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Symmetry, spin-texture, and tunable quantum geometry in a WTe2 monolayer
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The spin orientation of electronic wave functions in crystals is an internal degree of freedom, typically
insensitive to electrical knobs. We argue from a general symmetry analysis and a k · p perspective, that
monolayer 1T ′-WTe2 possesses a gate-activated canted spin texture that produces an electrically tunable bulk
band quantum geometry. In particular, we find that due to its out-of-plane asymmetry, an applied out-of-plane
electric field breaks inversion symmetry to induce both in-plane and out-of-plane electric dipoles. These in-turn
generate spin-orbit coupling to lift the spin degeneracy and enable a bulk band Berry curvature and magnetic
moment distribution to develop. Further, due to its low symmetry, Berry curvature and magnetic moment in
1T ′-WTe2 possess a dipolar distribution in momentum space, and can lead to unconventional effects such as
a current induced magnetization and quantum nonlinear anomalous Hall effect. These render 1T ′-WTe2 a rich
two-dimensional platform for all-electrical control over quantum geometric effects.
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I. INTRODUCTION

Structure and material property/functionality have an in-
timate relationship. A striking example is monolayer WTe2

where a structural change from 1T to a distorted 1T ′ struc-
ture induces a topological phase transition from trivial to
Z2 topological phase [1]. Recently realized in experiment
[2–4], the distorted 1T ′-WTe2 monolayer possesses a large
bulk band gap ∼0.055 eV [2], and helical edge modes that
mediate robust edge conduction [3,4] characteristic of a robust
quantum spin Hall state.

Here we argue that, aside from determining the band topol-
ogy, the distorted crystal structure of 1T ′-WTe2 [Figs. 1(a)–
1(c)] also enables unusual bulk band quantum geometry and
spin physics to be accessed and controlled. By developing
a low-energy k · p model from symmetry analysis, we find
that when an out-of-plane electric field E⊥ is applied, spin-
degeneracy is lifted [Figs. 1(d) and 1(e)] by inducing both
in-plane as well as out-of-plane spin orientations [Figs. 2(a)
and 2(b)]. While in-plane spin orientations are synonymous
with an out-of-plane inversion symmetry (IS) breaking, out-
of-plane spin orientations are less common and typically weak
[5]. As we discuss, 1T ′-WTe2 bucks this expectation: even
though E⊥ is out-of-plane, the nonaligned outer Te atoms
[Fig. 1(c)] enable an in-plane electric dipole to develop and
a strong out-of-plane spin orientation to be induced.

Crucially, applied E⊥ induces Berry curvature as well as
a magnetic moment. The Berry curvature value is determined
by an interplay between strong atomic (spin-selective)
interorbital mixing of the 1T ′-WTe2 and E⊥ induced terms,
and it exhibits a characteristic anisotropic distribution; the
magnetic moment mirrors this behavior (see Fig. 6). While
an electrically tunable Berry curvature can be readily realized
in bilayer systems [6] due to an electric control over layer
degrees of freedom, electrical tunability in monolayer systems
is considerably more difficult. Berry curvature is realizable

in 1T ′-WTe2 as a direct result of the asymmetric nonaligned
outer Te atoms.

Further, due to the low symmetry of 1T ′-WTe2 distorted
crystal structure, the induced Berry curvature and magnetic
moment also possess an asymmetry characterized by a dipolar
distribution in reciprocal space. As a result, shifts in the
distribution function (e.g., induced when a dissipative charge
current is flowing, j) enable a net Berry flux and a net out-
of-plane magnetization, Mz, to develop (Fig. 4). The latter
corresponds to a direct (linear) magnetoelectric effect Mz =∑

i α̃ziji (i = x, y), where α̃zi characterizes the strength of
the magnetoelectric effect; the former mediates a quantum
nonlinear anomalous Hall effect [7].

Both of these are intimately tied to the low symmetry of
gated 1T ′-WTe2; they do not appear in rotationally symmetric
systems. They constitute striking experimental signatures of
the tunable quantum geometry (induced Berry curvature and
magnetic moment) of 1T ′-WTe2, as well as the direct impact
that its distorted structure has on its material response. Using
available parameters for 1T ′-WTe2, we anticipate a sizable
Mz that can be readily probed for, e.g., using Kerr effect
microscopy [8]. 1T ′-WTe2 provides a compelling venue
to manipulate spins and magnetic moments in a tunable
two-dimensional material. Out-of-plane spin orientations
are particularly useful since they may enable us to couple
to out-of-plane spins necessary for high-density magnetic
applications [9,10].

II. SYMMETRY ANALYSIS AND k · p MODEL

We begin by analyzing the band structure of monolayer
1T ′-WTe2 in the presence of an applied out-of-plane electric
field E⊥ [Fig. 1(a)]. In doing so, we will employ a k · p
method based on the underlying symmetries of the material
for, e.g., mirror symmetry about the xz mirror plane [dashed
line in Fig. 1(b)], time-reversal symmetry (TRS), and (broken)
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FIG. 1. (a,b) Crystal structure for a 1T ′-WTe2 monolayer pos-
sesses a particularly low symmetry with (b) a single mirror plane
black dashed line (primitive cell denoted by a red box). (c) A net
in-plane dipole moment dx can be induced by a perpendicular electric
field E⊥ as a result of nonalignment of the Te atoms on the top
and bottom layers. (d,e) The electronic band structure of a bulk
1T ′-WTe2 monolayer along the ky direction when a perpendicular
electric field is applied possesses [zoom-in, (e)] spin-split conduction
and valence bands near the gap opening. Solid and dashed lines are
the band structure from the six-band (SBD) and the effective four-
band heff (k) models, respectively. Parameters used: for the pristine
part we used values listed in Table III [11]. For the electric-field-
induced part, we used αx,y = λ = δx = 0, and δz = 0.025 eV as an
illustration.

inversion symmetry (IS). For completeness, our analysis takes
into account the three relevant atomic orbitals (ψ1,2,3) and
two spin states (↑,↓) that contribute to the states near the �

point and the gap opening [Fig. 1(d)], as revealed by ARPES
measurements [2] as well as first-principles calculations
[1,12–14]. This produces a six-band k · p description (SBD);
see the Appendix [11] for a detailed account of the sym-
metry analysis of these orbitals and spin operators and the
symmetry-allowed terms in the SBD description.

