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We present an extended version of the projector-based renormalization method that can be used to address not
only equilibrium but also nonequilibrium situations in coupled fermion-boson systems. The theory is applied
to interacting electrons, holes, and photons in a semiconductor microcavity, where the loss of cavity photons
into vacuum is of particular importance. The method incorporates correlation and fluctuation processes beyond
mean-field theory in a wide parameter range of detuning, Coulomb interaction, light-matter coupling, and
damping, even in the case when the number of quasiparticle excitations is large. This enables the description of
exciton and polariton formation and their possible condensation through spontaneous phase symmetry breaking
by analyzing the ground-state, steady-state, and spectral properties of a rather generic electron-hole-photon
Hamiltonian, which also includes the coupling to two fermionic baths and a free-space photon reservoir.
Thereby, the steady-state behavior of the system is obtained by evaluating expectation values in the long-time
limit by means of the Mori-Zwanzig projection technique. Tracking and tracing different order parameters, the
fully renormalized single-particle spectra and the steady-state luminescence, we demonstrate the Bose-Einstein
condensation of excitons and polaritons and its smooth transition when the excitation density is increased.
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I. INTRODUCTION

Semiconductor microcavity systems with quantum well
potentials have created fascinating possibilities with regard
to the formation of diverse condensed phases [1,2]. These
condensates constitute a macroscopic, long-range quantum
phase-coherent state that exhibits unconventional transport
and luminescence properties in particular. Coupled electron-
hole-photon (e-h-p) systems have led to very early specula-
tions about a Bose-Einstein condensation of excitons, i.e., of
electron-hole pairs formed by the attractive Coulomb interac-
tion, at low but sufficient large particle densities [3].

While the short lifetime of optically generated excitons
seems to be a serious problem establishing a Bose-Einstein
condensate (BEC) in bulk semiconductors, such as Cu2O,
even in potential traps [4], quantum wells realized in layered
semiconductors significantly reduce the rate at which elec-
trons and holes recombine into photons (albeit there is not yet
compelling evidence for an exciton BEC in these systems). In-
creasing the excitation density, phase-space (Pauli-blocking)
and Fermi-surface effects become important and, as a result,
the exciton BEC may cross over into an e-h BCS phase [5,6].
In response to a specific electronic band structure, such as
those near a semiconductor-semimetal transition, the exciton
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condensate can also exist in equilibrium whereby it typifies an
excitonic insulator phase [7–9].

Of course the e-h-p system is also influenced by its
interaction with the surroundings. In the case of a semi-
conductor microcavity the loss of cavity photons into the
vacuum space is of particular importance. This means that
the microcavity system is essentially in a nonequilibrium
state. To maintain the system in a stationary quasiequilibrium
state one has to supply continuously electrons and holes to
the e-h-p system which compensates the decay of photons
into the environment. Unfortunately, however, only for low
excitation densities, when photon effects are still irrelevant,
the properties of the e-h-p system reduce to the equilibrium
physics. At large excitation density, the photonic effects play
a predominant role, and the condensate turns from excitonic
to polaritonic. Polaritons in semiconductor microcavities have
also been observed to exhibit BEC [1,10]. At even higher ex-
citation densities, the excitonic component saturates, whereas
the photonic order parameter continues to increase. Here, the
relationship between a polariton BEC and photon lasing has
to be clarified [11,12].

The main objective of this paper is to describe both the
equilibrium and the nonequilibrium properties of the e-h-p
system on an equal footing. To this end, we employ a minimal
model for the e-h-p gas that includes attractive interactions
between electrons and holes as well as between cavity photons
and electron-hole excitations [13–17]. Moreover the decay of
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cavity photons to an external vacuum and the pumping from
two fermionic baths to the electrons and holes of the e-h-p sys-
tem are taken into account. The major difficulty results from
the lack of reliable techniques to tackle such a model in the
whole parameter regime. So far most theoretical approaches
[18–21] have addressed the equilibrium properties separately
from those of the steady state [22–24]. Only recently a steady-
state framework [25,26] based on a nonequilibrium Green’s
function approach [13,14] was formulated which allows us
to treat equally the equilibrium BEC and BCS phases at low
excitation densities just as the nonequilibrium state at high
excitation densities.

In this work, we utilize an alternative theoretical tool, the
projector-based renormalization method (PRM) [27–29]. The
PRM was applied before exclusively to equilibrium phenom-
ena and also to describe the equilibrium properties of e-h-p
systems [30] at small-to-moderate excitation densities, where
the leakage of photons to the vacuum is not important. We
show that the PRM can be extended to nonequlibrium situa-
tions and applied to the model under consideration even in the
case when the number of excitations is large. Here, the steady-
state properties can be found from time-dependent expectation
values for long times which will be evaluated by means of the
Mori-Zwanzig projection technique. Thereby, in contrast to
the work [25,26], the PRM incorporates fluctuation processes
beyond mean field theory for all excitation densities. This
allows us to address the great variety of e-h-p condensation
phenomena mentioned above.

The paper is organized as follows. In Sec. II we intro-
duce our theoretical model for a pumped-decaying exciton-
polariton system and briefly discuss its adaption to a steady-
state situation. Since the present theoretical study is based
on the PRM, we outline this technique and its improvements
in Sec. III. More details of the PRM approach can be found
in the Appendices A–C. The steady-state expectation values
are evaluated in Sec. IV, the single-particle spectral function
in Sec. V, and the steady-state luminescence in Sec. VI.
Finally, in Sec. VII some characteristic numerical results will
be presented and discussed. Section VIII contains a brief
summary and our main conclusions.

II. MODELING OF PUMPED-DECAYING
EXCITON-POLARITON SYSTEMS

As a typical example of an e-h-p system we will consider
electrons and holes, confined in a semiconductor quantum
well structure, are exposed to photons, entrapped in a micro-
cavity. In such a setup Bose-Einstein condensates of bound
electron-hole pairs (excitons) and polaritons may appear,
which possibly can cross over into a BCS-like coherent state
under quasiequilibrium conditions at high particle densities, in
case the quasiparticle lifetime is larger than the thermalization
time [26]. In general, however, these systems are driven out of
equilibrium by coupling to multiple baths, and such nonequi-
librium electron-hole condensates in the solid state are subject
to dissipation, dephasing, and decay. Therefore pump and loss
channels have to be taken into account. In the following we
introduce appropriate microscopic models for the system and
for the reservoirs to which it is coupled in order to include
these effects.

