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Non-Born effects in scattering of electrons in a conducting tube
with a low concentration of impurities
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Quasi-one-dimensional systems demonstrate Van Hove singularities in the density of states νF and the
resistivity ρ, occurring when the Fermi level E crosses a bottom EN of some subband of transverse quantization.
We demonstrate that the character of smearing of the singularities crucially depends on the concentration of
impurities. There is a crossover concentration nc ∝ |λ|, λ � 1 being the dimensionless amplitude of scattering.
For n � nc, the singularities are simply rounded at ε ≡ E − EN ∼ τ−1—the Born scattering rate. For n � nc,
the single-impurity non-Born effects in scattering become essential despite λ � 1. The peak of the resistivity is
asymmetrically split in a Fano-resonance manner (however, with a more complex structure). Namely, for ε > 0,
there is a broad maximum at ε ∝ λ2, while for ε < 0, there is a deep minimum at |ε| ∝ n2 � λ2. The behavior
of ρ below the minimum depends on the sign of λ. In case of repulsion, ρ monotonically grows with |ε| and
saturates for |ε| � λ2. In case of attraction, ρ has a sharp maximum at |ε| ∝ λ2. The latter feature is due to
resonant scattering at quasistationary bound states that inevitably arise just below the bottom of each subband
for any attracting impurity.
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I. INTRODUCTION

In this study, we consider clean multichannel quasi-one-
dimensional metallic systems: wires, tubes, strips, etc. We
revisit the seemingly well-understood problem of semiclas-
sical (i.e., without localization effects) resistivity for such
systems in the presence of weak short-range impurities at low
concentration. It is well known that this resistivity (as well as
the density of states at the Fermi level) has a square-root Van
Hove singularity as a function of the Fermi level position E,
occurring when E crosses a bottom EN of certain subband of
transverse quantization [1]. These singularities are expected
to be smeared due to scattering of electrons by impurities and
(at least in the Born approximation) the width of the peak
�B ∼ τ−1

min can be estimated as an electronic scattering rate at
the maximum of resistivity. This smearing was theoretically
studied within the self-consistent Born approximation by dif-
ferent groups of authors [2–8].

We demonstrate that the above picture is valid only if the
concentration of impurities is relatively high while for low
concentration due to specifics of the quasi-one-dimensional
systems the non-Born effects become essential despite the
nominal weakness of scattering. These effects lead to dramatic
restructuring of the Van Hove singularities.
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Complex asymmetric features were experimentally ob-
served in many quasi-one-dimensional systems, such as nan-
otubes (both single-wall [9,10] and multiwall [11,12] ones).
These features were attributed to a Fano resonance [13],
arising due to the interference of the scattering at some
narrow resonant state with the scattering at the background
continuum. The E dependence of resistivity ρ at the Fano
resonance is usually described by the formula

ρ(E) ∝ (E − EN + q�/2)2

(E − EN )2 + (�/2)2
(1)

with phenomenological parameters q and � (see, e.g.,
Ref. [14]). There were attempts [9–11] to fit the experimental
data on the Van Hove singularities in nanotubes with the
formula (1) with an appropriate choice of � and q. We will
show, however, that this phenomenological expression is not
sufficient to describe the entire zoo of possible ρ(E) shapes.
In this paper, we will give a microscopic derivation of the
actual ρ(E) dependence. The main ingredient of our theory
are the non-Born effects in scattering.

A. Statement of the problem

In this paper, we restrict our consideration to only one
simple realization of quasi-one-dimensional system: a single-
wall metallic tube in a strong longitudinal magnetic field. The
zero (or weak) field case is more difficult for theoretical study
because of the chiral degeneracy of the electronic states,
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which is only lifted due to an interaction with an impu-
rity. Other quasi-one-dimensional variants, such as a con-
ducting strip, involve some additional complications due to
the nonequivalence of positions of different impurities with
respect to the nodes of the electronic wave function. All
these effects are quite interesting and they will be discussed
elsewhere.

Besides the simplicity of the theoretical interpretation, the
case of strong magnetic field is practically convenient since
the changing of magnetic field is an effective instrument for
tuning the energy distance E − EN , so it is easy to sweep the
Van Hove singularity in a controllable way.

Oscillations of the longitudinal resistivity with the mag-
netic flux � threading the tube is a well known effect that
was experimentally observed in various tubes and wires (espe-
cially semimetallic) [15–17]. These oscillations are the direct
manifestation of the Aharonov-Bohm effect [18]—the inter-
ference of electronic waves with opposite chiralities. From
the semiclassical point of view, it is instructive to write the
resistivity ρ in the form of Fourier series:

ρ = ρ0

(
1 +

∞∑
n=1

An cos(πn�/�0)

)
, (2)

where �0 = πch̄/e = ch/2e is the flux quantum. The oscil-
lations can be observed in both dirty and clean systems. As
it was shown in a seminal paper by Altshuler, Aronov, and
Spivak [19], in dirty (diffusive) systems, the odd-n harmon-
ics of the Aharonov-Bohm oscillations (2) are washed out
due to strong variations in the length of different diffusive
trajectories that lead to a randomization of the nonmagnetic
part of the phases of the electronic wave functions. The
even-n harmonics—the oscillations associated with a special
sort of trajectories (the ones containing closed topologically
nontrivial loops on the cylinder) survive the randomization.
This effect was observed in experiments (see Refs. [20,21]).
The odd-n harmonics are in general very fragile: they may be
suppressed also in nominally clean systems [17] due to the
fluctuations of the tube’s parameters, e.g., the radius [22]. The
even-n harmonics are less fragile but still, in the presence of
any kind of disorder, the amplitudes An rapidly decrease with
n so that the oscillations in the imperfect systems usually look
roughly harmonic.

It is not the case for the geometrically perfect clean systems
where An decrease with n only as n−1/2 so that the series
diverges at � → 2M�0 with integer M . This divergency is
nothing else but the Van Hove singularity (see, e.g., Ref. [22]).
So, the shape of oscillations is very different for perfect and
for imperfect systems (see Fig. 1).

In this work we concentrate on geometrically perfect tubes
with low concentration of weak short-range impurities, where
one can expect strongly unharmonic oscillations dominated
by the Van Hove singularities as in the upper panel of Fig. 1.
Thus, we consider a single-wall tube of radius R threaded
by magnetic flux �. The tube is supposed to be cut from
a sheet of a two-dimensional metal with a simple quadratic
spectrum [23] of electrons E = h̄2k2/2m∗. Impurities are em-
bedded in this sheet with the two-dimensional concentration
n2. They are supposed to be short-range and weakly scattering
ones.

FIG. 1. ρ(�) dependence for clean and dirty cases. (Top) Clean
case, ρ(�) is periodic with a period 2�0 and Van Hove square root
singularities are present for � = 2n�0. (Bottom) Dirty case, ρ(�) is
periodic with a period �0—odd harmonics are suppressed.

B. Principal approximations

It is convenient to measure all the energies in the units
of E0 = h̄2/2m∗R2 and we will assume the semiclassical
condition throughout this paper:

ε0 � 1, ε0 ≡ E/E0, Nch ≈ 2ε
1/2
0 � 1, (3)

where Nch is the number of open channels in the system. It
is related to the label N of a subband whose bottom is the
closest to the Fermi level: Nch ∼ 2|N |. Note that N can be
either positive or negative, its explicit definition is given in
Sec. III [see Eq. (47)].

The magnetic field is assumed to be strong enough so that
the splitting between EN and E−N is larger than the width
of the peaks �. Besides that, the parameter 2

√
ε0 should not

be close to any integer K to avoid resonance between the
subbands with m = N and m′ = N ± 2

√
ε0.

All the interesting effects associated with the Van Hove
singularities occur in the range where

|ε| � 1, ε ≡ (E − EN )/E0. (4)

Besides the semiclassical parameter Nch � 1, there are two
additional dimensionless small parameters in this problem.
(i) The dimensionless concentration of impurities:

n ≡ n2(2πR)2, n � 1. (5)

It is assumed to be small which in particular means that
the average distance between impurities is larger than the
transverse size of the system.
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(ii) The dimensionless scattering amplitude

�2d = λ − iλ2 (6)

of the background two-dimensional problem (λ > 0 corre-
sponds to repulsion, λ < 0 to attraction). It is also supposed
to be small:

|λ| � 1. (7)

The imaginary part of complex �2d in (6) is necessary to
fulfill the unitarity requirement [24] (the optical theorem):

Im �2d = −|�2d |2. (8)

Actually, we will need this imaginary part only for proper
treatment of quasistationary states arising in the case of at-
tracting λ < 0. In all other cases, we can simply put �2d → λ.

