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Jitter of condensation time and dynamics of spontaneous symmetry breaking
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We investigate the statistics of microcavity polariton Bose–Einstein condensation by measuring photolumi-
nescence dynamics from a GaAs microcavity excited by single laser excitation pulses. We directly observe
fluctuations (jitter) of the polariton condensation onset time and model them using a master equation for the occu-
pancy probabilities. The jitter of the condensation onset time is an inherent property of the condensate formation
and its magnitude is approximately equal to the rise time of the condensate density. We investigate temporal
correlations between the emission of condensate in opposite circular or linear polarizations by measuring the
second-order correlation function g(2)(t1, t2). Polariton condensation is accompanied by spontaneous symmetry
breaking revealed by the occurrence of random (i.e., varying from pulse to pulse) circular and linear polarizations
of the condensate emission. The degree of circular polarization generally changes its sign in the course of
condensate decay, in contrast to the degree of linear polarization.
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I. INTRODUCTION

A Bose–Einstein condensate (BEC) has a macroscopic
wave function that determines its quantum properties. Since
the first demonstration, BECs of microcavity (MC) polaritons
[1] have been investigated intensively [2]. The macroscopic
occupation of the ground state, the narrowing of the emis-
sion angular (momentum) distribution, temporal coherence
manifesting itself in the spectral narrowing of the emission
line, as well as spatial coherence, are the important criteria of
condensation [3–8].

In the studies of the polariton BEC dynamics, the exper-
imental data are typically averaged over a large number of
excitation pulses. However, some key phenomena are washed
out upon such averaging. This can be demonstrated by the
following example. An important property of BECs is sponta-
neous symmetry breaking revealed by the onset of polariton
spin polarization reflected in the polarization of the MC
emission. The emission of a polariton BEC usually exhibits
linear polarization pinned to one of the crystallographic axes
[9–12], but, in the cases of very homogeneous samples, BEC
emission is almost unpolarized on average. However, it was
found that, in individual events of MC emission under pulsed
excitation, the degree of linear, diagonal linear, and circular
polarization of luminescence from a BEC, as well as its
absolute degree of polarization, was relatively high [13–15],
indicating spontaneous symmetry breaking. The dynamics of
spontaneous symmetry breaking was studied with temporal

*kochievmv@mail.ru
†belykh@lebedev.ru

resolution in Ref. [16] using a streak-camera-based photon
correlation technique, introduced in Refs. [17,18].

Recent studies of the MC emission statistics, allowing to
reveal second- and higher-order coherence, pave the way to
the further understanding of the properties and dynamics of
the coherent state [17,19–23]. In particular, the second- and
higher-order coherence of MC photoluminescence (PL) shows
the crossover between thermal and coherent states [17,18]
and is used to prove the polariton lasing regime [24]. Ex-
periments performed using the classical Hanbury Brown and
Twiss scheme made it possible to investigate the role of the
lateral confinement of polaritons [20], parametric polariton
scattering [23], and so on. Colored cross-correlation exper-
iments showing the antibunching of photons with different
energies (i.e., of different colors) emitted by cavity polaritons
[19] performed with high temporal resolution generalize the
Hanbury Brown–Twiss effect to the frequency domain [i.e.,
g(2)(ω1, ω2) measurements]. The spatial distribution of the
BEC was shown to change from pulse to pulse [25].

In the present work, we resolve the time dynamics of a
polariton BEC observed after individual excitation pulses.
Unlike most other studies, limited to the measurements of
zero-delay correlations, we analyze the second-order correla-
tion function g(2) of the total (in all polarizations) number of
photons at two arbitrary moments of time. These data clearly
reveal fluctuations in the BEC onset time (jitter), which is
studied experimentally for the first time. This jitter affects all
correlation measurements made with high temporal resolution
and appropriate corrections have to be made. By means of
jitter-corrected cross-correlation measurements of the num-
ber of photons with opposite polarizations, we observe the
buildup and decay of the condensate spin polarization, which
is almost absent on average. The onset of the polarization

2469-9950/2019/99(3)/035310(8) 035310-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.035310&domain=pdf&date_stamp=2019-01-24
https://doi.org/10.1103/PhysRevB.99.035310


M. V. KOCHIEV et al. PHYSICAL REVIEW B 99, 035310 (2019)

precedes that of the ground-state occupancy. The dynamics
of the degrees of circular and linear polarization are different:
Circular polarization decays earlier than linear and generally
changes its sign.