Importantly, while E⊥ = 0 produces a spin-degenerate
band structure [1,2,12–14], when E⊥ �= 0 (e.g., induced by a
proximal gate) we find the bands become spin-split [Fig. 1(d)].
As shown in Fig. 1(d), this is particularly relevant away from
the � point, where the splitting becomes pronounced close to
the band gap [gray shaded region, Figs. 1(d) and 1(e)]. These
are characterized by states �τξ with higher (ξ = +1) or lower
(ξ = −1) energies as shown in Fig. 1(e), and τ = ±1 corre-
spond to the conduction and valence bands. As we will see,
the splitting induced by E⊥ drives a range of spin behavior.

At low carrier densities typical for 1T ′-WTe2 devices [4],
the electronic and spin behavior is dominated by low-energy
excitations around the band gap in the four bands [Fig. 1(e)].
To compactly illustrate the physics, we develop a simple ef-
fective four-band model using the basis {ψc↑, ψv↑, ψc↓, ψv↓}
in the regime around the gap opening (see the gray region).
This is obtained by performing a Löwdin partitioning (see
[11]) of the bands in Fig. 1(d), and it can be expressed as
heff (k) = h0(k) + h1(k). Here h0(k) describes the electronic

behavior in pristine 1T ′-WTe2 (E⊥ = 0):

h0(k) = ε̄k +

⎛
⎜⎜⎝

mk v+
k 0 0

−v−
k −mk 0 0

0 0 mk v−
k

0 0 −v+
k −mk

⎞
⎟⎟⎠, (1)

where ε̄k = (εck + εvk )/2, mk = (εck − εvk )/2, and v±
k =

±vxkx + ivyky represents the strong spin-selective atomic
orbital coupling (sharing the same spin), while εck and εvk
are diagonal parts for the conduction and valence bands, cap-
turing their energy offsets and effective masses [11]. We note
that h0(k) is simply a tilted Bernevig-Hughes-Zhang (BHZ)
Hamiltonian [15] that describes the spin-degenerate bands in
pristine 1T ′-WTe2; here the tilt arises from large effective-
mass differences between the conduction and valence bands
(see Table III [11]).

On the other hand, h1(k) = hZ (k) + hR (k) captures the
electric-field-induced spin-orbit couplings that are allowed by
symmetry,

hZ (k) =

⎛
⎜⎝

λky iδz 0 0
−iδz λky 0 0

0 0 −λky −iδz

0 0 iδz −λky

⎞
⎟⎠,

hR (k) =

⎛
⎜⎝

0 0 α−
k iδx

0 0 iδx α−
k

α+
k −iδx 0 0

−iδx α+
k 0 0

⎞
⎟⎠, (2)

where we have grouped the electric-field-induced spin-orbit
coupling terms into hZ (k) and hR (k) in order to highlight
the out-of-plane and in-plane spin orientations they induce,
respectively (see Fig. 2). Here α±

k = ±iαxkx + αyky , δx,z

are k-independent coupling terms, and λky is a k-dependent
term that can induce out-of-plane spin orientation. We note,
parenthetically, that the spin-orbit coupling terms in hZ

have sometimes been referred to as “Zeeman-like,” see, e.g.,
Refs. [5,14], so as to highlight the out-of-plane spin ori-
entation it induces; in the following, we will not use this
terminology, but instead focus on their physical manifestation:
its spin orientation. We emphasize that both hZ (k) and hR (k)
in this work physically originate from IS breaking induced by
the application of the electric field; see the next section for a
detailed discussion.

In writing Eq. (2), we have kept all symmetry-allowed
terms up to linear order in k as allowed by symmetry. We
remark that the magnitudes of each of the symmetry-allowed
terms can be determined from experimental or first-principles
calculation results (see the Appendix [11] for a discussion).
However, before we move to specific values, we first discuss
the physical origin of the coupling terms and some possible
interplays brought by these couplings.

III. PHYSICAL ORIGIN OF OUT-OF-PLANE
AND IN-PLANE SPIN ORIENTATIONS

For physical clarity, we will denote hR (k) and hZ (k) as
spin-orbit coupling induced by out-of-plane and in-plane IS
breaking, respectively. In a general sense, hR (k) [or hZ (k)]
always couple states with opposite spins (the same spin). As
a result, these terms split the spin degeneracy and reorient
the spins of the eigenstate �τξ : hR terms create in-plane spin
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(a) (b)

FIG. 2. (a,b) Schematic spin splitting and spin texture of the
conduction band (near the gap) induced by an applied electric
field. These can be classed as (a) in-plane spin orientation (α, δx �=
0, λ, δz = 0) originating from an out-of-plane electric field Etot

z , or
(b) out-of-plane spin orientation (α, δx = 0, λ, δz �= 0) arising from
an in-plane dipole dx .

orientations [Fig. 2(a)], whereas hZ terms align spins out-of-
plane [Fig. 2(b)]. Here spin orientations are plotted only for
the right valley (ky > 0). For ky < 0, spin textures are flipped.

Their physical origins are also distinct. When a charge-
neutral monolayer 1T ′-WTe2 is placed under E⊥, the top
layer and the bottom layer Te atoms experience a charge
redistribution becoming oppositely charged. This charge re-
distribution counteracts E⊥ forming an out-of-plane dipole
moment, dz [see Fig. 1(c)]. Crucially, because the Te atoms are
not perfectly aligned, this charge redistribution also creates
an in-plane electric dipole moment along the x direction, dx ,
yielding a net induced electric dipole, dnet, that is canted [see
Fig. 1(c)].

As a result, E⊥ induces IS breaking in both z and x

directions developing a nonzero ∂zφ(r) and ∂xφ(r); here φ(r)
is the local electrostatic potential induced by E⊥. Since spin-
orbit coupling arises as matrix elements of the microscopic
spin-orbit interaction: Ĥso(k) ∼ (h̄k + p̂) · s × ∇φ(r) (see,
e.g., Eq. (16.1) of Ref. [16] or Eq. (2.4) of Ref. [17]), we
find that spin-orbit coupling terms δx and α±

k come from the
total out-of-plane electric field −∂zφ(r); this constrains the
terms h̄k + p̂ and s in Ĥso(k) to be in-plane only. However,
the charge redistribution also enables an in-plane ∂xφ(r) to
develop. This in-plane electric field picks out s in Ĥso(k) as
the out-of-plane component sz, and h̄k + p̂ as the y compo-
nent. As a result of the in-plane ∂xφ(r), hZ terms λky and
δz in Eq. (2) manifest. The distorted structure of 1T ′-WTe2

enables dnet that is generically canted with finite hZ and hR

terms that coexist. In contrast, since λky and δz result from
the in-plane electric field ∂xφ(r), the nondistorted transition-
metal dichalcogenide monolayers whose atoms at the top and
bottom layers are aligned (e.g., MoS2) do not possess an
external E⊥-induced out-of-plane spin orientation near the �

point (up to linear in k).
As a further illustration of the role that low symmetry plays

in 1T ′-WTe2, we can also compare the spin-orbit coupling
terms in hR (k) allowed in 1T ′-WTe2 (induced by out-of-
plane IS breaking) with that of HgTe quantum wells recently
discussed in the literature [18,19]. For 1T ′-WTe2, all terms
in hR (k) are allowable when an out-of-plane electric field is
applied because of its very low symmetry, and the fact that
angular momentum in the z direction is not a good quantum
number. In contrast, HgTe quantum wells possess a D2d

symmetry, [hR (k)]24,(42) is missing because its second and
fourth basis functions are heavy-hole bands with jz = ±3/2,
and the coupling between them is at least of k3 order. Only iδx

and [hR (k)]13,(31) can appear, corresponding to the existence
of bulk inversion asymmetry [18] and structural inversion
asymmetry [19], respectively.

