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General condition for realizing a collinear spin-orbit effective magnetic field in two-dimensional
electron systems and its application to zinc-blende and wurtzite quantum wells
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In this paper, we have studied two-dimensional (2D) electron systems described by the effective Hamiltonians
containing spin-orbit coupling (SOC) terms up to an arbitrary odd order in wave vector k. The general
condition for realizing a SOC-induced effective magnetic field (SOF) in such systems, formulated only in
terms of the SOC parameters, is derived. When this condition is satisfied, the projection of the electron
spin on the direction of the collinear SOF is a conserved quantity. The complete set of the k-linear and
k-cubic Dresselhaus SOC contributions to the effective 2D Hamiltonian of an arbitrarily oriented zinc-blende
quantum well is computed by a proper averaging of the corresponding tight-binding bulk SOC Hamiltonian. We
investigate possibilities for realization of the collinear SOF in zinc-blende quantum wells of different orientation
and obtain some interesting findings, which supplement the results of earlier works. Application of the developed
formalism to wurtzite semiconductor 2D systems shows that the collinear SOF can be also realized in a wide
class of such quantum wells.
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I. INTRODUCTION

The achievement of long enough spin lifetimes is essential
for fabrication of spintronic devices [1,2]. In the last 15
years, several two-dimensional electron systems (2DES) with
appropriate properties were found. In 2003 Schliemann et al.
[3] proposed a nonballistic spin-field-effect transistor based
on a [001] zinc-blende (ZB) quantum well (QW) with the
Rashba and Dresselhaus spin-orbit coupling (SOC) terms of
equal strengths. Later, Bernevig et al. [4] connected unique
features of this system with a type of SU(2) spin rotation
symmetry and found that one is also realized in symmetric
[110] ZB QWs. In addition, in that paper the persistent spin
helix, which is a special spin precession pattern with the
precession angle depending only on the net displacement in
specific directions (±[110] for [001] QWs with equal SOC
strengths and [11̄0] for symmetric [110] QWs), was predicted.
Presently, different aspects of the persistent spin helices were
studied in many theoretical [5–15] and experimental [16–23]
works (the key developments in both theory and experiment
are summarized in Ref. [24]).

Formation of the collinear SOC-induced effective magnetic
field (SOF) is another feature of 2DES with additional spin
symmetry. In general, the direction of the SOF field depends
on the wave vector k = {kx, ky} of the electron. Hence, spins
of the carriers propagating along different directions in the
QW plane precess in different ways. Nevertheless, in the
symmetric cases the SOF is collinear to a peculiar direction,
which is determined only by the SOC parameters, and the
projection of the electron spin on this direction is a conserved
quantity.

Kammermeier et al. [25] considered the model Hamilto-
nian for the lowest conduction subband in direct bandgap
ZB QWs obtained after averaging of the bulk Dresselhaus
Hamiltonian [26] along an arbitrary crystallographic direction

[hkl], which coincides with the growth direction of the cor-
responding QW. The authors found that if the k-linear SOC
terms are taken into account the collinear SOF can be realized
only in QWs with at least two equal in modulus growth di-
rection Miller indices. In our previous works [27,28], slightly
subsequent to work [25], we proposed a similar condition for
realization of the collinear SOF in 2DES described by the
Hamiltonian with the generalized k-linear SOC contributions.
This condition is formulated only in terms of the SOC parame-
ters of the effective 2D Hamiltonian and is applicable not only
for ZB QWs, but also for the other 2DES that are described
by the Hamiltonian of such a type (for instance, wurtzite
2DES and SiGe QWs). In this paper, we generalize this result
considering the effective 2D Hamiltonian containing SOC
terms up to an arbitrary odd in k order and derive the general
condition for realizing a collinear SOF in the presence of these
terms.

In general, nonlinear in k SOC terms constitute an ob-
stacle for the realization of SU(2) symmetry. Despite that,
a conserved spin quantity and a collinear SOF exist in the
presence of k-cubic or even SOC contributions of a higher
order in k in some exceptional cases. In the supplemental
material of Ref. [25] the influence of k-cubic Dresselhaus
SOC terms on the collinearity of the effective SOF in ZB
QWs was discussed. Under these circumstances, it was found
that the collinear SOF can be realized in the presence of
the Dresselhaus cubic terms only in symmetric [110] QWs
or asymmetric [111] QWs with the Rashba and Dressel-
haus k-linear SOC contributions compensating each other.
In these calculations, however, k-cubic Rashba SOC terms
were neglected. Moreover, in Ref. [29] it was shown that
the conventional 2D spin Hamiltonians for [001], [110], and
[111] ZB QWs derived in Ref. [26] should be supplemented
by additional k-cubic Dresselhaus SOC terms to account for
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all SOC effects. In this paper, we compute the complete set
of the linear and cubic Dresselhaus SOC contributions to the
effective 2D spin Hamiltonian of ZB QWs by averaging along
the growth direction the bulk Dresselhaus Hamiltonian of fifth
order in k within the lowest conduction subband. We also em-
ploy the known expressions for k-cubic Rashba SOC terms in
ZB QWs of certain orientations [29] to reexamine possibilities
for realization of the collinear SOF in the presence of the cubic
SOC terms in such QWs.

This paper is organized as follows. In Sec. II, we
introduce the effective 2D Hamiltonian containing SOC
terms up to 2n + 1 in wave vector k order and derive
the general condition for realizing a collinear SOF in
2DES. Therein, we discuss in detail two particular cases
of this condition corresponding to the generalized k-linear
(n = 0) and k-cubic (n = 1) SOC Hamiltonians. In Sec. III,
we compute the complete set of the k-linear and k-cubic Dres-
selhaus SOC contributions to the effective 2D spin Hamilto-
nian of an arbitrarily oriented ZB QW by averaging along the
growth direction the relevant bulk Dresselhaus Hamiltonian
of fifth order in k within the lowest conduction subband.
In Sec. IV, we investigate possibilities for realization of the
collinear SOF in [001]-, [110]-, [111]-, [113]-, and [013]-
grown ZB QWs. Results of application of the developed
formalism to wurtzite 2DES are presented in Sec. V. Finally,
the paper is summarized in Sec. VI.

II. THE GENERAL CONDITION FOR REALIZING
A COLLINEAR SOF

In general, the existence of an extra symmetry connected
with the spin degree of freedom leads to conservation of
the spin density projection on a specific direction that is
characterized by a unit vector n = {nx, ny, nz} [3,24]. In the
framework of the single-particle approximation it is expressed
as

[Ĥ , �̂] = 0̂. (1)

Here, Ĥ is the Hamiltonian containing SOC terms and

�̂ =
(

n · h̄

2
σ̂

)
= h̄

2
(nxσ̂x + nyσ̂y + nzσ̂z) (2)

is the operator of the spin projection on the direction n, where
σ̂x , σ̂y , and σ̂z are the Pauli matrices. For 2DES with the ad-
ditional spin symmetry vector n also determines the direction
of the collinear SOF [24,25,27]. Hence, the condition (1) can
be regarded as a starting point for identification of 2DES with
the collinear SOF.

Different types of 2DES with SOC are described by ef-
fective Hamiltonians, where the structure is defined, in fact,
by only two symmetry restrictions: presence of the time
reversal symmetry and absence of the space-inversion sym-
metry. Therefore, the SOC part of the effective Hamiltonian
is constructed as a sum of products of the Pauli matrices
and odd combinations of the wave vector components [30].
In any particular case, the functional form of the SOC part
can be purely determined from symmetry considerations by
means of either the invariant expansion of the Hamiltonian
method [31] or the double group tight-binding method [29].

In order to achieve our goals formulated above, we consider
the following effective Hamiltonian:

Ĥ = μ
(
k̂2
x + k̂2

y

)
σ̂0 +

n∑
j=0

Ĥ
(2j+1)
SO , (3)

where

Ĥ
(2j+1)
SO =

2j+1∑
t=0

3∑
s=1

γs, t, 2j+1−t σ̂s k̂
t
x k̂

2j+1−t
y . (4)

Here, we use Cartesian coordinates with the z axis perpen-
dicular to the plane of two-dimensional electron gas (2DEG),
σ̂0 is 2 × 2 unit matrix, k̂ = {k̂x, k̂y} = −i∇, μ ≡ h̄2/2m,
where m is the effective electron mass, and real parameters
γabc define the asymmetry induced SOC. We include in the
spin-independent part of the Hamiltonian (3) only the usual
quadratic in k̂ kinetic energy of the electron. The even terms
of higher orders (for instance, quartic) that are still consistent
with the time-reversal symmetry will not be considered in the
following because the results presented below do not depend
on the presence of such terms.