II. EXPERIMENTAL DETAILS

The sample under study is a 3/2λ MC with 12 GaAs/AlAs
quantum wells of width 7 nm and top and bottom Bragg
reflectors made of 32 and 36 AlAs/Al0.13Ga0.87As pairs,
respectively. It has a Q factor of about 7000 and a Rabi
splitting of 5 meV [6,26]. The experiments were performed
at a temperature of T = 10 K. The results presented below
correspond to a photon–exciton detuning of � = −5 meV;
however, we performed experiments for detunings up to
1 meV, which showed qualitatively similar results. The sample
was mounted in a cold-finger cryostat and excited by radiation
from a mode-locked Ti-sapphire laser generating a periodic
(f = 76 MHz) train of 2.5-ps-long pulses at the wavelength
corresponding to the minimum of the mirror reflectivity,
13–17 meV above the bare exciton energy. The laser beam
was focused into a 20-μm spot on the sample surface. The PL
emitted within 15◦ around the sample normal was collected
with a 0.25-NA microobjective and split by a Wollaston prism
into two beams with orthogonal linear polarizations. In this
way, the PL spot at the sample surface was transformed
into two orthogonally linearly polarized spots imaged with
a magnification of 3.3 onto the slit of a Hamamatsu streak
camera operating with 3-ps time resolution. For circular-
polarization-resolved measurements, a λ/4 plate was installed
in the optical path before the Wollaston prism. A cylindrical
lens was used to spread the luminescence spots along the slit
to avoid streak camera saturation at high excitation powers.
The repetition rate of the laser pulses was lowered to 25 Hz
by an acousto-optical pulse picker to match the frame rate
of the streak-camera CCD, which is limited by the CCD
readout time. Pulse picking was synchronized with the CCD
to record a single emission pulse per frame. An example
of streak camera images corresponding to a single emission
event divided into left- and right-handed circular polarizations
is presented in Fig. 1(a), and a streak image accumulated over
20 000 emission pulses is presented in Fig. 1(b).

III. RESULTS AND DISCUSSION

The emergence of spatial coherence in the course of con-
densate formation, as well as the persistence of the polari-
ton type of dispersion above the condensation threshold for
the sample under study were demonstrated in Refs. [6,26].
Photoluminescence spectra of the MC below and above the
condensation threshold at different detection angles are shown
in Supplemental Material [27]. Here, we concentrate on the
statistical properties of the condensate dynamics recorded in
single MC excitation events.

A. Time-integrated properties

First we discuss the time-integrated characteristics of the
MC emission in single-pulse experiments. We note that the
MC PL averaged over a large number of excitation pulses
exhibits no circular polarization and is slightly linearly po-

FIG. 1. Streak camera images obtained in a single pulse (a) and
accumulated over 20 000 pulses (b) for the two opposite circular
polarizations at P = 2.5Pthr. Dots corresponding to the detected
photons are enlarged in (a) for better visibility. The horizontal axis
represents the coordinate along the streak-camera photocathode,
which corresponds to the convolution of the spatial and angular (due
to the cylindrical lens) distributions of the emission intensity. (c)
Separate distributions for left and right circular polarizations (red and
green circles, respectively) and the total number of photons (squares).
Solid lines show Poisson distributions with the corresponding mean
values. (d) Scatter plot for two circular polarizations. The red dashed
line corresponds to a constant total number of photons n = nR +
nL. (e) Probability density distribution for the degree of circular
polarization ρc. The horizontal dash shows the distribution width√〈ρ2

em〉 corrected by excluding the Poissonian contribution (see text).