IV. INTERPLAY BETWEEN BERRY CURVATURE
AND THE TWO TYPES OF SPIN-ORBIT COUPLINGS

Pristine 1T ′-WTe2 possesses both IS and TRS, ensuring
that Berry curvature (and orbital magnetic moment) vanishes
exactly. As we now discuss, in 1T ′-WTe2 with E⊥ �= 0, hZ

[Eq. (2)] presents an opportunity to break in-plane IS turning
on a finite Berry curvature distribution. For clarity, we will
first focus on the case when λ and αx,y are nonzero, while
setting the k-independent terms δx,z = 0, and then analyze the
case when δx,z �= 0 later in the text.

To proceed, we first note that for pristine 1T ′-WTe2 (when
E⊥ = 0), the Hamiltonian heff = h0(k) in Eq. (1) possesses
spin degenerate states �τξ , with ξ = ±1 corresponding to
↑,↓ states, and spin-degenerate energy ετξ (k) = ε̄k + τ�k,
where �2

k = (vxkx )2 + (vyky )2 + m2
k is the energy difference

between the conduction and valence bands. In the absence of
vx,y , conduction (ψτ=+1,ξ ) and valence (ψτ=−1,ξ ) bands touch
and exhibit a gapless spectrum along �-Y [20]. However,
large spin-selective atomic orbital coupling vx,y in 1T ′-WTe2

creates strong interorbital mixing (between ψc,v) giving a
large QSH gap ∼0.055 eV [2].

Even though the external E⊥ induced spin-orbit coupling
[Eq. (2)] is small as compared with the intrinsic spin-selective
atomic orbital coupling, α±, λ � v±, nevertheless when an
external electric field E⊥ �= 0 is applied, IS is immediately
broken. Specifically, we emphasize that it is in-plane IS break-
ing that enables a finite Berry curvature �τξ (k) distribution
to develop. As a result, we find that λ encoding in-plane
IS breaking [arising from dx , Fig. 1(c)] turns on �τξ (k). In
contrast, while αx,y is also induced by E⊥ �= 0 (and can also
spin-split ψc,v bands), it corresponds to an out-of-plane IS
breaking, and does not lead to �τξ (k).

To see this explicitly, we first consider the case α � λ

where out-of-plane IS breaking is much weaker than in-plane
IS breaking. In this case, λ dominates h1(k) and we can
take α → 0. Therefore, heff (k) = h0(k) + h1(k) produces a
�τξ band structure with a lifted spin-degeneracy [Fig. 1(e)]
and energies ετξ (k) = ε̄k + τ�k + ξ |λky |. We note that since
both λ as well as spin-selective atomic orbital coupling vx,y

do not mix spins, �τξ possesses spins that purely point out-
of-plane [Fig. 2(b)]. Using this, we find a Berry curvature
distribution �τξ (k) = ∇k × 〈�τξ (k)|i∇k|�τξ (k)〉 as

�
(0)
τξ (k) = sgn(ky )

τξ

2

vxvy

�3
k

(1 − k · ∇k )mk. (3)

Strikingly, �
(0)
τξ (k) in Eq. (3) does not depend on λ even

though finite λ was required to break in-plane IS. Instead,
�

(0)
τξ (k) is solely determined by the spin-selective atomic

orbital coupling vx,y and the band parameters in pristine
1T ′-WTe2.

This decoupling behavior between IS breaking strength
and the value of �τξ persists even in the presence of finite
out-of-plane IS breaking characterized by the ratios λ/α. To
see this, we note that when α is finite, h1(k) starts to hybridize
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FIG. 3. Peak Berry curvature �τ=1,ξ=−1(k0) as a function of
(a) k-dependent spin-orbit couplings (α, λ) with δx,z = 0, and
(b) k-independent spin-orbit couplings (δx, δz ) with α, λ = 0. Peaks
are taken at the band edge k0 = (0, k0 ) with k0 = 0.385 Å−1. Dashed
lines denote equi-Berry-curvature contours. Both (a) and (b) show
that Berry curvature is pronounced only when λ or δz is large;
this corresponds to strong in-plane inversion symmetry breaking.
Parameters for the pristine part are listed in Table III [11].

�τξ with different spins (in the same τ band). Since the
intrinsic Berry curvatures �

(0)
τξ (k) for spin-up and spin-down

states are opposite in sign, when the ξ states couple (via α) the
Berry curvature drops. Along the high-symmetry line kx = 0
about which the Berry curvature is even due to the TRS and
mirror symmetry in the y direction, the Berry curvature for the
spin-split bands near the band edge can be expressed as [11]

�τξ (kx = 0, ky ) = λ(
λ2 + α2

y

)1/2 �
(0)
τξ (kx = 0, ky ), (4)

clearly displaying how �τξ (kx = 0, ky ) tends to the value
expected in �

(0)
τξ for λ � α. In Fig. 3(a), we plot the peak

value of Berry curvature �τ=1,ξ=−1 reproduced in a numerical
evaluation of the SBD description. This verifies our analysis
above that the value of �τξ is bounded by the intrinsic (de-
pends only on vx,y) �

(0)
τξ , and is tuned only by the ratios λ/α,

which causes equi-Berry-curvature contours to be straight
lines [see Fig. 3(a)].

We now consider the case of δx,z �= 0 while setting k-
dependent terms α, λ = 0. By numerically evaluating the peak
Berry curvature �τ=1,ξ=−1(k0) [see Fig. 3(b)], we find that the
peak Berry curvature �τ=1,ξ=−1(k0) develops a more com-
plicated behavior. In particular, �τ=1,ξ=−1(k0) is no longer
bounded by the intrinsic value �

(0)
τξ , and it increases with

δz without saturation. However, similar to the previous case,
out-of-plane IS breaking δx alone is not able to induce a
nonzero Berry curvature since it corresponds to an out-of-
plane IS breaking. Large Berry curvature only appears when
δz is significant.

