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Quasiparticle description of transition metal dichalcogenide nanoribbons
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An effective two-dimensional real-space model is developed to investigate the nature of charge distribution
in nanoribbons of transition metal dichalcogenides. Our description is based on a lattice relaxation endowed
tight-binding Hamiltonian with spin-orbit and Hubbard interactions, which is parameterized to describe
molybdenum disulfide lattices. As our main finding, we observed that electron-phonon coupling induces the
creation of quasiparticles such as polarons in the same fashion as observed in conducting polymers and graphene
nanoribbons. These similarities suggest that the charge transport in transition metal dichalcogenides can also
be mediated by quasiparticles, which is a fundamental aspect concerning the application of these structures in
electronics. We determine a range of possible electron-phonon coupling that correctly describes the system and
also the critical value where quasiparticle transport is present. Our findings may have profound consequences on
the understanding of the transport mechanism of transition metal dichalcogenides nanoribbons.
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One of the major challenges for contemporary optoelec-
tronic technology concerns the choice of semiconducting ma-
terials suitable for developing new high-performance devices.
A performance enhancement in the current state of the art for
these devices has been achieved by replacing conventional
semiconductor materials, such as silicon, with graphene [1].
However, its lack of a band gap can be a drawback, mostly
when it comes to low-power electronics [2]. Alternatively,
transition metal dichalcogenides (TMDCs), such as molyb-
denum disulfide (MoS2), a semiconducting 2D material with
sizable band gaps (around 1.8 and 1.3 eV for monolayer and
bulk MOS2 structures, respectively [3]), are promising candi-
dates for overcoming this problem. TMDCs not only present
a remarkable variety of possible applications, particularly
regarding optoelectronics, but they also present interesting
mechanical, chemical, and thermal properties [4,5]. Because
TMDCs are promising materials for application in nanoelec-
tronics and nanophotonics, the investigation of charge trans-
port and optical properties in these materials is of particular
importance.

Many works have been devoted to the understanding of
the electrical behavior of TMDCs [6]. Conductivity regimes
ranging from metallic to semiconducting are observed to
depend on the nature of the system as well as on external
conditions under which they are subjected [7]. Also, behaviors
as distinct as charge density waves and superconductivity
states have been reported in these materials [8–10]. In the
light of such a wide span of different phenomena, the main
question that arises concerns the most fundamental aspect
of the electronic transport, namely, the nature of the charge
carriers in these materials. By understanding the nature of
the transport, the transition between the different transport
regimes can be described and eventually explored. In this
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sense, although the literature is prolific when it comes to re-
porting useful effects of the charge transport, a comprehensive
description of the kind of species responsible for the transport
has not been carried out to date. By studying the properties
of such species, a deeper understanding of their effect can
be achieved. Although this kind of effort was recently carried
out for different excitations in TMDCs [11–13], the electronic
transport and the relation between charge and the lattice
degrees of freedom still require a more complete description.

Aspects regarding electric and optical properties are deeply
connected to both band structure and lattice properties of the
systems. This is because in this kind of solid-state system the
electronic and lattice degrees of freedom are strongly coupled
in a way similar to how they are in organic semiconducting
nanosystems [14–17]. Taking this analogy between organic
semiconductors and TMDCs one step further would inevitably
make one wonder whether quasiparticles such as polarons are
present in the latter case, as they are in the former. More
importantly, in terms of the physical parameters that describe
the systems, we should understand what the conditions are for
such a transport regime to arise. This is the specific question
tackled by the present paper. Here, we propose an effective
two-dimensional tight-binding model with lattice relaxation,
spin-orbit coupling, and Hubbard interactions in order to
describe the transport regime in monolayer nanoribbons of
TMDCs. A careful choice of parameters allows us to describe
MoS2 as the trial species, so that our results can be compared
to experimental ones. Nevertheless, it should be stressed that
our model is suitable for different species of the class.

Our approach is inspired by previous modification, carried
out by our own group [18,19], of the Su-Schrieffer-Heeger
(SSH) Hamiltonian [20,21] to investigate charge dynam-
ics in armchair graphene nanoribbons (AGNRs) [22,23]. In
that study, we conceived a two-dimensional version of the
SSH Hamiltonian with the inclusion of electric field. Even
though the hexagonal symmetry and the almost flat geometry

2469-9950/2019/99(3)/035405(7) 035405-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.035405&domain=pdf&date_stamp=2019-01-02
https://doi.org/10.1103/PhysRevB.99.035405