larized above the polariton BEC formation threshold Pthr.
Under horizontally polarized laser excitation, the degree and
direction of linear polarization of the PL depends on the spot
location at the sample surface and on the pump power and is
maximum just slightly above Pthr. The statistical distribution
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of the total number n of photons recorded in each PL pulse
for an excitation power of P = 2.5Pthr (where Pthr = 0.2 mW
at a repetition rate of 4.75 MHz) is shown in Fig. 1(c) by
black squares. The spread in the number of detected photons
is mostly determined by the low detection efficiency: The
quantum yield of the photocathode is about 4% at the PL
wavelength, and some fraction of light is lost when passing
optics and cryostat window. For this reason, the distribution
of detected photons is close to a Poissonian one P (n, λ) =
λn exp(−λ)/n! [28], where λ = 〈n〉 is n averaged over a large
number of excitation events. It is shown by the black line
in Fig. 1(c). Here, 〈n〉 = 48.4, giving a standard deviation of
σ = √〈n〉 ≈ 7. Note that, the statistics of the detected photon
numbers in Ref. [28] was mostly determined by the relatively
small number of polaritons in a micropillar MC, rather than
by the detection efficiency (which was high).

At the same time, the corresponding distributions for the
numbers of photons nR and nL having certain circular po-
larizations (right- and left-handed, respectively), shown in
Fig. 1(c) by red and green circles, respectively, are wider than
the Poisson distributions with the same mean values [red and
green lines in Fig. 1(c)]. Similar broadening is observed for
the linear polarizations. Such a super-Poissonian statistics,
observed only above the BEC threshold, reveals increased
fluctuations (in comparison with that of the total photon
number n) from pulse to pulse in both polarizations. The
fluctuations of nL and nR at P > Pthr should be in antiphase,
since the total number of photons n = nR + nL exhibits no
such increased fluctuations and obeys a Poisson distribution.
These fluctuations are caused by the spontaneous polarization
of the BEC emission. This is illustrated in Fig. 1(d), showing
the scatter plot for the values of nR and nL measured in
individual pulses. The dashed line in this plot corresponds to a
constant total number of photons n = nR + nL. The increased
spread along the direction of this line is mostly determined by
the antiphase fluctuations in nR and nL. However, the spread in
the perpendicular direction is mainly caused by the Poissonian
fluctuations in n.

Now we aim to determine the statistics of the degree of
polarization. Usually, this quantity is defined as

ρdet = (n2 − n1)

(n2 + n1)
, (1)

where n1 and n2 stand for the detected photon numbers in
opposite polarizations (circular or linear) [13,15]. However,
the spread in the values of ρdet defined in such a way is largely
contributed by the Poisson fluctuations in n1 and n2 due to the
low detection efficiency α � 1. The real polarization degree
of the emitted photons is defined as

ρem = N2 − N1

N2 + N1
, (2)

where N1 and N2 are corresponding numbers of emitted
photons (numbers of polaritons at the bottom of the lower
polariton branch), so that 〈n1〉 = α〈N1〉 and 〈n2〉 = α〈N2〉.
We are interested in

√〈ρ2
em〉. Taking into account that N =

N1 + N2 is almost constant from pulse to pulse [otherwise,
we would observe significant deviation from the Poisson
distribution for n in Fig. 1(d)] and, according to Eq. (A4) in

the Appendix, 〈N2
1,2〉 = (〈n2

1,2〉 − 〈n1,2〉)/α2, we have

√〈
ρ2

em

〉 =
√

〈(n1 − n2)2〉
〈n〉2

− 1

〈n〉 . (3)

Here, n = n1 + n2. In our case, the probability distribution of
the detected degree of circular polarization, defined according
to Eq. (1) and shown in Fig. 1(e), has a spread of

