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Metal-insulator transition in 8 − Pmmn borophene under normal incidence
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The energy spectrum for the problem of 8 − Pmmn borophene’s electronic carriers under normal incidence
of electromagnetic waves is studied without the use of any perturbative technique. This allows us to study the
effects of very strong fields. To obtain the spectrum and wave functions, the time-dependent Dirac equation is
solved by using a frame moving with the space-time cone of the wave, i.e., by transforming the equation into an
ordinary differential equation in terms of the wave phase, leading to an electron-wave quasiparticle. The limiting
case of strong fields is thus analyzed. The resulting eigenfunctions obey a generalized Mathieu equation, i.e., of a
classical parametric pendulum. The energy spectrum presents bands and a gap at the Fermi energy. The gaps are
due to the space-time diffraction of electrons in phase with the electromagnetic field, i.e., electrons in borophene
acquire an effective mass under strong electromagnetic radiation.
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I. INTRODUCTION

In recent times, Dirac materials have attracted intense
research interest after the most celebrated discovery of an
atomically two-dimensional (2D) hexagonal carbon allotrope,
graphene [1], owing to its peculiar band structure and appli-
cations in the next generation of nanoelectronics [2–4].

Following the seminal discovery of graphene, great efforts
have been paid to search for new Dirac materials which
can host massless Dirac fermions (MDF) [5,6], especially in
monolayer structures.

Recently, there has been intense research interest in the
synthesis of 2D crystalline boron structures, referred to as
borophenes. See as an example of the structure shown in
Fig. 1. Boron is a fascinating element due to its chemical
and structural complexity, and boron- based nanomaterials
of various dimensions have attracted a lot of attention [7].
For example, two-dimensional phases of boron with space
groups Pmmm and Pmmn and hosting MDF were theo-
retically predicted [8]. Several attempts have been made to
synthesize a stable structure of borophene, but only three
different quasi-2D structures of borophene have been syn-
thesized [9]. Various numerical experiments have predicted
a large number of borophene structures with various geome-
tries and symmetries [8,10]. The orthorhombic 8 − Pmmn

borophene is one of the energetically stable structures, having
ground-state energy lower that of the α-sheet structures and its
analogues. The Pmmn boron structures have two nonequiv-
alent sublattices. The coupling and buckling between two
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sublattices and vacancy give rise to energetic stability as well
as tilted anisotropic Dirac cones [11]. The coupling between
different sublattices enhances the strength of the boron-boron
bonds and hence gives rise to structural stability. The finite
thickness is required for energetic stability of 2D boron al-
lotropes. The orthorombic 8 − Pmmn borophene possesses
tilted anisotropic Dirac cones and is a zero-gap semiconduc-
tor. It can be thought of as topologically equivalent to the
distorted graphene.

A tight binding-model of 8 − Pmmn borophene has
been recently developed [12,13] and an effective low-energy
Hamiltonian in the vicinity of Dirac points was proposed
on symmetry consideration. Pseudomagnetic fields were also
predicted similar to those in strained graphene [4,14–17] and
its relationship with electronic [18,19] and optical conductiv-
ity [20,21].

In 8 − Pmmn borophene, the effective low-energy Hamil-
tonian was used to study the plasmon dispersion and screening
properties by calculating the density- density response func-
tion [22,23], the optical conductivity [24], Weiss oscillations
[25], and oblique Klein tunneling [26]. The fast-growing
experimental confirmation of various borophene monolayers
make 8 − Pmmn borophene promising. However, the calcu-
lated properties of electrons under electromagnetic fields are
all based on perturbative approaches. Yet, it is known that
in graphene, interesting nonlinear effects appear when strong
fields are applied [27–29].

In fact, a modern quantum optics approach requires the
electron + strong electromagnetic field system to be treated
as a whole [27,29]. Thus the light-induced renormalization
of the electronic properties of Dirac materials are the subject
of intense studies. As examples, we can cite the energy gap
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FIG. 1. Borophene lattice for the crystal phase with space group
8 − Pmmn.

opening in graphene [27], the renormalization of the electron
energy spectrum near the Dirac point of graphene by a strong
off-resonant electromagnetic field (dressing field), and its
dependence on the field polarization [29–31]. Such dressing
fields can serve as an effective tool to control valley properties
of the materials and be potentially exploited in optoelectronic
applications [27,29–31]. Other works considered the optical
response [32], transport in graphene-based p-n junctions [33],
and through-dressed edge states in graphene [34–36]. More
recently, interesting complex topological-phase diagrams pro-
duced by dressing fields in graphene have been found [37–40].