As a rule, only the linear (j = 0) and cubic (j = 1) in wave
vector SOC terms are taken into account in the sum in the
Hamiltonian (3). In this case, it is reduced to

Ĥ = μ
(
k̂2
x + k̂2

y

)
σ̂0 + Ĥ

(1)
SO + Ĥ

(3)
SO , (5)

where

Ĥ
(1)
SO = (γ110σ̂x + γ210σ̂y + γ310σ̂z)k̂x

+ (γ101σ̂x + γ201σ̂y + γ301σ̂z)k̂y (6)

and

Ĥ
(3)
SO = (γ130σ̂x + γ230σ̂y + γ330σ̂z)k̂3

x

+ (γ121σ̂x + γ221σ̂y + γ321σ̂z)k̂2
x k̂y

+ (γ112σ̂x + γ212σ̂y + γ312σ̂z)k̂x k̂
2
y

+ (γ103σ̂x + γ203σ̂y + γ303σ̂z)k̂3
y (7)

are the generalized k-linear and k-cubic SOC contributions,
respectively.

To obtain the general condition for realizing a collinear
SOF, we calculate the commutator of the Hamiltonian (5) with
the operator (2):

[Ĥ , �̂] = ih̄

⎛
⎝ 1∑

a=0

k̂a
x k̂

1−a
y

∣∣∣∣∣∣
σ̂x σ̂y σ̂z

γ1 , a, 1−a γ2 , a , 1−a γ3, a, 1−a

nx ny nz

∣∣∣∣∣∣
+

3∑
j=0

k̂j
x k̂

3−j
y

∣∣∣∣∣∣
σ̂x σ̂y σ̂z

γ1, j , 3−j γ2 , j , 3−j γ3 , j , 3−j

nx ny nz

∣∣∣∣∣∣
⎞
⎠.

(8)
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The commutator (8) vanishes if the following equalities are
satisfied:

(σ · [γ 01 × n]) = (σ · [γ 10 × n]) = 0̂, (9)

(σ · [γ 03 × n]) = (σ · [γ 12 × n]) = (σ · [γ 21 × n])

= (σ · [γ 30 × n]) = 0̂. (10)

Here,

γ 01 = {γ101, γ201, γ301}, γ 10 = {γ110, γ210, γ310},
γ 03 = {γ103, γ203, γ303}, γ 12 = {γ112, γ212, γ312},
γ 21 = {γ121, γ221, γ321}, γ 30 = {γ130, γ230, γ330} (11)

are six symbolic vectors constructed from the SOC parame-
ters.

It is possible to find components of a unit vector n, satis-
fying the condition (9), if the cross product of the vectors γ 10
and γ 01 is zero:

[γ 10 × γ 01] = 0. (12)

In this case, the vector n defines the conserved spin operator
(2) and also determines the direction of the collinear SOF.
Let us note that condition (12) defines the possibility of
formation of the persistent spin helix, when the k-cubic terms
are omitted [27].

In general, the collinearity of SOF is destroyed due to the
cubic SOC terms (7). However, the SOF remains collinear
even in the presence of such terms in some exceptional cases,
when the six vectors (11) are either pairwise collinear or null
vectors. After the renaming γ 01 ≡ ξ 1, γ 10 ≡ ξ 2, γ 03 ≡ ξ 3,
γ 12 ≡ ξ 4, γ 21 ≡ ξ 5, and γ 30 ≡ ξ 6, this condition can be
formulated as

f3 = 1

2

6∑
i,j=1

|[ξ i × ξ j ]|2 = 0. (13)

Analogously, for the most general case when the SOC
part of the 2D Hamiltonian contains odd in k SOC terms
up to 2n + 1 order [see Eqs. (3) and (4)] a similar to
Eqs. (12) and (13) condition of existence of a conserved
spin operator (2) can be obtained. Namely, Ĥ

(2j+1)
SO con-

tains 3 × 2(j + 1) = 6(j + 1) terms. In total, the Hamilto-
nian (3) is characterized by 3(n + 1)(n + 2) SOC parameters
γs , t, 2j+1−t , which form (n + 1)(n + 2) symbolic SOC vec-
tors ξ i , i = ____________________

1, (n + 1)(n + 2). It is convenient to introduce a
function

f2n+1 = 1

2

(n+1)(n+2)∑
i,j=1

|[ξ i × ξ j ]|2, (14)

which takes only non-negative values. A conserved spin op-
erator (2) exists if the condition f2n+1 = 0 is satisfied. In
particular, for n = 0 and n = 1 it is reduced to conditions (12)
and (13), respectively.

In Secs. IV and V, we apply the conditions (12) and (13) to
ZB and wurtzite QWs with different growth directions and
identify among them ones in which the collinear SOF can

be realized in the presence of only the k-linear and both the
k-linear and k-cubic SOC terms.

III. THE EFFECTIVE 2D DRESSELHAUS HAMILTONIAN
OF AN ARBITRARILY ORIENTED ZINC-BLENDE QW:

COMPUTATION OF THE COMPLETE SET
OF THE SOC PARAMETERS

Let us begin with the full-zone tight-binding SOC Hamil-
tonian describing the lowest conduction band in III-V bulk
semiconductors belonging to Td point group symmetry [29]:

Ĥbulk = E0

[
σ̂z1

(
cos

(
kx1a

2

)
− cos

(
ky1a

2

))
sin

(
kz1a

2

)

+ σ̂y1

(
cos

(
kz1a

2

)
− cos

(
kx1a

2

))
sin

(
ky1a

2

)

+ σ̂x1

(
cos

(
ky1a

2

)
− cos

(
kz1a

2

))
sin

(
kx1a

2

)]
.

(15)

Here, E0 is a constant with energy dimension, a is the lat-
tice constant, x1, y1, and z1 are cubic axes, i.e., x1||[100],
y1||[010], z1||[001]. To derive the effective 2D spin Hamil-
tonian containing all SOC terms up to the third order in
k compatible with the crystal symmetry, it is necessary to
expand the Hamiltonian (15) in a power series about the �

point and keep all terms of up to the fifth order in k:

Ĥ bulk
D = γ0

(
σ̂x1 k̂x1

(
k̂2
y1

− k̂2
z1

) + σ̂y1 k̂y1

(
k̂2
z1

− k̂2
x1

)
+ σ̂z1 k̂z1

(
k̂2
x1

− k̂2
y1

))
− a2γ0

48

(
σ̂x1 k̂x1

(
k̂2
y1

− k̂2
z1

)(
K̂2 + k̂2

x1

)
+ σ̂y1 k̂y1

(
k̂2
z1

− k̂2
x1

)(
K̂2 + k̂2

y1

)
+ σ̂z1 k̂z1

(
k̂2
x1

− k̂2
y1

)(
K̂2 + k̂2

z1

))
, (16)

where K̂2 = k̂2
x1

+ k̂2
y1

+ k̂2
z1

and the k-cubic SOC terms on the
right-hand side of the expression (16) form the well-known
Dresselhaus Hamiltonian [32] with only one independent
constant γ0 = −a3E0/16.

It is convenient to rotate the coordinate system such that
the z axis of the transformed system is aligned with the
QW growth direction, which is defined by the unit vector
{sin θ cos ϕ, sin θ sin ϕ, cos θ}, where θ and ϕ are polar and
azimuthal angles, respectively. The operators k̂1 and σ̂ 1 in the
initial coordinate system are connected with the operators k̂
and σ̂ in the transformed system as k̂1 = Mk̂, σ̂ 1 = M σ̂ via
the matrix

M =
∥∥∥∥∥∥

M11 M12 M13

M12 M22 M23

−M13 −M23 M33

∥∥∥∥∥∥ (17)

with elements

M11 = cos2ϕ cos θ + sin2ϕ,

M12 = (cos θ − 1) sin ϕ cos ϕ,

M13 = sin θ cos ϕ, M22 = cos2ϕ + sin2ϕ cos θ,

M23 = sin θ sin ϕ, M33 = cos θ.