√
〈ρ2

det〉 =
0.29. However, the real polarization spread of the emitted
photons according to Eq. (3) is smaller:

√〈ρ2
em〉 = 0.25. The

probability distribution is calculated as the number of emis-
sion pulses with the degree of circular polarization between
ρc − �ρc and ρc + �ρc normalized to the total number of
emission pulses and 2�ρc, where we select 2�ρc = 0.1. We
note that the absolute degree of polarization above the thresh-
old is noticeably lower than unity due to polariton–polariton
interactions (see Ref. [14]).

These indications of spontaneous polarization buildup are
observed only in the BEC regime. In the absence of a conden-
sate, MC emission shows completely Poissonian distributions
of n1 and n2 (see the Supplemetal Material [27]).

B. Second-order correlation function

Only a few photons or tens of photons per pulse can be
detected in our setup [Fig. 1(a)]. To obtain time resolution,
each image [such as that in Fig. 1(a)] is divided into time
bins of 5 ps, in which the number of photons becomes even
smaller, so that mean number may be less than 1. A statistical
approach is needed to analyze this kind of data, and, therefore,
we determine the second-order correlation function [29]

g(2)[n1(t1), n2(t2)] = 〈â†(t1)â†(t2)â(t2)â(t1)〉
〈â†(t1)â(t1)〉〈â†(t2)â(t2)〉

= 〈n1(t1)n2(t2)〉
〈n1(t1)〉〈n2(t2)〉 , (4)

where â† and â are the photon creation and annihilation
operators. It is shown in the Appendix that the Poissonian
noise (which affects the distributions of n1 and n2 due to the
detection process) has no impact on g(2) unless one calculates
autocorrelation for t1 = t2, so that

g(2)[N1(t1), N2(t2)] = g(2)[n1(t1), n2(t2)], (5)

g(2)[N1(t1), N1(t2)] = g(2)[n1(t1), n1(t2)] − δt1,t2/n1(t1). (6)

Here, δ is the Kronecker delta. It is convenient to represent the
numerator of Eq. (4) via centered variables:

g(2)[N1(t1), N2(t2)] = 1 + 〈�N1(t1)�N2(t2)〉
〈N1(t1)〉〈N2(t2)〉 , (7)

where �N1,2(t ) = N1,2(t ) − 〈N1,2(t )〉. Independent fluctua-
tions of N1 and N2 lead to g(2) = 1, correlated fluctuations
lead to g(2) > 1, and anticorrelated fluctuations, which take
place, e.g., in the case of spontaneous polarization buildup,
lead to 0 � g(2) < 1. The case of g(2) = 0 corresponds to
completely polarized emission.
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FIG. 2. (a) Time dependence of the total number 〈n〉 of detected photons averaged over 20 000 pulses. (b, c) g(2) for the total (summed
over all polarizations) number N of photons emitted at different times demonstrating the jitter effect, obtained from the experimental data (b)
and calculated using Eq. (8) (c). The dashed lines correspond to the time of the PL maximum: t1,2 = tmax = 65 ps. (d) Dependence of the BEC
pulse jitter on the pump power above the BEC threshold. The dashed line corresponds to the setup jitter. Inset: BEC jitter versus the BEC rise
time τ ; different points correspond to different excitation powers. (e) The calculated dynamics of the probabilities PN of having N polaritons in
the ground state (left scale) and the corresponding dynamics of 〈N〉 (right scale). The dashed lines show that time of the probability maximum
corresponds to 〈N (t )〉 = N .

