EB(τ )|F,T = EB(τ )|F=0,T + EB(τ )|F,T =0. (24)

An analogous simplification can also be observed for the
ergotropy EB(τ ). Indeed, notwithstanding the fact that such
quantity has a nonlinear dependence on the first and second
momenta of the fields operators [see Eqs. (21) and (22)], only
the contribution associated with the coherent driving at zero
temperature matters, i.e.,

EB(τ )|F,T = EB(τ )|F,T =0 = EB(τ )|F,T =0, ∀ T � 0

(25)

the ergotropy of the purely thermal driving case being always
null, i.e.,

EB(τ )|F=0,T = 0, ∀ T � 0. (26)

(Explicit proofs of the above expressions, as well as the
derivation of the same relations which can be established for
the local energy and ergotropy of the charger A, can be found
in Appendix B.)

Equations (24)–(26) represent an important simplification,
which allows us to address the functional dependence upon
T and F of EB(τ ) and EB(τ ) by studying separately their
effects on the battery model. This is a peculiarity of the two-
harmonic-oscillator model, which is not found in different
implementations where instead one witnesses a nontrivial
interplay between the coherent and thermal driving contribu-
tions (see following sections). In the present case, the above
identities imply that while nonzero values of T and F both add
to EB(τ ), only the F matters in the transferring of energy that
is useful for future extractions of work. [A nonzero bath tem-
perature can only decrease the ratio (7) but cannot deteriorate
the net value of the ergotropy associated with a given choice
of F .] Anticipating the analytic solutions we present in the
coming subsections, examples of these behaviors can be found
in Figs. 2 and 3, the first displaying the functional dependence
of EB(τ ) and EB(τ ) upon τ for various combinations of Nb(T )
and F , while the second presenting instead the ratio RB(τ ) for
two different bath temperatures, and in the asymptotic values

0 4π 8π 12π
gτ

0.5
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B
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ω

0

0 π 2π 3π
gτ

0.5

1

E
B
(τ

)/
ω

0
,E

B
(τ
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ω

0

FIG. 2. Local energy EB(τ ) and ergotropy EB(τ ) of the battery
B (both in units of ω0) as functions of gτ , for the two-harmonic-
oscillator model. (a) The black dashed-dotted, red dashed, and ma-
genta dotted curves represent EB(τ ) for Nb(T ) = 1 and F = 0.1ω0,
Nb(T ) = 1, and F = 0 (no coherent driving), and Nb(T ) = 0 and
F = 0.1ω0 (no thermal driving), respectively. The blue solid curve
represents the ergotropy EB(τ ) for Nb(T ) = 1 and F = 0.1ω0. Note
that this curve is superimposed to the magenta one: this is because,
as emphasized in Eq. (25), EB(τ )|F,T = EB(τ )|F,T =0. All numerical
results in (a) have been obtained by setting g = 0.2ω0 and γ =
0.05ω0 (underdamped regime). (b) Same as in (a) but for γ = ω0

(overdamped regime).

attained by EB(τ ), EB(τ ) in the τ → ∞ limit, i.e.,

EB(∞) = ω0Nb(T ) + ω0(F/g)2,

EB(∞) = ω0(F/g)2, (27)

whose associated ratio (7),

RB(∞) = F 2

g2Nb(T ) + F 2
, (28)

clearly exhibits a monotonic decreasing behavior with respect
to T .

1. Thermal energy supply regime (F = 0, T generic)

Let us consider first the case where no coherent driving
is present (i.e., F = 0) while A is in contact with a nonzero
temperature bath (i.e., T > 0). As anticipated in Eq. (25), this
regime represents a poor implementation of the charging of a
quantum battery as it results in a zero value for the ergotropy
EB(τ ). For what concerns the mean energy of B, setting

ε ≡
√

γ 2 − (4g)2, (29)
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FIG. 3. The ratio (7), which measures the fraction of energy
stored in the battery which can be extracted as work, as a func-
tion of gτ and for the two-harmonic-oscillator model. (a) Differ-
ent curves correspond to different values of the loss parameter γ .
Blue solid line: γ = 0.05ω0 (underdamped regime); γ = ω0 (over-
damped regime): red dashed line. The other parameters have been
set as follows: F = 0.2ω0, g = 0.2ω0, Nb(T ) = 0.2. (b) Same as in
(a) but for Nb(T ) = 1. RB decreases for increasing temperature.
In both panels, all curves approach the asymptotic value (28) for
τ � 1/g.

explicit integration of Eqs. (17)–(20) yields

EB(τ )|F=0,T = ω0Nb(T ){1 + (e− 1
2 γ τ /ε2)[16g2 − γ ε

× sinh(ετ/2) − γ 2 cosh(ετ/2)]}, (30)

to be compared with

EA(τ )|F=0,T = ω0Nb(T ){1 + (e− 1
2 γ τ /ε2)[16g2 + γ ε

× sinh(ετ/2) − γ 2 cosh(ετ/2)]}, (31)

which instead represents the mean local energy of the ancil-
lary system A at the end of the process. In the limit of large
τ , Eqs. (30) and (31) show convergency of EA(τ ) and EB(τ )
toward the same value ω0Nb(T ), in agreement with the (local)
thermalization of the two subsystems. The transient, however,
exhibits two distinct regimes: an oscillating underdamped
regime occurring for γ < 4g, and an overdamped regime for
γ � 4g characterized by a monotonic increment of EB(τ ),
which for large enough γ can be conveniently approximated
as EB(τ ) ≈ ω0Nb(T )(1 − e−4g2τ/γ ) [see Figs. 4(a) and 4(b)].