DA CUNHA, NETO, RIBEIRO JUNIOR, AND SILVA PHYSICAL REVIEW B 99, 035405 (2019)

that transition metal dichalcogenides nanoribbons (TMDCNs)
present makes them reasonably similar to AGNRs, important
additional modifications ought to be considered. First, we
have to note that, unlike AGNRs, TMDCNs’ unit cells con-
tain two different species: transition metals and chalcogens.
We therefore have to describe the model with two different
sublattices. Second, as half of the atoms are metals with
heavily loaded electronic clouds, Coulomb interactions are
expected to be important. For this reason, we considered on-
site and next-neighbor-site electron interactions by means of
the inclusion of an extended Hubbard model. Third, because
transition metals are heavy species, spin-orbit effects are
known to be important to the correct description of the system
[24]. Finally, TMDCNs are not exactly flat as AGNRs are. The
relative displacement, however, is negligible when compared
to the other dimensions of the system and can be effectively
considered by a suitable parametrization of the model, specif-
ically when choosing the desired electron-phonon coupling.
It should be noted that with this modeling we focus our in-
vestigation on isolated and pristine lattices to obtain a general
trend for the underlying quasiparticle properties in TMDCs.
In this perspective, the use of anharmonic oscillator terms
or the quantum-mechanical treatment of phonons is beyond
the scope of the present work, which intends to present a
clear interpretation of the physics in terms of the simplest
Hamiltonian describing the system.

A detailed description of the calculations and methodology
can be found in Appendix A. We describe the model Hamil-
tonian as H = Htb + Hlatt1 + Hlatt2 + HHubb + Hso, where

Htb = −
∑

〈i,j〉,s
(t0 − αηi,j )C†

i,sCj,s + H.c. (1)

is the tight-binding contribution.

Hlatt = 1

2

∑
〈i,j〉

K (ηi,j )2 + 1

2

∑
i

P 2
i

M
(2)

describes each sublattice. It should be noted that our approach
is a first-order approximation for the harmonic oscillator. As
such, our approximation uses an effective K value that is
parallel to the effective hopping term. Therefore, the K value
employed differs from the one in Ref. [25], for we explicitly
consider a single force constant as the Mo-S oscillator.

The electron-electron interactions are descried by the ex-
tended Hubbard model,

Hee = U
∑

i

(
C

†
i,↑Ci,↑ − 1

2

)(
C

†
i,↓Ci,↓ − 1

2

)

+V
∑
〈i,j〉

(ni − 1)(nj − 1). (3)

Finally, we describe the contribution of the spin-orbit interac-
tions by

Hso = i
∑

〈j,l〉,s,s ′
tsoζj,lC

†
j,sszCl,s ′ . (4)

The main goal of the present work is to investigate the
influence of the electron-phonon coupling constant on the sys-
tem’s behavior. In order to do so, we numerically simulate the

system under a wide span of possible values of this parameter.
The remaining constants were all extracted from the literature.
It should be stressed that our model is general and can be
parameterized to describe any TMDCN. However, in order to
obtain comparable values, we decided to choose the remaining
parameters to describe MoS2 nanoribbons in particular. The
parameters adopted here for the model Hamiltonian were

t0 = 1.1 eV [26], K = 13.25 eV/Å
2

[25], a = 3.17 Å [27],
U = 0.248 eV, V = 0.124 eV [28], tso = 0.102 eV [24], as
well as the masses of molybdenum and sulfur. Such values
were chosen in order to rescue the MoS2 band gap and are
consistent with the hopping and force constant parameters
obtained in the literature [25,26].

Due to the nature of the system, two initial aspects are
of special importance when it comes to the modeling of the
charge distribution in TMDCN, the first being the influence of
its size and the second being the value of the electron-phonon
coupling parameter. As for the former, the influence of both
the length and the width of the nanoribbons should be investi-
gated because if polarons are to arise (in analogy to AGNRs),
they might cover a large extension of the system, and an over-
lap between different parts of the same quasiparticle should
be avoided. Preliminary investigations concerning the size of
the system to be used should therefore be performed. The
latter aspect is also critical for our purposes. Quasiparticles
are known to result from the coupling between the degrees of
freedom of the electronic and lattice parts of the system. Thus,
since the actual value of the coupling parameter assumed by
the model is a reflection of the conditions to which the system
is subjected (as well as of its nature), a careful choice of α is
central to our description.

In order to minimize edge effects, we chose to investigate
the systems under periodic boundary conditions on the length
of the nanoribbons. Following this procedure, we performed
preliminary calculations (not shown here) by varying the
length of the nanoribbons for different width sizes and for
charged and uncharged nanoribbons. We chose the energy
band gap of the system as the property of interest for the
charge behavior description. Therefore, as criteria for de-
termining the most suitable length of the systems, we have
chosen the smallest possible nanoribbon from which a further
size increase would not lead to a change in the band gap value
keeping all the other parameters constant. These preliminary
calculations resulted in nanoribbons 20 sites long. This length
was kept constant during our analysis.