C. Fluctuations of the BEC formation time

BEC formation is a stochastic process, and the time when
the condensate emerges varies from pulse to pulse. This
leads to the jitter of PL pulses and the temporal broadening
of the averaged PL dynamics. This jitter can be revealed
in the behavior of the second-order correlation function
g(2)[N (t1), N (t2)] of the total (i.e., summed over all polar-
izations) number of emitted photons N = N1 + N2. The PL
dynamics at P = 2.5Pthr is shown in Fig. 2(a), and the cor-
responding correlation function g(2)[N (t1), N (t2)], calculated
using Eq. (6), is shown in Fig. 2(b). The plot clearly shows
four regions separated by the lines t1 = tmax and t2 = tmax

(shown in the figure with the dashed lines), where tmax =
65 ps is the time corresponding to the PL maximum. Indeed,
as we show in the next paragraph, jitter leads to anticorrelation
[blue regions in Fig. 2(b)] or correlation [red regions in
Fig. 2(b)] between N (t1) and N (t2) depending on whether t1
and t2 are on the different sides or on the same side of tmax,
respectively.

We are now going to determine the characteristic jitter
time δt = 〈(�t )2〉1/2 related to the fluctuations of the con-
densation onset time in our experiments. Let us calculate the
contribution to g(2)[N (t1), N (t2)] arising from BEC time jitter

only. We use Eq. (7) and assume that the kinetic dependence
N (t ) recorded after individual excitation pulses differs from
each other only by a random time offset �t that is small
compared with the characteristic time of the kinetics. Then,
�N (t ) ≈ 〈N (t )〉′�t , where ′ denotes differentiation on the
time variable, and

g(2)[N (t1), N (t2)] ≈ 1 + 〈n(t1)〉′〈n(t2)〉′(δt )2

〈n(t1)〉〈n(t2)〉 . (8)

Here we take into account that 〈N (t )〉′/〈N (t )〉 ≈
〈n(t )〉′/〈n(t )〉. We calculated g(2) using Eq. (8) with 〈n(t )〉 and
〈n(t )〉′ taken from the experiment and jitter time δt = 7.6 ps
(the best fit value). The resulting plot is shown in Fig. 2(c)
and is very close to the experimental picture [Fig. 2(b)].

The jitter time δt obtained from the fit is shown in Fig. 2(d)
as a function of the excitation power. As expected, jitter is
maximal (∼10 ps) just above the BEC threshold and at P =
5Pthr decreases to 2.5 ps, which corresponds to the instrumen-
tal jitter δtinstr. The latter limits the setup time resolution and
is obtained from the measured duration of the laser pulse.

We can estimate theoretically the BEC formation time
jitter. The dynamics of the average polariton number 〈N〉 in
the ground state is usually described using the Boltzmann
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kinetic equation:

d〈N〉
dt

= w(〈N〉 + 1) − γ 〈N〉, (9)

where w is the rate of polariton scattering from the reservoir to
the ground state and γ is the total rate of polariton escape from
the MC and scattering from the ground state to the reservoir.
However, here we are interested in the fluctuations of N and,
therefore, a description relying on a master equation, written
in terms of probabilities PN of having N polaritons in a given
state, is more appropriate [30,31]:

dPN

dt
= wNPN−1 − w(N + 1)PN

− γNPN + γ (N + 1)PN+1. (10)

Note that
∑∞

N=0 PN = 1 and 〈N〉 = ∑∞
N=0 NPN . The dynam-

ics of the calculated probabilities for N = 1, 10, 100, and
1000 are presented in Fig. 2(e) together with the dynamics of
〈N〉. We considered only the initial condensation stage when
N is much lower than the number of excitons in the reservoir
and w and γ are constant (later on, w decreases to the value of
w = γ , giving a maximum in the dynamics of 〈N〉, and then to
w < γ , giving the decay of 〈N〉). Calculations are done for the
values of w = 0.46 ps−1 and γ = 0.3 ps−1. As expected, the
maximum in PN (t ) corresponds to the time when 〈N (t )〉 =
N . The width of the PN (t ) kinetic dependencies for N � 1
is almost independent of N and gives the time uncertainty
δt of the onset of condensation. According to our model, the
BEC formation jitter is equal, to a constant numerical factor
of the order of unity, to the characteristic rise time of 〈N〉
(for 〈N〉 � 1):

δt ∼ 1/(w − γ ) = 〈N〉/d〈N〉
dt

. (11)

This relation is confirmed experimentally by the dependence
of δt on the PL rise time τ = 〈N〉/d〈N〉

dt
shown in the inset in

Fig. 2(d).