In the above, we concentrated on unveiling the (Berry
curvature) features that the various symmetry-allowed
spin-orbit coupling terms possess. These features can in turn
help to diagnose which of the (a priori symmetry-allowed)
spin-orbit coupling terms dominate. We illustrate this by
comparing with recent first-principles calculations as well as
a recent experiment [14]. In Ref. [14], the Berry curvature
of monolayer 1T ′-WTe2 was investigated at different
perpendicular electric fields, from 0 to around 1 V nm−1

using both first principles and a photocurrent measurement.
In particular, their first-principles results revealed the
E⊥-induced spin-splitting in the band structure that vanished
at larger ky away from the band edge, and a peak Berry
curvature that increased with E⊥. This observation means that
k-dependent spin-orbit couplings may play only a minimal
role. Further, both the experiment and the first-principles
calculations found large Berry curvature at the band edge,
even at a small electric field, indicating that δz > δx (see
Fig. 3). Strikingly, these values of Berry curvature are close to
the large intrinsic values expected from vx,y and mk. Together
with Fig. 3(b), this indicates that the in-plane IS breaking and
hZ terms dominate, overwhelming the hR terms. As a result,
in what follows we will use the k-independent δz spin-orbit
coupling term to describe the E⊥-induced spin texture.

V. CURRENT-INDUCED MAGNETIZATION

Another closely related quantity, the (intrinsic) orbital
magnetic moment mint

n (k), also appears when in-plane IS is
broken by E⊥ẑ:

mint
n (k) = e

h̄
Re

∑
n′ �=n

i〈n|∂H/∂kx |n′〉〈n′|∂H/∂ky |n〉
εn − εn′

, (5)

where we have written n = {τξ} as a short-hand, and H is the
Hamiltonian. The orbital magnetic moment comes from the
self-rotation of a Bloch electron wave packet around its center
of mass, it is an intrinsic property of the Bloch band [21], and
its distribution in momentum space mimics that of the Berry
curvature distribution (see the Appendix [11]).

The low-symmetry of 1T ′-WTe2 enables an asymmetric
distribution of �n(k) and mn(k) [see Figs. 4(a) and 4(b)].
This affords the opportunity to realize Berry phase effects not
normally achievable in their rotational symmetric cousins. A
striking example is the (linear) magnetoelectric effect (ME)
Mz = ∑

i αziEi (i = x, y), where the flow of an in-plane cur-
rent induces an out-of-plane magnetization. While typically
found in multiferroic materials [22] where TRS and IS are
explicitly broken, ME effects can arise in metals with suffi-
ciently low symmetry (broken IS as well as broken rotational
symmetry), and where the dissipation of a charge current
breaks TRS [23]. This is termed the kinetic ME effect [23,24].

The requirements for the kinetic ME effect can be seen
from a symmetry analysis as follows: (a) in a time-reversal
symmetric system Mz = ∑

i αziEi , then under the symmetry
operation t → −t we have Mz → −Mz, E → E, and Mz =∑

i αziEi → −Mz = ∑
i αziEi , which leads to αzx = αzy =

0; (b) if a system has a rotational symmetry, then under the
rotation by angle θ we have Mz → Mz, Ex → Ex cos θ −
Ey sin θ, Ey → E sin θ + Ey cos θ , and Mz = αzxEx +
αzyEy → Mz = (αzxEx + αzyEy ) cos θ +(αzyEx− αzxEy )
sin θ , which leads to θ = 2nπ (n = 0, 1, 2, . . . ), i.e.,
rotational symmetry is not allowed for nonzero αzx and αzy ;
(c) if a system is centrosymmetric, then under the operation
(x, y) → (−x,−y) we have Mz → Mz, E → −E, and
Mz = ∑

i αziEi → Mz = − ∑
i αziEi , which also requires

αzx = αzy = 0.
Indeed, the low symmetry of 1T ′-WTe2 (with E⊥ �= 0)

where only a mirror symmetry in the y direction remains is
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(a)

(b)

(c) (d)

FIG. 4. (a,b) Asymmetry in 1T ′-WTe2 enables dipolar distributions of the intrinsic magnetic moment (a) mint characterized by (b) ∂ky
mint

near the gap openings ±k0 = (0,±k0 ). Black curves represent the conduction band (τ = 1, ξ = −1) and dashed lines denote the chemical
potential μ, with gray-shaded areas the occupied states. Due to the tilt of the band dispersion, an intrinsic magnetic moment dipole arises near
the gap opening and gives rise to a nonzero current-induced magnetization Mz [see Eq. (6)]. Parameters used for the pristine part are the same
as those in Fig. 1 as an illustration. (c) Schematic of a 1T ′-WTe2 monolayer under a perpendicular electric field E⊥ẑ and an in-plane electric
field Ey , which can give rise to intrinsic magnetization Mz. (d) Calculated intrinsic magnetization Mz induced by a current jy = 10 A m−1 in
the y direction from Eq. (6), with λ, α, δx = 0, but varying δz = 0.075 eV (blue), 0.05 eV (green), and 0.025 eV (red). These magnitudes for
δz are within reach by applying E⊥ < 1 V nm−1 [14]. The Mz plotted here becomes nonzero only when the chemical potential is above the
conduction-band bottom (denoted by dashed lines), which is different for each of the lines. The trend from the red line to the blue line shows
that a larger δz (stronger in-plane IS breaking) leads to an increased intrinsic magnetic moment as well as more pronounced Mz, as illustrated
in Fig. 2.

the largest symmetry group that hosts the kinetic ME [7,23].
This makes 1T ′-WTe2 a natural venue to control ME.

To illustrate the kinetic ME effect in 1T ′-WTe2, we first
note that the magnetic moment is asymmetric, displaying a
dipolar distribution [see Figs. 4(a) and 4(b)]. This can be seen
explicitly by considering ∂ky

m and noting that it is displaced
in relation to the bottom of the band, Fig. 4(b). As a result,
when an in-plane electric field shifts the distribution function,
a uniform out-of-plane magnetization Mz develops:

Mz =
∑
i=x,y

α̃ziji, α̃zi =
[

e

h̄

∑
n,k

f
(0)
nk

∂mtot
n (k)

∂ki

]
(Dii )

−1,

(6)

where Dii is the Drude weight along the i direction, f (0)
nk is the

equilibrium distribution function, and mtot
n (k) = mint

n (k) +
(ge/2m0)〈uk|sz|uk〉 is the intrinsic contribution to the mag-
netic moment in a particular band, containing both orbital
and spin contributions with sz = h̄σz/2. For 1T ′-WTe2 mono-
layer, we estimate g ∼ 5 [3,4].

