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We develop a time-dependent three-dimensional coupled-wave theory (3D-CWT) for the transient analysis
of photonic-crystal surface-emitting lasers (PCSELs). Our model takes into account the temporal evolution of
both the photon and carrier distribution inside PCSELs, which enable the analysis of various above-threshold
lasing characteristics including the relaxation oscillation, spatial hole burning, and multimode lasing. With
the developed time-dependent 3D-CWT, we perform transient analysis of the high-power, high-beam-quality
PCSELs with double-lattice photonic crystals and reproduce the experimental results of near-field patterns and
lasing spectra under high current injection. Our theory enables the comprehensive understanding of the device
physics of PCSELs toward the realization of higher-power continuous-wave lasing and short-pulse lasing.
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I. INTRODUCTION

Photonic-crystal surface-emitting lasers (PCSELs) [1–6]
are lasers that use the two-dimensional (2D) band-edge res-
onant effect of a photonic crystal for both light amplification
and surface emission. Owing to their single longitudinal and
transverse mode oscillation in two dimensions with a large
emission area, PCSELs enable continuous-wave, single-mode
lasing with a watt- to ten-watt-class output power and low
beam divergence [7–10]. PCSELs also feature flexible func-
tionalities such as the arbitrary shaping of beam patterns and
polarizations by the appropriate design of the air-hole patterns
[11,12], and on-chip 2D beam steering [13,14].

Along with the above-mentioned experimental progress in
PCSELs, the development of analytical tools, which enable
accurate analysis of the lasing characteristics of PCSELs, is
becoming increasingly important. General computation meth-
ods such as the 2D plane-wave expansion method [15] and
finite-difference time-domain method [16] cannot be applied
to the analysis of PCSELs with large emission areas (>
300a × 300a, where a is the lattice constant of the PC),
because the former is only applicable to infinite structures
and the latter can treat only small devices such as nano-cavity
lasers owing to the requirement of substantial computational
resources. To overcome these limitations, we extended the
1D coupled-wave theory originally proposed by Kogelnik
and Shank in 1972 [17], and developed a three-dimensional
coupled-wave theory (3D-CWT) [18,19] that enables the an-
alytical treatment of the full 3D structure of PCSELs with
finite emission areas. In this theory, we focus on the mutual
coupling of Bloch waves inside PCSELs, which significantly
reduces the computational resources and provides clearer ana-
lytical insight for lasing characteristics of PCSELs. Using this
theory, we can predict various lasing properties including the
threshold gain, mode frequency, far-field pattern, and output
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beam polarization. However, our previous work on the 3D-
CWT has been restricted to steady-state analysis, neglecting
the temporal change of photon and carrier distributions inside
PCSELs. The analysis of the transient response of PCSELs,
including the rise of the lasing oscillation and mode competi-
tion between multiple lasing modes, could not be treated.

In this work, we develop a time-dependent 3D-CWT for
the comprehensive analysis of PCSELs by extending the con-
ventional 3D coupled-wave equations into the time domain
and combining them with a rate equation for carriers. Our
model takes into account both the temporal and spatial evolu-
tion of the photon distribution, as well as carrier distribution,
inside the PCSELs, and enables a wider range of PCSEL
analyses such as relaxation oscillation, spatial hole burning
(SHB), and multimode lasing, which cannot be treated with
the conventional 3D-CWT. The remainder of this paper is
organized as follows. Section II describes the derivations of
the time-dependent 3D coupled-wave equations. Section III
presents several numerical results of the recently demon-
strated high-power high-beam-quality double-lattice PCSEL
[8–10] and elucidates the effect of the carrier-induced nonuni-
formity of the refractive index and gain on the lasing charac-
teristics of PCSELs under high current injection. Section IV
concludes this work.