Besides length, the other fundamental geometric parameter
is the width of the nanoribbon. Such a dimension is of par-
ticular importance because it determines the aforementioned
confinement of the system’s wave function. The narrow rela-
tion between electronic and structural aspects of the system
is exploited in Fig. 1: we investigate the behavior of the
energy gap as a function of different electron-phonon coupling
values for different widths. Based on an analogy between the
nanoribbons families described for AGNRs [29], we have also
organized our results into different families, namely, 3p + 1
in Fig. 1(a), 3p + 2 in Fig. 1(b), and 3p in Fig. 1(c). Here,
as originally, p is an integer that defines the rule of formation
of each particular width. Figure 1(a) therefore presents widths
of 4, 7, 10, 13, and 16 sites; Fig. 1(b) presents widths of 5,
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FIG. 1. Energy gap as a function of the electron-phonon coupling
constant for the different families defined according to [29]. (a) The
3p + 1 family, (b) 3p + 2 family, and (c) 3p family. The diagram
above each family is an example of the narrowest representative of
that family. In it, the Mo sublattice is represented by the blue atoms
(sublattice A), whereas S species are yellow (sublattice B).

8, 11, 14, and 17 sites, and Fig. 1(c) presents widths of 6, 9,
12, 15, and 18 sites. Note that in the cases of families 3p + 1
[Fig. 1(a)] and 3p [Fig. 1(c)], higher widths correspond to
smaller band gaps, as is the trend suggested by the smaller
gaps in asymptotic sheets. Not only do the 3p + 2 nanorib-
bons, on the other hand, present the inverse behavior, but it is
also clear that similar widths are associated with somewhat
smaller band gaps when compared to their counterparts in
other families of similar sizes. It should be noted that 3p + 2
is the same family that in AGNRs presents a quasimetal-
lic behavior. Here, besides possessing a nonvanishing band
gap even for narrow nanoribbons, one can see another very
different behavior when compared to the other families: the
dispersion among the curves that correspond to each width is
much smaller, thus implying that, for this family, the width
aspect is less important when compared to those of 3p and
3p + 1.

As a final important note one can see that, regardless of
the particular nanoribbon studied, the dependence of the band
gap on the electron-phonon constant is not larger than 0.05 eV.
As the size of the nanoribbon can lead to influences twice as
large, we can conclude that there exists a considerable range
of possible electron-phonon coupling constants that correctly
describes the system. As a matter of fact, no such thing as a
“correct” value of α can be uniquely obtained, for different
conditions to which the system is subjected should lead to
slightly different band gaps. For instance, some theoretical
results based on first-principles calculations have pointed to
electron-phonon coupling values ranging in the interval 0.4–
2.5 eV/A for pristine MoS2 layers [30,31]. Rather, all one
can think about is a correct range of values. Therefore, it
makes sense to discuss the behavior of any particular electron-
phonon coupling value within this correct range.

From the results of Fig. 1 and the experimental value of
the band gap we can now explicitly discuss the dependence
of the band gap on the length for a given α consistent
with a reasonable range. This is important because, as pre-
viously mentioned, the band gap was observed to be much

FIG. 2. Energy gap as a function of the nanoribbon width for the
three families.

more dependent on the width than it was on the coupling
constant. Figure 2 shows the dependence of the band gap
on the nanoribbon width for the three families with α =
1.2 eV/Å. Preliminary calculations have shown that the
general trend remained consistent for other electron-phonon
coupling values. One can readily see that in the 3p and 3p + 1
families the band gaps decrease as the width increases. As
already mentioned, 3p + 2 family representatives show the
opposite behavior while presenting a somewhat smaller gap
value. The most interesting and useful feature of Fig. 2 is
the asymptotic behavior suggested by the curves for large
values of N . As the expected energy gap for transition metal
dichalcogenides nanoribbons is around 1.6 eV [32], we can
conclude that, indeed, the adopted electron-phonon coupling
constant is accurate enough to use with our model since this
was roughly the limiting value obtained for all the families. As
an additional advantage, due to its asymptotic behavior, Fig. 2
also allows us to understand which nanoribbon size should be
used if one desires to treat the system as a two-dimensional
infinite sheet. Finally, because the considerable difference
in the band gap should have consequences for the charge
behavior, the results of Fig. 2 encouraged us to further discuss
results related to charge distribution for both the broadest and
narrowest nanoribbons. Up until this point, we have conducted
a thorough investigation of all possible sizes between 4 and
18 sites and decided to show the results relative to these two
limits. As the asymptotic behaviors of the three families for
large N are similar, considering any of the largest nanoribbons
of 3p, 3p + 1, or 3p + 2 makes little difference. We take the
broadest of them all, N = 18 for the 3p family. The behavior
of narrow nanoribbons, on the other hand, is distinct. In this
case, we simply chose to present the results of the smallest
one, N = 4. This is a representative of the 3p + 1 family,
so that by making this choice, we are showing results of the
two comparable families, avoiding peculiarities of 3p + 2 that
could introduce effects not necessarily caused by the width
itself.