A. System Hamiltonian

Our starting point is the e-h-p Hamiltonian [11,30] of an
isolated semiconductor quantum-well/microcavity system,

ȞS = Ȟ0,S + Ȟel-ph + Ȟel-el (1)

with

Ȟ0,S =
∑

k

ε̌e
kě

†
kěk +

∑
k

ε̌h
kȟ

†
kȟk +

∑
q

ω̌qψ̌
†
qψ̌q, (2)

Ȟel-ph = − g√
N

∑
qk

[ě†k+qȟ
†
−kψ̌q + H.c.], (3)

Ȟel-el = −U

N

∑
k

ρ̌e
kρ̌

h
−k, (4)

describing free particles (electrons created by ě
†
k, holes by ȟ

†
k,

and photons by ψ̌
†
q), the coupling (∝g) of electron-hole pairs

to the radiation field, and the local Coulomb interaction (∝
U ) between electrons (density operators ρ̌e

k = ∑
k1

ě
†
k+k1

ěk1
)

and holes (ρ̌h
k = ∑

k1
ȟ
†
k+k1

ȟk1
), respectively. In Ȟ0,S, ε̌e

k (ε̌h
k)

denotes the dispersion of electrons (holes),

ε̌e
k = −2t

D∑
i

cos ki + Eg + 4tD

2
= ε̌h

k, (5)

where D is the dimension of the hypercubic lattice, t is
the particle transfer amplitude between neighboring sites, Eg

gives the minimum distance (gap) between the bare electron
and hole bands, and ε̌e

k = ε̌h
k is set for simplicity. The photon

field is characterized by

ω̌q =
√

(cq)2 + ω2
c (6)

with the zero-point cavity frequency ωc.

B. Coupling to reservoirs

Next we model the coupling of the e-h-p system, being
an open quantum system in reality, to its environment. In
the first place, two pumping baths for electrons and holes
made possible the injection of free fermions into the system.
In addition, the cavity photons are connected to a free-space
photon reservoir, allowing for a leakage of photons into the
surroundings. To maintain a steady state, the loss of cavity
photons to the external reservoir must be compensated by
bringing in fermionic carriers. Then for the total system the
following Hamiltonian seems to be adequate

Ȟ = ȞS + ȞR + ȞSR, (7)

where ȞS is given by Eq. (1), and ȞR and ȞSR are defined as:

ȞR =
∑

p

ω̌e
p b̌†e,pb̌e,p +

∑
p

ω̌h
p b̌

†
h,pb̌h,p +

∑
p

ω̌ϕ
p ϕ̌†

pϕ̌p,

(8)

ȞSR = 1

N

∑
kp

(
�e

kpě
†
kb̌e,p + H.c.

)

+ 1

N

∑
kp

(
�h

kpȟ
†
−kb̌h,−p + H.c.

)

+ 1

N

∑
qp

(
�ψ

qpψ̌
†
qϕ̌p + H.c.

)
. (9)
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ȞR is the Hamiltonian for the two fermionic baths and the
free-space photon reservoir which are interacting with the e-h-
p system via ȞSR. The quantities b̌

(†)
e,p and b̌

(†)
h,p are the fermion

creation/annihilation operators of the two pumping baths, and
ϕ̌

(†)
p are the boson creation and annihilation operators of the

free-space photons. Finally, �
e,h
kp and �

ψ
qp in Eq. (9) are the

coupling constants between the system and the respective
reservoirs. Let us also define the particle number of the total
system by

N = 1

2

∑
k

(ě†kěk + ȟ
†
kȟk ) +

∑
q

ψ̌†
qψ̌q

+ 1

2

∑
p

(b̌†e,pb̌e,p + b̌
†
h,pb̌h,p) +

∑
p

ϕ̌†
pϕ̌p, (10)

which is a constant of motion [Ȟ,N ] = 0.
We maintain that the total system in a nonequilibrium

situation evolves under Hamiltonian Ȟ = HS + ȞR + ȞSR.
Thereby ȞS is “simple” in the sense that it can be diago-
nalized, even though many-body aspects due to the presence
of Ȟel-el and Ȟel-ph require a special treatment. ȞSR is re-
sponsible for the nonequilibrium situation since it governs
the pumping and damping of electrons and holes and the
leakage of photons into the free space. Note that HSR is not
translationally invariant.

We now assume that ȞSR vanishes for times t < t0, where
t0 → −∞ might be used as a suitable starting point. That is,
before at t0 the interaction ȞSR is turned on, the reservoirs and
the e-h-p system are in separate thermal equilibrium states.
Then the state of the total system is described by a product of
the e-h-p system density operator ρ̌S and the reservoir density
operator ρ̌R

ρ̌0 = ρ̌t0→−∞ = ρ̌S ρ̌R, (11)

where ρ̌S commutes with ȞS. To simplify the considerations
we suppose the electronic baths and the external photon
reservoir to be huge compared to ȞS. As a result, in the steady
state the two electronic baths remain in thermal equilibrium,
even when they are coupled to the e-h-p system. Similarly
the free-space photons act as a reservoir for cavity photons
escaped from the e-h-p system.

Below, the task is to evaluate time-dependent expectation
values of observables Ǎ for times t � t0,

〈Ǎ(t )〉 = Tr [ρ̌0 Ǎ(t )], (12)

when the system has approached a steady state. Therefore
we use the Heisenberg picture, in which the time dependence
of Ǎ is governed by the full Hamiltonian Ȟ, and ρ̌0 is time
independent. Note that ρ̌0 and Ȟ do not commute. This
property causes the genuine time dependence of expectation
values (12). Being τR some internal relaxation time, for times
t � τR the system is expected to merge into a periodically
driven steady state and remembers no longer its initial state.

C. Steady-state description

Now let us consider a steady-state situation in which both
loss and pump processes are spatially homogenous with a

coherent photon field that is only formed for q = 0. For large
times, the steady state will evolve according to

〈ψ̌†
q(t )〉 = δq0 〈ψ†

0〉 eiμt , (13)

〈(ě†kȟ†
−k )(t )〉 = d∗

k eiμt , (14)

〈(ě†kěk )(t )〉 = ne
k, (15)

〈(ȟ†
−kȟ−k )(t )〉 = nh

−k, (16)

where the quantities 〈ψ†
0〉, d∗

k , ne
k, and nh

−k are time inde-
pendent and—together with μ—are subject to the evaluation
below. Ansatz (13)–(16) implies that the dynamics of certain
variables is captured on a rotating frame with a frequency μ,
where in the steady state 〈ψ†

0〉, d∗
k , ne

k, and nh
−k become time

independent [16].
In the first evaluation step the explicit time dependence in

〈ψ̌†
k(t )〉 and 〈(ě†kȟ†

−k )(t )〉 will be eliminated. This is achieved
by performing a time-dependent gauge transformation:

(e†k, h
†
−k, ψ

†
q ) = e−iμN t (ě†k, ȟ

†
−k, ψ̌

†
q ) eiμN t

= (e−i(μ/2)t ě
†
k, e

−i(μ/2)t ȟ
†
−k, e

−iμt ψ̌†
q ), (17)

(b†e,p, b
†
h,p, ϕ

†
p) = e−iμN t (b̌†e,p, b̌

†
h,p, ϕ̌

†
p) eiμN t

= (e−i(μ/2)t b̌†e,p, e
−i(μ/2)t b̌

†
h,p, e

−iμt ϕ̌†
p).

(18)

Let us look at an example: The equation of motion for the
operator ψ̌

†
k(t ) reads (d/dt)ψ̌†

k(t ) = (i/h̄)[Ȟ, ψ̌
†
k](t ). Going

over from ψ̌
†
k to the new variable ψ

†
k = ψ̌

†
k e−iμt , the equation

for ψ
†
k(t ) becomes (d/dt)ψ†

k(t ) = (i/h̄)[Ȟ − μN , ψ
†
k](t ).