(18)
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TABLE I. Parameters Rabc and ρabc of 2D Dresselhaus Hamiltonian Ĥ 2D
D as functions of matrix elements Eq. (18).

Parameters of Ĥ
(1)
D

R110 = −R201 = 〈
k2

z

〉[
M2

11

(
M2

23 − M2
33

) + M2
12

(
M2

33 − M2
13

) + M2
13

(
M2

13 − M2
23

)]
,

R210 = 〈
k2

z

〉{
M12

[
M11

(
M2

23 − M2
33

) + 2M13

(
M12M23 + M13M33

)] + M22

[
M12

(
M2

33 − M2
13

) − 2M13M23

(
M11 + M33

)]
+M23

[
M13

(
M2

13 − M2
23

) + 2M33

(
M12M23 − M11M13

)]}
,

R310 = 〈
k2

z

〉[
M11M13

(
M2

33 − M2
23

) + M12M23

(
M2

13 − M2
33

) + M13M33

(
M2

13 − M2
23

)]
,

R101 = 〈
k2

z

〉{
M11

[
M12

(
M2

23 − M2
33

) + 2M13M23

(
M22 + M33

)] + M12

[
M22

(
M2

33 − M2
13

) − 2M23

(
M23M33 + M12M13

)]
+M13

[
M23

(
M2

13 − M2
23

) + 2M33

(
M22M23 − M12M13

)]}
,

R201 = 〈
k2

z

〉[
M2

12

(
M2

23 − M2
33

) + M2
22

(
M2

33 − M2
13

) + M2
23

(
M2

13 − M2
23

)]
,

R301 = 〈
k2

z

〉[
M12M13

(
M2

33 − M2
23

) + M22M23

(
M2

13 − M2
33

) + M23M33

(
M2

13 − M2
23

)]
,

ρ110 = 〈
k4

z

〉[
M2

11

(
M2

23 − M2
33

)(
1 + 5M2

13

) + M2
12

(
M2

33 − M2
13

)(
1 + 5M2

23

) + M2
13

(
M2

13 − M2
23

)(
1 + 5M2

33

)]
,

ρ210 = 〈
k4

z

〉[
M12M22

(
M2

33 − M2
13

)(
1 + 5M2

23

) + M13M23

(
M2

13 − M2
23

)(
1 + 5M2

33

) + M11M12

(
M2

23 − M2
33

)(
1 + 5M2

13

)
+ 4M13M23

(
M2

13+M2
23

)(
M2

12−M11M22

)+4M13M33

(
M2

13+M2
33

)(
M12M13−M11M23

)+4M23M33

(
M2

23+M2
33

)(
M12M23−M13M22

)]
,

ρ310 = 〈
k4

z

〉[
M11M13

(
M2

33 − M2
23

)(
3 − 5M2

13

) + M12M23

(
M2

13 − M2
33

)(
3 − 5M2

23

) + M13M33

(
M2

13 − M2
23

)(
3 − 5M2

33

)]
,

ρ101 = 〈
k4

z

〉[
M12M22

(
M2

33 − M2
13

)(
1 + 5M2

23

) + M13M23

(
M2

13 − M2
23

)(
1 + 5M2

33

) + M11M12

(
M2

23 − M2
33

)(
1 + 5M2

13

)
− 4M13M23

(
M2

13+M2
23

)(
M2

12−M11M22

)−4M13M33

(
M2

13+M2
33

)(
M12M13−M11M23

)−4M23M33

(
M2

23+M2
33

)(
M12M23−M13M22

)]
,

ρ201 = 〈
k4

z

〉[
M2

22

(
M2

33 − M2
13

)(
1 + 5M2

23

) + M2
12

(
M2

23 − M2
33

)(
1 + 5M2

13

) + M2
23

(
M2

13 − M2
23

)(
1 + 5M2

33

)]
,

ρ301 = 〈
k4

z

〉[
M12M13

(
M2

33 − M2
23

)(
3 − 5M2

13

) + M22M23

(
M2

13 − M2
33

)(
3 − 5M2

23

) + M23M33

(
M2

13 − M2
23

)(
3 − 5M2

33

)]
.

Parameters of Ĥ
(3)
D

R130 = R203 = 0, R230 = −R121 = M11M12

(
M2

12 − M2
13

) + M12M22

(
M2

13 − M2
11

) + M13M23

(
M2

11 − M2
12

)
,

R330 = M11M13

(
M2

12 − M2
13

) + M12M23

(
M2

13 − M2
11

) + M13M33

(
M2

12 − M2
11

)
,

R221 = M2
12

(
M2

12 − M2
13

) + M2
22

(
M2

13 − M2
11

) + M2
23

(
M2

11 − M2
12

)
,

R321 = M13

[
M12

(
M2

12 − M2
13

) + 2M11

(
M12M22 − M13M23

)] + M23

[
M22

(
M2

13 − M2
11

) + 2M12

(
M13M23 − M11M12

)]
+ M33

[
2M12M13

(
M22 − M11

) + M23

(
M2

12 − M2
11

)]
,

R112 = M2
11

(
M2

22 − M2
23

) + M2
12

(
M2

23 − M2
12

) + M2
13

(
M2

12 − M2
22

)
,

R212 = −R103 = M11M12

(
M2

23 − M2
22

) + M12M22

(
M2

12 − M2
23

) + M13M23

(
M2

22 − M2
12

)
,

R312 = M13

[
M11

(
M2

22 − M2
23

) + 2M12

(
M12M22 − M13M23

)] + M23

[
M12

(
M2

23 − M2
12

) + 2M22

(
M13M23 − M11M12

)]
+ M33

[
M13

(
M2

22 − M2
12

) + 2M12M23

(
M22 − M11

)]
,

R303 = M12M13

(
M2

22 − M2
23

) + M22M23

(
M2

23 − M2
12

) + M23M33

(
M2

22 − M2
12

)
,

ρ130 = 2
〈
k2

z

〉[
M2

13

(
M2

13 − M2
12

)(
1 − 5M2

11

) + M2
23

(
M2

11 − M2
13

)(
1 − 5M2

12

) + M2
33

(
M2

12 − M2
11

)(
1 − 5M2

13

)]
,

ρ121 = 6
〈
k2

z

〉[
M11M12

(
M2

13

(
M2

13 − M2
12

) + M2
23

(
M2

11 − M2
12

) + M2
33

(
M2

13 − M2
11

)) + M13M23

(
M2

13

(
M2

13 − M2
11

) + M2
23

(
M2

12 − M2
13

)
+ M2

33

(
M2

12 − M2
11

)) + M12M22

(
M2

13

(
M2

11 − M2
12

) + M2
23

(
M2

11 − M2
13

) + M2
33

(
M2

12 − M2
13

))
+ 2

(
M2

13 − M2
12

)
M23M33

(
M13M22 + M12M23

) + 2
(
M2

11 − M2
12

)
M13M23

(
M2

12 + M11M22

)
+ 2

(
M2

11 − M2
13

)
M13M33

(
M12M13 + M11M23

)]
,

ρ112 = 6
〈
k2

z

〉[
M2

13

(
M2

12

(
M2

13 − M2
12

) + M2
22

(
M2

11 − M2
12

) + M2
23

(
M2

13 − M2
11

)) + M2
23

(
M2

12

(
M2

11 − M2
12

) + M2
22

(
M2

11 − M2
13

)
+ M2

23

(
M2

12 − M2
13

)) + M2
33

(
M2

12

(
M2

13 − M2
11

) + M2
22

(
M2

12 − M2
13

) + M2
23

(
M2

12 − M2
11

)) + 4
(
M2

13 − M2
12

)
M22M

2
23M33

+ 4
(
M2

11 − M2
12

)
M12M13M22M23 + 4

(
M2

11 − M2
13

)
M12M13M23M33

]
,

ρ103 = 2
〈
k2

z

〉[
M2

12

(
M11M12

(
M2

23 − M2
33

) − 3M12M22

(
M2

13 + M2
23

) + 3M13M23

(
M2

13 + M2
33

) − 2M12M13

(
M12M23 + M13M33

)
+ 6M11M13M23

(
M22 + M33

)) + M2
22

(
M12M22

(
M2

33 − M2
13

) + 3M11M12

(
M2

13 + M2
23

) − 3M13M23

(
M2

23 + M2
33

)
+ 2M13M22M23

(
M11 + M33

) − 6M12M23

(
M12M13 + M23M33

)) + M2
23

(
M13M23

(
M2

13 − M2
23

) − 3M11M12

(
M2

13 + M2
33

)
+ 3M12M22

(
M2

23 + M2
33

) + 2M23M33

(
M11M13 − M12M23

) + 6M13M33

(
M22M23 − M12M13

))]
,

035305-4



GENERAL CONDITION FOR REALIZING A COLLINEAR … PHYSICAL REVIEW B 99, 035305 (2019)

TABLE I. (Continued.)