Importantly, Eq. (6) reflects the symmetry of the crystal.
For example, magnetic moment distribution has equal mag-
nitudes but opposite signs in the two electron pockets in the
conduction band. As a result, α̃zx = 0 vanishes as expected
from symmetry; see above. In contrast, when an in-plane
electric field is applied along y, a nonzero Mz is generated
(i.e., α̃zy �= 0).

Using Eq. (6), we obtain a finite out-of-plane magneti-
zation Mz in Fig. 4(d) when current is driven along the y

direction. In doing so, we used f
(0)
nk = �(εnk − μ) with μ

the chemical potential, and we computed the Drude weight
in the usual fashion. Further, to capture the full reciprocal
space distribution of the magnetic moment (including regions
away from the gap opening), we used the SBD descrip-
tion to compute the magnetic moment distribution. Here we
have concentrated on small chemical potentials so that only
moments in the lowest conduction band [the blue band in
Fig. 1(e)] contribute. Since mint

n (k) is an odd function of ky

when TRS is present, the filled bands do not contribute to ME.
This reflects the fact that kinetic ME arises from a dissipative
process. As a result, when the chemical potential is in the
gap, α̃zy = 0. However, once the system is doped into the
conduction band, a nonzero ME develops; see Fig. 4(d). A
similar analysis also applies to the Berry curvature �τξ (which
exhibits a dipolar distribution), and leads to a nonlinear Hall
effect without an applied magnetic field (see Ref. [7] as well
as the Appendix [11] for an explicit discussion of this system).

VI. SUMMARY

1T ′-WTe2 with an applied out-of-plane electric field E⊥
provides a new and compelling venue to control bulk band
quantum geometry. In particular, its bands exhibit a tunable
Berry curvature and magnetic moment with switchlike be-
havior. Crucially, the low symmetry of its crystal structure
enables effects not normally found in its rotationally sym-
metric cousins. These include striking Berry phase effects
such as a current-induced magnetization (ME) and a quantum
nonlinear Hall effect. These are particularly sensitive to the
orientation of an in-plane electric field and the crystallo-
graphic directions. Indeed, Mz is strongest when current runs
along the y direction; this sensitivity can be verified through
measurements in a single 1T ′-WTe2 sample for, e.g., using
a Corbino disk geometry. Perhaps most exciting, however,
is how IS broken 1T ′-WTe2 enables direct and electric-field
tunable access to out-of-plane magnetic degrees of freedom.
Given its two-dimensional nature, 1T ′-WTe2 can be stacked
with other two-dimensional materials, providing a key mag-
netoelectric component in creating magnetic van der Waals
heterostructures.
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APPENDIX

1. Six-band k · p model for monolayer 1T ′-WTe2

Without external fields, 1T ′-WTe2 monolayers possess
time-reversal (TR) symmetry and a point symmetry group
P 21/m that contains four symmetry operations. If we set one
of the inversion centers as the origin O0 = (0, 0, 0) in real
space, the four symmetry operations are {(x, y, z), (−x,−y,

−z), (x, 1/2 − y, z), (−x, 1/2 + y,−z)}, where 1/2 denotes
a shifting 1/2 unit cell in the y direction. When we shift
the origin O0 to O1 = (0, 1/2, 0), the four symmetry
operations become {(x, y, z), (x,−y, z), (−x, 1/2,−z),
(−x,−1/2,−z)}.

Various first-principles calculations as well as experimental
measurements [1,2,12,13] showed that there are three relevant
orbitals contributing to the states near the gap. Although the
exact orbital compositions at the � point are not clear, these
orbitals at the � point are consistently revealed [2,12,13] to
be (even, odd, even) under the reflection operation in the y

direction (the orbitals are ordered with decreasing energy).
Here we note that Choe et al. used a different coordinate
system with x and y directions exchanged.

A perpendicularly applied electric field breaks symmetry
operations that flip in the z direction and reduce the point
group P 21/m to group C1v that has only two symmetry
operations {I,My} (i.e., identity and reflection about the xz

plane that cross a Te atom). It has two real 1D irreducible
representations (see Table I).

Aside from the spin degrees of freedom, each of the
three orbitals at the � point is nondegenerate and transforms
according to one of the 1D irreducible representations of C1v .
Moreover, although inversion symmetry is broken, the three
orbitals remain (even, odd, even) in the y direction at the �

point. These two observations show that the three orbitals at
the � point transform as

ψ1 ∼ 1, ψ2 ∼ y, ψ3 ∼ 1, (A1)

where the symbol “∼” denotes how these functions transform
under operations in C1v . Using {ψ1, ψ2, ψ3} as a basis, the
k · p Hamiltonian near the � point assumes a 3 × 3 form:

H (K) =

⎛
⎜⎝

H 11(K) H 12(K) H 13(K)

H 21(K) H 22(K) H 23(K)

H 31(K) H 32(K) H 33(K)

⎞
⎟⎠, (A2)

where Hαβ (K) is the 2 × 2 (1 × 1) block matrix between ψ1

and ψ2 with (without) a spin degree of freedom included.
In the following, we will obtain the general form of H (K)

from symmetry analysis. The necessary information for ψ1,2,3

is contained in its transformation property under group C1v

[Eq. (A1)]. We note that detailed orbital compositions, e.g.,
the weight of a p or d orbital in |ψ1,2,3〉, does not affect the
following analysis.

We will proceed by using the theory of invariants
[16,25,26], which is based on the invariance of the
Hamiltonian Ĥ under all operations of the correspond-
ing crystal symmetry group. When the Hamiltonian Ĥ

TABLE I. The character table for the group C1v , and correspond-
ing operator combinations that are even (first row) and odd (second
row) under My . s0 is the 2 × 2 identity matrix. Note that the prefactor
i in some of the terms guarantees TR symmetry, since i, k, and s are
odd under the TR operation. Here we only keep terms up to O(k2) in
the diagonal part and O(k) in the off-diagonal part.