There is also a condition imposed on the length L of the
tube: it should satisfy the inequality

l(ε) � L � Lloc(ε), (9)

where l(ε) is the mean free path and Lloc ∼ Nchl(ε) is the
localization length. The large parameter Nch � 1 assures at
least the possibility for inequality (9) to be fulfilled.

Indeed, it is very well known that weak localization effects
in quasi-one-dimensional systems lead (in the absence of
inelastic processes) to an ultimate localization of all electronic
states. However, for the tubes with lengths L in the range (9),
the localization corrections are still small so that the results
obtained throughout this paper are well justified and should
give a valid expression for the resistivity ρ(ε). Moreover,
these results provide a possibility to estimate the dependence
of the localization length on the parameter ε:

Lloc(ε) = [e2ρ(ε)]−1. (10)

C. The structure of the paper

The structure of the paper is as follows. In Sec. II, we
bring together all the principal results of the paper. In Sec. III,
we briefly remind the well-known facts about the quantum
mechanics of an electron on a tube threaded by a magnetic
field. In Sec. IV, we discuss the scattering of electrons near
the Van Hove singularity within the Born approximation. In
Sec. V, we discuss the non-Born effects for scattering of elec-
trons in the cylinder geometry and derive the corresponding
renormalization of the scattering amplitude. In the case of an
attracting potential, we find the poles in the scattering matrix
that are related to quasistationary states under the bottom of
each subband. In Sec. VI, we consider the manifestations
of the non-Born effects in resistivity in the single-impurity
approximation. In particular we demonstrate that in this ap-
proximation the resistivity vanishes exactly at the Van Hove
singularity. In Sec. VII, we estimate the effects of interference
between scattering events at different impurities, resolve the
zero-resistivity paradox of the preceding section, and estimate
the minimal resistivity. In Sec. VIII, we discuss the inhomoge-
neous broadening of the peaks in the resistivity that arise due
to resonant scattering at quasistationary states. In Sec. IX, we
explore the effects that should arise if impurities with different
effective scattering amplitudes are present in the system. In
Sec. X, we summarize the results and outline the directions

of future research. In Appendices A and B, we evaluate the
behavior of the system in the immediate vicinity of the Van
Hove singularity (where the single-impurity approximation
breaks down) using the self-consistent approximation and
explain the effect of a “catastrophic drop” (almost a jump!)
of resistivity just below the smeared singularity.

II. THE PRINCIPAL RESULTS

The number of physical scenarios and distinct ranges of
parameters considered in this paper is large. Therefore we
find it reasonable to start with the list of different regimes and
principal results.

A. The Born approximation

Away from the Van Hove singularities (at |ε| � 1), the
applicability of the Born approximation requires only the con-
dition (7). Here, the system behaves simply as a classic piece
of the background two-dimensional material. The density of
states, the resistivity, and the scattering rate (the latter is being
measured in units of E0) are

ν0 = m∗R, ρ0 = 1

e2ε0

1

τ0
,

1

τ0
= 2n

(
λ

π

)2

. (11)

In all cases, the main contribution to the current comes
from the one-dimensional subbands with labels m that are not
very close to N because for m ≈ N , the longitudinal velocity
of electrons with energy E tends to zero. However, the role
of the N th band becomes very important near the singularity
when E → EN . Indeed, when the total density of states,

ν(ε) = ν0

(
1 + θ (ε)

π
√

ε

)
, (12)

is dominated by the second term (the contribution of the
resonant N th band), the electrons from the current-carrying
bands (those with labels m ∼ N/2) are scattered predomi-
nantly to the resonant one (with m = N ). Near the singularity,
the properties of electrons in the resonant band differ from the
properties of all others. For a general quasi-one-dimensional
system, there are, in principle, two distinct scattering ampli-
tudes and corresponding rates: λ1 and τ−1

1 (ε) describe the
scattering from the current-carrying bands to the resonant
one while λ2 and τ−1

2 (ε) correspond to scattering within the
resonant band. The rate τ−1

1 (ε) directly determines the mean
free path and the resistivity

ρ(ε) = 1

e2ε0

1

τ1(ε)
= 1

e2Nchl(ε)
, l(ε) = Nchτ1(ε), (13)

where we have used the obvious relations l ∼ vF τ and vF ∼
E1/2 ∼ Nch. The rate τ−1

2 (ε) is responsible for smearing of
the singularity in the density of states and is relevant only
in the immediate vicinity of the singularity. However, we
demonstrate in Sec. IV that for the case of a tube

τ2(ε) = τ1(ε) ≡ τ. (14)

We will show that close to the singularity the Born approxi-
mation remains valid only if the dimensionless concentration
n of impurities is relatively high.
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Let us first assume that this condition is fulfilled and
estimate the width of the smeared Van Hove singularity. The
scattering rate is proportional to the density of final states so
that

1

τ1(ε)
= 1

τ0

ν(ε)

ν0
. (15)

The width �B of the peak in the density of states (and in
the resistivity at the same time) may be estimated from the
condition

τ−1
1 (ε ∼ �B) ∼ �B. (16)

As a result, the Van Hove singularity is smeared on the scale
|ε| ∼ �B,

�B ∼
(

n

π

)2/3(
λ

π

)4/3

� 1

τ0
, (17)

ρmax
B ∼ 1

e2ε0

( n

π

)2/3
(

λ

π

)4/3

� ρ0. (18)

B. The origin of non-Born effects

The origin of the special importance of non-Born effects
in quasi-one-dimensional systems is the renormalization of
the scattering matrix, which is dramatically enhanced near a
Van Hove singularity. In the case of tube, this matrix can be
effectively reduced to a single complex constant �(ε) that can
be found from the Dyson equation. As a result,

λ → �(ε) ≈ λ

{
1 − �2d

π
√

ε

}−1

. (19)

From (19) it is clear that the energy scale

εnB = (λ/π )2 � 1 (20)

measures the range near the singularity where the non-Born
effects are considerable. In particular, we see that if, due to
low concentration of impurities, the Born scattering rate is low
enough,

�B < εnB, (21)

then the non-Born effects have a chance to come into play
in the range � < |ε| < εnB. Substituting the explicit formulas
(17) and (20) to the condition (21), we arrive at the criterion

n < nc, nc = |λ|/π (22)

of the breakdown of the Born approximation in the vicinity
of the singularity. Under the opposite condition, the Born
approximation is sufficient for all ε.

It is convenient to rewrite (19) in the form

λ → �(ε) ≈ λ

1 − [sign(λ) − i|λ|](−ε/εnB)−1/2
. (23)

C. The non-Born effects in resistivity: repulsing impurities

At low concentration of impurities, n � nc, the shape of
the ρ(ε) dependence in the vicinity of Van Hove singularities
is strongly modified by non-Born effects in scattering. A
narrow peak at ε = 0 is replaced by a broad one slightly above
the bottom—with the maximum at ε ∼ εnB and the width

FIG. 2. Dependence of the resistivity on the position of the Fermi
level for repulsing impurities in the case of low concentration of im-
purities n � nc (strongly non-Born regime). Note that ρ(ε) vanishes
as ε → 0: it is an artefact of the single-impurity approximation that
is not applicable in the narrow vicinity of ε = 0: for ε � εmin � 1.
The horizontal asymptote (dashed line) corresponds to ρ = ρ0.

�
(+)
nB ∼ εnB, independent of the concentration n. The shape of

this broad peak can be found explicitly:

1

τ (ε)
= 2
( n

π

)( λ

π

)
F (ε), ε ≡ ε/εnB, (24)

F (ε) = (ε1/2 + ε−1/2)−1. (25)

The maximal (in the range ε > 0) resistivity,

ρ
max(+)
nB ∼ 2

e2ε0

( n

π

)( λ

π

)
Fmax � ρmax

B , (26)

is reached at ε = εmax, where

Fmax = 1/2, εmax = 1. (27)

The function F (ε) is shown in Fig. 2. At ε � 1, it has
asymptotics F (ε) ≈ ε−1/2 that corresponds to the standard
Van Hove singularity. The height of the broad peak is much
less than it would be within the Born approximation but still
is much higher than the background resistivity ρ0.