D. Correlations of photons with opposite polarizations

Let us now analyze the cross-correlation function
g(2)[N1(t1), N2(t2)] for the numbers of photons with opposite
polarizations N1 and N2 (recall that, according to Eq. (5), this
is the same as g(2)[n1(t1), n2(t2)]). The correlation functions
for the numbers of emitted photons with the opposite linear
and circular polarizations are shown in Figs. 3(a) and 3(b), re-
spectively. We have already shown that g(2) for the total num-
ber of photons N = N1 + N2 is almost entirely determined by
the fluctuations in the BEC formation time (jitter), which are
on the order of the PL rise time. Thus, we assume that jitter
plays an important role in g(2)[N1(t1), N2(t2)] as well. We
have to distinguish between two independent contributions
to �N1,2 in Eq. (7): the total jitter of N = N1 + N2 (like
“motion of the center of mass”) and spontaneous polarization
(“internal motion”), independent of the former. We can write
�N1,2 = �N

jit
1,2 + �N

sp
1,2, where �N

jit
1,2 ≈ 〈N1,2〉′�t is the

contribution from jitter in the total photon number (and �t

is the corresponding jitter time) and �N
sp
1,2 is the contribution

due to spontaneous polarization. Thus,

g(2)[N1(t1), N2(t2)]

= 1 + 〈N1(t1)〉′〈N2(t2)〉′(δt )2 + 〈
�N

sp
1 (t1)�N

sp
2 (t2)

〉
〈N1(t1)〉〈N2(t2)〉 .

(12)

Taking the jitter values determined in the previous section, we
can exclude the jitter contribution from g(2) as is shown in
Figs. 3(c) and 3(d) for opposite linear and circular polariza-
tions, respectively. One can see that, after this correction, the
values of g(2) that are less than unity are concentrated mostly
along the diagonal for both circular and linear polarizations.

We will consider two types of profiles (cross sections) of
such 2D plots [Figs. 3(c) and 3(d)]: vertical (or horizontal) and
diagonal. For a vertical profile, we fix one time variable at the
value corresponding to the PL maximum [vertical dashed lines
in Figs. 3(c) and 3(d)]. The values of g(2)[N1(tmax), N2(t2)]
reflect the relation between the polarization at a given time
and the polarization at the PL maximum. The dependence
g(2)[N1(tmax), N2(t2)] for the circular polarization is shown
in Fig 3(e) by green diamonds. The correlation function
g(2) drops below unity at the beginning of the condensation
process and attains a minimum near t2 = tmax. Over almost the
entire time range where the BEC exists, g(2) < 1, indicating
that the spontaneous polarization of the PL remains of the
same sign, i.e., in the same direction on the Poincaré sphere.
However, at the PL tail (t2 � 100 ps), g(2) becomes larger than
unity, indicating that circular polarization typically changes
its sign. Such a behavior was also observed for pillar MCs in
Ref. [16]. The corresponding profile for the linear polarization
[red squares in Fig. 3(e)] behaves similarly to that for the
circular polarization. However, g(2) only approaches unity
from below without crossing this level at the tail of the
kinetics. Thus, linear polarization generally exhibits no sign
reversal over the investigated time range, but “forgets” its ini-
tial direction at the tail of the kinetics. This means that circular
polarization generally changes from left- to right-handed (or
vise versa) as PL evolves from its maximum towards the tail,
while linear polarization becomes randomly directed at the
kinetics tail regardless of its direction at the PL maximum.