II. DERIVATION OF TIME-DEPENDENT 3D-CWT

Schematics of the cross section and top view of a typical
PCSEL device are illustrated in Figs. 1(a) and 1(b), respec-
tively. To derive the time-dependent 3D-CWT, we start with
a wave equation for electric field E, which is obtained by
eliminating the magnetic field from Maxwell’s equations:

∇ × ∇ × E + 1

c2

∂2

∂t2
[ñ2(r )E] = 0, (1)

ñ2(r ) = n2(r ) + 2in(r )k(r ). (2)

Here, c is the speed of light in vacuum, and n(r ) and k(r )
are the real and imaginary parts of the refractive index,
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FIG. 1. Schematics of (a) cross-section of a typical PCSEL de-
vice and (b) top view of a square-lattice PC. (c) Bloch wave states
represented by wave vectors (arrows) in reciprocal space including
four basic waves (red arrows), high-order waves, and radiative waves.

respectively. In the case of the square-lattice PC shown in
Fig. 1(b), n2(r) can be expanded as follows:

n2(r ) = n2(z) +
∑

(m,n)�=(0,0)

ξm,n(z) exp [−i(mβ0x + nβ0y)],

(3)

where β0 = 2π/a is the length of the primitive reciprocal
lattice vector, m and n are arbitrary integers, and ξm,n(z) is
the Fourier coefficient term.

In the case of a steady-state solution for a PCSEL with in-
finite size, the transverse electric polarization fields E(r, t ) =
(Ex (r, t ), Ey (r, t ), 0) of the �-point mode (achieving surface
emission) can be expanded according to Bloch’s theorem as
follows:

Ej (r, t ) =
∑
m,n

Ej,m,n(z) exp [−i(mβ0x + nβ0y)]

× exp (iω0t ) (j = x, y), (4)

where Ej,m,n(z) is the z-dependent amplitude of each plane
wave and ω0 is the angular frequency of the resonant mode.
In contrast, when we consider the transient response for a
PCSEL with finite size, the amplitude of each plane wave
gradually changes both temporally and spatially, and can thus
be expressed as follows:

Ej (r, t ) =
∑
m,n

Ej,m,n(x, y, z, t ) exp [−i(mβ0x + nβ0y)]

× exp (iω0t ) (j = x, y), (5)

where ∣∣∣∣∂Ej,m,n

∂x

∣∣∣∣,
∣∣∣∣∂Ej,m,n

∂y

∣∣∣∣ � β0|Ej,m,n|,
(6)∣∣∣∣∂Ej,m,n

∂t

∣∣∣∣ � ω0|Ej,m,n|.

As in the case of the derivation of the steady-state 3D-
CWT [18,19], the four basic waves shown in Fig. 1(c) can
be expressed as

Ex,1,0 = 0, Ey,1,0 = Rx�0(z),

Ex,−1,0 = 0, Ey,−1,0 = Sx�0(z),

Ex,0,1 = Ry�0(z), Ey,0,1 = 0,

Ex,0,−1 = Sy�0(z), Ey,0,−1 = 0, (7)

where �0(z) is the field profile in the z direction, and
Rx, Sx, Ry, Sy represent the amplitudes of the basic waves
propagating in the +x, −x, +y, and −y directions, re-
spectively. Note that these amplitudes gradually change both
temporally and spatially. Substituting Eqs. (3), (5), and (7)
into Eq. (1), we obtain the following time-dependent coupled-
wave equations in matrix form (the details of the derivation
and each symbol are explained in the Appendix):

∂

∂t

⎛
⎜⎜⎜⎝

Rx

Sx

Ry

Sy

⎞
⎟⎟⎟⎠ = c

ng

[
−iδ + g − αin

2

]
⎛
⎜⎜⎜⎝

Rx

Sx

Ry

Sy

⎞
⎟⎟⎟⎠ − c

ng

⎛
⎜⎜⎜⎝

∂Rx/∂x

−∂Sx/∂x

∂Ry/∂y

−∂Sy/∂y

⎞
⎟⎟⎟⎠

−γ

⎛
⎜⎜⎜⎝

Rx

Sx

Ry

Sy

⎞
⎟⎟⎟⎠ + c

ng

C

⎛
⎜⎜⎜⎝

Rx

Sx

Ry

Sy

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

f1

f2

f3

f4

⎞
⎟⎟⎟⎠. (8)