This feature has a profound impact on the timing of the
process: a numerical analysis reveals in fact that the charging
time of the battery [defined, e.g., as the first time at which
B reaches a given fraction of its asymptotic value ω0Nb(T )],
exhibits a nontrivial dependence upon the parameters γ and g

with optimal performances attained when they are close to the
critical point γ = 4g. A clear evidence of this phenomenon
can be found by looking at the maximum of the average
storing power (8),

P̃B ≡ max
τ

PB(τ ), (32)

which, as shown in Fig. 4(c), acquires its largest value just
below threshold. We anticipate that the same effect will be
observed in all the other implementations we discuss in the
remaining of this paper, at least when the coherent driving
is not present (i.e., F = 0). A possible explanation of the
arising of such fine-tuning condition between γ and g in the
optimization of the charging process can be found by noticing
that while the battery needs a finite loss coefficient to be
thermally excited, a too large value of the loss coefficient
will tend to freeze the state of A via an environment-mediated
quantum Zeno effect [18], preventing the latter to efficiently
transfer energy to B.

2. Coherent energy supply regime (T = 0, F generic)

Consider next the scenario where F �= 0 and the bath
temperature is zero, i.e., T = 0. From Eqs. (24) and (25), it
follows that this is the optimal setting in terms of our ability
of maximizing the fraction of energy stored in B, which is
available for work extraction at later times. Indeed, in this case
we have

EB(τ )|F,T =0 = EB(τ )|F,T =0, (33)

corresponding to the optimal value 1 for the ratio (7), the same
identity applying also for the energy that resides on A, i.e.,
EA(τ )|F,T =0 = EA(τ )|F,T =0 [see Eq. (B14)]. This result is a
consequence of the fact that in the T = 0 regime the system
AB remains in a factorized, pure coherent state at all times
[see Eq. (B11) of the Appendix]. Specifically, we have

ρ̃AB(τ ) = |α(τ )〉A 〈α(τ )| ⊗ |β(τ )〉B 〈β(τ )| , (34)

where, given ε as in Eq. (29), α(τ ) and β(τ ) are the following
coherent amplitudes:

α(τ ) = −i
4F

ε
e− γ τ

4 sinh(ετ/4), (35)

β(τ ) = −F

g

{
1 − e− γ τ

4

[
cosh(ετ/4) + γ

ε
sinh(ετ/4)

]}
.

The associated local mean energies are hence given by

EA(τ )|F,T =0 = ω0|α(τ )|2 = 16 ω0F
2

ε2
e− γ τ

2 sinh2(ετ/4)

(36)

and

EB(τ )|F,T =0 = ω0|β(τ )|2 = ω0F
2

g2

{
1 − e− γ τ

4

[
cosh(ετ/4) + γ

ε
sinh(ετ/4)

]}2

, (37)
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FIG. 4. (a) The local energy EA(τ ) of the ancilla A [in units of Nb(T )ω0] [Eq. (31)] as a function of gτ for the two-harmonic-oscillator
model. Different curves correspond to different values of the ratio γ /g. Red dashed line: γ /g = 1/2; green solid line: γ /g = 4; blue dashed-
dotted line: γ /g = 25. (b) Same as in (a) but for the energy EB(τ ) stored in the battery B [Eq. (30)]. (c) The maximum average storing power
P̃B [in units of gω0Nb(T )] [Eq. (32)] as a function of γ /g. All results in (a)–(c) have been obtained for the purely energy supply regime (i.e.,
F = 0).

which, thanks to Eqs. (33) and (B14), coincide with the
ergotropies EA(τ ) and EB(τ ) of the two systems. One may
observe that, for all nonzero values of the damping parameter
γ , in the limit τ → ∞ the energy of A nullifies testifying that
the ancilla asymptotically approaches its local ground-state
eigenstate, while the coherent amplitude of B reaches a finite
value β(∞) = −F/g. As this result is nonperturbative in g,
the energy stored in B in this regime can become very large,
resulting in

EB(∞)|F,T =0 = ω0(F/g)2 , (38)

with the charger A going back to the initial vacuum state after
a transient. (Notice that it is formally equivalent to directly
attaching the driving to the battery B and putting it in contact
with a zero-temperature thermal bath, with loss coefficient 2g

rather than γ .)
The way this asymptotic configuration is attained is not

influenced by the specific value of F which in Eqs. (35) and
(36) appears as a multiplicative factor and does not affect
the timescales (see Fig. 5). As discussed in Ref. [9], this
peculiarity stems from the nature of the spectrum at hand,
which is not upper bounded. What instead plays an important
role in the transient is once more the ratio between γ and g

which, as in the purely thermal energy supply scenario we
analyzed before, can again be used to identify underdamped
(γ < 4g) and overdamped (γ � 4g) regimes. Furthermore, as
evident from Fig. 5(a), it is clear that losses tend to reduce
the value of the maximum energy. The best configuration
is approached for γ → 0 where the energy dynamics of B
becomes periodic in τ , i.e., EB(τ ) = 4ω0F

2 sin4(gτ/2)/g2,
allowing the battery to reach an energy (and ergotropy) level
which can be up to four times larger than the asymptotic
value EB(∞), the smallest driving time τ ensuring this result
being π/g. Under the same condition, a numerical evaluation
shows that the associated energy storing power (8) exhibits
a maximum value P̃B equal to 0.33 × (4 ω0 F 2/g) for an
optimal charging time ∼2.78/g. This is rather different from
what we witnessed in the purely thermal setting where instead
the largest possible value of P̃B was attained for values of
γ close to the threshold point [see Fig. 4(c)]. A possible
reconciliation of this discrepancy can be found by noting
that in realistic models the quantities F and γ cannot be
treated as independent parameters. For instance, considering

a standard cavity-QED implementation of the model, from
the microscopic derivation of the Lindblad equation [18], it is
more correct to assume F � F0

√
γ , indicating that the more

the laser is able to pump energy in the system, the more the
system would be subject to losses, being it more strongly
coupled with the external world. In such case, the analogy
with the purely thermal setting is restored as it turns out that
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g τ
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4(a)

(b)

E
B
(τ

)/
(ω

0
F

2
/
g

2
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g τ
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FIG. 5. (a) EB(τ ) (in units of ω0F
2/g2) [Eq. (37)] as a function

of gτ for the two-harmonic-oscillator model. Different curves cor-
respond to different values of the loss parameter γ . Black dotted
line: γ = 0; red dashed line: γ = 0.1ω0; blue dashed-dotted line:
γ = 0.4ω0; black solid line: γ = 0.8ω0. Results have been obtained
by setting g = 0.2ω0. (b) Same as in (a) but for F = F0

√
γ . Different

curves correspond to different values of the loss parameter γ . Red
dashed line: γ = 0.1ω0; black solid line: γ = 0.8ω0; green dashed-
dotted line: γ = 2ω0; magenta dotted line: γ = 5ω0. We notice that
in this case γ needs to be tuned with g in order to get high power in
a short time. All results in this figure refer to the case of the purely
coherent energy supply regime, i.e. Nb(T ) = 0.
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one must tune γ with g to obtain the highest charging power
PB(τ ) in the shortest time [see Fig. 5(b)].