The behavior of the resistivity above the Van Hove singu-
larity (for ε > 0), described by (24), does not depend on the
sign of λ, it is the same for attracting and repulsing impurities.
It is not the case for the range ε < 0 below the singularity. For
repulsing impurities we obtain

1

τ (ε)
= 2π

( n

π

)( λ

π

)2

F̃ (ε), (28)

F̃ (ε) = [1 + |ε|−1/2]−2, ε < 0, (29)

so that ρ(ε) monotonically increases with |ε| and saturates at
ρ = ρ0.

It is easy to see that, as it formally follows from (29),
the resistivity ρ(ε) should vanish for ε → 0 from either side.
Indeed, for |ε| � 1,

F (ε) ≈ ε1/2 F̃ (ε) ≈ |ε|. (30)

Of course, we immediately suspect that in reality the
decrease of resistivity will be ultimately stopped by some
additional effect (and this is indeed so, as we will see).
However, a dramatic suppression of resistivity in the narrow
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FIG. 3. The same as in Fig. 2 but for attracting impurities.
The sharp maximum at ε < 0 arises due to resonant scattering at
quasistationary states.

vicinity of the Van Hove point is an important phenomenon.
Physically, it is a result of destructive interference of partial
electronic waves with different winding numbers.

D. Attracting impurities, quasistationary
states, and resonant scattering

As we have already mentioned in the previous section, the
behavior of resistivity above the singularity is identical for
repulsing and attracting impurities. However, below the singu-
larity, the attracting impurities introduce some nice additional
physics.

It can be shown that, besides the true bound state with
the energy below the bottom of the lowest subband of the
electronic spectrum of the cylinder, a weakly attracting short-
range impurity produces an infinite series of quasistationary
states: one such state below the bottom of each band. In this
paper, we concentrate on the quasistationary states associated
with the quasiclassic subbands (those, with large N � 1). In
particular, we show that for λ < 0 the scattering amplitude
(23) has a pole at ε = −1 + 2i|λ| (or at ε = (−1 + 2i|λ|)εnB

in other notation). This pole corresponds to a quasistationary
state with a relatively small decay rate. In the case of cylinder,
these poles are identical for all impurities and, since electrons
can be scattered by these resonances, the latter lead to forma-
tion of sharp maxima in resistivity for ε < 0 and λ < 0:

F (ε) ≈
{

1
(1−|ε|−1/2 )2 , for |1 − |ε|| � |λ|,

4
(1−|ε|)2+4λ2 , for |1 − |ε|| � |λ|. (31)

This result is illustrated by Fig. 3. The maximal (in the range
ε < 0) resistivity is reached at ε = −1,

ρ
max(−)
nB ∼ 1

e2ε0

2n

π2
, (32)

the width of this maximum is �
(−)
nB = 4|λ|εnB.

The physical origin of the quasistationary states that exist
slightly below each of the subbands is as follows. Semiclas-
sical trajectories of electrons with energies near the bottom
of the subband are almost closed; if an electron with such
energy has passed near certain impurity once then it will do so
again, and many times. Therefore the attraction to impurity is
strongly enhanced and a bound state is formed. An alternative
way of thinking is just to neglect in the leading approximation

all the transitions from the resonant band to all others. The
arising, strictly one-dimensional problem grants a bound state
for arbitrary weak attraction. Taking the transitions to non-
resonant bands into account perturbatively leads to the finite
decay rate of the state.

E. The minimum of resistivity

All the effects described above are the single impurity
ones. Their origin is the coherent multiple scattering of an
electron by the same impurity, a fact manifested in the linear
dependence of resistivity on the concentration n. To reveal the
mechanism that limits the suppression of resistivity at ε → 0
and to estimate the resistivity at its minimum, one has to find
the scattering rate τ−1(ε) from (28) in the range |ε| � εnB:

τ0

τ (ε)
= |ε|

(
1 + θ (ε)

|λ|√ε

)
. (33)

The characteristic width �nB of the feature (namely, the min-
imum) in the density of states near ε = 0 can be estimated
from the condition

�nB ∼ τ−1(ε ∼ +�nB), (34)

and we get

�nB ∼ εmin ≡ (n/π )2 � εnB. (35)

Note that this width does not depend on λ. At ε < 0, the
resonant contribution to the density of states rapidly drops on
the same energy scale so that the factor ν(ε) becomes of order
of ν0 already at ε ∼ −εmin. As a result, the resistivity has a
minimum at ε = εdip, where

εdip < 0, |εdip| ∼ εmin ∼ (n/π )2. (36)

The scattering rate and the resistivity at minimum are

1

τdip
∼ n3 and ρdip ∼ n3

e2ε0
(37)

and do not depend on the scattering amplitude λ. Thus there
is a deep and narrow universal minimum of resistivity slightly
below the bare Van Hove singularity, the resistivity in the
minimum depends on n superlinearly.

III. AN IDEAL TUBE

We consider a tube of radius R threaded by a magnetic
flux � = πR2H (the magnetic field H is oriented along the
axis of a cylinder z, see Fig. 4). Electrons in the tube have the
following spectrum and wave functions:

ψmk (φ, z) = (2π )−1/2 exp{ikz + imφ}, (38)

Emk = h̄2k2

2m∗ + Em, (39)

Em = E0(m + �/2�0)2, E0 = h̄2

2m∗R2
, (40)

where m ∈ Z is the azimuthal quantum number, k is the mo-
mentum along the cylinders axis, and �0 = πch̄/e = ch/2e

is the flux quantum. Em has the meaning of position of the
bottom of mth one-dimensional subband, see Fig. 5. Actually,
we have introduced the magnetic field as a tool of easy shifting

035414-5



A. S. IOSELEVICH AND N. S. PESHCHERENKO PHYSICAL REVIEW B 99, 035414 (2019)

FIG. 4. Thin conducting tube, threaded by a magnetic field H .
Impurities (shown as stars) are embedded in the tube. Electrons live
on the surface of the cylinder.

of the Fermi level in the system but all the physics described
below is present already in the case H = 0.

The density of states in each subband is

νm(E) =
∫

dk

2π
δ

(
E − Em − k2

2m∗

)

= 2

2π

√
m∗

2(E − Em)
θ (E − Em). (41)

The factor 2 arises because the equation E − Em − k2

2m∗ = 0
has two roots k = ±√

2m∗(E − Em).
The total density of states

ν(E) =
∑
m

νm(E) = − 1

π
Im g(E), (42)

g(E) ≡ G
(0)
E (0, 0) =

∑
m

∫
dk

2π

1

E − Ekm + i0

=
∑
m

√
m∗

2(Em − E)
, (43)

with G
(0)
E (0, 0) being the one-point retarded Green function

of an ideal tube. Strictly speaking, the real part of g diverges.
The recipe how to deal with this divergency will be discussed
somewhat later. Now we just mention that the divergent part
is energy independent and therefore can be removed by a
constant shift of the energy.

FIG. 5. Spectrum of an electron on a surface of an ideal cylinder.
Subbands of the transverse quantization are shown. The Fermi level
E crosses all the subbands with m � N .

In the main part of this paper, we will measure all energies
in the units of E0 and all distances in the units of 2πR:

E ≡ E0ε0, E − Em ≡ E0εm, νm(E) ≡ νm(ε)

2πRE0
, (44)

νm(ε) = 1√
εm

θ (εm), g(ε) =
∑
m

π√−εm

. (45)

We are interested in the semiclassical case when E0 � E

or ε0 � 1. Then, in the leading semiclassical approximation,

ν(ε) =
∞∑

m=−∞
νm(ε) ≈ ν0 =

∫ ε0

0

dεm√
εm(ε0 − εm)

= π.

(46)

This result is valid for all ε except narrow intervals in the
vicinity of points where εm = 0 for some m.