ρ230 = 2
〈
k2

z

〉[
M2

11

(
M11M12

(
M2

23 − M2
33

) − 3M12M22

(
M2

13 + M2
23

) + 3M13M23

(
M2

13 + M2
33

) − 2M11M13M23

(
M22 + M33

)
+ 6M12M13

(
M12M23 + M13M33

)) + M2
12

(
M12M22

(
M2

33 − M2
13

) + 3M11M12

(
M2

13 + M2
23

) − 3M13M23

(
M2

23 + M2
33

)
+ 2M12M23

(
M12M13 + M23M33

) − 6M13M22M23

(
M11 + M33

)) + M2
13

(
M13M23

(
M2

13 − M2
23

) − 3M11M12

(
M2

13 + M2
33

)
+ 3M12M22

(
M2

23 + M2
33

) + 2M13M33

(
M12M13 − M22M23

) + 6M23M33

(
M12M23 − M11M13

))]
,

ρ221 = 6
〈
k2

z

〉[
M2

12

(
M2

13

(
M2

12 − M2
13

) + M2
23

(
M2

11 + M2
12

) − M2
33

(
M2

11 + M2
13

)) + M2
22

(−M2
13

(
M2

11 + M2
12

) + M2
23

(
M2

13 − M2
11

)
+ M2

33

(
M2

12 + M2
13

)) + M2
23

(
M2

13

(
M2

11 + M2
13

) − M2
23

(
M2

12 + M2
13

) + M2
33

(
M2

11 − M2
12

)) + 4M11M
2
12M13

(
M12M23 + M13M33

)
− 4M12M13M

2
22M23

(
M11 + M33

) + 4M13M
2
23M33

(
M12M23 − M11M13

)]
,

ρ212 = 6
〈
k2

z

〉[
M11M12

(
M2

13

(
M2

23 − M2
22

) + M2
23

(
M2

12 − M2
22

) + M2
33

(
M2

23 − M2
12

)) + M12M22

(
M2

13

(
M2

12 − M2
22

) + M2
23

(
M2

12 − M2
23

)
+M2

33

(
M2

22−M2
23

)) + M13M23

(
M2

13

(
M2

23−M2
12

) + M2
23

(
M2

22−M2
23

) + M2
33

(
M2

22−M2
12

)) + 2M13M23

(
M2

12−M2
22

)(
M2

12 + M11M22

)
+ 2M13M33

(
M2

12 − M2
23

)(
M12M13 + M11M23

) + 2M23M33

(
M2

23 − M2
22

)(
M13M22 + M12M23

)]
,

ρ203 = 2
〈
k2

z

〉[
M2

13

(
M2

23 − M2
22

)(
1 − 5M2

12

) + M2
23

(
M2

12 − M2
23

)(
1 − 5M2

22

) + M2
33

(
M2

22 − M2
12

)(
1 − 5M2

23

)]
,

ρ330 = 2
〈
k2

z

〉[
M11M13

(
M2

11

(
M2

33 − M2
23

) + 3M2
12

(
M2

13 − M2
23

) + 3M2
13

(
M2

33 − M2
13

)) + M12M23

(
3M2

11

(
M2

13 − M2
23

) + M2
12

(
M2

13 − M2
33

)
+3M2

13

(
M2

23 − M2
33

)) + M13M33

(
3M2

11

(
M2

13 − M2
33

) + 3M2
12

(
M2

33 − M2
23

) + M2
13

(
M2

13 − M2
23

))]
.

ρ321 = 6
〈
k2

z

〉[
M12M13

(
M2

11

(
M2

33 − M2
23

) + M2
12

(
M2

13 − M2
23

) + M2
13

(
M2

33 − M2
13

)) + M22M23

(
M2

11

(
M2

13 − M2
23

) + M2
12

(
M2

13 − M2
33

)
+M2

13

(
M2

23 − M2
33

)) + M23M33

(
M2

11

(
M2

13 − M2
33

) + M2
12

(
M2

33 − M2
23

) + M2
13

(
M2

13 − M2
23

))
+ 2M11M12

(
M2

13 − M2
23

)(
M12M23 + M13M22

) + 2M11M13

(
M2

33 − M2
13

)(
M13M23 − M12M33

)
+ 2M12M13

(
M2

23 − M2
33

)(
M2

23 − M22M33

)]
,

ρ312 = 6
〈
k2

z

〉[
M11M13

(
M2

12

(
M2

33 − M2
23

) + M2
22

(
M2

13 − M2
23

) + M2
23

(
M2

33 − M2
13

)) + M12M23

(
M2

12

(
M2

13 − M2
23

) + M2
22

(
M2

13 − M2
33

)
+ M2

23

(
M2

23−M2
33

)) + M13M33

(
M2

12

(
M2

13−M2
33

) + M2
22

(
M2

33−M2
23

) + M2
23

(
M2

13−M2
23

)) + 2M12M23

(
M2

33−M2
13

)(
M2

13−M11M33

)
+2M12M22

(
M2

13 − M2
23

)(
M11M23 + M12M13

) + 2M22M23

(
M2

23 − M2
33

)(
M13M23 − M12M33

)]
,

ρ303 = 2
〈
k2

z

〉[
M12M13

(
M2

12

(
M2

33 − M2
23

) + 3M2
22

(
M2

13 − M2
23

) + 3M2
23

(
M2

33 − M2
13

)) + M22M23

(
3M2

12

(
M2

13 − M2
23

) + M2
22

(
M2

13 − M2
33

)
+ 3M2

23

(
M2

23 − M2
33

)) + M23M33

(
3M2

12

(
M2

13 − M2
33

) + 3M2
22

(
M2

33 − M2
23

) + M2
23

(
M2

13 − M2
23

))]
.

For the lowest size quantization subband in the symmetric
QW, the effective 2D SOC Hamiltonian can be obtained via
averaging of the Hamiltonian (16) along the growth direction
(the z axis) [26]. We have 〈kz〉 = 〈k3

z 〉 = 〈k5
z 〉 = 0, but 〈k2

z 〉 �=
0 and 〈k4

z 〉 �= 0 defined by the potential profile. In particular,
in an infinite quantum square well of width d, one has 〈kn

z 〉 =
( 1+(−1)n

2 )(π/d )n for any integer n. Replacing k̂1 = Mk̂ and
σ̂ 1 = M σ̂ in Eq. (16) together with averaging along the z

direction yields 2D Dresselhaus Hamiltonian

Ĥ 2D
D = Ĥ

(1)
D + Ĥ

(3)
D . (19)

The k-linear Ĥ
(1)
D and k-cubic Ĥ

(3)
D parts of the Hamiltonian

(19) contain six and 12 SOC parameters {β (1)
abc} and {β (3)

abc},
respectively, which can be written in the same way as β

(j )
abc =

γ0(Rabc − a2ρabc/48). Expressions for Rabc and ρabc are listed
in Table I.