In this paper, we solve the problem of borophene’s elec-
tron behavior in the presence of a strong electromagnetic
plane wave. As a result, we are able to find the spectrum,
wave functions, and a dynamic gap opening. This is like
if electron in borophene acquires an effective mass under
electromagnetic radiation. It is important to remark that strain
affects the optoelectronics properties of 2D materials, such as
phosphorene [41] or graphene [4], and these effects can be
also studied by using the present methodology, as strain and
flexural waves can be considered as pseudoelectromagnetic
waves [15,42].

The paper is organized as follows. In Sec. II, we introduce
the low-energy effective Hamiltonian and obtain the Hill’s
equation that solves the problem of borophene’s electron
behavior under electromagnetic radiation without the need of
any approximation. Section III is devoted to solve the Math-
ieu’s equation with the strong electromagnetic field approxi-
mation or long wavelength and we obtain as the solution the
Mathieu cosine and Mathieu sine functions; besides, we study
the stability chart of the solutions. Finally, we summarize and
conclude in Sec. IV.

II. MODEL HAMILTONIAN

We start with the single-particle low-energy effective
model Hamiltonian of the tilted anisotropic Dirac cones as
[13]

Ĥ = �(vxP̂xσx + vyP̂yσy + vt P̂yσ0), (1)

FIG. 2. Plot of the energy dispersion E(k) as a function of k
[see Eq. (2)] in the region around a Dirac cone. Notice the tilted
anisotropy of the Dirac cone.

where the first two terms correspond to the kinetic energy
term and the last term described the tilted nature of Dirac
cones. The two Dirac points k = ±kD are described by the
valley index � = ±1. The three velocities along each coor-
dinate are given by {vx, vy, vt } = {0.86, 0.69, 0.32} in units
of vF = 106 m/s. The velocity vt arises due to the tilting
of the Dirac cones. Also, (σx, σy ) are the Pauli matrices and
σ0 is the identity matrix. P̂x, P̂y are the electron momentum
operators. The energy dispersion of the above Hamiltonian
can be readily obtained as [25]

E
�

λ,k = �h̄vtky + λh̄

√
v2

xk
2
x + v2

yk
2
y (2)

and

ψ
�

λ,k = �
eik·r
√

2

(
1

λei�

)
, (3)

where λ = ±1 is the band index, � = tan−1(vyky/vxkx ),
and the 2D momentum vector is given by k = (kx, ky ). The
energy dispersion for the K valley is shown in Fig. 2.

A. Inclusion of electromagnetic field

For borophene irradiated by a propagating electromagnetic
field perpendicular to the graphene plane, the Dirac Hamilto-
nian can be obtained by using the minimal coupling,

Ĥ =
(

vt�̂y vx�̂x − ivy�̂y

vx�̂x + ivy�̂y vt�̂y

)
, (4)

where �̂ = P̂ − (e/c)A and A is the vector potential of
the applied electromagnetic field, given by A = E0

�
cos(Gz −

�t )(cos(θ ), sin(θ )), where � is the frequency of the wave
and E0 is the amplitude of the electric field, taken as a
constant, and z is the height above the borophene’s plane.
The dynamics of charge carriers in graphene is governed by
a time-dependent Dirac equation:

Ĥ (x, y, t )�(x, y, t ) = ih̄
∂

∂t
�(x, y, t ), (5)
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where

�(x, y, t ) =
(

�A(x, y, t )
�B (x, y, t )

)
(6)

is a two-component spinor which give the electron’s wave
function on each borophene sublattice, denoted by A and B.
To find the eigenstates and eigenenergies we use instead Pauli
matrices and spinors. First, we write the equations of motion
for each component of the spinor:

ih̄
∂�A(x, y, t )

∂t
= (vx�̂x − ivy�̂y )�B (x, y, t )

+ vt�̂y�A(x, y, t ), (7)

ih̄
∂�B (x, y, t )

∂t
= (vx�̂x − ivy�̂y )�A(x, y, t )

+ vt�̂y�B (x, y, t ). (8)

The most important step in the solution of this problem is to
propose a solution of the form