The condition of strong magnetic field reads

εN − ε−N ∼ N�/�0 � �,

where � is the broadening of peaks and

N = ±[
√

ε0 ∓ {�/2�0}] (47)

denotes the closest to Fermi level E subband. Here, [x] is an
integral part of x and {x} ≡ x − [x]. The sign (+ or −) should
be chosen to minimize {√ε0 ∓ {�/2�0}}. In the entire range
of variation of ε, one can write

ν (0)(ε) ≈ ν0

(
1 + θ (ε)

π
√

ε

)
, (48)

where we have introduced ε ≡ εN for brevity.
Under the semiclassical condition, Nch � 1, the result

(46) is not valid in the vicinity of the Van Hove singularity
(for ε � 1) where the second—resonant—term in (48) is
anomalously large. We see that for

ε > 0, ε � 1, (49)

the inequality νN (ε) � ν0 holds: the density of states is in-
deed dominated by the second term in (48)—the contribution
of the N th subband. Note that in the semiclassical limit,
Nch � 1, the different peaks in the function ν(ε) are strictly
identical.

IV. BORN SCATTERING BY SHORT-RANGE IMPURITIES

Our first step is finding the longitudinal resistivity of the
tube using the Drude and Born approximations. We consider
weak short-range impurities with the Hamiltonian

Ĥ = Ĥ0 + V δ(r − r0), Ĥ0 = −∇2/2m∗, (50)

where δ(r) ≡ 1
R
δ(z − z0)δ(φ − φ0) is a two-dimensional

delta function and r0 denotes the position of the impurity on
the wall of the tube. Let us find the self-energy for an electron

�km = 2πRn
(2)
imp

E0

∑
m′

∫
dk′

2π
|Vkk′mm′ |2G(0)

k′m′ . (51)

Since for the short-range potential (50),

Vkk′mm′ = V

2πR
exp{i(m − m′)φ0 + i(k − k′)z0}, (52)
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|Vkk′mm′ |2 ≡ |V |2 depends neither on km, nor on k′m′, and we
conclude that �km = �(Ekm) is a function only of the total
energy E. In our dimensionless variables, we get

�(ε) = g(ε)

2πν0τ0
, (53)

where τ0 is the dimensionless scattering time for an electron
away from the resonance (i.e., for ε � 1):

τ−1
0 = m∗V 2n2

E0
= 2n(λ/π )2, (54)

the dimensionless Born scattering amplitude

λ = m∗V/2, |λ| � 1 (55)

is assumed to be small and may have either signs (the positive
sign corresponds to repulsion, the negative to attraction). The
dimensionless concentration n is also assumed small.

The Born decay rate

1

τk,m

= 1

τ (Ekm)
= −2Im � = 1

τ0

ν(ε)

ν0
. (56)

For point impurities, the scattering is isotropic and therefore
the transport time coincides with the simple decay time.

Thus, if (49) is fulfilled, the particle is scattered pre-
dominantly (though not completely) to the upper band. In
particular, if the particle was already in the upper subband
then the scattering event most probably will not remove it
from there. It means that in the zero approximation the upper
subband is almost decoupled from all others.

Under the condition (49), the electrons in the N -subband
states have low longitudinal velocity and therefore do not
contribute much to the current. The latter is dominated by
the states in all other bands. However, the singularity in the
N th band is manifested also in the resistivity ρ through the
scattering rate that is proportional to the density of the final
states on the Fermi surface:

ρ

ρ0
= ν(ε)

ν0
, ρ0 = 1

e2ε0τ0
. (57)

These final states predominantly belong to the N th band.

A. Smearing of the Van Hove singularities
within the Born approximation

It is clear that the scattering should somehow smear the
singularities both in the density of states and in the resistivity.
In this section, we will discuss the mechanism of this smearing
within the Born approximation. The condition of its applica-
bility will be discussed in the following section.

Within the Born approximation one can write (see, e.g.,
Refs. [6,8])

〈ν(ε)〉 = ν (0)[ε − �(ε)], (58)

where �(ε) is given by (53). We are interested in the behavior
of 〈ν(ε)〉 in the vicinity of the Van Hove singularity where
|ε| � 1 and the scattering is dominated by the resonant band.
It is convenient to discuss this problem separately for the
cases ε > 0 (above the singularity) and ε < 0 (below the
singularity).

1. Above the Van Hove singularity

Here, the self-energy is almost purely imaginary: the scat-
tering is more important than the energy shift. The scattering
obviously leads to decay of the plane waves and the decrement
of this decay is just τ−1 given by the formula (56). For
τ−1 � ε, the average density of states is almost insensitive
to the scattering.

In the narrow vicinity of the singularity, for τ−1 ∼ ε, the
scattering becomes effectively strong, and the density of states
is strongly changing on the scale of the width of the relevant
states. Thus, at τ−1 ∼ ε, the density of states saturates and we
conclude that the corresponding peaks are smoothed at ε ∼
εmin ∼ τ−1. However, τ−1 itself depends on ε and so we arrive
at the self-consistency condition

1

τ (ε)
= 1

τ0

ν(ε)

ν0
∼ 1

πτ0
√

ε
≈ ε, (59)

from where we can easily get

ε ∼ εmin = (2πτ0)−2/3 = [(λ/π )2(n/π )]2/3, (60)

τ0

τmin
∼ νmax

ν0
∼ ρmax

ρ0
∼
[(

λ

π

)2( n

π

)]−1/3

. (61)

2. Below the Van Hove singularity

Now, we have to find the density of states for ε < 0. It
seems clear that for |ε| � εmin the value of ν(ε) can not change
considerably so that one can expect

ν(ε) ∼ νmax, τ (ε) ∼ τmin, for |ε| � εmin. (62)

On the other hand, in the range |ε| � εmin, the correction to
the density of states can be found with the help of perturbation
theory, which gives

ν(ε) − ν0 ∝ ∂

∂ε

∫ ∞

0
ν(ε′)dε′ V 2

ε′ − ε

∼ ν0
(−ε)−3/2

τ0
∼ ν0

(
εmin

|ε|
)3/2

� ν0. (63)

It is important to note that the correction (63) is relatively
small already for |ε| � εmin. It means that

ν(−εmin) ∼ ν0 � ν(εmin) (64)

and direct smooth matching of (63) and (62) is impossible!
To resolve this paradox, one should, in principle, go be-

yond the estimates made above, and accurately solve the
problem in the range |ε| � εmin. However, for a qualitative
understanding, it is enough to note that there is practically
only one scenario for such a giant drop in the density of states:
a “quasifold”—an inflection point with almost vertical slope,
see Fig. 6.

In the dependence ν(ε) at some point εbi, there should be
(i) a very large positive first derivative ν ′(εbi ) � ν(εmin)/εmin,
(ii) a zero second derivative, and (iii) a rather small third
derivative. An example of such a behavior is provided by
the results of the self-consistent Born approximation, given
in Appendix A. Although these results can not be taken too
seriously (since the self-consistent Born approximation is not
rigorous), the main message seems to be reliable: the entire
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FIG. 6. The “quasifold”: in the vicinity of the bifurcation point,
ε = εbi, the slope of the curve ρ(ε) is anomalously steep.

domain |ε| ∼ εmin is split into two basic subdomains: ε < εbi,
where ν ∼ ν0, and ε > εbi, where ν ∼ ν(+εmin) � ν0. Be-
tween these two subdomains there is a narrow intermediate
layer around εbi in which ν(ε) undergoes a dramatic change.

Then the results can be roughly summarized as follows:

ρ(ε)

ρ0
=

⎧⎪⎨
⎪⎩

1 + 1
π

√
ε
, for εmin � ε, ε > 0,

∼λ−2/3n−1/3, for εbi < ε � εmin,

∼1, for ε < εbi,

(65)

with certain εbi < 0, |εbi| ∼ εmin. A schematic plot of (65) is
shown in Fig. 7.

V. BEYOND THE BORN APPROXIMATION

The above considerations seem plausible and straight-
forward. However, the analysis below shows that they are
only applicable if the concentration of impurities is high
enough, i.e., for n � nc ∼ |λ|. For n � nc, the scattering that
determines the form of smeared Van Hove singularities is
strongly modified by the single-impurity non-Born effects that
dramatically grow upon approaching the singularity. We start
our discussion from the properties of an exact amplitude of
scattering by a single short-range impurity, placed on the wall
of the tube.

FIG. 7. The shape of a smeared Van Hove singularity within the
Born approximation.

A. A single impurity problem in two dimensions:
non-Born effects

The properties of short-range impurities or defects in two-
dimensional systems are well studied. In this section, we
briefly remind the main facts.