IV. TWO-QUBIT MODEL

In this section we consider the case in which both the
charger A and the quantum battery B are (resonant) two-level
systems. For this purpose, indicating with ω0 the level spacing
of A and B, we set the Hamiltonian terms entering the ME (1)
as

HA = ω0

2

(
σ z

A + 1
)
, HB = ω0

2

(
σ z

B + 1
)
,

�HA(t ) = F (e−iω0t σ+
A + eiω0t σ−

A ), (39)

H
(1)
AB = g(σ−

A σ+
B + σ+

A σ−
B ),

where for X = A, B, σx,y,z

X represent the Pauli matrices acting
on the system X, and where σ+

X = [σ−
X ]† = (σx

X + iσ
y

X )/2 is
the corresponding two-level raising operator.

In the above expressions, �HA(t ) describes an external
resonant driving field with amplitude F while H

(1)
AB is an ex-

change coupling term characterized by the coupling constant
g that commutes with the free component of the Hamiltonian.
Regarding the GKSL dissipator D(T )

A of (2), setting Nb(T ) as
in Eq. (14) and D[x]

A as in Eq. (13), we take

D(T )
A ≡ γ [Nb(T ) + 1]D[σ−]

A + γNb(T )D[σ+]
A , (40)

γ fixing once again the timescale of the dissipation process.
In the interaction-picture representation, the corresponding

ME (11) of the problem explicitly reads as

˙̃ρAB(t ) = −i[g(σ−
A σ+

B + σ+
A σ−

B ) + F (σ+
A + σ−

A ), ρ̃AB(t )]

+ γ [Nb(T ) + 1]D[σ−]
A [ρ̃AB(t )] + γNb(T )D[σ+]

A

× [ρ̃AB(t )], (41)

which admits analytical integration, e.g., representing the
operators in a given basis and obtaining a Cauchy problem for
a system of linear ordinary differential equations. Technical
details are reported in Appendix C while here we comment the
obtained solutions for the stored energy EB(τ ) and the asso-
ciated ergotropy EB(τ ). Regarding these quantities, it is worth

observing that, for the choice (39) of the local Hamiltonian
HB, Eqs. (5) and (6) yield

EB(τ ) = ω0

2
[1 + rz(τ )], (42)

EB(τ ) = ω0

2
[r (τ ) + rz(τ )], (43)

where r (τ ) ≡ |�r (τ )| and rz(τ ) represent, respectively, the
length and the z component of the Bloch vector �r (τ ) asso-
ciated with the density matrix ρ̃B(τ ) of B [see Eq. (A9) of
Appendix A for a derivation of this result].

Analysis

Since at low energy the two-harmonic-oscillator model
discussed in the previous section has similar spectral prop-
erties to those of the two-qubit setting, we expect the two
schemes to exhibit analogous performances in the low supply
limit, i.e., for F � g, γ and kBT � ω0. On the contrary, for
not negligible values of F or T , the effective nonlinearities
introduced by the finite dimensionality of the two-qubit model
we are considering here result in a more complex interplay
between the coherent and incoherent pumping mechanisms
than the one we discussed in Sec. III. Specifically, as will shall
see, while still one cannot achieve nonzero values of EB(τ )
in the absence of the external coherent driving (i.e., F = 0),
decoupling rules similar to the ones reported in Eqs. (25)
and (26) hold no longer for arbitrary values of the system
parameters. In particular, it turns out that, at variance with
the two-harmonic-oscillator model, the presence of a nonzero
temperature can strongly interfere with the ergotropy produc-
tion. Interestingly enough, while typically such interference
tends to reduce EB(τ ), there are special settings of the system
parameters for which one observes that a nonzero temperature
can indeed result in a larger value of the attainable ergotropy.
Evidences of such behaviors can be obtained by looking at the
values that EB(τ ) and EB(τ ) attain in the asymptotic τ → ∞
limit, which can be extrapolated from Eq. (41) by enforcing
the stationary condition ˙̃ρAB(t ) = 0. The resulting expressions
for arbitrary values of T and F in this case are given by

EB(∞)

ω0
= 1

2
− g2γ�(2g2 + �2)

32F 4(2g2 + γ 2) + 4F 2γ 2{24Nb(T )[Nb(T ) + 1]g2 + (2g2 + �2)} + 2g2�2(2g2 + �2)
, (44)

EB(∞)

ω0
= gγ (2g2 + �2)(

√
4γ 2F 2 + g2�2 − g�)

32F 4(2g2 + γ 2) + 4F 2γ 2{24Nb(T )[Nb(T ) + 1]g2 + (2g2 + �2)} + 2g2�2(2g2 + �2)
, (45)

where � is the renormalization of the loss coefficient γ by the
Bose occupation number Nb(T ) of the bath, i.e.,

� ≡ γ [2Nb(T ) + 1]. (46)

In Fig. 6 we display the functional dependence of the
functions (44) and (45) and of their ratio RB(∞) =
EB(∞)/EB(∞) in terms of Nb(T ) and F . As evident from
Figs. 6(a) and 6(b), when F is sufficiently large, EB(∞)
may indeed take advantage from an increase of the bath
temperature.