The other contribution to the SOC Hamiltonian is con-
nected with the structure inversion asymmetry and is de-
scribed by the well-known k-linear Rashba term [33,34]:

Ĥ
(1)
R = α210(σ̂y k̂x − σ̂x k̂y ), (20)

where the Rashba parameter α210 is proportional to the po-
tential gradient along the growth direction of the QW and,

therefore, can be varied experimentally [35] (for instance, by
means of external electric field). The Rashba term (20) is
independent of the growth direction and is invariant under
rotations in the plane of the QW. For correct investigation of
possibilities for realization of the collinear SOF in asymmetric
ZB QWs in the presence of the k-cubic SOC terms, it is
also necessary to take into account the k-cubic Rashba SOC
contributions. In our analysis of ZB QWs presented below,
we employ the expressions for the k-cubic Rashba SOC terms
derived by Cartoixa et al. in Ref. [29].

TABLE II. Correspondence between growth orientation-
dependent x, y, z labels for different ZB 2DES and crystallographic
directions.

(001) (110) (111) (113) (013)

x [100] [1̄10] [112̄] [11̄0] [100]

y [010] [001] [1̄10] [332̄] [031̄]

z [001] [110] [111] [113] [013]
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TABLE III. Nonzero SOC parameters of the Hamiltonians Ĥ
(1)
D and Ĥ

(3)
D corresponding to ZB QWs with different growth directions.

[001]

β
(1)
201 = −β

(1)
110 = γ0

(
π

d

)2[
1 − 1

48

(
πa

d

)2]
, β

(3)
112 = −β

(3)
221 = γ0, β

(3)
130 = −β

(3)
203 = γ0

24

(
πa

d

)2
.

[113]

β
(1)
101 = − 6

√
11

121 γ0

(
π

d

)2[
1 − 5

132

(
πa

d

)2]
, β

(1)
210 = − 42

√
11

121 γ0

(
π

d

)2[
1 − 9

308

(
πa

d

)2]
, β

(1)
310 = 8

√
22

121 γ0

(
π

d

)2[
1 − 7

131

(
πa

d

)2]
,

β
(3)
103 = 15

√
11

242 γ0

[
1 − 29

660

(
πa

d

)2]
, β

(3)
121 = − 3

√
11

22 γ0

[
1 − 3

44

(
πa

d

)2]
, β

(3)
212 = − 15

√
11

242 γ0

[
1 − 3

44

(
πa

d

)2]
,

β
(3)
230 = 3

√
11

22 γ0

[
1 + 7

132

(
πa

d

)2]
, β

(3)
330 = γ0√

22

[
1 − 1

33

(
πa

d

)2]
, β

(3)
312 = − 49

√
22

242 γ0

[
1 − 23

539

(
πa

d

)2]
.

[110]

β
(1)
310 = γ0

2

(
π

d

)2[
1 − 1

96

(
πa

d

)2]
, β

(3)
330 = − γ0

2

[
1 + 1

48

(
πa

d

)2]
, β

(3)
312 = γ0

[
1 − 13

128

(
πa

d

)2]
.

[111]

β
(1)
210 = −β

(1)
101 = 2√

3
γ0

(
π

d

)2[
1 − 1

36

(
πa

d

)2]
, β

(3)
230 = β

(3)
212 = −β

(3)
121 = −β

(3)
103 =

√
3

6 γ0

[
1 + 1

12

(
πa

d

)2]
, β

(3)
303 = γ0/

√
6, β

(3)
321 = −√

6γ0/2.

[013]

β
(1)
110 = − 4

5 γ0

(
π

d

)2[
1 − 1

48

(
πa

d

)2]
, β

(1)
201 = 4

5 γ0

(
π

d

)2[
1 − 29

960

(
πa

d

)2]
, β

(1)
301 = − 3

10 γ0

(
π

d

)2[
1 − 7

160

(
πa

d

)2]
.

IV. THE COLLINEAR SOF IN ZINC-BLENDE QWS
OF DIFFERENT GROWTH DIRECTIONS

Before application of the conditions (12) and (13) to
ZB QWs with different growth directions and identification
among them that ones, in which the collinear SOF can be
realized, let us note that the functional form of the Dresselhaus
contributions depends on the orientation of the coordinate
axes in the plane of the QW. Typically, an additional rotation
around the z axis on a certain angle is needed to arrive at
the natural orientation of the coordinate axes in the plane of
the QW, in which the Dresselhaus 2D Hamiltonian has the
simplest form. Correspondence between growth orientation-
dependent x, y, z labels for different 2DES and crystallo-
graphic directions is given in Table II.

[001] ZB QWs. For [001] QWs we have the well-known
k-linear Dresselhaus Hamiltonian

Ĥ
(1) [001]
D = β

(1)
201(σ̂y k̂y − σ̂x k̂x ), (21)

with the Dresselhaus parameter β
(1)
201 = γ0( π

d
)2[1 − 1

48 ( πa
d

)2],
and the k-cubic Hamiltonian

Ĥ
(3) [001]
D = β

(3)
112k̂x k̂y (σ̂x k̂y − σ̂y k̂x ) + β

(3)
130

(
σ̂x k̂

3
x − σ̂y k̂

3
y

)
,

(22)

with the SOC parameters β
(3)
112 = γ0 and β

(3)
130 = γ0

24 ( πa
d

)2. For

convenience all nonzero SOC parameters of Ĥ
(1) [001]
D and

Ĥ
(3) [001]
D are also collected in Table III. The sum of the Hamil-

tonians (21) and (22) reproduces the Dresselhaus Hamiltonian
for [001] ZB QWs derived in Ref. [29]. Hamiltonian (21) and
the first term in the right-hand side of expression (22) recover
the conventional k-linear and k-cubic Dresselhaus contribu-
tions, respectively [24,26]. The remaining term in the right-
hand side of expression (22) appears from averaging of the
fifth order in k terms included in the bulk Hamiltonian (16).
Although this term is small enough (β (3)

130/β
(3)
112 ∝ (a/d )2 	 1),

it is necessary for accurate investigation of possibilities for

realization of the collinear SOF in the presence of the k-cubic
SOC terms.

For symmetric [001] ZB QWs the cross product of two
SOC vectors γ 10 = β

(1)
201{−1, 0, 0} and γ 01 = β

(1)
201{0, 1, 0} is

not the null vector. Hence, the SOF is not collinear in such
QWs even if only the k-linear SOC terms are taken into
account. For asymmetric QWs with the same orientation,
the SOC part of the effective 2D Hamiltonian should be
complemented by the Rashba SOC contributions. The k-linear
Rashba SOC term is defined by the Hamiltonian (20), while
the complete set of the k-cubic Rashba SOC contributions for
[001] ZB QWs is described by the following expression [29]:

Ĥ
(3) [001]
R = α103

(
σ̂x k̂

3
y − σ̂y k̂

3
x

) + α121k̂x k̂y (σ̂x k̂x − σ̂y k̂y ).

(23)

For the first two SOC vectors, we have γ 10 = {−β
(1)
201, α210, 0}

and γ 01 = {−α210, β
(1)
201, 0}. In this case, the condition [γ 10 ×

γ 01] = 0 is satisfied when α210 = ±β
(1)
201. Next, from expres-

sions (20)–(23) one can find that

γ 30 = {
β

(3)
130, −α103, 0

}
, γ 21 = {

α121, −β
(3)
112, 0

}
,

(24)
γ 12 = {

β
(3)
112,−α121, 0

}
, γ 03 = {

α103, −β
(3)
130, 0

}
,

and there are two cases when the condition f3 = 0 is satisfied:

α210 = β
(1)
201, α103 = β

(3)
130, α121 = β

(3)
112, (25)

or

α210 = −β
(1)
201, α103 = −β

(3)
130, α121 = −β

(3)
112. (26)

Relations (25) and (26) correspond to the situations when the
SOF is collinear to the [1̄10] and [110] directions, respec-
tively. The above finding supplements the relevant result of
Ref. [25]. We note again that although the k-cubic Rashba
terms are expected to be small enough in comparison with the
k-linear Rashba terms their inclusion is necessary for correct
investigation of the possibilities for realization of the collinear
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SOF in asymmetric ZB QWs in the presence of the k-cubic
SOC terms.