Next, we consider the diagonal profiles, where t1 = t2 = t

[diagonal dashed lines in Figs. 3(c) and 3(d)]. The value
of g(2)[N1(t ), N2(t )] allows us to track the dynamics of the
degree of polarization: Spontaneous polarization drives this
correlation function below g(2) = 1, and, as it is shown in the
Appendix, the deviation of g(2) from unity reflects the degree
of spontaneous polarization [see Eq. (A10)]. The dynamics
of the correlation function g(2)[N1(t ), N2(t )] for opposite
linear and circular polarizations is shown in Fig. 3(f). When
condensation sets in, which is indicated by an increase in
the PL intensity, g(2) becomes less than unity both for linear
and circular polarizations, indicating the emergence of PL
spontaneous polarization. The decay of circular polarization
begins even before the PL reaches its maximum, and, after
∼50 ps of decay, g(2) for circular polarization returns to
unity. Meanwhile, for linear polarization, g(2) decays later,
remaining smaller than unity even when the PL intensity have
already decreased significantly. This long-lived behavior of
g(2), and, thus, of the degree of linear polarization, is similar to
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FIG. 3. (a, b) Cross-correlation function g(2)[N1(t1), N2(t2)] for the numbers of photons with opposite linear (a) and circular (b)
polarizations. (c, d) The same as (a) and (b) after subtracting the jitter contribution. The solid lines show the PL kinetics [Fig. 2(a)], the
dashed lines show the positions of the profiles with t1 = tmax and t1 = t2. (e) Cross-correlation profiles g(2)(tmax, t2) for linear and circular
polarizations show the relation between polarizations at time tmax and at other moments t2. (f) Cross-correlation profiles g(2)(t, t ) for linear and
circular polarizations show the degree of polarization. Arrows mark the time of the PL maximum and the time of sign reversal for the circular
polarization. Error bars in panels (e) and (f) show standard deviations.

that of spatial coherence and polariton momentum distribution
reported in Refs. [6,7,26,32].

As expected, g(2)[N1(t ), N2(t )] shows no systematic
deviation from unity in the absence of condensation (see
Supplemental Material [27]).

IV. CONCLUSIONS

We have studied fluctuations in the onset time of Bose
condensation and in the degree of linear and circular sponta-

neous polarization in a MC polariton system by measuring the
temporal dynamics of the second-order correlation function
g(2). The analysis of correlations between the number of
photons detected at different moments in time has given clear
evidence of jitter in the BEC onset time. This jitter is an
inherent property of the BEC formation process resulting
from its stochastic nature. Both the experimental data and
a simple master equation model indicate that the magnitude
of jitter is proportional to the characteristic rise time of
the polariton ground state occupancy. This jitter should be

035310-6



JITTER OF CONDENSATION TIME AND DYNAMICS OF … PHYSICAL REVIEW B 99, 035310 (2019)

taken into account when interpreting the results of correlation
measurements.

Measurements of the cross-correlation function
g(2)[n1(t ), n2(t )] for the intensities of PL with opposite
polarizations have made it possible to investigate the
dynamics of the degree of polarization (or, more strictly, its
pulse-to-pulse variance). Spontaneous linear polarization of
the condensate lasts for at least 100 ps, whereas spontaneous
circular polarization decays earlier and its sign is typically
reversed at the tail of the PL kinetics.
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APPENDIX

Here, we express the correlation function for the numbers
of photons emitted by the microcavity (MC) in terms of the
numbers of detected photons. Let N1 and N2 be the numbers
of photons emitted by the MC and n1 and n2 be the corre-
sponding numbers of detected photons, so that 〈n1〉 = α〈N1〉,
〈n2〉 = α〈N2〉, where α � 1 is the detection probability and
averaging is done over a series of excitation events. Indices
1 and 2 may correspond to different polarizations and/or
different time moments.