In particular, it is known that a weakly attracting short-
range impurity always forms a bound state [24]. Writing the
Hamiltonian of the system in the form (50) with λ < 0 one
finds that there is a single bound state with small binding
energy

E
(2d )
bound ≈ − h̄2

m∗a2
0

exp

(
− π

|λ|
)

, (66)

where a0 is the ultraviolet cutoff (a “radius of the delta
function”). The wave function of the ground state

ψ0(r ) ∼ exp(−r/a(2d ) ), a(2d ) = (2m∗∣∣E(2d )
bound

∣∣)−1/2
,

(67)

being the radius of the ground-state wave function.
A scattering of a particle with positive energy E � h̄2

m∗a2
0

is isotropic. For r � a0, one can write the “scattering wave
function” in the form [24]

ψp(r ) = exp{i(p · r)} − iλH
(1)
0 (pr ), E = p2/2m∗,

(68)

where H
(1)
0 (x) is the Hankel function. Moreover, for pr � 1,

one can use the asymptotics of the Hankel function:

ψp(r ) ≈ exp{i(p · r)} − λ

√
2

−iπpr
exp(ipr ). (69)

The above results should be modified if one wants to go
beyond the Born approximation. If the condition E � h̄2

m∗a2
0

(or ka0 � 1) is fulfilled then the scattering remains isotropic
even beyond the Born approximation; it means that the scatter-
ing amplitude is still characterized by a single dimensionless
constant: a small real λ in the result (69) should be replaced
by a not necessarily small complex �—the nonperturbative
dimensionless scattering amplitude. The latter should obey the
optical theorem:

Im� = −|�|2, (70)

hence the scattering amplitude can be parametrized by a single
real constant λ,

� = λe−i arcsin λ ≡ λ(
√

1 − λ2 − iλ). (71)

In particular, for weak interaction (|λ| � 1),

� ≈ λ − iλ2. (72)

Note that the parameter λ in (71) is related to the potential
amplitude V by formula (55) only for |λ| � 1. In a general
case, it is not true, and λ is just a convenient parameter for
expressing the phenomenological scattering amplitude.
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B. A single impurity problem on a cylinder:
semiclassical treatment of non-Born effects

Let us place a single weakly attracting impurity on the
surface of the cylinder. Clearly, there are two distinct cases
with respect to the bound state of an electron: (i) wide cylinder
or strong scattering: R � a(2d ). In this case, the bound state
will not differ much from the purely two-dimensional case
and the formula (66) applies. (ii) Narrow cylinder or weak
scattering: R � a(2d ). This is an effectively one-dimensional
case, the bound state can also be studied easily.

In this paper, we will be interested, however, not in the
ground state but in the scattering matrix for an electron with
an essentially positive energy E > 0 in the range

E0, Ebound � E � h̄2

m∗a2
0

. (73)

Under this condition, the scattering process can be conve-
niently described in semiclassical terms. To find the scattering
amplitude beyond the Born approximation, one has to solve
the Dyson equation

G(r1, r2) = G0(r1, r2) + G0(r1, r0)V G(r0, r2) (74)

for the retarded Green function defined as

G = {E − Ĥ + i0}−1, G0 = {E − Ĥ0 + i0}−1, (75)

where r0 is the position of the impurity. In particular, putting
r1 = r2 = r0, we arrive at the equation

g = g0 + g0Vg, g ≡ G(r0, r0) = g0

1 − Vg0
, (76)

where

g0 ≡ G0(r0, r0). (77)

One can also write

G(r1, r2) = G0(r1, r2) + G0(r1, r0)VrenG0(r0, r2) (78)

with the renormalized scattering amplitude

Vren = V

1 − Vg0
. (79)

First of all, we have to find the single-site g0 ≡ GE (0, 0).
For our nontrivial topology, one can write in the semiclassical
approximation

g0 =
∞∑

n=−∞
eπin�/�0GE (2πnR), (80)

GE (r) being the retarded Green function in an infinite two-
dimensional metal. For n �= 0, one can use the semiclassical
approximation

GE (r) ≈
√

2

πpr
ei(pr+π/4). (81)

For the n = 0 term, we have

GE (0) = − im∗

2
+ C, (82)

where C is a formally infinite real constant. This divergency
is well known—it means that the perturbation theory does

not work well in spatial dimensions d � 2 when applied
to point-like impurities. This phenomenon is not specific
for the cylinder geometry—it is present in an infinite two-
dimensional metal as well. Special methods to deal with this
divergence were developed already long ago. It was shown
that in the case of isotropic scattering, accurate calculations
lead to the substitution of the bare coupling constant λ by
the exact complex amplitude � of scattering by the same
impurity in the infinite two-dimensional metal. Thus, for the
fully renormalized scattering amplitude �(ren) in the case of
cylinder, we get

�(ren)(ε) = �

1 + �g(ε)/πν0
, (83)

where g(ε) ≡ g0 is given by the formulas (80), (81), and (82)
where the infinite constant C is discarded. As a result, we
arrive at the expression (45). Consequently, the scattering rate
is also renormalized:

1

τ (ε)
= 2n

π2

∣∣∣∣ �

1 + �g(ε)/πν0

∣∣∣∣
2
ν(ε)

ν0
. (84)

For small λ, the discussed renormalization is only essential in
the vicinity of some Van Hove singularity so that we can use
asymptotics g(ε)/πν0 ≈ π−1(−ε)−1/2 and for small λ � 1
one can write

�(ren)(ε) ≈ λ − iλ2

1 + (λ − iλ2)(−ε)−1/2/π
. (85)

The importance of the renormalization of the scattering matrix
in the systems with a singularity in the density of states (e.g.,
superconductors), which can even lead to the formation of
bound states, was discovered and explored in details already
in the 60’s (see Refs. [25–29]).

It is clear that the non-Born effects first come into play for
ε � εnB, where

εnB = (λ/π )2, (86)

so that it is sometimes convenient to use the “normalized”
energy:

ε ≡ ε/εnB. (87)

Note that for ε � εnB the scattering amplitude formally
vanishes: �(ren) ≈ π (−ε)1/2. It means, in particular, that ex-
actly at the van Hove singularity a quasi-one-dimensional
system tends to become an ideal conductor with zero resis-
tivity. In the following section, we will demonstrate that for
finite concentration of impurities the resistivity remains finite,
though very small: it is proportional not to n, but to n3.

VI. SINGLE-IMPURITY NON-BORN EFFECTS
IN RESISTIVITY

Physically, the effect of renormalization is manifested in
the scattering time τ (ε) in which λ should be replaced by
�(ren)(ε). Similar to the Born case, for

τ−1(ε) � ε, (88)

the scattering is effectively weak (though non-Born!) so that
only the single impurity effects should be taken into account
and one can use the standard Drude formula with properly
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renormalized scattering time. In this section, we concentrate
on this “weak non-Born scattering” regime. We will consider
the cases of repulsing and attracting impurities separately.

Certainly, there were some theoretical approaches to the
non-Born effects in quasi-one-dimensional systems in the
past. S. Hügle and R. Egger [8] studied the smearing of Van
Hove singularities within the self-consistent Born approxima-
tion similar to that described in Appendix A. In contrast with
our work, instead of the quadratic spectrum of electrons, they
considered the more realistic linear spectrum, characteristic of
carbon nanotubes. This difference, however, is not essential,
as far as one is interested only in the shape of the Van
Hove singularities—it may actually be reduced to redefinition
of some constants. What is much more important, instead
of considering individual impurities, the authors of Ref. [8]
introduced the disorder in the form of Gaussian white noise.
Such an approach does not allow to find the single-impurity
non-Born effects, which, as we have seen, are crucial at low
concentrations n2 � n

(c)
2 . So, their results are applicable to

impurities only at high concentration n2 � n
(c)
2 .

A. Repulsing impurities

For weak repulsive impurities (λ > 0, |λ| � 1), the imag-
inary part of � can be neglected and we get

ρ(ε)

ρ0
= τ0

τ
= |�(ren)|2

λ2

(
1 + 1

π
√

ε
θ (ε)

)

=
{ 1

λ
1

ε1/2+ε−1/2 , for ε > 0,

1
(1+|ε|−1/2 )2 , for ε < 0.

(89)

This dependence is plotted in Fig. 2. So, for ε > 0, both the
scattering rate and the resistivity have smooth maxima at ε =
εnB with the value at maximum

1

τ
(+)
min

= 1

2λτ0
= nλ

π2
, (90)

or, in dimensional variables

1

τ
(+)
min

= 2n2

m∗ λ,
ρ (+)

max

ρ0
= 1

λ
� 1. (91)

For ε < 0, the scattering rate grows monotonically with grow-
ing |ε| and saturates at τ−1 = τ−1

0 for |ε| � εnB.
The non-Born effects somewhat suppress the resistivity,

compared to the Born results. For repulsing impurities this is
true for all ε but the strongest effect is expected for |ε| � εnB.