Here, ng is the group index of the guided mode, δ is the
deviation from the Bragg condition, g is the effective gain
for the guided mode (modal gain), αin is the internal material
loss, γ is the rate of change of the refractive index, and f is
the random noise expressing the spontaneous emission [20].
C is a 4 × 4 matrix which represents the cross coupling of
the waves shown in Fig. 1(c), including basic, high-order, and
radiative waves. The first term on the right side of Eq. (8)
denotes the phase rotation and amplification, the second term
denotes the spatial propagation of the envelope function, the
third term denotes the change in amplitude due to the change
in refractive index, the fourth term denotes the cross coupling
of the waves, and the last term denotes the spontaneous
emission. The output power of the PCSEL can be calculated
as follows:

Prad(t ) =
∫∫

2ε0neffc · 2imag(�tC�)dxdy,

(9)
� = (

Rx, Sx, Ry, Sy

)t
.

The rate equation for the carrier density N (x, y) inside the
active region (multiple quantum wells) can be given by

∂N

∂t
= J

edactive
− N

τc

− c

ng

gactiveU + D∇2N,

(10)
U = �active

2ε0neffng

h̄ωdactive
[|Rx |2 + |Sx |2 + |Ry |2 + |Sy |2],

035308-2



COMPREHENSIVE ANALYSIS OF PHOTONIC-CRYSTAL … PHYSICAL REVIEW B 99, 035308 (2019)

where J is the current density, dactive is the thickness of the
active layer, τc is the carrier lifetime, U is the photon density
inside the active layer, D is the diffusion coefficient of the
carriers, �active is the optical confinement factor in the active
layer, and neff is the effective refractive index of the guided
mode. Equation (10) takes into account carrier injection, car-
rier recombination, stimulated emission, and carrier diffusion.
The optical gain of the active layer gactive is dependent on the
carrier density, which is calculated by considering momentum
matrix elements between the wave functions in the conduction
and valence bands, their density of states, and the quasi-Fermi
energy [21]. For simplicity, in this study, we approximate the
gain function of the quantum wells using a linear fractional
function of the carrier density with gain saturation [22]:

g(N ) = gmax(N − Ntr )

N + [gmax/(−g0)]Ntr

, (11)

where Ntr is the transparency carrier density, gmax is the
saturated gain, and (−g0) is the absorption coefficient when
there are no carriers. It should be noted that the refractive
index of the active layer is also dependent on the carrier
density, which can be taken into account as the change in the
deviation from the Bragg condition δ in Eq. (8).

By solving the time-dependent equations [Eqs. (8) and
(10)] simultaneously, the temporal and spatial evolution of
both photon and carrier distributions inside the PCSELs can
be simulated, enabling transient analyses including relaxation
oscillation and short-pulse lasing operation. Unlike the con-
ventional single-mode rate equations for photons, Eq. (8) con-
siders the evolution of all the lasing modes inside the PCSEL
simultaneously. When the mode with the lowest threshold
gain starts lasing, the carrier density inside the active layer
is fixed owing to the stimulated emission term in Eq. (10),
which hinders the lasing of the other modes. However, as
the spatial distribution of each mode is different, multimode
lasing might occur when the threshold gain margin between
the fundamental modes and the other modes is small. It should
be noted that, in our time-dependent 3D-CWT, the lasing
spectra of the PCSEL can be directly calculated by performing
a Fourier transform of the transient response of electric fields.

III. NUMERICAL RESULTS

In this section, we apply the above time-dependent 3D-
CWT to the transient analysis of the high-power double-lattice
PCSEL we recently demonstrated [8–10]. The laser structure
to be studied is listed in Table I. A schematic of the PC layer

TABLE I. Structural parameters of the PCSEL.

Layer Thickness (nm) Refractive index

n-clad (AlGaAs) 1000 3.122
AlGaAs 80 3.445
Active (InGaAs/AlGaAs) (10/20) × 3 3.584/3.445
AlGaAs 25 3.269
GaAs 110 3.554
PC 190 nave

p-clad (AlGaAs) 2000 3.297
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FIG. 2. (a) Schematic of a double-lattice PC. (b) 3D shape of
the air holes embedded by MOVPE, which has been reconstructed
from scanning electron microscope images. (c) Calculated photonic
band diagram near the � point. (d) Calculated threshold gain of the
fundamental and high-order modes in the mode A group in a device
with L = 300 μm. The color maps show the photon distributions of
the first, second, and third modes, which have been calculated using
the conventional 3D-CWT.