Using a α value consistent with the results from the band
gap calculation and the width sizes determined from Fig. 2,
we proceed to the investigation of the charged system. We
simulate the extraction of one electron from the lattice, thus
resulting in a positively charged carrier. Figures 3 and 4
summarize the main result of this work: we investigated the
resulting charge carriers for different electron-phonon cou-
plings for N = 4 and N = 18, respectively (a representative
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FIG. 3. Lattice distortion for several different electron-phonon
(α) values in N = 4 TMDCN.

of the 3p + 2 family, N = 5, is presented in Appendix B). The
color pattern describes the charge distortion of the system,
and each adjacent panel consists of a distinct electron-phonon
coupling constant value. As the system is charged, it is the
presence of the electron-phonon coupling that associates the
lattice distortion with the accumulation of the net charge over
the very region of the localized quasiparticle.

Figure 3 represents the narrowest nanoribbon, i.e., N = 4.
For small electron-phonon coupling values, one can clearly
see that the lattice distortion is evenly spread throughout the
lattice length. This is consistent with the expected uncoupled
degrees of freedom in the limiting case, in which the charge
is rigorously indifferent to any geometrical property. As the
electron-phonon constant value increases, a higher localized
lattice distortion takes place. Although it is clear that a smooth
localization process is in action, it is still possible to identify
α = 0.9 eV/Å (also observed by the inverse participation ratio
shown in the Appendix B) as the critical electron-phonon cou-
pling value in the sense that smaller couplings are associated
with a somewhat dispersed distortion, whereas higher values
yield lattice distortion typical of quasiparticles. As a matter of
fact, a careful analysis of the distortion profile together with
that of the charge density one (shown in Appendix B) allows
one to conclude that quasiparticles such as polarons are also
present in TMDCNs. This fact has profound consequences for
the understanding of the transport mechanism as well as its
properties, which are highly dependent on electron-electron
and spin-orbit coupling, as shown in Appendix B. Importantly,
scanning tunnel microscope topography and constant-current
(dI/dV ) maps can be used to study charge localization as
performed in Ref. [33] for graphene nanoribbons. This might
be a suitable experimental setup that could be employed to
verify our results.

The lattice displacement of wider nanoribbons is
presented in Fig. 4, which considers N = 18, for different
electron-phonon constants. In this case, as the transition

FIG. 4. Lattice distortion in N = 18 TMDCN for the electron-
phonon constant (a) α = 0.4, (b) 0.5, and (c) 0.6 eV/Å.

between localization regimes was observed to be much more
abrupt, we decided to focus on only three values of α. In
order to better analyze the details of the simulations, we
included the nanoribbon in the top part of each panel with
the associated projection of the distortion in the bottom.
Figure 4(a) represents the α = 0.4 eV/Å case, in which the
charge is delocalized. The color pattern is clear in showing
that, although a positive charge is included in the lattice, it
responds with an evenly spaced distortion on the edges of the
nanoribbons. Therefore, instead of creating a quasiparticle,
this parametrization gave rise to only edge states, which are
common features in TMDCNs [7]. Actually, by analyzing
the projections, it can be noted that such edge states remain
present in the system regardless of its coupling degree. The
behavior of the system subjected to the critical electron-
phonon value of α = 0.6 eV/Å is depicted in Fig. 4(b). Note
that, in this case, the evenly displaced distortion at the left
edge of the figure has changed, giving place to a more pro-
nounced distortion around its center, i.e., near 8 Å. By further
increasing the coupling between the charge and lattice to α =
1.0 eV/Å, we can see a very localized structure that gathers
most of the extra charge included in the system around a few
sites. This is the signature of a small polaron. We can therefore
conclude that in studying the charge transport in TMDCNs,
the quasiparticle picture should be taken into account. The po-
laron appears at a different edge and at a different site for each
independent simulation. It is a spontaneous symmetry break
induced in the self-consistent calculation by the excess of
charge, as would happen to any polaron in other systems. For
the sake of comparison, in Fig. 4 all nanoribbons have been
translated or rotated by 180◦ for visually the same position.
Such a presentation allows us to better compare the impact of
the electron-phonon coupling on the lattice distortions.

In summary, we developed an effective two-dimensional
model to investigate the behavior of transition metal
dichalcogenide nanoribbons. Such a model includes spin-orbit
coupling, electron-electron interactions, and, most impor-
tantly, the coupling between the electronic and lattice parts of
the system. As the latter parameter could be used to describe
the system under different external conditions, we simu-
lated the system subjected to a wide span of electron-phonon
coupling values. We were able to obtain critical values of such
a parameter that gives rise to either charge delocalization, or,
alternatively, localized charge distortion. Besides edge states,
which were observed to be present regardless of the coupling
degree, we could see that for electron-phonon coupling
constants higher than the critical value a quasiparticle with
polaron characteristics arises. This aspect is fundamental
because it shows that the quasiparticle picture ought to be
considered when describing electronic transport in TMDCNs.
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FIG. 5. Schematic structure of the TMDC nanoribbons. The
yellow species represents the chalcogens, and the green atoms corre-
spond to the transition metals.