As anticipated, no ergotropy can be generated by only
having access to a purely thermal source. Indeed, for F = 0,
Eqs. (44) and (45) give

EB(∞)|F=0,T = ω0Nf (T ), (47)

EB(∞)|F=0,T = 0, (48)

where now

Nf (T ) ≡ 1

exp [ω0/(kBT )] + 1
(49)
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FIG. 6. (a) Two-dimensional color plot of EB(∞) (in units of ω0) [Eq. (45)] as a function of F (in units of ω0) and Nb(T ) for the two-qubit
model. Notice that EB(∞) reaches its maximum value (53) for Nb(T ) = 0 (zero temperature) and F � 1.09g. For large enough F we notice that
EB(∞) is not monotonically decreasing in Nb(T ). (b) EB(∞) (in units of ω0) as a function of Nb(T ). Different curves correspond to different
values of F . Magenta solid line: F = 0 [which yields EB(∞) = 0]; green dashed-dotted line: F = 0.05ω0; blue dashed line: F = 0.1ω0; red
dotted line: F = 0.5ω0. The nonmonotonic behavior as a function of Nb(T ) is clearly evident for F = 0.5ω0. (c) Same as in (a) but for the
asymptotic value EB(∞) of the energy stored in B [Eq. (44)]. (d) Same as in (a) and (c) but for the ratio RB(∞) [Eq. (7) in the τ → ∞ limit].
RB(∞) reaches its maximum value for Nb(T ) = 0 and in the F → 0 limit. All results in this figure have been obtained by setting g = 0.1ω0

and γ = ω0.

is the fermionic occupation number. In the opposite regime,
i.e., when the charging is purely coherent and the bath is at
temperature T = 0, Eqs. (44) and (45) yield

EB(∞)|F,T =0 = ω0
(γ 2 + 8F 2)F 2

16F 4 + γ 2(2F 2 + g2)
, (50)

EB(∞)|F,T =0 = ω0

2

gγ 2(
√

4F 2 + g2 − g)

16F 4 + γ 2(2F 2 + g2)
, (51)

which we plot in Fig. 7 together with their ratio (7):

RB(∞)|F,T =0 = gγ 2(
√

4F 2 + g2 − g)

2(γ 2 + 8F 2)F 2
. (52)

As simple analysis of Eq. (51) reveals that in the large loss
limit γ � F and when F and g are tuned so that F =√

(
√

2 + 1)/2g � 1.09g, the asymptotic ergotropy reaches its
maximum value

EB (∞)|F,T =0 =
√

2 − 1

2
ω0 ∼ 0.207ω0, (53)

which, incidentally, corresponds also to the absolute maxi-
mum of (45) for arbitrary T , as evident from Fig. 6(a). On the
contrary, a close inspection of Eq. (52) reveals that the ratio
achieves its absolute maximum value 1 in the small driving
constant/low energy supply limit (i.e., for F � g, γ ) for

which one gets EB(∞)|F,T =0 � EB(∞)|F,T =0 � ω0(F/g)2.
As anticipated at the beginning of this section, this exactly
reproduces the behavior (33) observed for the two-harmonic-
oscillator model at zero temperature.

Transients

We now analyze the performances of the model for finite
values of τ . Let us first consider the case where no driving
is at play (F = 0) while the temperature of the bath is fi-
nite [Nb(T ) > 0] which is the only case for which we can
present explicit analytical expressions. As for the case of the
two-harmonic-oscillator model [see Eq. (26)], it turns out
that the ergotropy of the battery is always null at all times,
i.e., EB(τ ) = 0, testifying that in the absence of the external
driving the density matrix ρ̃B(τ ) is passive. Regarding the
mean energy of B, by direct integration of the equation of
motion we find

EB(τ ) = ω0Nf (T ){1 + (e− 1
2 �τ /ε2)[�2−ε2 − �ε sinh(ετ/2)

−�2 cosh(ετ/2)]}, (54)

with � and Nf (T ) as in Eqs. (46) and (49), respectively, and
where

ε ≡
√

�2 − (4g)2. (55)
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FIG. 7. (a) EB(∞)/ω0 (red dashed line) [Eq. (51)] and
EB(∞)/ω0 (blue solid line) [Eq. (50)] as functions of 2F/g, for
the two-qubit model. Results in this panel have been obtained by
setting γ � F, g. (b) The ratio RB(∞) [Eq. (7) in the τ → ∞ limit]
is plotted as a function of 2F/g. Different curves correspond to
different values of γ . Blue solid line: γ � F, g; red dashed-dotted
line: γ /g = 5; magenta dashed line: γ /g = 1. Both panels refer to
the purely coherent energy supply regime, i.e., Nb(T ) = 0.

For comparison, we also report the value of the local mean
energy of A, which in the present case is given by

EA(τ ) = ω0Nf (T ){1+(e− 1
2 �τ /ε2)[�2 − ε2 + �ε sinh(ετ/2)

−�2 cosh(ετ/2)]}. (56)

One may notice that these expressions can be formally ob-
tained from Eqs. (30) and (31), which apply for the two-
harmonic-oscillator model in the purely thermal setting (i.e.,
F = 0), by replacing Nb(T ) → Nf (T ), 16g2 → �2 − ε2,
and γ → �. Accordingly, in this regime the energy charging
of the two-qubit model will closely resemble the one observed
in Fig. 4, with an overdamped and underdamped regime,
attained, respectively, for � � 4g and � < 4g, the main
difference being that now, because of Eq. (46), the critical
threshold depends explicitly upon the bath temperature T .

To study the finite-time behavior of EB(τ ) and EB(τ ) in the
case where F is nonzero, we resort to numerical calculations.
In particular, in Fig. 8 we present plots of these quantities for
T = 0 (no thermal supply) obtained for different values of F ,
g, and γ . In Fig. 9, instead, a study of EB(τ ) is presented
for fixed F and various values of Nb(T ). Again, oscillatory
behaviors can be observed which may lead to an increase of
EB(τ ) as a function of T .

We conclude this section by commenting about optimal
charging times [either for EB(τ ) or EB(τ )] which, for future
reference, we study in the limit of strong coherent driving

(F � g) and for weak dissipation γ � 0. In this limit, simple
analytical solutions can be found, which for the mean en-
ergy results in EB(τ ) = ω0 sin2(gτ/2), indicating an optimal
charging time π/g that is independent of F .