B. Attracting impurities

For attracting impurities, the renormalized scattering am-
plitude has a pole in the complex plane of ε at

ε = εnB(−1 + 2iλ), (92)

close to the real axis. This fact indicates the existence of
a quasistationary state. We have to take into account the
imaginary part of � that keeps trace of the decay of this
state: otherwise the pole would move to the real axis and there
will be a nonphysical divergence of amplitude. However, this
is only necessary in the narrow vicinity of the resonance at

|ε| = εnB. So we can write

ρ(ε)

ρ0
= τ0

τ

=

⎧⎪⎪⎨
⎪⎪⎩

1
|λ|

1
ε1/2+ε−1/2 , for ε > 0,

1
(1−|ε|−1/2 )2 , for ε < 0, |1 − |ε|| � |λ|,

4
(1−|ε|)2+4λ2 , for ε < 0, |1 − |ε|| � |λ|.

(93)

This result is plotted in Fig. 3.
Thus, for ε > 0 (and also for ε < 0 but |ε| � εnB), the

behavior of the renormalized scattering rate for attracting
impurities is identical to that of repulsing ones. Their behav-
iors are very different, however, for ε < 0 (and not small |ε|
compared to εnB). While for repulsive impurities both the rate
τ−1 and the resistivity ρ smoothly and monotonically increase
with |ε|, for attracting impurities, they first grow, reach sharp
maxima at ε = −εnB, and only then decrease, saturating at
τ−1 = τ−1

0 and ρ = ρ0 for |ε| � εnB. The maximum has a
Lorenzian shape:

ρ(ε) = ρ (−)
max

π�hom

2
L(ε + εnB, �hom ), (94)

L(x, γ ) ≡ γ /2

π (x2 + (γ /2)2)
. (95)

The width of maximum (homogeneous broadening)

�hom ∼ 4|λ|εnB = 4|λ|3
π2

� εnB, (96)

is relatively small. This decay is due to the small (but finite)
probability of scattering to the bands other than the N th band.
The height of the maximum is universal—it does not depend
on the strength of impurities λ. In dimensional variables,

ρ (−)
max = 4n2

e2m∗RE
. (97)

The scattering rate at maximum is even more universal:

1

τ
(−)
min

= 1

λ2τ0
= 2n

π2
= 4n2

m∗ , (98)

it depends neither on λ nor on R or E.

VII. MULTI-IMPURITY EFFECTS. THE CENTRAL
DIP IN RESISTIVITY

In the previous section, we have implicitly assumed the
concentration of impurities n to be so low that scattering
amplitude at a certain impurity could not be affected by the
presence of all the others: τ−1(ε) � ε. Let us first derive
the condition that would justify this assumption. We have
found that the non-Born effects are negligible for ε � εnB. On
the other hand, if one totally neglects the non-Born effects,
then, as it follows from (59), the scattering effects lead to the
saturation of both the density of states and the conductivity
for ε � εmin. These two facts taken together mean that for
εnB � εmin, the non-Born effects do not have a chance to show
up at all. On the contrary, for εmin � εnB, the scattering only
comes into play at ε � εnB where the non-Born effects are
already huge. Thus, looking at the expressions (61) for εmin

035414-10



NON-BORN EFFECTS IN SCATTERING OF ELECTRONS … PHYSICAL REVIEW B 99, 035414 (2019)

and (86) for εnB, we conclude that the non-Born effects are
relevant for n < nc, where

nc ∼ |λ|, (99)

while for n > nc the Born approximation is justified for all ε

and the results of Sec. IV are applicable.
In this section, we are going to study the effect of scattering

at low concentration n � nc but also at very low |ε| at the
same time. We will show that the presence of other impurities
ultimately becomes essential in the narrow vicinity of the Van
Hove singularity—at certain energy scale ε

(nB)
min � εnB.

In the case of developed non-Born regime, for ε � εnB, we
have �g � 1, so that

|�(ren)(ε)|2 ≈ π2|ε|. (100)

We see that the rate 1/τ ceases to depend on λ and becomes
universal: independent on the characteristics of impurities:

τ−1(ε) = 2|ε|n
(

1 + 1

π
√

ε
θ (ε)

)
. (101)

It should be stressed that the scattering rate decreases as the
Fermi level approaches the Van Hove singularity from either
side and formally vanishes at ε = 0. Taken seriously, it would
mean that exactly at singularity the system has zero residual
resistivity. Of course, we expect that taking scattering into
account will remove this paradox.

To demonstrate this, we have to incorporate the scattering
in the result (101). Again, as in Sec. IV A, we notice that the
above calculations only make sense for τ−1(ε) � ε, so that
the dip in the resistivity predicted by (101) will be rounded at
certain ε ∼ ε

(nB)
min , where ε

(nB)
min , however, is not given by (60)

any more because the expression for the scattering time (101)
differs from (56): it has been changed by the non-Born effects.
So, the self-consistency condition τ−1(ε) ∼ ε for ε

(nB)
min reads

τ−1
(
ε = +ε

(nB)
min

) = 2n

π

√
ε

(nB)
min ∼ ε

(nB)
min , (102)

from where immediately follows

ε
(nB)
min = (n/π )2. (103)

Comparing (103) to (86) we see that, indeed, the scattering
effects bring the renormalization of the amplitude �(ren)(ε) to
stop at some small, but nonzero value.

The results (100) and (103) were obtained under the as-
sumption ε > 0 so we need yet to discuss the scattering effects
for ε < 0. Here we get

τ−1(ε) = 2n|ε| � |ε|, (104)

which formally means that for negative ε the scattering does
not affect the result (101) for all values of |ε|, down to ε = 0!
This is, of course, not quite true because, due to scattering
effects, the discontinuity in the density of states at ε = 0
should be smoothed and 1/τ (ε) should remain of the order
1/τmax also for ε < 0 in the range |ε| � ε

(nB)
min .

Thus, in the strongly non-Born domain n � n(nB), we en-
counter the similar paradox as in the Born case at n � n(nB).
Namely, the above consideration gives nonmatching estimates

FIG. 8. The energy dependence of resistivity near the minimum.
Dashed line—for n → 0, solid line—for finite n.

on the opposite sides of the interval |ε| � ε
(nB)
min :

τ−1 ∼
{
n2, for ε > 0, ε ∼ n2,
n3, for ε < 0, |ε| ∼ n2.

(105)

The resolution of this paradox is also similar to that in the
Born case: there is a quasifold at certain ε = ε

(nB)
bi ≡ qbiε

(nB)
min ,

(with qbi < 0, |qbi| ∼ 1) where the scattering rate undergoes
a dramatic drop, so that

τ−1(ε) ∼
⎧⎨
⎩

2n|ε|, for ε < ε
(nB)
bi ,

n2, for ε > ε
(nB)
bi , ε � ε

(nB)
min ,

2n
√

ε/π, for ε � ε
(nB)
min ,

(106)

and the weakest scattering is realized at some ε = ε
(nB)
dip below

ε
(nB)
bi :

1

τmax
≈ 1

τ
(
ε = ε

(nB)
dip

) ∼ nε
(nB)
min ∼ n3, (107)

or, in dimensional variables,

1

τmax
∼ (2πR)4[n2]3

m∗ . (108)

This result is supported by the calculations within the “self-
consistent non-Born approximation,” given in Appendix B.
Thus we conclude that the minimal value of the scattering rate
and, consequently, the minimal value of resistivity is attained a
little bit to the left from the initial (nonrenormalized) position
of the Van Hove singularity, at ε = ε

(nB)
dip ∼ −n2 and

ρmin = 1

e2RE

1

τmax
∼ (2πR)4[n2]3

e2m∗RE
. (109)

This minimal value depends neither on sign, nor on magnitude
of λ and is much less than the standard resistivity:

ρmin

ρ0
∼ n2

λ2
=
(

n

nc

)2

� 1. (110)

The dependence ρ(ε) near the minimum is shown in Fig. 8.