[113] ZB QWs. For this growth direction (θ =
arccos(3/

√
11), ϕ = π/4) we have

Ĥ
(1) [113]
D = β

(1)
101σ̂x k̂y + β

(1)
210σ̂y k̂x + β

(1)
310σ̂zk̂x, (27)

and

Ĥ
(3) [113]
D = β

(3)
103σ̂x k̂

3
y + β

(3)
230σ̂y k̂

3
x

+ (
β

(3)
121σ̂x k̂x + β

(3)
212σ̂y k̂y

)
k̂x k̂y

+ (
β

(3)
330k̂

2
x + β

(3)
312k̂

2
y

)
σ̂zk̂x (28)

with the SOC parameters {β (1)
abc} and {β (3)

abc} from Table III.
The Hamiltonian (27) implies that for symmetric [113]
ZB QWs γ 10 = {0, β

(1)
210, β

(1)
310}, γ 01 = {β (1)

101, 0, 0}, and the
collinear SOF cannot be realized in such QWs. In asym-
metric QWs with the same orientation the cross product
of two SOC vectors γ 10 = {0, β

(1)
210 + α

(1)
210, β

(1)
310} and γ 01 =

{β (1)
101 − α

(1)
210, 0, 0} is zero if

α
(1)
210 = β

(1)
101 = −6

√
11

121
γ0

(π

d

)2
[

1 − 5

132

(πa

d

)2
]
. (29)

In this case, γ 01 = 0.
Before we analyze the influence of the k-cubic SOC terms

let us note that ZB structure based (113)-oriented 2DES
belongs to the symmetry point group Cs , which contains only
two elements, the identity and one mirror reflection plane,
being normal to the 2DES plane [30]. It is easy to see that the
inclusion of the Rashba SOC does not reduce the symmetry
with respect to the case when only the Dresselhaus SOC is
taken into account. Hence, the functional form of the k-cubic
SOC Hamiltonian for asymmetrtic ZB [113] QWs coincides
with the Hamiltonian (28), in which each of the SOC param-
eter β

(3)
abc should be replaced by the sum β

(3)
abc + α

(3)
abc, where

corrections {α(3)
abc} describe renormalization of the Dresselhaus

parameters due to the k-cubic Rashba SOC. It yields the
following four SOC vectors:

γ 30 = {
0, β

(3)
230 + α

(3)
230, β

(3)
330 + α

(3)
330

}
,

γ 21 = {
β

(3)
121 + α

(3)
121, 0, 0

}
,

γ 12 = {
0, β

(3)
212 + α

(3)
212, β

(3)
312 + α

(3)
312

}
,

γ 03 = {
β

(3)
103 + α

(3)
103, 0, 0

}
. (30)

Thus, for realization of the collinear SOF in [113] ZB
QWs in the presence of both the k-linear and k-cubic SOC
contributions it necessary to vanish the function f3 with
the vectors (30) complemented by the two vectors γ 10 =
{0, β

(1)
210 + β

(1)
101, β

(1)
310} and γ 01 = 0 [we use here relation (29)].

One can find, however, that experimental adjustment of the
SOC parameters for satisfaction of the condition f3 = 0
seems to be hardly realizable.

[110] ZB QWs. QWs on [110]-oriented GaAs substrates
have attracted considerable attention due to their extraordi-
nary spin dephasing, which can reach several hundreds of

nanoseconds (see the review [30] and references therein).
In a [110] symmetric QW of this type the SOF points into
the growth direction [26]. Therefore, spins oriented along
this direction do not precess and the Dyakonov-Perel spin
relaxation mechanism, which is based on the spin precession
in the effective magnetic field, is suppressed. For [110] ZB
QWs the sum of the k-linear and k-cubic 2D Dresselhaus
Hamiltonians has the simple form:

Ĥ
(1)[110]
D + Ĥ

(3)[110]
D = σ̂zk̂x

(
β

(1)
310 + β

(3)
330k̂

2
x + β

(3)
312k̂

2
y

)
, (31)

with three nonzero SOC parameters β
(1)
310, β

(3)
330, and β

(3)
312 (see

Table III). Expression (31) implies that the SOF in symmetric
[110] ZB QWs is collinear in the presence of both the k-
linear and k-cubic SOC terms. Moreover, this result still holds
even when all SOC terms up to an arbitrary odd in k order
are included. The explicit proof of this statement within our
approach is given in the Appendix.

The k-linear SOC terms in asymmetric [110] ZB QWs,
which have Cs symmetry, are described by the sum of the
linear part Ĥ

(1)[110]
D = β

(1)
310σ̂zk̂x of the Hamiltonian (31) and

the Rashba Hamiltonian (20). In this case, we have two SOC
vectors γ 10 = {0, α210, β

(1)
310}, γ 01 = {−α210, 0, 0}, and, as a

result, the absence of the collinearity of the corresponding
SOF.

[111] ZB QWs. Implementation of our computational
routine for [111] QWs (θ = arccos(1/

√
3), ϕ = π/4) leads

to the following expressions for the k-linear and k-cubic
Dresselhaus Hamiltonians [29]:

Ĥ
(1)[111]
D = β

(1)
210(σ̂y k̂x − σ̂x k̂y ), (32)

Ĥ
(3)[111]
D = β

(3)
230

(
k̂2
x + k̂2

y

)
(σ̂y k̂x − σ̂x k̂y )

+β
(3)
303

(
k̂2
y − 3k̂2

x

)
σ̂zk̂y, (33)

with the set of the SOC parameters {β (1)
abc} and {β (3)

abc}, which
is shown in Table III. In symmetric [111] ZB QWs the cross
product of the first two SOC vectors γ 10 = {0, β

(1)
210, 0} and

γ 01 = {−β
(1)
210, 0, 0} is not zero and the collinear SOF cannot

be realized in such QWs.
Next, symmetric [111] ZB QWs transform according to

the C3v point group, which consists of the identity, two
threefold rotations about the growth axis, and three reflection
planes separated by 120◦ that contain the threefold axes [29].
Analogously to [113] ZB QWs, inclusion of the Rashba SOC
does not reduce the symmetry with respect to the case when
only the Dresselhaus SOC is taken into account. Therefore,
the functional form of the Dresselhaus and the Rashba SOC
contributions to the SOC Hamiltonian is the same for [111]
ZB QWs. Consequently, the resulting k-linear and k-cubic
parts of the SOC Hamiltonian are described, respectively, by
expressions (32) and (33), in which the SOC parameters β

(j )
abc

should be replaced by the sum β
(j )
abc + α

(j )
abc, where corrections

{α(j )
abc}, again, define renormalization of the Dresselhaus pa-

rameters due to the Rashba SOC.
In particular, γ 10 = γ 01 = 0 and the k-linear Dresselhaus

and Rashba SOC contributions compensate each other when
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the condition

α210 = −β
(1)
210 = − 2√

3
γ0

(π

d

)2
[

1 − 1

36

(πa

d

)2
]

(34)

is satisfied. The possibilities for realization of the collinear
SOF in the presence of the k-cubic terms are described by the
remaining four SOC vectors:

γ 30 = {
0, β

(3)
230 + α

(3)
230, 0

}
,

γ 21 = {−β
(3)
230 + α

(3)
121, 0,−3β

(3)
303 + α

(3)
321

}
,

γ 12 = {
0, β

(3)
230 + α

(3)
212, 0

}
,

γ 03 = {−β
(3)
230 + α

(3)
103, 0, β

(3)
303 + α

(3)
303

}
. (35)

However, for clear conclusions concerning this issue a reliable
determination of components of the SOC vectors Eq. (35) or
extraction of the SOC parameters β

(j )
abc and α

(j )
abc with usage of

the more complicated computational approaches [36–38] or
from experiments is needed.