V. HYBRID MODEL

The last model we consider assumes A to be a harmonic os-
cillator and B a qubit whose energy gap matches the frequency
ω0 of A. Accordingly, the system Hamiltonian is taken to be

HA = ω0a
†a, HB = ω0

2

(
σ z

B + 1
)
,

�HA(t ) = F (e−iω0t a† + eiω0t a),

H
(1)
AB = g(a σ+

B + a† σ−
B ), (57)

while the dissipator D(T )
A is the same we used in Sec. III, i.e.,

it is provided by Eq. (13). Switching to the interaction-picture
representation, the resulting ME (11) is hence given by

˙̃ρAB(t ) = −i[g(a σ+
B + a† σ−

B ) + F (a† + a), ρ̃AB(t )]

+ γ [Nb(T ) + 1]D[a]
A [ρ̃AB(t )] + γNb(T )D[a†]

A

× [ρ̃AB(t )]. (58)

Being the system hybrid and infinite dimensional, the inte-
gration methods adopted in the previous two cases cannot
be applied as they will produce an infinite set of coupled
differential equations. Instead, we resort to the characteristic
function approach [36–39], which allows one to cast Eq. (58)
into a finite set of linear partial differential equations that
can be solved numerically. By choosing this approach, we
pass from infinite square matrices (density matrix formalism)
to four complex functions for describing the system’s state.
For this purpose, we decompose ρ̃AB(t ) into the basis of the
energy eigenstates {|0〉B, |1〉B}, of HB, i.e.,

ρ̃AB(t ) =
∑
ij

ρ̃
(ij )
A (t ) ⊗ |i〉B〈j | . (59)

Here, ρ̃
(ij )
A (t ) ≡ B〈i| ρ̃AB(t ) |j 〉B are operators of A which we

express as a convolution integral

ρ̃
(ij )
A (t ) =

∫
d2β

π
χij (β, t )D(−β ) (60)

over a complex variable β of the displacement operator
D(β ) ≡ exp (βa† − β∗a) and

χij (β, t ) ≡ trA
[
D(β )ρ̃ (ij )

A (t )
]
, (61)

where the latter quantity is the associated (symmetrically
ordered) characteristic χ function [37]. They inherit from
ρ̃AB(t ) the following constraints:

χ00(0, t ) + χ11(0, t ) = 1, (62)

χij (β, t ) = χ∗
ji (−β, t ), (63)

the first deriving from the normalization of ρ̃AB(t ), the second
from its self-adjointness. Furthermore, considering that B is a
qubit so that Eqs. (42) and (43) can be still exploited, Eq. (43)
allows us to express the quantity of interest in the following
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FIG. 8. (a) EB(τ ) (in units of ω0) as a function of gτ , for the two-qubit model. Different curves refer to different values of F (in units of
ω0). Blue dashed line: F = 0.05ω0; red solid line: F = 0.2ω0; black dashed-dotted line: F = ω0. (b) Same as in (a) but for EB(τ ). Numerical
results in (a) and (b) have been obtained by setting g = 0.2ω0 and γ = 0.05ω0. (c), (d) Same as in (a) and (b) but for γ = ω0. All results in
this figure refer to the purely coherent energy supply regime, i.e., Nb(T ) = 0.

compact form:

EB(τ ) = ω0χ11(0, τ ),

EB(τ ) = ω0

2
[
√

(χ11 − χ00)2 + 4|χ10|2 + χ11 − χ00]|β=0. (64)

Replacing Eq. (61) into (59) and exploiting the algebra of the harmonic oscillator, we can now recast the ME (58) into a set of
partial differential equations for χij (β, t ), i.e.,

χ̇ij = −igIij [ �χ] + 2iFxχij − γ [(Nb(T ) + 1
2 )(x2 + y2) + 1

2 (x∂x + y∂y )]χij , (65)

where x and y are the real and imaginary components of β = x + iy and Iij [ �χ] are differential terms describing the energy
exchange between the harmonic oscillator and the qubit:

I11[ �χ] = − 1
2 [(∂x − i∂y )χ10 + (∂x + i∂y )χ01 + (x − iy)χ10 + (x + iy)χ01],

I10[ �χ] = − 1
2 [(∂x + i∂y )(χ00 − χ11) + (x + iy)(χ11 + χ00)],

I01[ �χ] = 1
2 [(∂x − i∂y )(χ11 − χ00) − (x − iy)(χ11 + χ00)],

I00[ �χ] = 1
2 [(∂x − i∂y )χ10 + (∂x + i∂y )χ01 − ((x − iy)χ10 + (x + iy)χ01)].

[It is worth noticing that the set (65) embodies both the
constraints of Eqs. (62) and (63).]

Equations (65) have been solved numerically under the
usual initial conditions (3), which, casted into the χ -function
language, read as

χ00(β, 0) = e− |β|
2

2

,

χ11(β, 0) = χ10(β, 0) = χ01(β, 0) = 0. (66)

For the case where F = 0 (no coherent driving) our findings
are in agreement with the two previous cases. Specifically,
no ergotropy on B is generated, while, regarding EB(τ ),
for small values of γ /g an oscillating behavior is observed
which is then lost for large γ /g, the thermalization value
being EB(∞) = ω0Nf (T ) (data not shown). As we turn on
F , nonzero values of EB(τ ) are observed with an oscillatory
behavior that reminds us of the results of the previous section
(see Fig. 10). By numerical analysis we also study the optimal
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FIG. 9. EB (in units of ω0) as a function of gτ , for the two-qubit
model. Different curves refer to different values of Nb(T ). Red solid
line: Nb(T ) = 0; blue dashed line: Nb(T ) = 0.1; magenta dotted
line: Nb(T ) = 0.5; cyan dashed-dotted line: Nb(T ) = 1. Numerical
results in this plot have been obtained by setting g = F = ω0/5 and
γ = ω0. Notice that, in a finite range of values of gτ , the result for
Nb(T ) = 0.1 (blue dashed line) lies above the result for Nb(T ) = 0
(red solid line).