VIII. INHOMOGENEOUS CONTRIBUTION TO
BROADENING OF THE RESONANT PEAK

One could expect that in the case of attracting impurities
the scattering would lead also to broadening of the narrow
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resonant peak at ε = −εnB, so that � → �hom + τ−1. But this
idea is wrong since the corresponding electrons are localized
at resonant states of certain individual impurities and, at
low concentration, have no chance to be scattered by some
other impurity. This statement is justified if naloc � 1, where
aloc = (2εnB)−1/2 = π |λ|−1 is the radius of the localized state.
So, naloc ∼ n/|λ| ∼ n/nc and, under condition n � nc, the
influence of other impurities typically is exponentially small.
However, this influence may be large in some rare nontypical
configurations and we will estimate their contribution.

Due to a rare local fluctuation, two impurities may occur
at a nontypically small distance r � aloc from each other,
resulting in a considerable splitting �(r ) ∼ εnB of a pair of
initially degenerate localized states. This leads to inhomoge-
neous broadening,

�inhom ∼ (naloc)εnB ∼ n

nc

εnB, (111)

that prevails in the intermediate range of concentrations:
|λ|2 � n � |λ|, while for the lowest n � |λ|2 the homo-
geneous broadening is stronger. We should stress that the
inhomogeneous broadening (111) exists already in the system
where all impurities are identical (have the same λ). Naturally,
the systems with dispersion of λ demonstrate much stronger
inhomogeneous broadening. We will briefly discuss such sys-
tems in Sec. IX.

IX. SYSTEMS WITH DIFFERENT SORTS OF IMPURITIES

In realistic physical systems, the impurities are not nec-
essarily identical. They may be of different types and they
may be situated not directly in the wall of the tube, but at
some distance from it. As a result, the effective scattering
amplitudes �i of different impurities may be different and
random, with some distribution function P (λ) for a real
parameter λi [see (71)]. The most important characteristic of
this distribution is

λ ≡
√

〈λ2〉. (112)

What may be the consequences of such disorder? In the Drude
approximation, the only dependence of the resistivity ρ(ε)
on � comes from the factor τ−1(ε). Since the contributions
of different impurities to the resistivity are additive, one can
write

〈ρ(ε)〉 ∝
〈

1

τ (ε, λ)

〉
λ

∝
∫ ∣∣∣∣ �

1 + �g(ε)/πν0

∣∣∣∣
2

P (λ)dλ. (113)

For n � λ, the expression (113) can be expanded in small �,
the non-Born effects are small and we return to the results of
Sec. IV where one should substitute λ → λ.

For n � λ, the scattering rate does not depend on λ in the
range |ε| � εnB ≡ (λ/π )2, therefore all the results of Sec. VII
also apply to the case of random λ in this range. The case
|ε| ∼ εnB is nonuniversal, here the result of averaging may
depend on the explicit shape of the function P (λ). In par-
ticular, the contribution of the inhomogeneously broadened
resonant peak can be evaluated with the help of expressions
(96) and (94). Assuming that the Lorenzian peak in (94) is

much sharper than the distribution P (λ), we obtain

〈ρ (res)(ε)〉 =
∫

dλP (λ)ρ (−)
maxπ�hom(λ)δ(ε + (λ/π )2)

= ρ (−)
maxπ

3|ε|P (−π
√

|ε|), for ε < 0. (114)

X. SUMMARY AND DISCUSSION

In this paper, we have found the shape of the Van Hove
singularity manifested in the resistivity of a clean metallic
tube of radius R with low concentration n2 of weak short-
range impurities (either repulsing or attracting) per unit sur-
face of the tube. We have shown that there is certain crossover
concentration

n
(c)
2 = 1

(2πR)2

|λ|
π

. (115)

For n2 � n
(c)
2 , the Van Hove singularities are smoothed peaks

at |E − EN | ∼ �B with the width

�B ∼ h̄2

2m∗R2

(
R2n2|λ|2

π

)2/3

. (116)

The smoothening happens due to the interference of scattering
events at different impurities, while the amplitude of the
scattering at each individual impurity is not affected. The
structure of the Van Hove singularity for n2 � n

(c)
2 remains

simple: “plateau-maximum-plateau” (see Fig. 7).
In the most interesting regime at n2 � n

(c)
2 , the non-Born

renormalization of individual scattering amplitudes happens
already at |E − EN | ∼ EnB, where the interference effects are
still negligible:

EnB ∼ h̄2

2m∗R2

( |λ|
π

)2

� �B. (117)

Note that the energy scale EnB does not depend on the concen-
tration of impurities. The interference of scattering events at
different impurities comes into play only at |E − EN | ∼ �nB,
where

�nB ∼ |Edip| ∼ h̄2

2m∗R2
(4πR2n2)2 � EnB. (118)

In this energy range, the individual scattering amplitudes are
already strongly renormalized (suppressed) and take universal
value,

λ → λ0(E) =
(

2π2m∗R2|E − EN |
h̄2

)1/2

, (119)

which does not depend on the initial “bare” λ. As a result,
instead of maximum, ρ(E) demonstrates a deep and narrow
minimum at E − EN = Edip < 0 with a width �nB.

The structure of the Van Hove singularity for n2 � n
(c)
2 de-

pends on the sign of the scattering amplitude. For repulsive in-
teraction it is “plateau-minimum-maximum-plateau” (Fig. 2),
while for attractive interaction it is “plateau-maximum-
minimum-maximum-plateau” (Fig. 3).

The structures “plateau-maximum-plateau” and “plateau-
minimum-maximum-plateau” can be (very roughly) simu-
lated by the Fano formula (1) with q → ∞ and q ∼ 1, cor-
respondingly. The correspondence between formula (1) and
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the results of the present study is, however, by no means
quantitative. We should also stress that, contrary to the pre-
diction of the Fano theory, an asymmetric splitting of the
Van Hove singularity arises at low concentration of impurities
even for positive sign of the scattering amplitude, when the
resonant state does not exist and the Fano scenario is inappli-
cable. Moreover, in the presence of resonant states due to at-
tracting impurities, the obtained structure “plateau-maximum-
minimum-maximum-plateau” can not be reproduced by the
Fano formula (1) even on a qualitative level.

In the leading approximation in the small parameter
n2/n

(c)
2 (that corresponds to independent scattering at differ-

ent impurities), the resistivity minimum ρmin vanishes, as it is
shown in Figs. 2 and 3. The value of ρmin becomes nonzero
(ρmin ∝ n3

2, see Fig. 8) only if one takes into account the
interference of scattering events at different impurities.

In a future publication, we are going to discuss the structure
of the Van Hove singularity in a conducting strip. Here, the
“bare” (nonrenormalized) effective scattering amplitudes for
different impurities inevitably differ from each other because
of the random positions of impurities with respect to the nodes
of the transverse wave function in the resonant band. Since
the dependence of the renormalized scattering amplitude on
the bare one is nonmonotonic, it can be shown that the
leading contribution to the resistivity comes not from the
“strongest” impurities (those sitting in the antinodes of the
wave-function), but from some optimal ones. It leads to a
serious modification of the results especially in the range of
small |E − EN | � EnB.

In conclusion, our study shows that at low concentration of
impurities the single-impurity non-Born effects lead to split-
ting of the Van Hove singularities in the resistivity of a tube
(or, in general, any other quasi-one-dimensional conductor)
and this effect can not be described in terms of the Fano
formula (1). The character of the splitting depends on whether
the impurities are attracting or repulsing.
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APPENDIX A: SELF-CONSISTENT CALCULATIONS:
STRONG BORN SCATTERING

Strictly speaking, the concept of the self-energy is rele-
vant only in the weak scattering domain where |ε| � εmin

(for both ε > 0 and ε < 0). However, using the perturbative
expressions (58) and (53) also in the strong scattering domain,
|ε| � εmin, can be helpful for qualitative understanding of the
behavior of the density of states and resolving the paradox
mentioned in Sec. IV A 2.