is illustrated in Fig. 2(a), which consists of two elliptical air
holes with different sizes whose centers of gravity are shifted
by 0.25a in the x and y directions (referred to as “Structure
I” in Ref. [10]). In this structure, light diffracted backward
by each air hole destructively interferes, which weakens the
confinement of each lasing mode inside the PC. Such weak
confinement increases the threshold gain difference between
the fundamental mode and the high-order modes and realizes
single-mode lasing in a large area [10]. To simulate the
fabricated device, we first reconstructed the 3D shape of the
air holes embedded by metal organic vapor phase epitaxy
(MOVPE) from scanning electron microscope images of the
cross section of the holes [shown in Fig. 2(b)], and we then
sliced them in the z direction to extract their average refractive
index and coupling coefficients. Figure 2(c) presents the pho-
tonic band diagram of the fabricated double-lattice PC near
the � point. Among the four resonant modes at the � point,
mode A has the lowest radiation constant and thus becomes
the lasing mode. Figure 2(d) shows the resonant wavelength
and threshold gain of the mode A group in the PC with the
finite device size (L = 300 μm), which is calculated using
the conventional 3D-CWT (carrier distribution is not taken
into account). As described above, the destructive feedback
by the double holes weakens the optical confinement of the
modes and especially increases the losses of the high-order
modes, realizing a large threshold gain difference (∼5 cm−1)
between the fundamental and high-order modes even at the
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TABLE II. Parameters used for 3D-CWT simulations.

Symbol Parameter Value

a Lattice constant 277 nm
ng Group refractive index 3.513
neff Effective refractive index 3.429
gmax Maximum gain 2000 cm−1

g0 Absorption coefficient −5000 cm−1

Ntr Transparency carrier density 1.5 × 1018 cm−3

αin Internal material loss 5.0 cm−1

dactive Total thickness of InGaAs wells 30 nm
�active Optical confinement factor 0.044
τc Carrier lifetime 1.5 ns
σr Current spread outside the electrode 25 μm
D Diffusion constant 100 cm2/s
dn/dN Refractive index change coefficient −5.0 × 10−21 cm3

β Spontaneous emission factor 1.0 × 10−4

large device size L = 300 μm. It should be noted, however,
that the above calculation does not take into account the
change in the refractive index and gain induced by carrier
injection. Below, we perform comprehensive analysis of the
double-lattice PCSEL by using the time-dependent 3D-CWT
described in Sec. II. The parameters used in the calculations
are summarized in Table II, where we determined the carrier
lifetime in the active region τc so that the calculated threshold
current of the device agrees with the experimental results
(Ith = 0.7 A).

Figure 3(a) presents the calculated temporal change of the
carrier density in the center of the electrode (upper) and the
output power (lower) at two different current injection levels.
After the relaxation oscillation in the beginning of the lasing,
both the output power and carrier density converge to a steady-
state value, corresponding to continuous-wave operation. The
relaxation oscillation frequency of the PCSEL is 1–3 GHz,
which increases with the injection current. Figures 3(b) and
3(c) show the spatial distribution of the carrier density and
photon density at steady state. Immediately above the thresh-
old current (I ∼ Ith, left panel), the carrier density inside the
electrode is almost uniform while the photons are localized
at the center of the electrode. In contrast, at a higher injection
current level (I = 2.8Ith, right panel), the carrier density in the
center of the electrode becomes lower than that near the edge
because of a SHB effect. In this case, photons expand toward
the edge of the electrode, and the photon distribution becomes
more uniform inside the electrode, as shown in the right panel
of Fig. 3(c) (the physical explanations are detailed later).
Such a change in photon distribution was also observed in the
experiment, as shown in the measured near-field patterns of
the fabricated PCSEL in Fig. 3(d).