charging times (see Fig. 11) noticing that for the hybrid model
they appear to have a 1/Fα scaling, with α ∼ 0.5–1. This is
deeply different with respect to the two-qubit case for which
a finite charging time emerges in the same regime, and also
with respect to the case of two harmonic oscillators, where
the driving amplitude F does not enter in the timescales of
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FIG. 11. The timescale τ̄ (in units of 1/g) at which EB(τ )
reaches its maximum value (blue circles) is plotted as a function of
F/g. Red squares denote the same quantity but for the case of EB(τ ).
Both results refer to the hybrid model. Numerical results in this figure
have been obtained by setting g = 0.2ω0, γ = ω0, and refer to the
purely coherent energy supply regime, i.e., Nb(T ) = 0.

the charging process. This peculiarity is a consequence of the
structure of the Hilbert space of the hybrid system studied in
this section. Indeed, the quantum harmonic oscillator A can
host an arbitrarily large number of excitations coming from
the interaction with the coherent source, while the qubit (i.e.,
the battery B) has an upper bounded spectrum: hence, the
more energy is in the mediator, the lesser the charging time
of the qubit is.
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FIG. 10. (a) EB(τ ) (in units of ω0) as a function of gτ , for the hybrid model. Different curves refer to different values of F (in units of ω0).
Green solid line: F = 0.1ω0; red dashed line: F = 0.5ω0; blue dashed-dotted line: F = 1.5ω0. (b) Same as in (a) but for EB(τ ). Numerical
results in (a) and (b) have been obtained by setting g = 0.1ω0, γ = ω0, and Nb(T ) = 0. (c), (d) Same as in (a) and (b) but for Nb(T ) = 1.
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VI. SUMMARY AND CONCLUSIONS

In this paper we have studied charger-mediated energy
transfer for quantum batteries via an open-system approach.
Specifically, we have studied three models: one in which both
the charger A and the quantum battery B are described by
harmonic oscillators, described in Sec. III; one in which both
A and B are qubits, described in Sec. IV; and, finally, one
in which A is a harmonic oscillator and B is a qubit (see
Sec. V). In all cases, the charger A interacts with an external
energy supply E, and acts as mediator between E and B. At
the beginning of the charging protocol, both A and B are in
the ground state with zero energy, and energy is dynamically
injected into the system thanks to the presence of E, either
via the presence of a thermal bath at temperature T or via a
coherent driving field of amplitude F . Particular attention has
been devoted to the maximum extractable work from B, i.e.,
the so-called ergotropy.

Our main findings can be summarized as follows. (i) The
case of two harmonic oscillators is profoundly different from
the other two cases. Because of the linearity of the system,
in the case of two harmonic oscillators there is no interplay
between the coherent and incoherent energy supplies. In par-
ticular, in the coherent protocol (F > 0, T = 0), ergotropy
and energy coincide. This happens because A and B remain
uncorrelated during the system’s evolution. (ii) In the case of
the thermal protocol (F = 0, T > 0), the ergotropy is always
zero. This holds true for all models. (iii) In the case of two
qubits in the mixed regime (F > 0, T > 0) (while typically
nonzero temperature tends to reduce the ergotropy) there are
special settings for which finite temperature is beneficial for
the ergotropy. This is a consequence of the nonlinear character
of this model, which leads to a nontrivial interplay among
coherent and incoherent channels. (iv) In the hybrid model,
the time at which energy and ergotropy are maximal decreases
monotonically with the driving field F . This peculiarity stems
from the structure of the Hilbert space of the hybrid model and
can be compared with the energy dynamics derived in Ref. [9],
in a closed (i.e., Hamiltonian) setting.
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APPENDIX A: DETAILS ON THE ERGOTROPY
FUNCTIONAL

Let ρ be the density matrix of a system characterized by
a Hamiltonian H , which we present in terms of their spectral
decompositions:

ρ =
∑

n

rn|rn〉〈rn|, (A1)

H =
∑

n

en|en〉〈en|. (A2)

Here, {|rn〉}n and {|en〉}n represent the eigenvectors of ρ and
H , respectively, and r0 � r1 � · · · and ε0 � ε1 � · · · are the
associated eigenvalues, which have been properly ordered.

The passive counterpart of ρ is defined as the following
density matrix [19,35]:

ρ (p) ≡
∑

n

rn|en〉〈en|. (A3)

By construction, its mean energy is given by

E(p) ≡ tr[Hρ (p)] =
∑

n

rnεn, (A4)

and, as mentioned in Sec. II A, it corresponds to the last term
in the right-hand side of Eq. (6), i.e.,

E(p) = min
U

tr[HUρU †]. (A5)

Accordingly, the ergotropy E of the state ρ can be conve-
niently expressed as

E = E − E(p) = tr[H (ρ − ρ (p) )], (A6)

which makes it evident that zero values of E can be obtained
only for those density matrices which are passive, i.e., for
ρ = ρ (p). From the above construction it is also clear that
states differing by a unitary transformation V (e.g., ρ and
ρ ′ = VρV †) will have the same passive state. Accordingly,
we can write the ergotropy of ρ ′ as

E ′ = tr[H (ρ ′ − ρ (p) )] = E′ − E + E, (A7)

with E = tr[Hρ] and E′ = tr[Hρ ′] the mean energies of ρ

and ρ ′, respectively.
Exploiting the above identities, we can easily produce

closed-form expressions for the ergotropy of special cases.
Consider the case of a qubit with a Hamiltonian of the form
H = ω0(σ z + 1)/2 and density matrix

ρ = 1
2 (1 + �r · �σ ), (A8)

where 1 is the 2 × 2 identity and �σ ≡ (σx, σ y, σ z) and �r
are the Pauli and Bloch vectors, respectively. Then, simple
algebraic manipulations yield

E = ω0

2
(r + rz), (A9)

with r = |�r|. Equation (A9) can be written in terms of expec-
tation values of operators as

E = ω0

2
(
√

〈σz〉2 + 4〈σ+〉〈σ−〉 + 〈σz〉). (A10)

With reference to Sec. IV, this form shows that when the
energy is supplied only thermally, i.e., F = 0 and Nb(T ) > 0,
the ergotropy is null because 〈σz〉 < 0 and 〈σ+〉〈σ−〉 = 0 for
all the time evolution.