Thus, using the following replacements

εα
k = ε̌α

k − 1
2μ, ωq = ω̌q − μ, (19)

ωα
p = ω̌α

p − 1
2μ, ωϕ

p = ω̌ϕ
p − μ, (20)

(α = e, h), the explicit time dependences in Eqs. (13) and (14)
disappears. Following the equations of motion of the variables
e
†
k, h

†
k, ψ

†
q, we therefore introduce a Hamiltonian,

H = Ȟ − μN , (21)

where both parts on the right hand side keep their
operator form when written in the new variables. Note that
replacements (19) and (20) only apply to the time dependence
of Ǎ(t ) in Eq. (12) (Heisenberg picture) but not to the density
operator ρ̌0, which keeps its operator form in the expressed by
the variables withoutˇsymbols, and will be called ρ0. The total
particle number N , written in the variables e

†
k, h

†
k, ψ

†
q has the

same operator form as in Eq. (10) and obeys [H,N ] = 0.
Thus the total particle flux d〈N 〉/dt = 0 disappears, which
means that a change of the particle numbers of the e-h-p
subsystem and the electronic reservoirs must be balanced by
a change of the free space photons.

We wish to stress that only in thermal equilibrium the
quantity μ will turn out to act as a chemical potential. For
time-dependent problems, such as the considered open e-h-p
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system, the dynamics is captured on a rotating frame with the
frequency μ. Thereby μ is a given parameter which has to be
fixed in a steady state [16].

D. Total Hamiltonian

With the above transformations and replacements the total
Hamiltonian H takes the form:

H = HS + HR + HSR, (22)

where HS describes the interacting e-h-p subsystem

HS = H0 + Hc + Hg + HU , (23)

with

H0 =
∑

k

εe
ke

†
kek +

∑
k

εh
kh

†
−kh−k +

∑
q

ωqψ
†
qψq, (24)

Hc =
∑

k

(� e
†
kh

†
−k + H.c.) +

√
N (�ψ

†
0 + H.c.), (25)

Hg = − g√
N

∑
kq

(e†q+kh
†
−kψq + H.c.), (26)

HU = −U

N

∑
k1k2k

e
†
k1+kek1

h
†
k2−khk2

. (27)

Here, the first term H0 of HS is diagonal, whereas the second
part Hc is nondiagonal and contains infinitesimally small
external fields � = 0+ and � = 0+, which are introduced to
account for possible ground-state phases with broken gauge
symmetry. As shown below, in the course of the renormal-
ization procedure, the fields � and � take over the role of
order parameters for the exciton and photon condensates.
Finally, the terms Hg and HU in Eqs. (26) and (27) stand
for the interactions between excitons and photons and for the
Coulomb attraction between electrons and holes.

The remaining terms in Eq. (22) are the reservoir Hamil-
tonian HR and the interaction Hamiltonian HSR between
the reservoirs and the e-h-p system. Written in the variables
introduced in Eqs. (17) and (18), they have the same operator
structure as Eqs. (8) and (9):

HR =
∑

p

ωe
p b†e,pbe,p +

∑
p

ωh
p b

†
h,pbh,p +

∑
p

ωϕ
p ϕ†

pϕp,

(28)

HSR =
∑
kp

(
�e

kp e
†
kbe,p + H.c.

) +
∑
kp

(
�h

kp h
†
−kbh,−p + H.c.

)

+
∑
qp

(
�ψ

qp ψ†
qϕp + H.c.

)
. (29)

In order to separate the mean-field contributions from Hg

and HU , we introduce time ordered operators:

: e
†
k+qh

†
−kψq := : e

†
k+qh

†
−k : : ψq := e

†
k+qh

†
−kψq

− δq,0
(
d∗

k : ψ0 : +〈ψ0〉 : e
†
kh

†
−k :

)
,

(30)

: e
†
k1+kek1

h
†
k2−khk2

:

= e
†
k1+kek1

h
†
k2−khk2

− δk,0
(
ne

k1
h
†
k2

hk2 + nh
k2

e
†
k1

ek1 − ne
k1

nh
k2

)
− δk1,−k2

(
d∗

k+k1
:h−k1ek1 : + dk1 :e†k+k1

h
†
−k−k1

:
)
. (31)

Here, : A : = A − 〈A〉, and ne
k1

and nh
k2

are occupation num-
bers evaluated with the density operator ρ0:

ne
k1

= 〈
e
†
k1

ek1

〉
, nh

k2
= 〈

h
†
k2

hk2

〉
. (32)

Obviously, a finite d∗
k indicates a particle-hole (exciton) con-

densate:

d∗
k = 〈e†kh†

−k〉. (33)

With Eqs. (30) and (31) Hamiltonian HS is rewritten as

HS = Ĥ0 + Ĥc + Ĥg + ĤU , (34)

where Ĥ0 and Ĥc have acquired one-particle contributions
from separations (30) and (31):

Ĥ0 =
∑

k

ε̂e
ke

†
kek +

∑
k

ε̂h
kh

†
−kh−k +

∑
q

ωqψ
†
qψq, (35)

Ĥc =
∑

k

(�̂ e
†
kh

†
−k + H.c.) +

√
N (�̂ψ

†
0 + H.c.). (36)

Thereby, the field parameters � and � have changed into

�̂ = � − g√
N

〈ψ0〉 − U

N

∑
k

dk, (37)

�̂ = � − g

N

∑
k

dk, (38)

and the electronic one-particle energies contain the Hartree
shifts:

ε̂e
k = εe

k − U

N

∑
q

nh
−q, (39)

ε̂h
k = εh

k − U

N

∑
q

ne
q. (40)

Finally, the former interactions (26) and (27) have changed
into Ĥg and ĤU , which now consist of fluctuation operators
only:

Ĥg = − g√
N

∑
kq

(: e
†
q+kh

†
−k ψq : +H.c.), (41)

ĤU = −U

N

∑
k1k2k

: e
†
k1+kek1

h
†
k2−khk2

: . (42)

III. PRM FOR AN OPEN ELECTRON-HOLE-PHOTON
SYSTEM

Applying the projector-based renormalization approach
[27,30] to the open exciton-polariton system, one starts, as
usual, from an appropriate separation of the total Hamiltonian
H into an “unperturbed” part H0 and a “perturbation” H1. In
a many-particle system, H1 is usually the interaction, which
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prevents a straightforward solution of H since it leads to tran-
sitions between the eigenstates of H0. However, integrating
out the interaction by a sequence of small unitary transfor-
mations, the Hamiltonian can be transformed into a diagonal
operator. Thereby, transitions from H1 between eigenstates
of H0 will be stepwise eliminated. For the actual evaluation
one starts from the largest transition energy of H0, called �,
and proceeds in small steps �λ to lower transition energies λ.
Suppose all transitions between � and λ have already been
eliminated, the resulting Hamiltonian, which contains only
transitions with energies smaller than λ, will be called Hλ. An
additional elimination step from Hλ to a Hamiltonian Hλ−�λ

with a somewhat reduced maximum transition energy λ − �λ

is performed by means of a small unitary transformation,

Hλ−�λ = eXλ,�λ Hλ e−Xλ,�λ , (43)

by which all excitations in Hλ between λ and λ − �λ will
be eliminated. Here, Xλ,�λ = −X

†
λ,�λ is the generator of the

unitary transformation. Its lowest-order expression is given by
[27]

Xλ,�λ = 1

L0,λ

Qλ−�λH1,λ. (44)

Here, the quantities Qλ−�λ and L0,λ are so-called superopera-
tors which act on usual operators of the unitary space. Thereby
Qλ−�λ = 1 − Pλ−�λ is a generalized projector that projects
on all transition operators (with respect to the unperturbed
Hamiltonian H0) with energies larger than λ − �λ, whereas
Pλ−�λ is the orthogonal projector, which project on all transi-
tion operators with energies smaller than λ − �λ. Examples
for the action of Pλ and Qλ are found in the Secs. III A and
III B below. Moreover, L0,λ is the Liouville operator, which is
defined by the commutator with H0,λ applied to any operator
variable A, i.e., L0,λA = [H0,λ,A]. The explicit form of the
generator Xλ,�λ is given in Eqs. (65) to (69).