APPENDIX A: METHODOLOGY

Our model describes transition metal dichalcogenides by
considering an effective two-dimensional honeycomb lattice
consisting of two sublattices (Fig. 5): one related to the
chalcogens and the other to the transition metal. The model
is completely general in the sense that the correct choice of
its parameters allows one to describe different specific TMDC
nanoribbons.

Figure 5 represents the simulated system. One can see that
our model considers each metal atom directly linked to the
chalcogen sites. The chalcogen sublattice is thus constructed
in such a way to model the original system while maintaining
the honeycomb structure of the model. This is accomplished
by the determination of effective masses and elastic constants.

The system’s electrons are quantumly treated within a sec-
ond quantization approach, whereas the lattice is classically
considered. These two realms are connected by means of
the electron-phonon coupling term α, which includes lattice
relaxation in the hopping integral of the system in a first-order
expansion as follows:

ti,j = t0 − αηi,j . (A1)

Here, t0 is the hopping term adopted in conventional tight-
binding models. Our model clearly goes beyond this approx-
imation by making the electronic effects dependent on the
lattice distortions, thus allowing for a more realistic behavior
of the simulated system where ηi,j is the variation of the bond
distance between sites i and j .

The model Hamiltonian is composed of the following
terms: Htb, the tight-binding Hamiltonian with relaxation;
Hlatt1 and Hlatt2, each corresponding to either the metal or
chalcogen sublattice; HHubb, which includes electronic cor-
relation through extended Hubbard terms; and Hso, which
includes the spin-orbit coupling.

The tight-binding part of the Hamiltonian is given by

Htb = −
∑

〈i,j〉,s
(t0 − αηi,j )C†

i,sCj,s + H.c. (A2)

Here, Ci,s is the annihilation operator of an s spin π electron
in the ith site, and C

†
j,s is the corresponding creation operator

in the j th site.
Each sublattice is classically treated in a harmonic approx-

imation. By changing the suitable parameters, each one is
described as

Hlatt(1 or 2) = 1

2

∑
〈i,j〉

K (ηi,j )2 + 1

2

∑
i

P 2
i

M
. (A3)

K is an effective Hooke-type elastic constant associated with
the interatomic σ bonds considered in a harmonic approxima-
tion. Pi represents the momentum of each site, and M is its
mass. The last term stands for the kinetic energy.

We include electron-electron interactions within an ex-
tended Hubbard formalism:

Hee = U
∑

i

(
C

†
i,↑Ci,↑ − 1

2

)(
C

†
i,↓Ci,↓ − 1

2

)

+V
∑
〈i,j〉

(ni − 1)(nj − 1). (A4)

In this expression ni = C
†
i,↑Ci,↑ + C

†
i,↓Ci,↓. U corresponds to

the on-site electron-electron Coulombic interaction, and V is
the neighboring-site electron-electron interactions.

Finally, the presence of the heavy metal species leads us to
include the spin-orbit coupling:

Hso = i
∑

〈j,l〉,s,s ′
tsoζj,lC

†
j,sszCl,s ′ . (A5)

The l index spans all the next-nearest neighbor of atom j . ζj,l

assumes a value of 1 for counterclockwise spin-orbit interac-
tion and −1 for clockwise spin-orbit interaction provided j is
in sublattice A. Conversely, if j pertains to B, the parameter
is 1 for clockwise and −1 for the counterclockwise sense. sz

represents the Pauli matrix, and tso is the spin-orbit hopping
constant. In what follows, it is convenient to define the indices
i ′ and i ′′: i ′ specifies the neighboring sites of site i, and i ′′ runs
over the next-nearest-neighbor sites of i.

Considering the total Hamiltonian H = Htb + Hlatt1 +
Hlatt2 + Hee + Hso, we carry out the calculations in a self-
consistent way. Starting from an initial set of coordinates
{ηi,j } and given the values of t0, K , α, tso, U , and V ,
one can build a stationary electronic Hamiltonian. Perform-
ing a Hartree-Fock approximation for the electronic part of
this total Hamiltonian leads us to the following eigenvalue
problem, whose diagonalization provides the corresponding
eigenvectors:

Ekψk,s (i) = −
∑

i ′
[ti,i ′ + V τs (i, i ′)]ψk.s (i ′)

+
[
U

(
ρ−s (i) − 1

2

)
+V

∑
i ′

(∑
s ′

ρs ′ (i ′) − 1

)]

×ψk,s (i) + sgn(s) itso
∑
i ′′

ζi,i ′′ψk,s (i ′′), (A6)
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where

ρs (i) =
∑

k

′
ψ∗

k,s (i)ψk,s (i), (A7)

τs (i, i ′) =
∑

k

′
ψ∗

k,s (i)ψk,s (i ′), (A8)

and sgn(↑) = +1, sgn(↓) = −1. The prime means that sums
are carried out only over occupied states.