Figure 4(a) shows the calculated lasing spectra of the de-
vice at three injection current levels. Here, single-mode lasing
with the fundamental mode of the mode A group is achieved
at moderate injection levels (I = 1.4Ith and 2.8Ith), while
two-mode lasing with the fundamental and high-order modes
is obtained at I = 4.2Ith. These results agree with the exper-
imentally measured lasing spectra [9] shown in Fig. 4(c). For
comparison, we also performed time-dependent analysis with-
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FIG. 3. (a) Calculated temporal change of the carrier density in
the center of electrode (upper) and the output power (lower) at two
different current injection levels. (b), (c) Calculated carrier density
distribution and photon distribution at two different current injection
levels, respectively. At the higher injection level (I = 2.8Ith ), SHB
arises in the center of the electrode, and the photon distribution
becomes more uniform. (d) Experimentally measured near-field pat-
terns of the double-lattice PCSEL.

out taking into account the carrier-induced refractive index
change (only gain distribution is taken into account). The cal-
culated spectra are presented in Fig. 4(b), where single-mode
lasing is maintained even at I = 4.2Ith. From these results, the
cause of the two-mode lasing in our device can be explained
as follows. When the current injection level is high, the
difference in carrier density inside and outside the electrode
becomes large [upper panel in Fig. 4(d)], which induces the
spatial variation of the band-edge frequency [lower panel in
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FIG. 4. (a), (b) Calculated lasing spectra of the double-lattice
PCSEL at three different injection current levels. The carrier-induced
refractive index change is taken into account in (a) but not in (b).
The transition from single-mode to two-mode lasing is observed only
in (a). (c) Experimentally measured lasing spectra of the fabricated
double-lattice PCSEL. (d) Schematic of the spatial distribution of
the carrier density (upper) and band-edge frequency (lower). In the
case of upward convex band A, a photonic band gap (shown in
blue) is formed above the band-edge frequency (fedge ), which more
strongly confines photons with the lasing frequency (flase ) inside
the electrode. A small band gap is also formed in the center of the
electrode for photons with flase, which makes the photon distribution
more uniform.

Fig. 4(d)] owing to the carrier-induced change in the refractive
index. In the case of the lasing at band A [shown in Fig. 2(c)],
which is upward convex, a photonic band gap (shown in blue)
is formed above the band-edge frequency (fedge), as shown
in the lower panel of Fig. 4(d). As a result, photons with
the lasing frequency (flase ) are more strongly confined inside
the electrode, which decreases the threshold gain difference
between the fundamental and high-order mode. In addition,
because of the SHB effect shown in Fig. 3(b), the effective
gain for the high-order mode becomes larger than that of
the fundamental mode. Such carrier-induced nonuniformity
of the refractive index and gain causes the transition from
single-mode to two-mode lasing. To maintain single-mode
lasing even at a high current injection level, spatial modulation
of the injection current or compensation of the carrier-induced
refractive index distribution by the spatial modulation of air-
hole size might be effective.

It should be noted that, in the lower panel of Fig. 4(d), a
small photonic band gap is also formed at the center of the
electrode for photons with the lasing frequency (flase ). This
small band gap is advantageous for the realization of stable
lasing because photons are repelled toward the edge of the
electrode, which makes the photon distribution more uniform,
as shown in the right panel of Figs. 3(c) and 3(d). On the
contrary, for a �-point mode at a downward convex band, a
photonic band gap is formed below the band-edge frequency
(fedge) and photons with the lasing frequency (flase ) are
localized at the center of the electrode, which will make the
lasing unstable because of the serious SHB effect. Therefore,
to maintain stable lasing under high current injection, lasing
at band A (upward convex band) is desirable.

IV. CONCLUSIONS

We have developed a time-dependent 3D-CWT in which
the temporal evolution of both the photon and carrier distri-
butions inside a PCSEL is self-consistently simulated. Our
model takes into account both the temporal change and spatial
nonuniformity of the refractive index and gain, enabling a
wide range of PCSEL analyses including transient response
and lasing spectra, which cannot be treated with the con-
ventional 3D-CWT or single-mode rate equation. By apply-
ing this model to the analysis of the high-power double-
lattice PCSEL we recently demonstrated, we have reproduced
various experimental results including the uniformization of
photon distribution and the transition from single-mode to
two-mode lasing under high current injection. Although the
simulations in this work were applied to a double-lattice
PCSEL with a device size of 300 µm for continuous-wave
operation, our theory can also be applied to the optimiza-
tion of the radiated output power of double-lattice PCSELs
with larger device sizes as well as the transient analysis of
PCSELs for short-pulse high-peak-power lasing operation.
We believe our time-dependent 3D-CWT will accelerate the
comprehensive analysis of PCSELs toward the realization
of advanced functionalities including short-pulse lasing as
well as single-mode higher-power continuous-wave lasing in
PCSELs.
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APPENDIX: DETAILED DERIVATION OF
TIME-DEPENDENT 3D-CWT