We now discuss the case of two harmonic oscillators
(see Sec. III). In this case, a closed-form expression for the
ergotropy can be derived by noticing that both the state of the
system AB and the reduced states of A and B are Gaussian for
all values of τ . Since we want to extract energy from B, from
now on we just concentrate on the reduced density matrix of
the quantum battery B. A Gaussian state ρG can be obtained
from a thermal state ρβ̄ ∝ exp(−β̄HB) of inverse temperature
β̄ by using the following identity [36]:

ρG = D†(α)S†(ξ )ρβ̄S(ξ )D(α), (A11)
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where D(α) = exp(αb† − α∗b) and S(ξ ) = exp[(ξ ∗b2 −
ξb† 2)/2] are displacement and squeezing operators, respec-
tively. Here, α and ξ are the displacement and squeezing
complex parameters [36] that identify the Gaussian state,
together with the real parameter β̄.

We now observe that the ME (16) involves at most
quadratic combinations of the operators a, b, a†, b†. This im-
plies that the resulting time evolution only maps Gaussian
states into other Gaussian states, ensuring that ρB(τ ) can
be written in the form (A11). Furthermore, noting that any
thermal state is passive, the ergotropy of a Gaussian state can
be written as the difference between the energy of ρG and the
energy of the thermal state ρβ̄ , which is connected to it via
displacement and squeezing [40]:

E[ρG] = ω0tr[b†bρG] − ω0tr[b†bρβ̄]. (A12)

Hence, in order to calculate the ergotropy of ρG we need to
determine the mean occupation number nβ̄ = tr[b†bρβ̄] of ρβ̄ .
We introduce the canonical variables of the joint system xA ≡
(a + a†)/

√
2, pA ≡ (a − a†)/(

√
2i), xB ≡ (b + b†)/

√
2,

pB ≡ (b − b†)/(
√

2i), the vector �r = (xA, pA, xB, pB)T ,
and the covariance matrix σlm ≡ tr[ρG{rl − 〈rl〉, rm − 〈rm〉}],
whose dynamics is determined by Eqs. (17)–(20), with
l, m ∈ {1, 2, 3, 4}. We also introduce �r (B) = (xB, pB)T and
the covariance matrix σB of B, which is nothing but the
bottom-right 2 × 2 block of the full covariance matrix σ .
Now, σB admits the following symplectic decomposition:

σB = [2Nb(T̄ ) + 1]S(ξ )ST (ξ ), (A13)

where S is the symplectic matrix representation of the squeez-
ing operator in Eq. (A11), ST is its transpose [36], T̄ =
1/(kBβ̄ ), and the function Nb(T ) has been introduced in
Eq. (14).

The matrix elements of S can be obtained from the identity
S(ξ )r (B)

l S†(ξ ) = ∑
m Slm(ξ )r (B)

m and satisfy the symplectic
group condition S�ST = �, with

�i,j = −i
[
r

(B)
i , r

(B)
j

] =
(

0 1

−1 0

)
. (A14)

By imposing the symplectic condition we find

det(σB) = [2Nb(T̄ ) + 1]2 (A15)

and the desired expression for the ergotropy of B:

EB = ω0

(
tr[b†bρG] −

√
det(σB) − 1

2

)
, (A16)

with ρG = ρB(τ ) being the state of B at a generic time τ .
Finally, employing the definition of �r (B) in terms of the

creation and annihilation operators b, b†, one can easily write
the determinant of det(σB) as in Eq. (22) of the main text.

APPENDIX B: ENERGY AND ERGOTROPY DECOUPLING
FOR THE TWO-OSCILLATOR MODEL

In this appendix we present an explicit proof of the decou-
pling described in Eq. (23), which, for ease of notation, we
rewrite here as

〈x〉 = 〈x〉th + 〈x〉co, (B1)

where we introduced the simplified symbols 〈x〉th ≡
〈x〉|F=0,T and 〈x〉co ≡ 〈x〉|F,T =0.

According to our definitions, the quantities 〈x〉th for all
operators x appearing in Eqs. (17)–(19) can be obtained by
solving these equations with F = 0, i.e.,

˙〈a〉th = −ig〈b〉th − γ

2
〈a〉th,

˙〈b〉th = −ig〈a〉th,

˙〈ab†〉th = i[g(〈a†a〉th − 〈b†b〉th )] − γ

2
〈ab†〉th,

˙〈b†b〉th = 2g Im〈ab†〉th, (B2)

˙〈a†a〉th = −2g Im〈ab†〉th − γ 〈a†a〉th + γNb(T ),

˙〈a2〉th = −2ig〈ab〉th − γ 〈a2〉th,

˙〈ab〉th = −ig(〈a2〉th + 〈b2〉th ) − γ

2
〈ab〉th,

˙〈b2〉th = −2ig〈ab〉th,

with the initial conditions

〈a〉th|t=0 = 〈b〉th|t=0 = 0,

〈a†a〉th|t=0 = 〈b†b〉th|t=0 = 〈ab†〉th|t=0 = 0, (B3)

〈a2〉th|t=0 = 〈b2〉th|t=0 = 〈ab〉th|t=0 = 0.

Equations (B2) and (B3) imply

〈a〉th = 〈b〉th = 0, (B4)

〈a2〉th = 〈b2〉th = 〈ab〉th = 0, (B5)

at all times t . Similarly, the functions 〈x〉co solve Eqs. (17)–
(19) with Nb(T ) = 0, i.e.,

˙〈a〉co = −i(g〈b〉co + F ) − γ

2
〈a〉co,

˙〈b〉co = −ig〈a〉co,

˙〈ab†〉co = i[g(〈a†a〉co − 〈b†b〉co)−F 〈b〉∗co]− γ

2
〈ab†〉co,

˙〈b†b〉co = 2g Im〈ab†〉co, (B6)

˙〈a†a〉co = −2 Im(g〈ab†〉co + F 〈a〉co) − γ 〈a†a〉co,

˙〈a2〉co = −2i(g〈ab〉co + F 〈a〉co) − γ 〈a2〉co,

˙〈ab〉co = −i[g(〈a2〉co + 〈b2〉co) + F 〈b〉co] − γ

2
〈ab〉co,

˙〈b2〉co = −2ig〈ab〉co,

with initial conditions

〈a〉co|t=0 = 〈b〉co|t=0 = 0,

〈a†a〉co|t=0 = 〈b†b〉co|t=0 = 〈ab†〉co|t=0 = 0, (B7)

〈a2〉co|t=0 = 〈b2〉co|t=0 = 〈ab〉co|t=0 = 0.