We note that after each elimination step the unperturbed
Hamiltonian as well as the perturbation become renormalized
and therefore depend on λ. Continuing the renormalization
scheme stepwise up to zero transition energy λ = 0 all tran-
sitions with energies larger than zero will be integrated out:
In this way one arrives at a fully renormalized Hamiltonian
Hλ=0, which is diagonal (or quasidiagonal) and therefore
solvable. We finally like to point out that for sufficiently small
�λ, the evaluation of the transformation step (43) can be
restricted to low orders in H1 which, in general, limits the
validity of the approach to parameter values of H1 of the same
magnitude as those of H0.

A. Ansatz for the system Hamiltonian

As mentioned above, the reservoirs are considered to be
very large. Thus HR and HSR will not be renormalized by
the PRM procedure. We therefore may restrict the renormal-
ization to the e-h-p system only and employ the following
λ-dependent ansatz for HS,λ,

HS → HS,λ = H0,λ + Ĥc,λ + Ĥg,λ + ĤU,λ, (45)

where the operator structure of (45) is found from Eq. (43) by
an expansion around λ = � for small interactions Ĥg + ĤU .

As above mentioned the parameters in H0,λ and Ĥc,λ depend
on λ:

H0,λ =
∑

k

εe
k,λe

†
kek +

∑
k

εh
k,λh

†
−kh−k +

∑
q

ωq,λψ
†
qψq,

(46)

Ĥc,λ =
∑

k

(�̂k,λ e
†
kh

†
−k + H.c.) +

√
N (�̂λψ

†
0 + H.c.).

(47)

Moreover, the quantity �̂k,λ has acquired an additional k
dependence. The interactions take the form

Ĥg,λ = − g√
N

∑
kq

Pλ(: e
†
k+qh

†
−k ψq : +H.c.), (48)

ĤU,λ = −U

N

∑
k1k2k3

Pλ

(
:e†k1

ek2 h
†
k3

hk1+k3−k2 :
)
. (49)

As aforementioned, Pλ = 1 − Qλ is a generalized projection
operator, complementary to Qλ, which projects on all tran-
sition operators with energies smaller than λ. The coupling
parameters g and U will remain λ independent in the renor-
malization procedure if one restricts oneself to renormal-
ization contributions up to order g2 and U 2. Obviously the
Hamiltonian HS,λ=� reduces to HS by construction, provided
the parameter values at the initial cutoff λ = � fulfill

εe
k,� = ε̂e

k, εh
k,� = ε̂h

k, ωq,� = ωq, (50)

�̂k,� = �̂, �̂� = �̂. (51)

In order to study the action of Pλ in Eqs. (48) and (49)
we start from the decomposition of Ĥg,λ into dynamical
eigenmodes of H0,λ,

Ĥg,λ = − g√
N

∑
kq

�kq,λ(e†k+qh
†
−kψq + H.c.)

+ g√
N

∑
k

�k,λ(〈ψ0〉 e
†
kh

†
−k + H.c)

+ g√
N

�λ

∑
k

(d∗
kψ0 + H.c.), (52)

where Eq. (41) was used. In Eq. (52), we have introduced the
� functions

�kq,λ = �
(
λ − ∣∣εe

k+q,λ + εh
−k,λ − ωq,λ

∣∣), (53)

�k,λ = �
(
λ − ∣∣εe

k,λ + εh
−k,λ

∣∣), (54)

�λ = �(λ − |ωq=0,λ|), (55)

which restrict transitions to those with excitation energies
smaller than λ. Similarly one finds for ĤU,λ:

ĤU,λ = −U

N

∑
k1k2k3

�k1k2k3,λ : e
†
k1

ek2 : : h
†
k3

hk1+k3−k2 :

+ U

N

∑
k

�k,λ

∑
k′

(dk′ e
†
kh

†
−k + H.c.) (56)
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with

�k1k2k3,λ = �
(
λ − ∣∣εe

k1,λ
− εe

k2,λ
+ εh

k3,λ
− εh

k1+k3−k2,λ

∣∣).
(57)

In principle, the operator part H0,λ + Ĥc,λ of the ansatz
(45) for HS should take over the role of the unperturbed
Hamiltonian and Ĥg,λ + ĤU,λ the role of the perturbation.
This however would require a diagonalization of H0,λ + Ĥc,λ

and an expansion of Ĥg,λ and ĤU,λ into eigenmodes of this
“unperturbed” Hamiltonian. Since this procedure is rather
complex, we prefer to use instead H0,λ in the � functions of
Eqs. (52) and (56). Then the generator Xλ,�λ of the unitary
transformation (43) has to be changed appropriately (see
below).

One sees that the last two terms in Eq. (52) and the last
term in (56) represent one-particle contributions. They should
best be included in the one-particle term Ĥc,λ of HS,λ. That
is only the first term in Eq. (52) and in Eq. (56) should be
considered as “true” interactions. However, it has turned out
that interactions formed by fluctuation operators should be
preferred in the unitary transformation Eq. (43). Therefore,
instead of Eqs. (52) and (56), we henceforth use modified
interactions Hg,λ and HU,λ based on fluctuation operators,

Hg,λ = − g√
N

∑
kq

�kq,λ(: e
†
k+qh

†
−kψq : +H.c.), (58)

HU,λ = −U

N

∑
k1k2k3

�k1k2k3,λ : e
†
k1

ek2 h
†
k3

hk1+k3−k2 :, (59)

where the � functions in front apply to all parts of the
respective fluctuation operators. Of course, we have to repair
this “mistake” by including the corresponding “counterterms”
in the one-particle part Hc,λ of HS,λ. Thus, we finally arrive at
the following representation of HS,λ:

HS,λ = H0,λ + Hc,λ + H1,λ, (60)

H1,λ = Hg,λ + HU,λ. (61)

Here, Hg,λ and HU,λ are given by Eqs. (58) and (59), whereas
Hc,λ reads

Hc,λ =
∑

k

(�k,λ e
†
kh

†
−k + H.c.) +

√
N (�λψ

†
0 + H.c.), (62)

with

�k,λ = �̂k,λ + g√
N

(�k,λ − �k,q=0,λ)〈ψ0〉

+ U

N

∑
k′

(�k,λ − �k,k′,k;λ) dk′ , (63)

�λ = �̂λ + g

N

∑
k

(�λ − �k,q=0,λ) dk. (64)

As before, at the initial cutoff λ = � Hamiltonian HS,λ must
agree with HS [from Eq. (23)], which is fulfilled by ensuring
Eqs. (50) and (51). Let us add one remark: Carrying out the
renormalization procedure the additional contributions in �k,λ

and �λ in Eqs. (63) and (64) are expected to have very little

influence on the results since they vanish both at the beginning
(cutoff �) and at the end (λ = 0) of the PRM procedure.