With the eigenvectors we make the Slater determinant |�〉
to evaluate expectation values. This is crucial here because the
lattice is solved classically by means of the Euler-Lagrange
equations. Therefore, in order to take lattice effects into
account, one needs to obtain the expectation value of the
system’s Lagrangian, which is carried out using the wave
function obtained through Eq. (A6) above and results in

〈�|L|�〉 = 1

2

∑
ij

P 2
ij

M
− 1

2

∑
〈i,j〉

K (ηi,j )2

+
∑

〈i,j〉,s
(t0 − αηij )〈�|C†

i,sCj,s + H.c.|�〉.

For the stationary solution,

∂〈�|L|�〉
∂ηi,j

= 0. (A9)

This leads to

ηi,j = − α

K

[∑
k,s

′
ψ∗

k,s (i)ψk,s (j ) + c.c.

]
. (A10)

It should be noted that the electronic and lattice parts of the
system are coupled by Eqs. (A6) and (A10).

One can finally solve the Euler-Lagrange equation for the
stationary case to obtain ηij to be used in the self-consistent
procedure. A solution, self-consistent for the degrees of free-
dom of both electrons and the lattice, is obtained by con-
sidering a set {ηi,j }, calculating the corresponding set {ψk,i},
and solving to obtain new values {ηi,j } until convergence is
achieved.
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FIG. 6. Inverse participation ratio (IPR) as a function of the
electron-phonon coupling constant α. The dashed line represents a
critical value of IPR. Above it a polaron is present in the system.
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FIG. 7. IPR as a function of the spin-orbit coupling parameter
tso for several electron-correlation degrees expressed by the Hubbard
constant UB : 0, 0.5, 0.75, and 1.00 eV. The arrow shows the direction
of increasing electron-electron interaction.

APPENDIX B: SUPPLEMENTARY DATA

We use the inverse participation ratio (IPR) as a tool to
quantify the formation of a quasiparticle. Indeed, such a
quantity is a measurement of the charge localization degree
in the system and is defined as

IPR =
∑

i,s |ρs (i)|4
(
∑

i,s |ρs (i)|2)2
. (B1)

From Fig. 6 we observe a critical IPR value of 0.24,
above which the described system presents polarons and,
correspondingly, below which the charge is considered to be
delocalized. These results are relative to N = 4, but other
widths presented qualitatively similar results. Figure 6 rep-
resents the localization pattern as a function of the electron-
phonon coupling constant. One can see that the critical value
of α is 0.9 eV/Å. This means that simulations that considered
values higher than this one typically yielded a polaron. Values
of 0.8 and lower corresponded to the delocalization of the
charge. This corresponds to a phase transition in the behavior
of the charge distribution in TMDCNs, as suggested by Fig. 6.

Figure 7 corresponds to the dependence of IPR on the
spin-orbit coupling term for different sets of electron-electron
correlations. This calculation was also performed for N =
4, and again, different widths presented similar behavior,
albeit with quantitative differences. A general trend that can
be observed is that typically an increase in spin-orbit cou-
pling causes a decrease in the charge localization degree.

FIG. 8. (a) Charge density and (b) lattice distortion associated
with a polaron in a transition metal dichalcogenide nanoribbon with
width N = 4.
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FIG. 9. Lattice distortion for several different electron-phonon
constant α values in N = 5 nanoribbon, i.e., a representative of the
3p + 2 family of TMDCN.

A spin-orbit parameter greater than 0.15 resulted in charge
delocalization regardless of the electron correlation values.
Another interesting feature is that increasing electron-electron
interaction acted towards increasing the localization of the
system, favoring the formation of polarons.

Figure 8(a) presents a zoom of the charge density profile
corresponding to the simulation shown in Fig. 3 of the main
text [also zoomed here is the corresponding lattice distortion
in Fig. 8(b)]. The extra positive charge is concentrated in the
edges, while some negative charge is spread mainly through
the middle. The polaron is localized in this edge, as can
be seen by both charge localization and lattice deformation
around the same region. One can see that, although the same
information is conveyed by both panels, in the charge density
profile it is considerably more difficult to visualize than in the
lattice displacement.

Figure 9 shows the charge localization behavior of a
TMDC nanoribbon with a width of 5 sites, i.e., of the 3p + 2
family, for different α values. One can see that the overall
behavior is remarkably similar to the one shown in Fig. 3 of
the main text. Different families present different quantitative
properties while preserving the same trend.

[1] K. Kim, J. Y. Choi, S. H. C. T. Kim, and H. J. Chun, Nature
(London) 479, 338 (2011).

[2] X. Pan, W. Qiu, and E. Skafidas, Sci. Rep. 6, 36167 (2016).
[3] A. Kumar and P. K. Ahluwalia, Eur. Phys. J. B 85, 186 (2012).
[4] J. Wilson and A. Yoffe, Adv. Phys. 18, 193 (1969).
[5] E. C. A. Ayari, O. Ogundadegbe, and M. S. Fuhrer, J. Appl.