C1v I My TR invariant operators

�1 1 1 s0, ikx, k2
x, k2

y, isy, kxsy, kysx, kysz

�2 1 −1 iky, isx, isz, kxsx, kxsz, kysy

is projected to the energy bands of interest, Ĥ =∑
α,β |ψα〉Hαβ (K)〈ψβ |, where K denotes a tensor opera-

tor formed by combinations of wave vectors, the symme-
try group constrains the k · p Hamiltonian Hαβ (K) as fol-
lows: under an arbitrary symmetry operation g ∈ C1v , the
basis |ψα〉 transforms according to the irreducible repre-
sentation �α , so the invariance of the Hamiltonian under
the symmetry operation g dictates P̂gĤ P̂ −1

g = Ĥ , where
P̂g denotes the operator for symmetry operation g. This
leads to

∑
α′,β ′ 〈ψα|P̂g|ψα′ 〉Hα′β ′

(P̂gKP̂ −1
g )〈ψβ ′ |P̂ −1

g |ψβ〉 =
Hαβ (K), or equivalently,

Dα (g)Hαβ
(
P̂gKP̂ −1

g

)
Dβ (g−1) = Hαβ (K), (A3)

where 〈ψα|P̂g|ψα′ 〉 = δαα′Dα (g), with Dα (g) the representa-
tion matrix of g in �α (in the 1D irreducible representation
case here, 1 or −1), and P̂gKP̂ −1

g denotes the transformation
of K under the symmetry operation g, e.g., if g = My and
K = ky , then P̂My

kyP̂
−1
My

= −ky .
In constructing the K operators, one can also take into

account the spin degree of freedom by including the spin
operator s = (sx, sy, sz) in the k · p Hamiltonian. Note that
s is a pseudovector. We have sx → −sx, sz → −sz, and
sy → sy under the operation My [26], e.g., if g = My and
K = kysx , then P̂My

kysxP̂
−1
My

= (P̂My
kyP̂

−1
My

)(P̂My
sxP̂

−1
My

) =
(−ky )(−sx ) = kysx .

For general cases in which crystals have high-symmetry
point groups, the expression of an arbitrary block Hαβ (K)
of the k · p Hamiltonian can be constructed in several stan-
dard procedures with the corresponding full character table
[16,25,26]. In our case, however, the group C1v is the sim-
plest nontrivial group that has only two symmetry operations
{I,My}, and we can do the analysis just based on mirror
symmetry operation My :

(i) For blocks Hαα (K) (α = 1, 2, 3) and H 13(K): since
|ψα〉〈ψα| (α = 1, 2, 3) and |ψ1〉〈ψ3| are even under My op-
eration, to make sure Ĥ is invariant under My operation, then
Hαα (K) (α = 1, 2, 3) and H 13(K) must be composed by K
operators that are also even under My operation. Relevant
operator combinations that are invariant under My operation
are listed in the first row of Table I.

(ii) For blocks H 12(K) and H 23(K): since |ψ1〉〈ψ2| and
|ψ2〉〈ψ3| are odd under My operation, then H 12(K) and
H 23(K) must be composed by K operators that are also odd
under My operation to ensure that Ĥ is invariant under My

operation. Relevant operator combinations that are odd under
My are listed in the second row of Table I.
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TABLE II. Terms that can appear for k · p Hamiltonian blocks.
The prefactor i in some of the terms guarantees TR symmetry, since
i, k, and s are odd under the TR operation. s0 is the 2 × 2 identity
matrix. As in Table I, we kept terms up to O(k2) in the diagonal part
and O(k) in the off-diagonal part.

Hαα (K) H 12(K), H 23(K)

with or w/o Eẑ s0, k2
xs0, k2

ys0 ikys0, kxsz

with Eẑ kysz; kxsy, kysx isz; isx

After obtaining the terms that transform correctly for each
of the blocks, we note further constraints that trim the k · p
Hamiltonian:

(1) The k · p Hamiltonian must be Hermitian, which
dictates that the invariants for a diagonal block must be
Hermitian.

(2) Terms containing both k and s are matrix elements
of the microscopic spin-orbit interaction Ĥso(k) ∼ k · [s ×
∇V (r)] in Ĥ , thus terms kxsx and kysy will not appear.

(3) For our purposes of estimating the Berry curvature and
orbital magnetic moments in the main text, we can neglect the
H 13 block. This is because |ψ1〉 and |ψ3〉 are energetically
far away from each other (�0.5 eV) and their couplings
only have small contributions to Berry curvature and orbital
magnetic moment for the conduction bands. Although H 13

block contributes to optical transitions �0.5 eV, this is beyond
our current scope.

The above three considerations trim/eliminate the terms
{ikx, isy, kxsx, kysy}. For the remaining terms, we group them
into terms induced by the applied perpendicular electric field,
and those that are present in pristine 1T ′-WTe2. To do so, we
perform the following symmetry analysis: when the electric
field is not present, inversion symmetry about the inversion
center O0 is recovered, and the operation (−x, 1/2,−z)
about O1 becomes a symmetry operation again. Under the
operation (−x, 1/2,−z), there is no flip in the y direction
while (kx, ky ) → (−kx, ky ) and (sx, sy, sz) → (−sx, sy,−sz).
We can see that terms {isx, isz, kxsy, kysx, kysz} change sign
under this new operation, i.e., they are not invariant under the
original symmetry group P 21/m and can appear only when
the perpendicular electric field is applied.

After trimming, classification, and analyzing the physical
origin of the terms induced by electric field, we now obtain
the general form of the k · p Hamiltonian (see Table II).

FIG. 5. Energy dispersion near the Fermi surface from the model
Eq. (A4), with an overall band gap 0.055 eV [2], indicated by the
dashed line) (solid lines). Data (dots) extracted from Refs. [1,14].
The parameters for the model are listed in Table III.

First we use a least-squares fitting to extract coefficients
of these invariant operators from known band structure, either
from experimental measurements or numerical calculations.
From the first-principles calculation result [1,14], we obtained
the Hamiltonian H0(k) when there is no external field. We find

H0(k) =

⎛
⎜⎜⎜⎜⎜⎝

ε1 0 v+
1 0 0 0

0 ε1 0 v−
1 0 0

−v−
1 0 ε2 0 v+

3 0
0 −v+

1 0 ε2 0 v−
3

0 0 −v−
3 0 ε3 0

0 0 0 −v+
3 0 ε3

⎞
⎟⎟⎟⎟⎟⎠, (A4)

where εi = ci,0 + ci,xk
2
x + ci,yk

2
y and v±

i = ±vi,xkx + ivi,yky .
The dispersion is plotted in Fig. 5, with parameters listed in
Table III.

The additional terms that are induced by the applied
perpendicular electric field E⊥ make the full Hamiltonian
H (k) = H0(k) + H1(k), with

H1(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1ky α−
1 iδ1,z iδ1,x 0 0

α+
1 −λ1ky iδ1,x −iδ1,z 0 0

−iδ1,z −iδ1,x λ2ky α−
2 iδ3,z iδ3,x

−iδ1,x iδ1,z α+
2 −λ2ky iδ3,x −iδ3,z

0 0 −iδ3,z −iδ3,x λ3ky α−
3

0 0 −iδ3,x iδ3,z α+
3 −λ3ky

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

where α±
i = ±iαi,xkx + αi,yky is the commonly seen spin-

orbit coupling for the ith orbital (this is sometimes referred
to as “Rashba” spin texture), λiky is a spin splitting from

in-plane IS breaking, and δi,x and δi,z are k-independent
interband couplings; see the main text for a discussion of the
physical origin.
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TABLE III. Least-squares fitted k · p parameters for a 1T ′-WTe2

monolayer without external fields from Refs. [1,14], with an overall
band gap 0.055 eV.