B. Construction of the PRM generator

Next, we establish the generator Xλ,�λ of the unitary
transformation (43). Following the lowest order expression
(44), we look for an Xλ,�λ having the same operator structure
as H1,λ. For this we make the ansatz

Xλ,�λ = X
g

λ,�λ + XU
λ,�λ = −X

†
λ,�λ (65)

with

X
g

λ,�λ = − g√
N

∑
kq

Akq(λ,�λ)[: e
†
k+qh

†
−kψq : −H.c.],

(66)

XU
λ,�λ = −U

N

∑
k1k2k3

Bk1k2;k3,k1+k3−k2 (λ,�λ)

× : e
†
k1

ek2 h
†
k3

hk1+k3−k2 :, (67)

and

Akq(λ,�λ) = �kq,λ(1 − �kq,λ−�λ)

εe
k+q,λ + εh

−k,λ − ωq,λ

, (68)

Bk1,k2;k3,k1+k3−k2 (λ,�λ)

= �k1k2k3,λ

(
1 − �k1k2k3,λ−�λ

)
εe

k1,λ
− εe

k2,λ
+ εh

k3,λ
− εh

k1+k3−k2,λ

= −Bk2,k1;k1+k3−k2,k3,(λ,�λ). (69)

Here, the notation with four indices in
Bk1,k2,k3,k1+k3−k2 (λ,�λ) emphasizes the momentum
conservation. It can be recognized that the products of
� functions in Eqs. (68) and (69) assure that excitations
between λ and λ − �λ are eliminated in each transformation
step �λ. For small �λ, the transformation (43) can be
restricted to an expansion up to second order in g and U and
to linear order in the order parameters �k,λ and �λ. Then
HS,λ−�λ at the reduced cutoff λ − �λ reads

HS,λ−�λ = H0,λ + Hc,λ + H1,λ

+ [Xλ,�λ,H0,λ + Hc,λ + H1,λ] + · · · . (70)

Relation (70) connects the parameter values of HS,λ at cutoff
λ with those at the reduced cutoff λ − �λ. That is, in order
to find renormalization equations for the λ-dependent param-
eters one has to evaluate the commutators. For instance, from
the first commutator [Xλ,�λ,H0,λ], one finds the following
renormalization contributions to �k,λ and �λ:

δ�
(0)
k,λ = − g√

N
Ak0(λ,�λ) ω0,λ〈ψ0〉

− U

N

∑
k1

Bk1k,−k1,−k(λ,�λ)
(
εe

k1,λ
+ εh

−k1,λ

)
dk1 ,

(71)

δ�
(0)
λ = g

N

∑
k

Ak0(λ,�λ)
(
εe

k,λ + εh
−k,λ

)
dk. (72)
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Combining these relations with the remaining renormalization
contributions from the last two commutators in Eq. (70), one
arrives at the following renormalization equations:

�k,λ−�λ = �k,λ + δ�
(0)
k,λ + δ�

(c)
k,λ + δ�

(U )
k,λ , (73)

�λ−�λ = �λ + δ�
(0)
λ + δ�

(c)
λ + δ�

(g)
λ . (74)

Here, δ�
(c)
k,λ and δ�

(U )
k,λ are defined in Eqs. (A10) and (A22),

whereas δ�
(c)
λ and δ�

(g)
λ are given in (A9) and (A16), respec-

tively. The renormalization equations for the remaining pa-
rameters εe

k,λ, εh
k,λ, and ωq,λ of Hλ are derived in Appendix A

[Eqs. (A13)–(A15)] as well.
To solve the renormalization equations, one starts from the

initial parameter values at cutoff � [Eqs. (50) and (51)] and
proceeds in small steps �λ until λ = 0 is reached. In doing
so, all transitions from H1,λ between � and λ = 0 will be
eliminated. We arrive at the fully renormalized Hamiltonian
H̃S = HS,λ=0 = H0,λ=0 + Hc,λ=0:

H̃S =
∑

k

ε̃e
ke

†
kek +

∑
k

ε̃h
kh

†
khk +

∑
q

ω̃qψ
†
qψq

+
∑

k

(�̃k e
†
kh

†
−k + H.c.) +

√
N (�̃ψ

†
0 + H.c.). (75)

Accordingly, ε̃e
k, ε̃h

k , ω̃q, �̃k, and �̃ are the fully renormalized
energy parameters at λ = 0. They have to be determined self-
consistently from the whole set of renormalization equations.

Since all transition operators from H1,λ have been used up
in the renormalization procedure, Hamiltonian H̃S is a one-
particle operator which can be diagonalized. First, one defines
“displaced” photon operators

�̃†
q = ψ†

q +
√

N �̃∗

ω̃q=0
δq,0, (76)

which—up to a constant—leads to

H̃S =
∑

k

ε̃e
ke

†
kek +

∑
k

ε̃h
kh

†
khk +

∑
q

ω̃q�̃
†
q�̃q

+
∑

k

(�̃k e
†
kh

†
−k + H.c.). (77)

The electronic part of H̃S is diagonalized by a subsequent
Bogolyubov transformation

C
†
1k = ξke

†
k + η∗

kh−k, (78)

C
†
2k = −ηke

†
k + ξ ∗

k h−k (79)

with coefficients

|ξk|2 = 1

2

[
1 + sgn

(
ε̃e

k + ε̃h
k

) ε̃e
k + ε̃h

k

Wk

]
, (80)

|ηk|2 = 1

2

[
1 − sgn

(
ε̃e

k + ε̃h
k

) ε̃e
k + ε̃h

k

Wk

]
, (81)

ηkξk = sgn
(
ε̃e

k + ε̃h
k

) �̃k

Wk
, (82)

where

Wk =
√(

ε̃e
k + ε̃h

k

)2 + 4|�̃k|2. (83)

In terms of the quasiparticle operators C
(†)
1k and C

(†)
2k Hamilto-

nian H̃ becomes diagonal:

H̃S =
∑

k

Ẽ1kC
†
1kC1k +

∑
k

Ẽ2kC
†
2kC2k +

∑
q

ω̃q�̃
†
q�̃q

(84)

with the quasiparticle energies

Ẽ(1,2)k = ε̃e
k − ε̃h

k

2
± sgn

(
ε̃e

k + ε̃h
k

)Wk

2
. (85)

As usual, the order parameter �̃k also acts as gap parameter
for the quasiparticle bands.

IV. STEADY STATE

The fully transformed (renormalized) Hamiltonian H̃ of
the total system is

H̃ = H̃S + HR + HSR, (86)

where H̃S, HR, and HSR are given by Eqs. (84), (28), and
(29), respectively. As aforementioned, HR and HSR will not
be affected by the unitary transformations (43). We are now
going to calculate the steady-state expectation values 〈ψ†

q=0〉,
〈e†kh†

−k〉 = d∗
k , ne

k, and nh
−k.