Phys. 101, 014507 (2007).
[6] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A.

Kis, Nat. Rev. Mater. 2, 17033 (2017).
[7] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis,

Jonathan N. Coleman, and Michael S. Strano, Nat. Nanotech-
nol. 7, 699 (2012).

[8] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and
E. Tutiš, Nat. Mater. 7, 960 (2008).

[9] J. Wilson, F. D. Salvo, and S. Mahajan, Adv. Phys. 24, 117
(1975).

[10] A. H. Castro Neto, Phys. Rev. Lett. 86, 4382 (2001).
[11] M. Trushin, M. O. Goerbig, and W. Belzig, Phys. Rev. Lett. 120,

187401 (2018).
[12] G. Moody, K. Tran, X. Lu, T. Autry, J. M. Fraser, R. P. Mirin, L.

Yang, X. Li, and K. L. Silverman, Phys. Rev. Lett. 121, 057403
(2018).

[13] A. Politano, G. Chiarello, B. Ghosh, K. Sadhukhan, C.-N. Kuo,
C. S. Lue, V. Pellegrini, and A. Agarwal, Phys. Rev. Lett. 121,
086804 (2018).

[14] W. F. da Cunha, L. A. Ribeiro Junior, R. Gargano, and G. M. e
Silva, Phys. Chem. Chem. Phys. 16, 17072 (2014).

[15] W. F. da Cunha, L. A. R. Junior, A. L. de Almeida Fonseca, R.
Gargano, and G. M. e Silva, Carbon 91, 171 (2015).

[16] W. Wang, C. Yang, L. Bai, M. Li, and W. Li, Nanomaterials 8,
74 (2018).

[17] S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F.
Schedin, R. R. Nair, E. W. Hill, D. W. Boukhvalov, M. I.

Katsnelson, R. A. W. Dryfe, I. V. Grigorieva, H. A. Wu, and
A. K. Geim, Nature (London) 516, 227 (2014).

[18] G. M. e Silva, Phys. Rev. B 61, 10777 (2000).
[19] P. H. de Oliveira Neto, J. F. Teixeira, W. F. da Cunha, R.

Gargano, and G. M. e Silva, J. Phys. Chem. Lett. 3, 3039 (2012).
[20] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,

1698 (1979).
[21] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B 22,

2099 (1980).
[22] W. Ferreira da Cunha, P. H. de Oliveira Neto, A. Terai, and G.

Magela e Silva, Phys. Rev. B 94, 014301 (2016).
[23] P. H. de Oliveira Neto and T. V. Voorhis, Carbon 132, 352

(2018).
[24] S. Konschuh, M. Gmitra, and J. Fabian, Phys. Rev. B 82,

245412 (2010).
[25] A. Molina-Sánchez and L. Wirtz, Phys. Rev. B 84, 155413

(2011).
[26] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.

Lett. 108, 196802 (2012).
[27] F. Zahid, L. Liu, Y. Zhu, J. Wang, and H. Guo, AIP Adv. 3,

052111 (2013).
[28] E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón, and F.

Guinea, Phys. Rev. B 88, 075409 (2013).
[29] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie,

Phys. Rev. Lett. 99, 186801 (2007).
[30] T. Gunst, T. Markussen, K. Stokbro, and M. Brandbyge, Phys.

Rev. B 93, 035414 (2016).
[31] K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev.

B 85, 115317 (2012).
[32] S.-L. Xiao, W.-Z. Yu, and S.-P. Gao, Surf. Sci. 653, 107 (2016).
[33] D. J. Rizzo, G. Veber, T. Cao, C. Bronner, F. Z. Ting Chen,