[013] ZB QWs. We also consider [013] QWs (θ =
arccos(3/

√
10), ϕ = π/2) because of the fact that substrates

with this orientation are used for growth of HgTe-based
topological insulators [30,39]. For this case, one can find that

Ĥ
(1)[013]
D = β

(1)
110σ̂x k̂x + β

(1)
201σ̂y k̂y + β

(1)
301σ̂zk̂y . (36)

Here, the Dresselhaus parameters β
(1)
110, β

(1)
201, and β

(1)
301 (see Ta-

ble III) define two SOC vectors γ 10 = β
(1)
110{1, 0, 0} and γ 01 =

{0, β
(1)
210, β

(1)
301}, which yield f1 �= 0. In asymmetric [013] ZB

QWs inclusion of the Rashba term (20) modifies these vec-
tors as γ 10 = {β (1)

110, α210, 0} and γ 01 = {−α210, β
(1)
201, β

(1)
301},

but the corresponding SOF still remains noncollinear. Thus,
in agreement with the condition obtained in Ref. [25], the
collinear SOF cannot be realized in [013] ZB QWs even in
the presence of only the k-linear Dresselhaus and Rashba SOC
contributions.

V. THE COLLINEAR SOF IN WURTZITE 2DES

As was mentioned above, the developed formalism is ap-
plicable not only for ZB QWs, but also for the other 2DES
that are described by the Hamiltonian (3). Aside from ZB low-
dimensional structures, their wurtzite-type (WZ) counterparts
have been intensively investigated [9,23,40–47]. In particular,
first-principles density-functional theory calculations of the
ZnO (101̄0) surface were performed in Ref. [9]. The authors
found that the persistent spin helix can be achieved using
a wurtzite (101̄0) surface or interface with in-plane electric
polarization and mirror symmetry. Moreover, experimental
investigation of a 2DEG created at the interface of semicon-
ductor/insulator homojunction at the (101̄0) surface of a Li-
doped ZnO microwire indicated the realization of a persistent
spin helix in ZnO [23].

In this section, we explore possibilities for realization of
the collinear SOF in 2D WZ systems. The SOC Hamiltonian
for the conduction electrons in bulk WZ III-V semiconductors
has the following form [41,48,49]:

ĤWZ
bulk = (

αWZ + γWZ

(
bk̂2

z1
− k̂2

x1
− k̂2

y1

))(
σ̂x1 k̂y1 − σ̂y1 k̂x1

)
,

(37)

where x1||[112̄0], y1||[11̄00], z1||[0001] (c-axis), αWZ and
γWZ are two material-dependent constants. The k-cubic Dres-
selhaus term in the right-hand side of expression (37) is a
consequence of the bulk inversion asymmetry of the crystal
lattice, while the k-linear term occurs in the WZ structure due
to the hexagonal c-axis and reflects an intrinsic wurtzite struc-
ture inversion asymmetry [41]. Correspondingly, the Dressel-
haus coefficient γWZ , together with the material parameter b,
determines the Dresselhaus contribution, while the coefficient
αWZ gives the strength of the WZ intrinsic Rashba-like con-
tribution.

Let us now employ the computational routine presented in
Sec. III for calculation of the SOC vectors for various WZ
2DES, which orientation in space is characterized by the unit
vector ez = {sin θ cos ϕ, sin θ sin ϕ, cos θ} being normal to the
2DEG plane. Rotation of the coordinate system such that the z

axis of the transformed system is aligned with the vector ez is
equivalent to the transformation of the operators k̂1 and σ̂ 1 in
the Hamiltonian (37) into the operators k̂ and σ̂ via the matrix
(17). In this section, we restrict our consideration only by the
k-linear SOC terms (6), which can be derived after averaging
of the bulk Hamiltonian (37) along the z direction within the
lowest conduction subband:

Ĥ
(1)
WZ = (

βWZ
110 σ̂x + βWZ

210 σ̂y + βWZ
310 σ̂z

)
k̂x

+ (
βWZ

101 σ̂x + βWZ
201 σ̂y + βWZ

301 σ̂z

)
k̂y . (38)

Here, the directions of the x and y axes with
respect of the initial coordinate system Ox1y1z1 are
described by the unit vectors ex = {cos2ϕ cos θ +
sin2ϕ, (cos θ − 1) cos ϕ sin ϕ,− sin θ cos ϕ} and ey =
{(cos θ − 1) cos ϕ sin ϕ, cos2ϕ + sin2ϕ cos θ,− sin θ sin ϕ}.
The SOC parameters of the Hamiltonian (38) are expressed
in terms of the spherical angles θ and ϕ as follows:

βWZ
201 = −βWZ

110 = γWZ

〈
k2
z

〉
η(θ ) cos θ sin 2ϕ,

βWZ
210 = − cos θ

(
αWZ + γWZ

〈
k2
z

〉
(b − (2 + cos 2ϕ)η(θ ))

)
βWZ

310 = − sin θ sin ϕ
(
αWZ + γWZ

〈
k2
z

〉
(b − η(θ ))

)
,

βWZ
101 = cos θ

(
αWZ + γWZ

〈
k2
z

〉
(b + (cos 2ϕ − 2)η(θ ))

)
,

βWZ
301 = sin θ cos ϕ

(
αWZ + γWZ

〈
k2
z

〉
(b − η(θ ))

)
. (39)

Here, the definition η(θ ) = (b + 1)sin2θ is made. The com-
plete set of the SOC terms of higher orders in k would be
obtained by application of the double group tight-binding
formalism [29] to wurtzite 2D systems with the known
symmetry.

The collinear SOF is realized for combinations of the
parameters, which vanish the function f1 = |[γ 10 × γ 01]|2
constructed from the SOC vectors γ 10 = {βWZ

110 , βWZ
210 , βWZ

310 }
and γ 01 = {βWZ

101 , βWZ
201 , βWZ

301 }:
f1 = cos2θ (� + b − η(θ ))2(� + b − 3η(θ ))2, (40)

where � = αWZ

γWZ〈k2
z 〉 . We note that expression (40) does not

contain the angle ϕ.
For the 2DEG planes, which are parallel to the [0001]

direction (θ = π/2), the Hamiltonian (38) reads as

Ĥ
(1), θ=π/2
WZ = (

γWZ

〈
k2
z

〉 − αWZ

)
(k̂x sin ϕ − k̂y cos ϕ)σ̂z.

(41)
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TABLE IV. Values of the QW width d , which allow existence of the solutions (42) and (43). Parameters αWZ , γWZ , and b for GaAs, GaSb,
InAs, and InSb in wurtzite phase are taken from Ref. [50].

GaAs GaSb InAs InSb

αWZ, eV · Å 0.1 0.49 0.3 0.71

γWZ, eV · Å
3

1.92 18.7 132.5 892

b 0.06 −0.04 −1.24 −0.91

Values of d , for which solutions (42) exist, Å d � 13.8 3.9 � d � 19.4 66.0 � d � 73.5 106.2 � d � 111.4

Values of d , for which solutions (43) exist, Å d � 24.3 3.9 � d � 33.2 47.6 � d � 73.5 106.2 � d � 121.0

For this type of WZ 2DES, the corresponding SOF is collinear
and perpendicular to the 2DEG plane for any value of angle
ϕ. The latter means that the SOF is collinear, for example,
in [101̄0] and [112̄0] WZ QWs in the presence of only the
k-linear SOC terms.

After exclusion of the case � = −b = 1 giving the zero
SOF, one can find from relation (40) the two series of solutions
yielding the collinear SOF:[

θ1 = 1
2 arccos (2ξ − 1)

θ2 = π − 1
2 arccos (2ξ − 1)

, ξ ∈ [0, 1], (42)

and [
θ3 = 1

2 arccos
( 2ξ+1

3

)
θ4 = π − 1

2 arccos
( 2ξ+1

3

) , ξ ∈ [−2, 1], (43)

where ξ = (1 − �)/(b + 1) is a dimensionless parameter. For
both cases the Hamiltonian (38) can be written as

Ĥ
(1)
SOC = CSOC(e2DEG · k̂)(eSOF · σ ), (44)

where e2DEG is a two-dimensional unit vector laying in the
2DEG plane (apparently, the direction of e2DEG coincides with
the direction of the so-called “magic” vector [4,24,27]), eSOF

is the unit vector aligned with the collinear SOF, and CSOC is
the combination of the SOC parameters defining the strength
of the resulting SOF. In particular, for the case (42) these
parameters read as

CSOC = 2
(
αWZ + bγWZ

〈
k2
z

〉)
,

e2DEG = {cos ϕ, sin ϕ},
eSOF = cos θ1,2{− sin ϕ, cos ϕ, 0}.