A. Density operator for the initial state

First, the initial density operator ρ0 must be specified. Ac-
cording to Eq. (12), ρ0 is a product of the density operator ρS

for the e-h-p subsystem and the density ρR for the reservoirs:

ρ0 = ρSρR. (87)

Moreover, ρR factorizes into the density matrices ρR,e and
ρR,h of the two electronic baths and into the density ρR,ψ of
the free-space photons,

ρR = ρR,e ρR,h ρR,ψ , (88)

where

ρR,e = e−β
∑

p(ωe
p−(μe−μ/2)) b

†
e,pbe,p

ZR,e

, (89)

ρR,h = e−β
∑

p(ωh
p−(μh−μ/2)) b

†
h,pbh,p

ZR,h

. (90)

Here, ZR,e and ZR,h are the partition functions for the elec-
tronic baths with

ZR,e/h = Tre/h

(
e−β

∑
p(ωe/h

p −(μe/h−μ/2)) b
†
e/h,pbe/h,p

)
(91)

such that Tre/hρR,e/h = 1.
Note that both electronic bath energies ωα

p (α = e, h) from
Eq. (20) include energy shifts −(μ/2) which however cancel
in Eqs. (89) and (90). Therefore ρR,e and ρR,h describe thermal
equilibrium situations for the electronic baths with tempera-
ture 1/β and chemical potentials μe and μh. As aforemen-
tioned both electronic baths were assumed to be huge, i.e.,
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they always stay in thermal equilibrium, even in the steady
state. In contrast, the quantity μ, introduced by Eqs. (13)–(16),
will generally not act as a chemical potential since photons
may “escape” from the e-h-p subsystem due to the leakage
into the free-photon space. For vanishing coupling �

ψ
qp of cav-

ity photons to free-space photons the e-h-p subsystem together
with the electronic baths will reach a thermal equilibrium with
μ acting as the usual chemical potential again.

B. Electronic expectation values in the long-time limit

Let us consider the long-time behavior of a general expec-
tation value,

〈A(t )〉 = Tr(A(t ) ρ0), (92)

where—within the Heisenberg picture—the time dependence
is governed by Hamiltonian H from Eq. (22). Since the
total H does not commute with the initial density matrix ρ0,
[ρ0,H] �= 0, the expectation value 〈A(t )〉 is intrinsically time
dependent. The steady-state properties are found from the
time-independent solutions of 〈A(t )〉 for t → ∞, which must
obey

lim
t→∞

d

dt
〈A(t )〉 = 0. (93)

Remember, an explicit time-dependent factor eiμt was already
extracted from Eqs. (13)–(15). To evaluate 〈A(t )〉, we use
the invariance property of operator expressions against unitary
transformations under a trace:

〈A(t )〉 = Tr(Aλ(t ) ρ0,λ) = Tr(Ã(t ) ρ̃0). (94)

Here, Aλ and ρ0,λ are transformed operators at cutoff λ

Aλ = eXλAe−Xλ and ρ0,λ = eXλρ0e
−Xλ. (95)

The exponential function eXλ stands for a compact notation
of the unitary transformation operator between cutoffs � and
λ. In the last equation of (94) the operators Ã and ρ̃0 denote
the fully renormalized operators at cutoff λ = 0, and the time
dependence is now governed by H̃. By contrast, the time
dependence of Aλ(t ) is given by the transformed Hamiltonian
Hλ = HS,λ + HR + HSR:

Aλ(t ) = eiHλtAλe
−iHλt . (96)

We now derive the steady-state results for the electronic
quantities

d∗
k = d∗

k (t → ∞), (97)

ne
k = ne

k(t → ∞), (98)

nh
−k = nh

−k(t → ∞). (99)

Starting points are the time dependent expectation values,

d∗
k (t ) = 〈(e†kh†

−k )(t )〉 = 〈(ẽ†kh̃†
−k )(t )〉ρ̃0 , (100)

ne
k(t ) = 〈(e†kek )(t )〉 = 〈(ẽ†kẽk )(t )〉ρ̃0 , (101)

nh
−k(t ) = 〈(h†

−kh−k )(t )〉 = 〈(h̃†
−kh̃−k )(t )〉ρ̃0 , (102)

where relation (94) was used on the right hand sides. The
expectation values 〈· · · 〉ρ̃0 are formed with ρ̃0, ẽ

†
k and h̃

†
−k are

the fully transformed one-particle operators, and the time de-
pendence of the last expressions is formed with H̃. According
to Appendix C an appropriate ansatz for ẽ

†
k and h̃

†
−k is

ẽ
†
k = x̃ke

†
k + 1√

N

∑
q

t̃k−q,qhq−k : ψ†
q :

+ 1

N

∑
k1k2

α̃k1kk2e
†
k1

: h
†
k2

hk1+k2−k :, (103)

h̃
†
−k = ỹkh

†
−k + 1√

N

∑
q

ũk,qeq+k : ψ†
q :

+ 1

N

∑
k1k2

β̃k1k2,k2−k1−k : e
†
k1

ek2 : h
†
k2−k1−k. (104)

Here, the operator structure is caused by the electron-photon
and the electron-electron interaction. Again, the parameters
with tilde symbols are the fully renormalized quantities which
result from the solution of the corresponding renormalization
equations given in Appendix C. Inserting Eqs. (103) and (104)
into Eqs. (100)–(102) one finds

d∗
k (t ) = x̃kỹk d̂∗

k (t ) + 1

N

∑
k1

[
x̃kβ̃k1,k,−k1 n̂

e
k(t )

+ ỹkα̃k1,k,−k1 × (
1 − n̂h

−k(t )
)]

d̂∗
k1

(t )

− 1

N2

∑
k1k2

α̃k1k,−k2 β̃k2k1,k1−k2−k n̂e
k1

(t )

× (
1 − n̂h

k1−k2−k(t )
)
d̂∗

k2
(t ), (105)

ne
k(t ) = |x̃k|2n̂e

k(t ) + 1

N

∑
q

|t̃k−q,q|2
(
1 − n̂h

k−q(t )
)
n̂ψ

q (t )

+ 1

N2

∑
k1k2

∣∣α̃k1kk2

∣∣2
n̂e

k1
(t )n̂h

k2
(t )

(
1 − n̂h

k1+k2−k(t )
)
,

(106)

and

nh
−k(t ) = |ỹk|2n̂h

−k(t ) + 1

N

∑
q

|ũk,q|2 n̂ψ
q (t )

(
1 − n̂e

k+q(t )
)

+ 1

N2

∑
k1k2

∣∣β̃k1k2,k2−k1−k
∣∣2

n̂e
k1

(t )
(
1 − n̂e

k2
(t )