We are looking for the correlation function

g(2)(N1, N2) = 〈N1N2〉
〈N1〉〈N2〉 (A1)

and are going to express it through n1 and n2.
Let F (N1, N2) be the distribution function of N1 and

N2, with
∑

N1,N2
F (N1, N2) = 1. The distribution F (N1, N2)

determines the correlation properties of N1 and N2, including
spontaneous polarization. Then,

〈N1N2〉 =
∑

N1,N2

F (N1, N2)N1N2, (A2a)

〈
N2

1

〉 =
∑

N1,N2

F (N1, N2)N2
1 . (A2b)

For a given number N1 of emitted photons, the probabil-
ity distribution for the number of detected photons n1 is a
Poissonian P (n1, λ) with a mean value of λ = αN1. Then, for
the averages 〈n1n2〉 and 〈n2

1〉 we have

〈n1n2〉 =
∑

N1,N2,n1,n2

F (N1, N2)P (n1, αN1)P (n2, αN2)n1n2

= α2
∑

N1,N2

F (N1, N2)N1N2 = α2〈N1N2〉 (A3)

and 〈
n2

1

〉 =
∑

N1,N2,n1

F (N1, N2)P (n1, αN1)n2
1

=
∑

N1,N2

F (N1, N2)
(
α2N2

1 + αN1
)

= α2
〈
N2

1

〉 + α〈N1〉, (A4)

where we took into account that for the Poisson distribution
P (k, λ), 〈k2〉 = λ2 + λ.

Substituting 〈N1N2〉 and 〈N2
1 〉 from Eqs. (A3) and (A4)

into Eq. (A1), we obtain the final formulas for the correlation
functions we are looking for

g(2)(N1, N2) = g(2)(n1, n2), (A5a)

g(2)(N1, N1) = g(2)(n1, n1) − 1/〈n1〉. (A5b)

Next, we are going to find how the zero-delay cross-
correlation function g(2)[N1(t ), N2(t )] relates to the degree
of spontaneous polarization. According to the experimental
data, there are no significant fluctuations in the total number
of emitted photons per pulse [see Fig. 1(c)], while N (t ) (for a
given time t) fluctuates due to the jitter effect. Instead of ρem,
defined by Eq. (2), let us describe the degree of polarization
and its variance in terms of a modified variable

ρ̃em(t ) = N1(t ) − N2(t )

〈N (t )〉 . (A6)

Evidently, ρ̃em(t ) = ρem(t ) in the absence of jitter. Then, the
variance is

〈
ρ̃2

em(t )
〉 = 〈(N1(t ) − N2(t ))2〉

〈N (t )〉2

= 〈
ρ̃2

det(t )
〉 − 1

〈n(t )〉 , (A7)

similarly to Eq. (3). Here, ρ̃det(t ) = [n1(t ) − n2(t )]/〈n(t )〉. It
is easy to show, that〈

ρ̃2
em(t )

〉 = 〈ρ̃em(t )〉2 + 4
〈
�2

sp(t )
〉
/〈N (t )〉2, (A8)

where �N
sp
1 (t ) = �sp(t ) and �N

sp
2 (t ) = −�sp(t ). Then, we

can write the polarization part of Eq. (12) as

g(2)[N1(t ), N2(t )] = 1 −
〈
�2

sp(t )
〉

〈N1(t )〉〈N2(t )〉

= 1 −
〈
ρ̃2

em(t )
〉 − 〈ρ̃em(t )〉2

1 − 〈ρ̃em(t )〉2

= 1 −
〈
�ρ̃2

em(t )
〉

1 − 〈ρ̃em(t )〉2
, (A9)

where �ρ̃em(t ) = ρ̃em(t ) − 〈ρ̃em(t )〉. For zero average degree
of polarization 〈ρem(t )〉 = 0 (which is the case, e.g., for
circular polarization)〈

ρ̃2
em(t )

〉 = 1 − g(2)[N1(t ), N2(t )]. (A10)

So, the deviation of g(2) from unity reflects the degree of
spontaneous polarization.
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