(45)

One can see that the corresponding SOF has only in-plane
components.

For the case (43), we have

CSOC = 2
3

(
αWZ + bγWZ

〈
k2
z

〉)
,

e2DEG = {− sin ϕ, cos ϕ},
eSOF = {cos θ3,4 cos ϕ, cos θ3,4 sin ϕ, sin θ3,4}.

(46)

It is easy to check that the vectors e2DEG and eSOF are orthog-
onal for both cases.

For a concrete type of the confinement potential of the
WZ QW it is possible to estimate values of the QW width
that allow existence of the solutions (42) and (43). To do

this, we use the values of αWZ , γWZ , and b for GaAs, GaSb,
InAs, and InSb in the wurtzite phase obtained by Gmitra and
Fabian from first-principles calculations with lattice constants
values measured in wurtzite nanowires [50]. As it was earlier
for ZB QWs, we assume 〈k2

z 〉 = (π/d )2 corresponding to an
infinite quantum square well of width d and calculate values
of d, for which −2 � ξ � 1. Results of these calculations are
presented in Table IV. Their analysis shows that the calculated
values of the QW widths are, in principle, achievable for
modern nanotechnologies, although we note that a reliable
determination of αWZ , γWZ , and b in bulk wurtzite semicon-
ductors is needed for more definite conclusions.

In the above consideration of the WZ 2DES we only take
into account the Dresselhaus and the WZ intrinsic Rashba-like
contributions, which strengths are determined by the param-
eters γWZ and αWZ , respectively. Inclusion of the additional
Rashba term (20) with the parameter α210 modifies the SOC
vectors γ 10 and γ 01, and leads to the following function f1:

f1 = (cos θ (� + b − 3η(θ )) − �R )2[sin2θ (� + b − η(θ ))2

+ (cos θ (� + b − η(θ )) − �R )2], (47)

where �R = α210
γWZ〈k2

z 〉 .
For [0001] WZ QWs, combination of the relations (20),

(38), and (39) yields

Ĥ
(1)[0001]
WZ + Ĥ

(1)
R = (

αWZ + γWZb
〈
k2
z

〉 − α210
)(

σ̂x k̂y − σ̂y k̂x

)
.

(48)

The functional form of the k-linear SOC Hamiltonian (48)
coincides with the form of the Rashba Hamiltonian (20) and
the only possibility to satisfy the condition f1 = 0 is to vanish
the combination αWZ + γWZb〈k2

z 〉 − α210. In principle, it can
be achieved through manipulation of the parameter α210 by
means of external electric field (see also [43]).

The other values of the angle θ , for which the SOF is
collinear in the presence of the Rashba term (20) can be
obtained from the cubic in cos θ equation

3cos3θ − (ξ + 2) cos θ − �R

/
(b + 1) = 0. (49)

Depending on the values of the parameters αWZ , γWZ , b, and
α210, which determine its coefficients, it can have different
number of real roots.
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VI. SUMMARY

In this paper, we have theoretically studied 2D electron
systems that are described by the effective Hamiltonians
containing SOC terms up to (2n + 1)-th order in wave vec-
tor k. The general condition for realizing a collinear SOF
in such systems formulated only in terms of the SOC pa-
rameters has been derived. We have computed the com-
plete set of the k-cubic Dresselhaus SOC contributions to
the effective 2D spin Hamiltonian of an arbitrarily oriented
ZB QW by averaging along the growth direction of the
bulk Dresselhaus Hamiltonian of fifth order in k within
the lowest conduction subband. Together with accounting
of the known expressions for the k-cubic Rashba terms in
ZB QWs of certain orientations it leads to some interesting
results.

For asymmetric [001] ZB QWs, we find two combinations
of the SOC parameters yielding the collinear SOF even in the
presence of the k-cubic SOC terms. Next, we explicitly prove
within our formalism that the SOF is collinear at all orders in k
in [110] symmetric ZB QWs (see the Appendix). According
to our calculations, there also remain some possibilities for
realization of the collinear SOF in [111] and [113] ZB QWs,
although restrictions imposed on the SOC parameters in these
two cases are strong enough. In [013] ZB QWs, the collinear
SOF cannot be realized even in the presence of only the k-
linear Dresselhaus and Rashba SOC contributions.

We have also considered wurtzite-type 2D systems, which
are characterized by the effective Hamiltonians containing
only k-linear SOC terms. Our analysis reveals existence of
some peculiar orientations of the 2DEG plane, for which the
corresponding SOF is collinear. These findings can be used as
the basis for future research of the persistent spin helices in
the wurtzite-type semiconductor 2DEG.

In this paper, we do not take into account effects of
the interface inversion asymmetry [36,37,51–54] and strain
[47,55], which may give significant contributions to SOC
in QWs with a peculiar design (growth direction, width,
and the other details). Both reliable experimental deter-
mination of the SOC vectors and extraction of the SOC
parameters with usage of the more complicated computa-
tional approaches are needed for verification of the presented
results.
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APPENDIX: COLLINEARITY OF THE SPIN-ORBIT
EFFECTIVE MAGNETIC FIELD IN SYMMETRIC

[110] ZINC-BLENDE QWS

It is implied from the symmetry considerations that in
symmetric [110] ZB QWs the electron spin is perpendicular to
the QW plane [29]. In this Appendix, we demonstrate within

the present formalism that the SOF is collinear at all orders in
wave vector k in such QWs.

We rotate the Hamiltonian (15) such that the z axis of
the transformed system is aligned with the [110] direction.
The operators k̂1 and σ̂ 1 in the initial coordinate system are
connected with the operators k̂ and σ̂ in the transformed
system as k̂1 = Mk̂, σ̂ 1 = M σ̂ via the matrix

M = 1

2

∥∥∥∥∥∥∥
1 −1

√
2

−1 1
√

2

−√
2 −√

2 0

∥∥∥∥∥∥∥. (A1)

Substitutions k̂1 = Mk̂ and σ̂ 1 = M σ̂ in Eq. (15) together
with standard trigonometric transformations allow us to write
the transformed Hamiltonian in the form

Ĥbulk = E0(f (k̂x, k̂y, k̂z)(σ̂x + σ̂y )

+ f (−)(k̂x, k̂y, k̂z)(σ̂x − σ̂y )

+
√

2f (+)(k̂x, k̂y, k̂z)σ̂z), (A2)

with functions

f (k̂x, k̂y, k̂z) =
√

2 sin

(
a

4
(−k̂x + k̂y )

)

× sin

(√
2a

4
(k̂x + k̂y )

)
sin

(√
2a

4
k̂z

)
,

f (±)(k̂x, k̂y, k̂z) ≡ f (±)(k̂+, k̂−, Ck̂z)

= sin(k̂+ − Ck̂z) sin(k̂− + Ck̂z)

× sin(k̂+ − k̂− + 2Ck̂z)

± sin(k̂+ + Ck̂z) sin(k̂− − Ck̂z)

× sin(k̂+ − k̂− − 2Ck̂z), (A3)
where

k̂± = a((
√

2 ± 1)k̂x + (
√

2 ∓ 1)k̂y )/8 and C =
√

2a/8.

It is easy to see that the functions f and f (−) are odd in k̂z,
while the function f (+) is even, i.e.,

f (k̂x, k̂y,−k̂z) = −f (k̂x, k̂y, k̂z),

f (−)(k̂x, k̂y,−k̂z) = −f (−)(k̂x, k̂y, k̂z)
and

f (+)(k̂x, k̂y,−k̂z) = f (+)(k̂x, k̂y, k̂z).
The latter means that after averaging of the Hamiltonian
(A2) along the growth direction (the z axis) within the low-
est subband, we obtain an effective 2D SOC Hamiltonian,
which contains only terms proportional to σ̂z. The k-linear,
k-cubic or the effective 2D Hamiltonians of a higher order
in k, which can be derived by expansion of this Hamilto-
nian about the � point, also contain terms with σ̂z only. In
other words, the corresponding SOF is collinear to [110]
direction at all orders in wave vector k in symmetric [110]
ZB QWs.
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