)
× n̂h

k2−k1−k(t ), (107)

where an additional factorization approximation was used.
Here n̂e

k(t ), n̂h
−k(t ), and n̂

ψ
q (t ) are time-dependent occupation

numbers for electrons, holes, and photons, which are formed
with ρ̃0:

n̂e
k(t ) = 〈(e†kek )(t )〉ρ̃0 , (108)

n̂h
−k(t ) = 〈(h†

−kh−k )(t )〉ρ̃0 , (109)

n̂ψ
q (t ) = 〈(: ψ†

q : : ψq :)(t )〉ρ̃0 . (110)
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The quantity n̂
ψ
q will be evaluated in Appendix C. Moreover,

d̂∗
k (t ) accounts for the order parameter of exciton formation

d̂∗
k (t ) = 〈(e†kh†

−k )(t )〉ρ̃0 . (111)

The time dependence in Eqs. (108)–(111) is determined by
H̃. Let us clarify the factorization approximations used in
Eqs. (105)–(107) in more detail. As an example, we consider
expression (106) for ne

k(t ). Starting point is Eq. (101). Insert-
ing expression (103) for ẽ

†
k we find

ne
k(t ) = |x̃k|2〈(e†kek )(t )〉ρ̃0 + 1

N

∑
qq′

t̃k−q,q t̃
∗
k−q′,q′

×〈(hq−k : ψ†
q : : ψq′ : h

†
q′−k )(t )〉ρ̃0

+ 1

N2

∑
k1k2k′

1k′
2

α̃∗
k1kk2

α̃k′
1kk′

2

× 〈(
e
†
k1

: h
†
k2

hk1+k2−k : : h
†
k′

1+k′
2−khk′

2
: ek′

1

)
(t )

〉
ρ̃0

.

(112)

Obviously, result (106) is obtained by factorizing correspond-
ing operators in the expectation values of (112). For instance,
in the second term the operator hq−k is factorized with h

†
q′−k,

and : ψ
†
q : with : ψq′ :. This leads to the second term in ex-

pression (106). Note however that in Eq. (106) the following
small contribution to second order in the order parameter dk
was neglected

(−1)
1

N2

∑
k1k2

α̃∗
k1kk2

α̃k−(k1+k2 ),kk2

× n̂h
k2

(t )d̂k1 (t )d̂k−(k1+k2 )(t ). (113)

It results from an additional factorization of the last term
in Eq. (112), where e

†
k1

was factorized with h
†
k′

1+k′
2−k and

hk1+k2−k with ek′
1
.

In principle the factorization (105)–(107) implies two ap-
proximations: (i) According to Sec. II B the initial density ρ0

is a product of the density ρS for the e-h-p subsystem and of
ρR for the reservoirs. Thereby the capacity of the reservoirs
was assumed to be infinitely large so that only the density ρS

of the e-h-p system is changed under the influence of the uni-
tary transformations. Therefore, the renormalized density ρ̃S

should differ from the initial ρS. However, these errors are of
higher order in the interaction parameters g and U and should
in principle be negligible. Moreover, which is more important,
it turns out that the final results (138)–(140) in the steady state
for d̂∗

k , n̂e
k, and n̂h

k are independent of the initial density ρ0,
as expected. Therefore the renormalization of ρ̃S seems not to
be important. (ii) The time dependence of d∗

k (t ), ne
k(t ), and

nh
−k(t ) is governed not only by the e-h-p Hamiltonian H̃S

but also by the coupling HSR to the electronic and photonic
reservoirs. Therefore the correct time dependence might be
influenced by the factorization in Eqs. (105)–(107).

In the next step, following the steady-state condition (93),
equations of motion for d̂∗

k (t ), n̂e
k(t ), and n̂h

−k(t ) have to be
derived. This is best done by expressing the operators in
Eqs. (108)–(111) by the Bogolyubov quasiparticles C

(†)
1,k and

C
(†)
2,k from Eqs. (78) and (79). According to Appendix C one

first finds

d̂∗
k (t ) = ξ ∗

k η∗
k

(
A11

k (t ) − A22
k (t )

) + ξ ∗
k

2
A12

k (t ) − η∗
k

2
A21

k (t ),

(114)

n̂e
k(t ) = |ξk|2A11

k (t ) + |ηk|2A22
k (t )

− (
ξ ∗

k ηkA
12
k (t ) + ξkη

∗
kA

21
k (t )

)
, (115)

n̂h
−k(t ) = |ηk|2

(
1 − A11

k (t )
) + |ξk|2

(
1 − A22

k (t )
)

− (
ξ ∗

k ηkA
12
k (t ) + ξkη

∗
kA

21
k (t )

)
(116)

with (n,m = 1, 2)

Anm
k (t ) = 〈(C†

nkCmk )(t )〉ρ̃0 . (117)

The equations of motion for Anm
k (t ) are found by applying

the Mori-Zwanzig projection operator formalism [31,32]. Ac-
cording to Appendix C they read

d

dt
A12

k (t ) = −[2γ − i(Ẽ1k − Ẽ2k )] A12
k (t )

− γ ξkη
∗
k(fe(Ẽ1k ) + fe(Ẽ2k ))

− γ ξkη
∗
k(fh(−Ẽ1k ) + fh(−Ẽ2k ) − 2)

=
(

d

dt
A21

k (t )

)†
, (118)

d

dt
A11

k (t ) = −2γ A11
k (t ) + 2γ |ξk|2fe(Ẽ1k )

+ 2γ |ηk|2(1 − fh(−Ẽ1k )), (119)

d

dt
A22

k (t ) = −2γ A22
k (t ) + 2γ |ηk|2fe(Ẽ2k )

+ 2γ |ξk|2(1 − fh(−Ẽ2k )). (120)

The damping rate γ , appearing in Eqs. (118)–(120), results
from the coupling to the electronic reservoirs and is assumed
to be the same for electrons and holes [see Appendix C 1
(C15)]. The functions fe(ω) and fh(ω) give the occupation
numbers of bath electrons and bath holes in thermal equilib-
rium:

fe

(
ωe

p

) = 〈b†epbep〉ρR = 1

1 + eβ[ωe
p−(μe−μ/2)] , (121)

fh

(
ωh

−p

) = 〈b†h,−pbh,−p〉ρR = 1

1 + eβ[ωh−p−(μh−μ/2)]
(122)

[compare Eqs. (89) and (90)]. The first contribution in each of
the Eqs. (118)–(120) is a relaxation term for e-h-p quasiparti-
cle pairs, while the last two terms stand for the relaxation of
quasiparticle pairs into the electronic baths. The damping rate
γ for all contributions is caused by that part of the interaction
HSR which couples electrons and holes of the e-h-p system
with the respective electronic baths. As above mentioned, we
have adapted the usual assumption that the rates for electrons
and holes are equal [compare Eq. (C12)]. Furthermore, the
second term in Eq. (118), being proportional to i(Ẽ1k − Ẽ2k ),
is a frequency term and enters from the dynamics of H̃S.
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We are now in the position to study the steady-state expres-
sions for Anm

k (t ). Defining the steady-state values in analogy
to Eqs. (97)–(99),

Anm
k = Anm

k (t → ∞), (123)

we arrive, for t → ∞, with condition (93) at

[i(Ẽ1k − Ẽ2k ) − 2γ ]A12
k

= γ ξkη
∗
k[fe(Ẽ1k ) + fe(Ẽ2k )

+ fh(−Ẽ1k ) + fh(−Ẽ2k ) − 2], (124)

A21
k = (A12

k )∗, and (for γ �= 0)

A11
k = |ξk|2fe(Ẽ1k ) + |ηk|2[1 − fh(−Ẽ1k )], (125)

A22
k = |ηk|2 fe(Ẽ2k ) + |ξk|2[1 − fh(−Ẽ2k )], (126)

where the common prefactor γ on both sides of Eqs. (125) and
(126) has dropped. Therefore, both equations are only valid
for finite γ . If γ = 0, no term would drive the system into a
steady state.