Parameter Value Unit Parameter Value Unit

c1,0 1.0 eV
c2,0 0 eV
c3,0 − 0.4 eV

c1,x − 11.25 eV Å2 c1,y − 6.90 eV Å2

c2,x − 0.27 eV Å2 c2,y − 1.08 eV Å2

c3,x − 0.82 eV Å2 c3,y 0.99 eV Å2

v1,x 1.71 eV Å v1,y 0.48 eV Å
v3,x 0.48 eV Å v3,y − 0.48 eV Å

2. 4 × 4 model near the band gap

To obtain the effective 4 × 4 Hamiltonian near the band
gap, we consider the energy eigenvalue equation(

hq u

u† hd

)(
ψq

ψd

)
= ε

(
ψq

ψd

)
, (A6)

where hq (hd ) is the 4 × 4 (2 × 2) diagonal block from the
original 6 × 6 Hamiltonian, ψq (ψd ) is the corresponding
four (two) -component state vector, and u is the 4 × 2 matrix
couple hq and hd .

The second row of Eq. (A6) allows ψd to be written in
terms of ψq :

ψd = (ε − hd )−1u†ψq. (A7)

Substituting this into the first row of Eq. (A6) gives an
effective eigenequation solely for the ψq components:[

hq + u(ε − hd )−1u†]ψq = εψq. (A8)

Performing the standard expansion in small ε as well as the
rotation procedure [25], we obtain the effective Hamiltonian
near the band gap as

h̃q = S−1/2
(
hq − uh−1

d u†) S−1/2, S = 1 + uh−2
d u†,

(A9)

valid when ε is small, and we have used the rotated basis ψ =
S1/2ψq .

Following the above analysis, we now derive the 4 × 4
model for the pristine part. From Eq. (A4) we have

hq =

⎛
⎜⎜⎝

ε1 0 v+
1 0

0 ε1 0 v−
1

−v−
1 0 ε2 0

0 −v+
1 0 ε2

⎞
⎟⎟⎠, (A10)

u† =
(

0 0 v+
3 0

0 0 0 v−
3

)
, (A11)

and

hd =
(

ε3 0
0 ε3

)
, (A12)

where εi = ci,0 + ci,xk
2
x + ci,yk

2
y and v±

i = ±vi,xkx + ivi,yky .
Using hd and u above, we have

h̃q =

⎛
⎜⎝

εc 0 v+ 0
0 εc 0 v−

−v− 0 εv 0
0 −v+ 0 εv

⎞
⎟⎠, (A13)

where εc = ε1, and

εv = 1

1 + r
ε2 − r

1 + r
ε3, v =

√
1

1 + r
v1. (A14)

Here the k-dependent ratio r is

r = (v3,xkx )2 + (v3,yky )2

ε2
3

, (A15)

which controls the renormalization of ε2 and v1. It becomes
zero when v3 = 0, i.e., when ψ2 and ψ3 do not couple with
each other, r = 0, and there is no renormalization. We note
that the form of this pristine part in Eq. (A13) is consistent
with the model proposed in Ref. [1]; for a full discussion, see
Appendix Sec. 6.

If we reorder the basis to {ψc↑, ψv↑; ψc↓, ψv↓}, this gives
the BHZ-type pristine part,

h0 = ε̄ +

⎛
⎜⎝

m v+ 0 0
−v− −m 0 0

0 0 m v−
0 0 −v+ −m

⎞
⎟⎠, (A16)

where ε̄ = (εc + εv )/2, m = (εc − εv )/2. Together with the
electric-field-induced part (neglecting the far away ψ3 band),

h1 =

⎛
⎜⎝

λky iδz α− iδx

−iδz λky iδx α−
α+ −iδx −λky −iδz

−iδx α+ iδz −λky

⎞
⎟⎠, (A17)

we obtained the 4 × 4 effective Hamiltonian near the gap
opening,

heff = h0 + h1. (A18)

When focusing on the dispersions and Berry curvatures
near the gap opening, we find a convenient estimate for v:

v =
√

1

1 + r0
v1, r0 = r (k0), (A19)

where k0 = (0, k0) is the position of the band edge with k0 =
0.385 Å−1. By doing this, we obtained the dispersion and a
Berry curvature distribution that agree well with the six-band
model near the gap opening [see the solid and dashed lines in
Figs. 1(d) and 1(e) for comparison].

3. Berry curvature at the band edge from the 4 × 4 model
(δx,z = 0 case)

Using the 4 × 4 band model [see Eqs. (1) and (2) of the
main text] to describe 1T ′-WTe2, we can express its Berry
curvature near the band edge analytically.

Without the electric-field-induced part h1, the BHZ-type
pristine part h0 can be viewed as two decoupled 2 × 2 blocks:
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spin-up block h↑ and spin-down block h↓. The two blocks
form a time-reversal pair

h↑(k) = h∗
↓(−k) = ε̄k +

(
mk v+

k
−v−

k −mk

)
, (A20)

where v±
k = ±vxkx + ivyky . The two 2 × 2 blocks share the

same dispersion relation and are spin-degenerate:

ε
(0)
τ↑↓(k) = ε̄k ± τ�k, �k =

√
(vxkx )2 + (vyky )2 + m2

k,

(A21)

with the corresponding eigenstates:

ψ
(0)
τ↑ (k) ∼ (mk + τ�k,−v−

k , 0, 0)T ,
(A22)

ψ
(0)
τ↓ (k) ∼ (0, 0,mk + τ�k,−v+

k )T ,

where τ = ± denotes the conduction or valence band, and
2�k is the energy difference between the conduction and
valence bands.