�ρ (x, y, t ) = ei(k·r−Et/h̄)�ρ (φ), (9)

where we have defined the phase φ of the electromagnetic
wave as φ = Gz − �t , evaluated at z = 0, and �ρ (φ) is
a function to be determined for ρ = A,B. This ansatz is
equivalent to consider the problem in the space-time frame of
the moving wave. As detailed in the Appendix A, the system
of differential equations can be further rewritten in terms of
two new functions �A(φ) and �B (φ), defined by

�ρ (φ)=exp

{
− i

c
[(vt k̃y −vyẼ)φ−vt ξ̃ sin φ sin θ ]

}
�ρ (φ),

(10)

and obtain

d�A(φ)

dφ
= iC∗(φ)�B (φ), (11)

d�B (φ)

dφ
= iC(φ)�A(φ), (12)

where

C(φ) = [vx (k̃x − ξ̃ cos φ cos θ ) + ivy (k̃y − ξ̃ cos φ sin θ )]

c

(13)

and the other are adimensional variables, defined as Ẽ =
E/(h̄vyG), k̃ = k/G, ξ̃ = eEo/(ch̄G�). Finally, c = �/G

is the light velocity.
As explained in the Appendix A, Eqs. (11) and (12) can be

written as a single second-order ordinary differential equation.
In the resulting equation, we consider the transformation:

�A(φ) = e−i(β/2)χA(φ), (14)

�B (φ) = ei(β/2)χB (φ), (15)

where β = arctan((vy/vx ) tan θ ); besides, if we consider that

χ (φ) =
(

χA(φ)
χB (φ)

)
, (16)

we finally obtain that the χ (φ) functions follow a Hill’s
equation,

d2

dφ2
χ (φ) + F (φ)χ (φ) = 0, (17)

with F (φ) defined as

F (φ) =
(

1

h̄�

)2[
ζ 2 cos2 φ − 2ζ

�ν · �κ
|�ν| cos φ

]

+
( ε

h̄�

)2
− i

ζ

h̄�
σx sin φ, (18)

where ε = h̄
√

(vxkx )2 + (vyky )2, �κ = h̄(vxkx, vyky ),

ζ = (eE0/c�)
√

v2
x cos2 θ + v2

y sin2 θ , and

�ν = (vx cos θ, vy sin θ ).

III. SPECTRUM AND EIGENFUNCTIONS

The resulting Hill equation, given by expression Eq. (17),
is difficult to be solved analytically for all cases. Yet, the
most interesting case for the physics of the problem is the
limit of intense applied electric fields or long wavelengths
(E0/h̄�2 >> 300), since other limits can be tackled using
perturbative approaches.

For this particular case ζ/h̄� >> 1, and thus in Eq. (17),
we can neglect linear terms in ζ/h̄�. Also, in what follows
we take �ν · �κ = 0, which is basically an initial condition,
to simplify the equations, although the general case can be
solved in a similar way. The following equation is obtained
for χ (φ):

χ ′′(φ) +
{

ε2

(h̄�)2
+

(
ζ cos φ

h̄�

)2
}

χ (φ) = 0. (19)

Using the relation cos2(φ) = 1
2 (1 + cos(2φ)), we can write

χ ′′(φ) +
{( ε

h̄�

)2
+

(
ζ

h̄�

)2[1

2
(1 + cos(2φ))

]}
χ (φ) = 0,

(20)

and defining

q = −
(

ζ

2h̄�

)2

(21)

and

a =
( ε

h̄�

)2
− 2q. (22)

Thus, Eq. (19) is transformed into the following Mathieu
equation:

d2

dφ2
χ (φ) + [a − 2q cos(2φ)]χ (φ) = 0. (23)

As is well known, this Mathieu equation describes a paramet-
ric pendulum in which there is an interplay between two fre-
quencies; one is the fundamental of the pendulum, determined
by

√
a, and the other is the frequency of the cosine driving.

The parameter q measures the coupling between the natural
and driving frequencies leading to an interesting resonance
phase-diagram.
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FIG. 3. Stability chart as a function of the nondimensional pa-
rameters a and q for Mathieu solutions. The regions of stability
(gray domains) and instability (white domains) are divided by the
characteristic curves an(q ) and bn(q ) (dashed lines). This spectrum
is for the case of intense electric fields or long wavelengths. In this
case, there is a constraint due to Eq. (22). For fixed energies ε, this
condition is equivalent to draw a set of parallel lines as shown in
the figure, where ϒ = ε/h̄�. The line a = −2q, i.e., ϒ = 0, divides
the spectrum into two zones, the zone on the left side of this line is
strictly not allowed, while the values on the right side are allowed. A
simple analysis of this figure reveals bands separated by energy gaps.
The order of the gaps is indicated.