In this appendix, we present a detailed description in the
derivation of the time-dependent 3D-CWT [Eq. (8) in Sec. II].
Substituting Eqs. (3) and (5) into Eq. (1) and using Eq. (6),
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we obtain
[

∂2

∂z2
+ ω0

2

c2
n2(z) + i

ω0n(z)g(z)

c
− n2β0

2

]
Ex,m,n − 2inβ0

∂Ex,m,n

∂y
+ mnβ0

2Ey,m,n

+ iβ0

(
m

∂Ey,m,n

∂y
+ n

∂Ey,m,n

∂x

)
− i

2ω0n
2(z)
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∂Ex,m,n
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− i

2ω0
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2Ex,m,n

+iβ0

(
n
∂Ex,m,n

∂x
+ m

∂Ex,m,n

∂y

)
− i

2ω0n
2(z)

c2

∂Ey,m,n

∂t
− i

2ω0

c2

∂n2(z)

∂t
Ey,m,n

= −ω0
2

c2

∑
m′,n′

ξm−m′,n−n′Ey,m′,n′ , (A2)

where g(z) = 2ω0k(z)/c denotes the gain (loss) of the
medium. The four basic waves can be expressed as

Ex,1,0 = 0, Ey,1,0 = Rx�0(z),

Ex,−1,0 = 0, Ey,−1,0 = Sx�0(z),

Ex,0,1 = Ry�0(z), Ey,0,1 = 0,

Ex,0,−1 = Sy�0(z), Ey,0,−1 = 0, (A3)

where Rx, Sx, Ry, Sy represent the amplitudes of the basic
waves propagating in the +x, −x, +y, and −y directions,
respectively. �0(z) is the field profile in the z direction, which
is assumed to be the same as that of the fundamental guided
mode for a multilayer structure in which the PC layer is
replaced with a uniform layer having an average refractive
index:

∂2

∂z2
�0(z) +

[
n2(z)ω0

2

c2
− β2

]
�0(z) = 0,

(A4)∫ ∞

−∞
|�0(z)|2dz = 1.

Here, β is the in-plane wavenumber of the guided mode.
By choosing the appropriate angular frequency ω0, we can
equate β to β0. The effective refractive index of the multilayer
structure neff is defined as β = neffω0/c.

Substituting (m, n) = (1, 0) into Eq. (A2) and using
Eqs. (A3) and (A4), we obtain

i
2ω0n

2(z)

c2

∂Rx

∂t
�0(z)

=
[
β2 − β0

2 + i
ω0n(z)g(z)

c

]
Rx�0(z)

− 2iβ0
∂Rx

∂x
�0(z) − i

2ω0

c2

∂n2(z)

∂t
Rx�0(z)

+ω0
2

c2

∑
m′,n′

ξ1−m′,−n′Ey,m′,n′ . (A5)

Multiplying both sides of Eq. (A5) by �∗
0(z) and integrat-

ing with respect to z, we obtain the following time-dependent
coupled-wave equation:

∂Rx

∂t
= c

ng

(
−iδ + g

2

)
Rx − c

ng

∂Rx

∂x
− γRx

+ c

ng

· ω0
2

2β0c2

∑
m′,n′

∫
ξ1−m′,−n′Ey,m′,n′�∗

0(z)dz.