For a qualitative description of the density of states at
strong scattering, the self-consistent Born approximation can
be used. The self-consistency equation for � reads

�(ε) = − i

2τ0

(
1 + 1

π
√

ε − �(ε)

)
, (A1)

so that

ν(ε)

ν0
= 1 + Re

{
1

π
√

ε − �(ε)

}
, (A2)

�(ε) = − i

2τ0
− εminY

[
1

εmin

(
ε + i

2τ0

)]
, (A3)

where Y (q ) is the solution of cubic equation

Y 2(Y + q ) + 1 = 0. (A4)

There is a bifurcation point q = qbi such that for real q < qbi

all three solutions of (A4) are real while for q > qbi there is
one purely real solution and two conjugated complex solutions
(only the latter ones are physically relevant). Near the point
q = qbi, one can write

Y ≈ Ybi ± iA
√

q − qbi, (A5)

Ybi = 21/3, A = 22/33−1/2, qbi = −3 · 2−2/3. (A6)

Thus, if the parameter q were purely real then Im � would
vanish for ε < εbi ≡ qbi εmin. In our case, however, q has small
but finite imaginary part

Im q = π
√

εmin � 1. (A7)

For ε > εbi and |ε − εbi| � Im q, this imaginary part can be
totally neglected and

�(ε) ≈ −εminY (ε/εmin), (A8)

ν(ε)

ν0
= 1 + 1

π
√

εmin
Re

{
1√

(ε/εmin) + Y (ε/εmin)

}
. (A9)

On the other side of the bifurcation point, for ε < εbi and
|ε − εbi| � Im q, the Im q term may be taken into account
perturbatively:

�(ε) ≈ −εminY (ε/εmin) − i

2τ0
[1 + Y ′(ε/εmin)], (A10)

ν(ε)

ν0
= 1 + 1 + Y ′(ε/εmin)

2[(ε/εmin) + Y (ε/εmin)]3/2
, (A11)

where Y ′(q ) ≡ dY (q )/dq.
In the narrow vicinity of the bifurcation point, for |ε −

εbi| � Im q, one should keep Im q but, on the other hand, one
can use expansion (A6) for Y (q ). As a result, in this range, we
obtain

Re �(ε) ≈ −εminYbi, (A12)

and

Im �(ε) ≈ − A

2τ0

[
(Q2 + 1)1/2 + Q

Im q

]1/2

≈ − A

2τ0
√

Im q

{
(2Q)1/2, Q > 0, 1 � Q � (Im q )−1,

(−2Q)−1/2, Q < 0, 1 � |Q| � (Im q )−1.
(A13)
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ν(ε)

ν0
≈ 1

π
√

εmin

A Im q

2(qbi + Ybi )3/2

[
(Q2 + 1)1/2 + Q

Im q

]1/2

≈ 1

π
√

εmin

A
√

Im q

2(qbi + Ybi )3/2

{
(2Q)1/2, Q > 0, 1 � Q � (Im q )−1,

(−2Q)−1/2, Q < 0, 1 � |Q| � (Im q )−1.
(A14)

Here,

Q(ε) = 2τ0(ε − εbi ). (A15)

So, as it is easy to check, for |Q| � 1, the asymptotics (A14)
overlaps with the results (A9) and (A11).

The above results should not be taken too seriously: the
self-consistency equation (A3) can not be justified rigorously.
However, the qualitative behavior of the decay rate and the
density of states predicted by (A13) and (A14) gives us a rea-
sonable pattern of matching conflicting results (61) and (64).
Namely, there is a narrow interval |ε − εbi| � 1/2τ0 around
certain bifurcation point εbi (εbi < 0, |εbi| ∼ εmin) where both
ν(ε) and τ−1(ε) increase with ε very rapidly, and just this
increase explains the parametrically large difference between
the results (61) and (64).

APPENDIX B: SELF-CONSISTENT CALCULATIONS:
STRONG NON-BORN SCATTERING

The general (with an account for the non-Born renormal-
ization of the scattering amplitude) self-consistency equation
for the self-energy � reads

�(ε) = n

π2

∣∣�(ren)(ε − �(ε))
∣∣2 g(ε − �(ε))

πν0
, (B1)

where �(ren) is given by (85) and the density of states is
determined by formula (A2). In the case of strong non-Born
effect, one can use an asymptotic expression (100) and get

�(ε) = −in|ε − �|
(

1 + 1

π
√

ε − �(ε)

)
, (B2)

Let us first neglect the constant term in g, then we get

�(ε) = − in

π

√
ε − �∗, (B3)

or

� = −ε
(nB)
min Y, q ≡ ε

ε
(nB)
min

, (B4)

Y 2 + q + Y ∗ = 0. (B5)

For real q, the general structure of solutions for equation (B5)
is as follows:

For q > 1/4, there are two complex conjugated solutions:

Y1,2 = 1

2
∓ i

√
3

4
+ q. (B6)

For q < −3/4, there are two real solutions:

Y3,4 = −1

2
∓
√

1

4
− q. (B7)

For −3/4 < q < 1/4, all four solutions Y1,2,3,4 are acceptable.

There is, however, always only one physically relevant
solution:

Y (q ) =
{

Y4, for q < qbi,

Y2, for q > qbi
qbi = −3/4. (B8)

Thus the bifurcation energy is

ε
(nB)
bi = ε

(nB)
min qbi, (B9)

and for ε
(nB)
bi < ε � εnB, we have

1

τ (ε)
= −2Im �(ε) = 2

√
ε

(nB)
min

(
ε − ε

(nB)
bi

)
, (B10)

ν(ε)

ν0
= 1 + Re

⎧⎪⎪⎨
⎪⎪⎩

1

π

√
ε + ε

(nB)
min Y2

(
ε/ε

(nB)
min

)
⎫⎪⎪⎬
⎪⎪⎭

= 1 +
√

ε − ε
(nB)
bi

π
(
ε + ε

(nB)
min

) , (B11)

where we have used the formula

1√
a + ib

=
√√

a2 + b2 + a

2(a2 + b2)
− i

√√
a2 + b2 − a

2(a2 + b2)
.

(B12)

So, the approximate equation (B3) leads to the result
1/τ (ε) ≡ −2Im �(ε) = 0 for all ε < εbi. To determine finite
scattering rate in this range, we should go beyond and take
into account the first term −in|ε − �| on the right-hand side
of equation (B2). When doing so, we can, however, substitute
the found zero-approximation solution to this correction term.
Then, instead of (B5), we arrive at

[Y + in(Y4(q ) + q )]2 + q + Y ∗ = 0, (B13)

where we have noted that in the range q < qbi both q and
Y4(q ) are real, and also q − Y4(q ) ≡ Y 2

4 (q ) is real and nega-
tive so that we could write |ε − �| = ε

(nB)
min Y 2

4 (q ). Then

� = −ε
(nB)
min

[
inY 2

4 (q ) + Y (q̃ )
]
, (B14)

where Y (q̃ ) is the solution of (B5) with complex

q̃ ≡ q − inY 2
4 (q ). (B15)
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For q < qbi, the imaginary part of q̃ can be treated perturba-
tively:

Y (q̃ ) ≈ Y4(q ) + in
Y 2

4 (q )

2Y4(q ) − 1
, (B16)

and

�(q ) ≈ −ε
(nB)
min Y4(q )

{
1 + in

Y 2
4 (q )

Y4(q ) − 1/2

}
, (B17)

1

τ (ε)
= −2Im �(q )

= nε
(nB)
min

(
√

1 + 4|q| − 1)3(
√

1 + 4|q| + 2)

8(|q| − |qbi|) ,

q ≡ ε

ε
(nB)
min

< qbi ≡ −3

4
, (B18)

ν(ε)

ν0
= 1 + 1

2[Y4(q ) − 1/2]
= 1 +

√
1
4 + |q| + 1

2(|q| − |qbi|) ,

(B19)

where we have used

Y4(q ) − 1/2 =
√

1

4
+ |q| − 1 = |q| − |qbi|√

1
4 + |q| + 1

. (B20)

In particular, for |q| � 1, the scattering rate grows with |ε|
while ν(ε) saturates:

�(ε) ≈ −
√

ε
(nB)
min |ε| − in|ε|, ν(ε) ≈ ν0, (B21)

which is in agreement with (104). When q approaches qbi

[i.e., ε → ε
(nB)
bi from below], both the scattering rate and the

density of states grow:

� ≈ −ε
(nB)
min

2

{
1 + in

2

ε
(nB)
min

ε
(nB)
bi − ε

}
,

ν(ε)

ν0
≈ ε

(nB)
min

ε
(nB)
bi − ε

.

(B22)

So, the scattering rate reaches its minimum at some ε =
ε

(nB)
dip ≡ ε

(nB)
min qdip, where

qdip = −21

16
,

1

τ (εdip)
= 27

8
nε

(nB)
min . (B23)
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