In our problem, the general solutions to the components χA

y χB are linear combinations of the Mathieu cosine C(a, q, φ)
and Mathieu sine S (a, q, φ) functions. Nevertheless, taking
into account that when the electromagnetic field is switched
out, the wave function � must reduce to a free-particle wave
function, we obtain that

�(x, y, t ) = N ei(k·r−Et/h̄−β/2) e
i
c [(vt k̃y−vyẼ)φ−vt ξ̃ sin φ sin θ]

× (C(a, q, φ) + iS (a, q, φ))

(
1

λei(β+�)

)
,

(24)

where β = tan−1 [(vy/vx ) tan θ ], � = tan−1 (vyky/vxkx ), N

is a normalization constant, and λ = ±1 denotes the conduc-
tion and valence bands, respectively.

As it is well documented [43], the stability of Mathieu
functions depends on the parameters a and q. In Fig. 3, the
white regions in the (a, q ) plane are those for which the
solutions are unstable and therefore, are not acceptable. On
the other hand, the gray regions are those for which the solu-

FIG. 4. Amplification of the energy spectrum for the case of
long wave length near of ϒ = 0, i.e., ε = 0. For a fixed field (E0 =
2 V/m), the figure shows two energy first-order gaps for θ = 0 and
θ = π/2, respectively, and two energy bands. We observe that the
gap size decrease while θ increase for 0 � θ � π/2.

tions are acceptable wave functions. The boundaries between
these regions are determined by the eigenvalues, an(q ) and
bn(q ), corresponding to the 2π - periodic Mathieu functions
of integer order, cen(q, φ) and sen(q, φ), respectively [43].
As a consequence of the Mathieu solutions mentioned above,
a band structure naturally emerges in our problem. However,
in the present case there is an extra constraint that relates a

and q due to Eq. (22). For fixed energies ε, this condition is
equivalent to drawing a set of parallel lines in Fig. 3. Since
ϒ2, where ϒ = (ε/h̄�), is always positive, in Fig. 3 we plot
the line a = −2q, which divides the spectrum into two zones.
Energies on the left side of this line are strictly not allowed,
while the values on the right side are allowed. States over
this line have ϒ = 0. Notice that for a fixed electric field
and an angle θ , q is constant. Using this method, a simple
analysis of Fig. 3 reveals bands separated by energy gaps. The
opening of these gaps is due to the space-time diffraction of
electrons in phase with the electromagnetic field, and effect
akin to the magnetoacoustic diffraction of electrons in phase
with acoustic waves [44,45]. One can think as if electrons in
borophene acquire an effective mass under electromagnetic
radiation, leading to a metal-insulator transition. This effect
also occurs in graphene [27,28,30].

Since this approach is for intense electric fields, let us
estimate the size of these gaps. For a typical microwave
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frequency � = 50 GHz with an intensity E0 = 2 V/m of the
electric field, in Appendix B we show that the first-order gap
size is 	 ≈ 0.024 × 10−3 eV for θ = 0.

IV. CONCLUSIONS

In conclusion, we have found an equation that describes the
interaction between carriers in borophene under electromag-
netic radiation. By solving this equation, we found the energy
spectrum for intense electric field (or long wavelength). The
main features of the spectra are that bands appear and are
separated by energy gaps; besides, the angle θ is important
for the gap size. Thus, there is a metal-insulator transition and
the conductivity can be controlled by applying an electromag-
netic wave. Furthermore, our analysis reveals that electrons
in borophene acquire an effective mass. This is due to the
diffraction of electrons in phase with the electromagnetic
wave, as happens in magnetoacoustic effects in metals [45].
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APPENDIX A

In this Appendix, we derive Eqs. (11), (12), and (17). We
start from Eqns. (7), (8), and (9), which are explicitly given by

d�A(φ)

dφ
= i

c
{[vt (k̃y − ξ̃ cos φ sin θ ) − vyẼ]�A(φ)

+ [vx (k̃x − ξ̃ cos φ cos θ ) − ivy (k̃y

− ξ̃ cos φ sin θ )]�B (φ)}, (A1)

d�B (φ)

dφ
= i

c
{[vt (k̃y − ξ̃ cos φ sin θ ) − vyẼ]�B (φ)

+ [vx (k̃x − ξ̃ cos φ cos θ )

+ ivy (k̃y − ξ̃ cos φ sin θ )]�A(φ)}, (A2)

where Ẽ = E
h̄vyG

, k̃ = 1
G

k, ξ̃ = eEo

ch̄G�
and c = �

G
. Now, we

propose to use the following transformation:

�ρ (φ) = exp {− i

c
[(vt k̃y − vyẼ)φ − vt ξ̃ sin φ sin θ ]}�ρ (φ).