(A6)

Three more time-dependent coupled-wave equations for
Sx, Ry, Sy can be derived in analogous fashion as follows:

∂Sx

∂t
= c

ng

(
−iδ + g

2

)
Sx + c

ng

∂Sx

∂x
− γ Sx

+ c

ng

· ω0
2

2β0c2

∑
m′,n′

∫
ξ−1−m′,−n′Ey,m′,n′�∗

0(z)dz,

(A7)

∂Ry

∂t
= c

ng

(
−iδ + g

2

)
Ry − c

ng

∂Ry

∂y
− γRy

+ c

ng

· ω0
2

2β0c2

∑
m′,n′

∫
ξ−m′,1−n′Ex,m′,n′�∗

0(z)dz,

(A8)

∂Sy

∂t
= c

ng

(
−iδ + g

2

)
Sy + c

ng

∂Sy

∂y
− γ Sy

+ c

ng

· ω0
2

2β0c2

∑
m′,n′

∫
ξ−m′,−1−n′Ex,m′,n′�∗

0(z)dz.

(A9)
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Here, we define ng, δ, g, γ as

ng = ω0

cβ0

∫ ∞

−∞
n2(z)|�0(z)|2dz,

δ = (
β2 − β0

2
)/

2β0,

g = nactiveω0

cβ0
�activegactive

(
�active =

∫
active

|�0(z)|2dz

)
,

γ =
∫ ∞

−∞

2

n(z)

∂n(z)

∂t
|�0(z)|2dz, (A10)

where ng is the group index of the guided mode, δ is the
deviation from the Bragg condition, g is the effective gain
for the guided mode (modal gain), nactive and gactive are the
refractive index and gain of the active layer, respectively,
�active is the optical confinement factor in the active layer, and
γ is the rate of change of the refractive index. The last term
in Eqs. (A6)–(A9) represents the cross coupling of the waves
shown in Fig. 1(c), including basic, high-order, and radiative
waves. As is described in our previous papers [18,19], these
couplings can be expressed with a 4 × 4 matrix C, which
directly leads to the derivation of Eq. (8) in Sec. II. It should be
noted that the internal material loss αin and the random noise
f expressing the spontaneous emission are also included in
Eq. (8).

The coupled wave matrix C can be expressed with the sum
of three matrices:

C = C1D + Crad + C2D, (A11)

C1D =

⎛
⎜⎜⎜⎝

0 κ2,0 0 0

κ−2,0 0 0 0

0 0 0 κ0,2

0 0 κ0,−2 0

⎞
⎟⎟⎟⎠, (A12)

Crad =

⎛
⎜⎜⎜⎜⎝

ς
(1,0)
1,0 ς

(−1,0)
1,0 0 0

ς
(1,0)
−1,0 ς

(−1,0)
−1,0 0 0

0 0 ς
(0,1)
0,1 ς

(0,−1)
0,1

0 0 ς
(0,1)
0,−1 ς

(0,−1)
0,−1

⎞
⎟⎟⎟⎟⎠, (A13)

C2D =

⎛
⎜⎜⎜⎜⎜⎝

χ
(1,0)
y,1,0 χ

(−1,0)
y,1,0 χ

(0,1)
y,1,0 χ

(0,−1)
y,1,0

χ
(1,0)
y,−1,0 χ

(−1,0)
y,−1,0 χ

(0,1)
y,−1,0 χ

(0,−1)
y,−1,0

χ
(1,0)
x,0,1 χ

(−1,0)
x,0,1 χ

(0,1)
x,0,1 χ

(0,−1)
x,0,1

χ
(1,0)
x,0,−1 χ

(−1,0)
x,0,−1 χ

(0,1)
x,0,−1 χ

(0,−1)
x,0,−1

⎞
⎟⎟⎟⎟⎟⎠

, (A14)

where

κi,j = − ω2
0

2β0c2

∫
ξi,j |�0(z)|2dz, (A15)

ζ (r,s)
p,q = − ω4

0

2β0c4

∫∫
ξp,qξ−r,−sG(z, z′)�0(z′)�∗

0(z)dz′dz,

(A16)

χ
(r,s)
j,p,q = − ω2

0

2β0c2

∑
√

m2+n2>1

ξp−m,q−nς
(r,s)
j,m,n, j = x, y.

(A17)

The derivation of the coupled-wave matrix is detailed in
our previous papers [18,19]. Here, C1D, Crad, and C2D corre-
spond to 1D back-diffraction coupling, out-of-plane coupling
via radiative waves, and 2D coupling via high-order waves,
respectively. C1D and C2D are Hermitian matrices, while Crad

is not Hermitian, as it corresponds to the power dissipation
due to surface emission.
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