Equation (B1), or Eq. (23) in the main text, follows from
the simple observation that the functions 〈x〉th + 〈x〉co solve
Eqs. (17)–(19) and by using Eq. (B4).

We now demonstrate the decoupling identities (25) and
(26) for the ergotropy. The latter is simply a consequence of
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Eqs. (B4) and (B5), which, applied to Eq. (22), gives

D|F=0,T ≡ Dth = (1 + 2〈b†b〉th )2. (B8)

Therefore,

EB(τ )|F=0,T = ω0

(
〈b†b〉th −

√
Dth − 1

2

)∣∣∣∣
t=τ

= 0. (B9)

To prove Eq. (25), instead, we observe that Eqs. (B6) and
(B7) admit solutions for the second-order momenta which can
be written as products of those obtained for the first-order
momenta, i.e.,

〈xy〉co = 〈x〉co〈y〉co, (B10)

for all x, y ∈ {a, b, a†, b†}. Equation (B10) implies that, dur-
ing the time evolution, the state of the joint system AB is
described by a product state of the form

ρ̃AB(t ) = |α(t )〉A 〈α(t )| ⊗ |β(t )〉B 〈β(t )| , (B11)

with |α(t )〉A and |β(t )〉B coherent states of amplitudes α(t ) ≡
〈a〉co and β(t ) ≡ 〈b〉co, respectively. This result could have
been anticipated by noting that the ME for our model at T = 0
induces an evolution of the input vacuum state through the
combined action of a purely lossy channel and a displace-
ment operator [36]. Using Eq. (B10) together with (B1) and
Eqs. (B4) and (B5), it follows that the function (22) for generic
values of F and Nb(T ) can be expressed as

D = (1 + 2〈b†b〉th )2, (B12)

with no dependence from contributions associated with the
coherent driving. Accordingly, replacing (B12) into (21), we
conclude that

EB(τ )|F,T = ω0

(
〈b†b〉th + 〈b†b〉co −

√
D − 1

2

)∣∣∣∣
t=τ

= ω0〈b†b〉co = EB(τ )|F,T =0, (B13)

proving Eq. (25).
It is worth stressing that all the identities derived so far

also hold for the local energy EA(τ ) ≡ tr[HAρA(τ )] and the
ergotropy EA(τ ) ≡ EA(τ ) − E

(p)
A (τ ) of the ancillary system

A, i.e., explicitly

EA(τ )|F,T = EA(τ )|F=0,T + EA(τ )|F,T =0,

EA(τ )|F,T = EA(τ )|F,T =0, (B14)

EA(τ )|F=0,T = 0,

the first being just a trivial consequence of Eq. (B1) for x =
a†a, while the last two following from arguments similar to
those we have adopted in deriving Eqs. (26) and (B13).

APPENDIX C: SOLVING THE ME FOR
THE TWO-QUBIT MODEL

In order to solve Eq. (41) we expand all the operators
appearing in it by utilizing a global basis set for the two-qubit

system {||i〉〉}i∈{1,...,4}. We choose

||1〉〉 = |1〉A |1〉B , ||2〉〉 = |1〉A |0〉B ,

||3〉〉 = |0〉A |1〉B , ||4〉〉 = |0〉A |0〉B , (C1)
where |1〉A(B) and |0〉A(B) are the eigenvectors of the σ z

A(B) op-
erators with eigenvalues ±1. Accordingly, we write ρ̃AB(t ) =∑4

i,j=1 rij (t ) ||i〉〉 〈〈j || or, in matrix form,

ρ̃AB(t ) ≡

⎛
⎜⎜⎜⎝

r11(t ) r12(t ) r13(t ) r14(t )

r21(t ) r22(t ) r23(t ) r24(t )

r31(t ) r32(t ) r33(t ) r34(t )

r41(t ) r42(t ) r43(t ) r44(t )

⎞
⎟⎟⎟⎠, (C2)

rij (t ) being expansion coefficients. In this representation, the
ladder operators σ−

A , σ+
A of the subsystem A can instead be

written as

σ−
A ≡

(
0 0
1 0

)
, (C3)

σ+
A ≡

(
0 1
0 0

)
, (C4)

where 0 is the 2 × 2 matrix with all null entries. Finally, the
system Hamiltonian (up to an irrelevant additive constant) is
represented by

g(σ−
A σ+

B + σ+
A σ−

B ) + F (σ+
A + σ−

A ) ≡

⎛
⎜⎜⎜⎝

0 0 F 0

0 0 g F

F g 0 0

0 F 0 0

⎞
⎟⎟⎟⎠.

(C5)

With these choices, Eq. (41) translates into a first-order system
of ordinary differential equations in the 16 unknown functions
rij (t ), which has to be solved under the initial conditions (3)
corresponding to rij (0) = 1 for i = j = 4 and zero otherwise.

Explicit expressions for the local energies of A and B can
be obtained once the operators σ (A)

z and σ (B)
z are represented

in the basis (C1). It turns out that they take the following
forms:

EA(τ ) = ω0

2
[r11(τ ) + r22(τ ) − r33(τ ) − r44(τ ) + 1] (C6)

and

EB(τ ) = ω0

2
[r11(τ ) − r22(τ ) + r33(τ ) − r44(τ ) + 1]. (C7)

Finally, the ergotropy of B reads as follows:

EB(τ ) = ω0

2
{
√

4|r12 + r34|2 + [2(r11 + r33) − 1]2

+ 2(r11 + r33) − 1}. (C8)
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