(A3)

Then, we reduce the Eqs. (A1) and (A2) to the following
form:

d�A(φ)

dφ
= iC∗(φ)�B (φ), (A4)

d�B (φ)

dφ
= iC(φ)�A(φ), (A5)

where C(φ) = [vx (k̃x − ξ̃ cos φ cos θ ) + ivy (k̃y − ξ̃ cos φ

sin θ )]/c.

From Eqs. (A4) and (A5) we can obtain the following
equations:

d2�A(φ)

dφ2
− 1

C∗(φ)

dC∗(φ)

dφ

d�A(φ)

dφ
+ |C(φ)|2�A(φ) = 0,

(A6)

d2�B (φ)

dφ2
− 1

C(φ)

dC(φ)

dφ

d�B (φ)

dφ
+ |C(φ)|2�B (φ) = 0.

(A7)

Inserting Eq. (A4) into Eq. (A6), and Eq. (A5) into
Eq. (A7), we obtain that

d2�A(φ)

dφ2
− i

dC∗(φ)

dφ
�B (φ) + |C(φ)|2�A(φ) = 0, (A8)

d2�B (φ)

dφ2
− i

dC(φ)

dφ
�A(φ) + |C(φ)|2�B (φ) = 0. (A9)

And

dC(φ)

dφ
= ξ̃ sin φ[(vx/c) cos θ+i(vy/c) sin θ ]=
ξ̃ sin φeiβ,

where 
 = (1/c)
√

v2
x cos2 θ + v2

y sin2 θ and β =
arctan((vy/vx ) tan θ ).

We consider the transformation:

�A(φ) = e−i(β/2)χA(φ), (A10)

�B (φ) = ei(β/2)χB (φ). (A11)

Besides, if we consider that

χ (φ) =
(

χA(φ)
χB (φ)

)
, (A12)

then, we can reduce Eqs. (A8) and (A9) to the following
equation:

d2

dφ2
χ (φ) + [|C(φ)|2 − i(
ξ̃ )σx sin φ]χ (φ) = 0. (A13)

Now, observe that


ξ̃ = 1

h̄�
ζ, (A14)

where ζ = (eE0/c�)
√

v2
x cos2 θ + v2

y sin2 θ , also

|C(φ)|2 =
(

1

h̄�

)2[
ε2 + ζ 2 cos2 φ − 2ζ

�ν · �κ
|�ν| cos φ

]
, (A15)

where ε = h̄
√

(vxkx )2 + (vyky )2, �ν = (vx cos θ, vy sin θ ) and
�κ = h̄(vxkx, vyky ). Therefore, Eq. (A13) can be written as

d2

dφ2
χ (φ) + F (φ)χ (φ) = 0, (A16)
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with F (φ) defined as

F (φ) =
(

1

h̄�

)2[
ζ 2 cos2 φ − 2ζ

�ν · �κ
|�ν| cos φ

]

+
( ε

h̄�

)2
− i

ζ

h̄�
σx sin φ. (A17)

Remark: If we define vF = vx = vy, vt = 0, θ = 0, then
Eq. (A16) is reduced to the case of graphene as
expected [28].

APPENDIX B

Let us estimate the gap size for a microwave of frequency
� = 50 GHz with an intensity E0 = 2 V/m of the electric

field. First, we calculate the value of q, given by

q(θ ) = −
[√

(v2
x cos θ )2 + (vy sin θ )2

2h̄�

(
eE0

c�

)]2

. (B1)

Thus, for θ = 0, we have

q(0) = −0.2754, (B2)

and for θ = π/2, we obtain

q(π/2) = −0.1773. (B3)

Thus, the gap of nth order is given by

	n(θ ) = h̄�
√

|bn(q ) − an(q )|. (B4)

Finally, we evaluate bn(q ) and an(q ) for the first-order gap:

	1(0) ≈ 0.0243×10−3eV, 	1(π/2) ≈ 0.0195×10−3eV.

(B5)
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