H. Rodriguez, S. G. Louie, M. F. Crommie, and F. R. Fischer,
Nature (London) 560, 204 (2018).

035405-7

https://doi.org/10.1038/nature10680
https://doi.org/10.1038/nature10680
https://doi.org/10.1038/nature10680
https://doi.org/10.1038/nature10680
https://doi.org/10.1038/srep36167
https://doi.org/10.1038/srep36167
https://doi.org/10.1038/srep36167
https://doi.org/10.1038/srep36167
https://doi.org/10.1140/epjb/e2012-30070-x
https://doi.org/10.1140/epjb/e2012-30070-x
https://doi.org/10.1140/epjb/e2012-30070-x
https://doi.org/10.1140/epjb/e2012-30070-x
https://doi.org/10.1080/00018736900101307
https://doi.org/10.1080/00018736900101307
https://doi.org/10.1080/00018736900101307
https://doi.org/10.1080/00018736900101307
https://doi.org/10.1063/1.2407388
https://doi.org/10.1063/1.2407388
https://doi.org/10.1063/1.2407388
https://doi.org/10.1063/1.2407388
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nmat2318
https://doi.org/10.1038/nmat2318
https://doi.org/10.1038/nmat2318
https://doi.org/10.1038/nmat2318
https://doi.org/10.1080/00018737500101391
https://doi.org/10.1080/00018737500101391
https://doi.org/10.1080/00018737500101391
https://doi.org/10.1080/00018737500101391
https://doi.org/10.1103/PhysRevLett.86.4382
https://doi.org/10.1103/PhysRevLett.86.4382
https://doi.org/10.1103/PhysRevLett.86.4382
https://doi.org/10.1103/PhysRevLett.86.4382
https://doi.org/10.1103/PhysRevLett.120.187401
https://doi.org/10.1103/PhysRevLett.120.187401
https://doi.org/10.1103/PhysRevLett.120.187401
https://doi.org/10.1103/PhysRevLett.120.187401
https://doi.org/10.1103/PhysRevLett.121.057403
https://doi.org/10.1103/PhysRevLett.121.057403
https://doi.org/10.1103/PhysRevLett.121.057403
https://doi.org/10.1103/PhysRevLett.121.057403
https://doi.org/10.1103/PhysRevLett.121.086804
https://doi.org/10.1103/PhysRevLett.121.086804
https://doi.org/10.1103/PhysRevLett.121.086804
https://doi.org/10.1103/PhysRevLett.121.086804
https://doi.org/10.1039/C4CP02184C
https://doi.org/10.1039/C4CP02184C
https://doi.org/10.1039/C4CP02184C
https://doi.org/10.1039/C4CP02184C
https://doi.org/10.1016/j.carbon.2015.04.065
https://doi.org/10.1016/j.carbon.2015.04.065
https://doi.org/10.1016/j.carbon.2015.04.065
https://doi.org/10.1016/j.carbon.2015.04.065
https://doi.org/10.3390/nano8020074
https://doi.org/10.3390/nano8020074
https://doi.org/10.3390/nano8020074
https://doi.org/10.3390/nano8020074
https://doi.org/10.1038/nature14015
https://doi.org/10.1038/nature14015
https://doi.org/10.1038/nature14015
https://doi.org/10.1038/nature14015
https://doi.org/10.1103/PhysRevB.61.10777
https://doi.org/10.1103/PhysRevB.61.10777
https://doi.org/10.1103/PhysRevB.61.10777
https://doi.org/10.1103/PhysRevB.61.10777
https://doi.org/10.1021/jz301247u
https://doi.org/10.1021/jz301247u
https://doi.org/10.1021/jz301247u
https://doi.org/10.1021/jz301247u
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.94.014301
https://doi.org/10.1103/PhysRevB.94.014301
https://doi.org/10.1103/PhysRevB.94.014301
https://doi.org/10.1103/PhysRevB.94.014301
https://doi.org/10.1016/j.carbon.2018.02.062
https://doi.org/10.1016/j.carbon.2018.02.062
https://doi.org/10.1016/j.carbon.2018.02.062
https://doi.org/10.1016/j.carbon.2018.02.062
https://doi.org/10.1103/PhysRevB.82.245412
https://doi.org/10.1103/PhysRevB.82.245412
https://doi.org/10.1103/PhysRevB.82.245412
https://doi.org/10.1103/PhysRevB.82.245412
https://doi.org/10.1103/PhysRevB.84.155413
https://doi.org/10.1103/PhysRevB.84.155413
https://doi.org/10.1103/PhysRevB.84.155413
https://doi.org/10.1103/PhysRevB.84.155413
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1063/1.4804936
https://doi.org/10.1063/1.4804936
https://doi.org/10.1063/1.4804936
https://doi.org/10.1063/1.4804936
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.1103/PhysRevLett.99.186801
https://doi.org/10.1103/PhysRevLett.99.186801
https://doi.org/10.1103/PhysRevLett.99.186801
https://doi.org/10.1103/PhysRevLett.99.186801
https://doi.org/10.1103/PhysRevB.93.035414
https://doi.org/10.1103/PhysRevB.93.035414
https://doi.org/10.1103/PhysRevB.93.035414
https://doi.org/10.1103/PhysRevB.93.035414
https://doi.org/10.1103/PhysRevB.85.115317
https://doi.org/10.1103/PhysRevB.85.115317
https://doi.org/10.1103/PhysRevB.85.115317
https://doi.org/10.1103/PhysRevB.85.115317
https://doi.org/10.1016/j.susc.2016.06.011
https://doi.org/10.1016/j.susc.2016.06.011
https://doi.org/10.1016/j.susc.2016.06.011
https://doi.org/10.1016/j.susc.2016.06.011
https://doi.org/10.1038/s41586-018-0376-8
https://doi.org/10.1038/s41586-018-0376-8
https://doi.org/10.1038/s41586-018-0376-8
https://doi.org/10.1038/s41586-018-0376-8