When an external perpendicular electric field is applied,
and if the spin-orbit couplings induced by the field are much
weaker than the atomic spin-orbit couplings (αx,y, λ � vx,y),
we then treat h1(k) as a small perturbation to the pristine
part h0(k). We first note that for nonzero α, and within the
framework of degenerate perturbation (i.e., neglecting states
that are far away in energy), h1(k) hybridizes the unperturbed
spin-up state ψ

(0)
τ↑ (k) and spin-down state ψ

(0)
τ↓ (k) in the same

band τ into spin-split states ψτξ (k), with higher (ξ = +1) or
lower (ξ = −1) energies:

ψτξ (k) = c
ξ

τ↑(k)ψ (0)
τ↑ (k) + c

ξ

τ↓(k)ψ (0)
τ↓ (k). (A23)

Interestingly, in the α � λ, δz limit, the unperturbed spin-
up state ψ

(0)
τ↑ (k) and spin-down state ψ

(0)
τ↓ (k) do not hybridize

with each other. Even so, their degeneracies are lifted by λky :

ψτ±(k) = ψ
(0)
τ↑↓(k), ετξ (k) = ε̄k + τ�k + ξ |λky |.

(A24)

The Berry curvatures for these nondegenerate states ψτξ are
well defined and read

�
(0)
τξ (k) = sgn(ky )

τξ

2

vxvy

�3
k

(1 − k · ∇)mk. (A25)

When α ∼ λ, the spin-up state ψ
(0)
τ↑ (k) and the spin-down

state ψ
(0)
τ↓ (k) start to hybridize to form the spin-split states

ψτξ . The Berry curvature amplitudes for these hybridized
states ψτξ (k) are smaller than that of ψ

(0)
τ↑↓(k) because the

spin-up and spin-down states have opposite Berry curvatures.
The general form of the Berry curvature �τξ (k) for ψτξ (k)

is complicated. Fortunately, along kx = 0 about which the
Berry curvature is even, i.e., �(kx, ky ) = �(−kx, ky ), which
comes from the TRS and the mirror symmetry in the y

direction, its analytical form is greatly simplified:

�τξ (0, ky ) = |cξ

τ↑|2�(0)
τ↑ (0, ky ) + |cξ

τ↓|2�(0)
τ↓ (0, ky )

= (|cξ

τ↑|2 − |cξ

τ↓|2)�(0)
τ↑ (0, ky ), (A26)

(a) (b)

FIG. 6. (a,b) Berry curvature and magnetic moment distribution
for the spin-split conduction band with lower energy in k space.
Parameters for the pristine part H0 are listed in Table III, while for
H1 we used α, λ, δx = 0, and δz = 0.025 eV.

where c
ξ

τ↑ and c
ξ

τ↓ satisfy

|cξ

τ↑|2 − |cξ

τ↓|2 = τξ
λ sgn(ky )(
α2

y + λ2
)1/2 . (A27)

With this, the Berry curvature �τξ (k) at the band edge k′ =
(kx = 0, ky ) is

�τ±(k′) = λ sgn(ky )(
λ2 + α2

y

)1/2

τξ

2

vxvy

�3
k′

(1 − k′ · ∇)mk′

= λ(
λ2 + α2

y

)1/2 �
(0)
τ↑↓(k′). (A28)

4. Berry curvature and magnetic moment distribution
(λ = αx, y = δx = 0, δz �= 0 case)

Here we show the anisotropic Berry curvature and mag-
netic moment distribution in k space away from the gap
opening, using the six-band description (SBD) we developed
(see Fig. 6). The formula for calculating Berry curvature and
moment distribution are

�n(k) = 2 Re
∑
n′ �=n

i〈n|∂H/∂kx |n′〉〈n′|∂H/∂ky |n〉
(εn − εn′ )2

, (A29)

mint
n (k) = e

h̄
Re

∑
n′ �=n

i〈n|∂H/∂kx |n′〉〈n′|∂H/∂ky |n〉
εn − εn′

,

(A30)

where n = {τξ} is the short-hand form, and H is the full six-
band Hamiltonian.

5. Nonlinear anomalous Hall effect

Just as mint
n (k) discussed in the main text gives rise to

ME, �n(k) in the bands enable 1T ′-WTe2 to exhibit a quan-
tum nonlinear Hall effect at zero magnetic field. This can
be seen under general symmetry considerations [7]. For the
convenience of the reader, we outline this symmetry anal-
ysis for a 2D system that only has in-plane mirror sym-
metry (e.g., 1T ′-WTe2). The nonlinear Hall current can be
written as ja = χabbEbEb (a, b = x, y). Under the opera-
tion (x, y) → (x,−y), we have (jx, jy ) → (jx,−jy ) and
(Ex,Ey ) → (Ex,−Ey ). This allows a nonzero χxyy (while
χyxx vanishes). Under an in-plane dc electric field, χxyy can
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(a) (b)

FIG. 7. (a) Schematic of a 1T ′-WTe2 monolayer under a perpen-
dicular electric field E⊥ẑ and an in-plane electric field Ey , which can
give rise to a nonlinear Hall current jx . (b) Calculated nonlinear Hall
conductivity χxyy (blue) from Eq. (A31) using τ = 50 fs. Parameters
used for the pristine part are the same as those in Fig. 1; for the
electric-field-induced part, we used α, λ, δx = 0, and δz = 0.075 eV
(blue), 0.05 eV (green), and 0.025 eV (red).

be obtained using [7]

χxyy = τ

2

e3

h̄2

∑
n,k

f
(0)
nk ∂ky

�n(k), (A31)

where τ is the transport scattering time. Similar to Eq. (6)
above, �n(k) is an odd function of ky [see Fig. 6(a)]. As a
result, nonzero χabb only occurs when a = x and b = y: only
the electric field along y induces a nonlinear Hall effect along
x. When E is parallel to the x direction, the nonlinear Hall
effect (as well as the kinetic ME effect) vanishes.

To illustrate the quantum nonlinear Hall effect, we nu-
merically integrate Eq. (A31) to obtain a finite nonlinear

Hall current conductivity χxyy in Fig. 7(b) using a scattering
time τ = 50 fs. Similar to Mz in the main text, we used
the SBD description in order to capture the full reciprocal
space distribution of the Berry curvature. This nonlinear
Hall conductivity can be probed in a conventional Hall bar
measurement (Fig. 7) and provides a fully electrical way of
mapping the Berry curvature (dipole).

6. Unitary transformation and form of the Hamiltonian

We note that the model in the supplement of Ref. [1] is
equivalent to our model for the pristine part. For the conve-
nience of the reader, we reproduce the four-band Hamiltonian
in Ref. [1] as

HF =

⎛
⎜⎝

εc 0 −ivxkx vyky

0 εc vyky −ivxkx

ivxkx vyky εv 0
vyky ivxkx 0 εv

⎞
⎟⎠. (A32)

To see the equivalence, we use the unitary transformation

U = 1√
2

⎛
⎜⎝

1 1 0 0
1 −1 0 0
0 0 i i

0 0 i −i

⎞
⎟⎠. (A33)

Applying the unitary transformation, we have

U †HF U = h̃q , (A34)

reproducing Eq. (A13).
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