To sum up, the steady-state quantities d∗
k , ne

k, and nh
−k can

be first expressed by means of Eqs. (105)–(107):

d∗
k = x̃kỹk d̂∗

k + 1

N

∑
k1[

x̃kβ̃k1,k,−k1 n̂
e
k + ỹkα̃k1,k,−k1

(
1 − n̂h

−k

)]
d̂∗

k1

− 1

N2

∑
k1k2

α̃k1k,−k2 β̃k2k1,k1−k2−k n̂e
k1

× (
1 − n̂h

k1−k2−k(t )
)
d̂∗

k2
, (127)

ne
k = |x̃k|2n̂e

k + 1

N

∑
q

|t̃k−q,q|2
(
1 − n̂h

k−q

)
n̂ψ

q

+ 1

N2

∑
k1k2

∣∣α̃k1kk2

∣∣2
n̂e

k1
n̂h

k2

(
1 − n̂h

k1+k2−k

)
, (128)

nh
−k = |ỹk|2n̂h

−k + 1

N

∑
q

|ũk,q|2 n̂ψ
q

(
1 − n̂e

k+q

)

+ 1

N2

∑
k1k2

∣∣β̃k1k2,k2−k1−k
∣∣2

n̂e
k1

(
1 − n̂e

k2

)
n̂h

k2−k1−k.

(129)

Thereby, the quantities with hat symbols d̂∗
k , n̂e

k, and n̂h
−k are

written in terms of Anm
k :

d̂∗
k = ξ ∗

k η∗
k

(
A11

k − A22
k

) + ξ ∗
k

2
A12

k − η∗
k

2
A21

k , (130)

n̂e
k = |ξk|2A11

k + |ηk|2A22
k − (

ξ ∗
k ηkA

12
k + ξkη

∗
kA

21
k

)
,

(131)

n̂h
−k = |ηk|2

(
1 − A11

k

) + |ξk|2
(
1 − A22

k

)
− (

ξ ∗
k ηkA

12
k + ξkη

∗
kA

21
k

)
, (132)

where the steady-state results for Anm
k are given by Eqs. (124)–

(126).

C. Reformulation of the system dynamics

It makes sense to express the equations of motion (118)–
(120) in terms of the variables with hat symbols d̂∗

k (t ), n̂e
k(t ),

and n̂h
−k(t ). Let us start from d̂∗

k (t ). Using Eqs. (114)–(116)
we find

d

dt
d̂∗

k = i(Ẽ1k − Ẽ2k )
(
ξ ∗2

k A12
k + η∗2

k A21
k

)
− 2γ

[
ξ ∗

k η∗
k

(
A11

k − A22
k

) + ξ ∗2
k A12

k − η∗2
k A21

k

]
+ 2γ d̂0∗

k , (133)

where on the right hand side we have defined

d̂0∗
k = 1

2ξ ∗
k η∗

k{fe(Ẽ1k ) − fh(−Ẽ1k )

− [fe(Ẽ2k ) − fh(−Ẽ2k )]}. (134)

Moreover, using the Bogolyubov transformation (78)–(82), as
well as Eqs. (108), (109), and (111), we obtain

d

dt
d̂∗

k (t ) = i
(
ε̃e

k + ε̃h
k

)
d̂∗

k (t ) + i�̃∗
k

(
1 − n̂e

k(t ) − n̂h
k(t )

)
− 2γ

(
d̂∗

k (t ) − d̂0∗
k

)
. (135)

Similarly we derive the equations of motions for n̂e
k(t ) and

n̂h
−k(t ):

d

dt
n̂e

k(t ) = 2�[�̃kd̂
∗
k (t )] − 2γ

[
n̂e

k(t ) − |ξk|2fe(Ẽ1k )

− |ηk|2fe(Ẽ2k )
]
, (136)

d

dt
n̂h

−k(t ) = 2�[�̃kd̂
∗
k (t )] − 2γ

[
n̂h

−k(t ) − |ηk|2fh(−Ẽ1k )

− |ξk|2fh(−Ẽ2k )
]
, (137)

where 2�[�̃kd̂
∗
k ] = −i(�̃kd̂

∗
k − �̃∗

kd̂k ) was used. The steady-
state expectation values of d̂∗

k , n̂e
k, and n̂h

−k are obtained from
Eqs. (135)–(137) by setting the left hand sides equal to zero

d̂∗
k = − 1(

ε̃e
k + ε̃h

k

) + 2iγ

[
�̃∗

k

(
1 − n̂e

k − n̂k
k

) − 2iγ d̂0∗
k

]
,

(138)

and

n̂e
k = |ξk|2fe(Ẽ1k ) + |ηk|2fe(Ẽ2k ) + 1

γ
�[�̃kd̂

∗
k ], (139)

n̂h
k = |ηk|2fh(−Ẽ1k ) + |ξk|2fh(−Ẽ2k ) + 1

γ
�[�̃kd̂

∗
k ].

(140)

Of course, this result is equivalent to the former equations
(130)–(132). The steady-state expressions (138)–(140) can
further be simplified by using definition (134) and Eqs. (80)–
(83). According to Appendix C 2 one finds:

d̂∗
k = �̃∗

k(
ε̃e

k + ε̃h
k

) + 2i γ

[(
n̂e

k + n̂h
k − 1

)

+ iγ sgn
(
ε̃e

k + ε̃h
k

)F+
1k

Wk

]
(141)

035304-10



PROJECTOR-BASED RENORMALIZATION APPROACH TO … PHYSICAL REVIEW B 99, 035304 (2019)

and

n̂e
k + n̂h

k − 1 =
∣∣ε̃e

k + ε̃h
k

∣∣
2Wk

F+
1k + 1

2

F+
2k − 2

1 + 4|�̃k|2
(ε̃e

k+ε̃h
k )2+(2γ )2

, (142)

n̂e
k − n̂h

k = 1

2
F−

1k +
∣∣ε̃e

k + ε̃h
k

∣∣
2Wk

F−
2k. (143)

The quantities F±
1k and F±

2k are defined by

F±
1k = fe(Ẽ1k ) − fh(−Ẽ1k ) ∓ [fe(Ẽ2k ) − fh(−Ẽ2k )],

(144)

F±
2k = fe(Ẽ1k ) + fh(−Ẽ1k ) ± [fe(Ẽ2k ) + fh(−Ẽ2k )].

(145)

Let us look again at the symmetric case ε̃e
k = ε̃h

k with
charge neutrality μe = μh (compare Sec. IV B). Here, the
quasiparticle energies Ẽ1,2k reduce to

Ẽ1k = −Ẽ2k = sgn
(
ε̃e

k

)Wk

2
, (146)

and F±
1k and F±

2k to

F+
(1,2)k = 2[f (Ẽ1k ) ∓ f (Ẽ2k )] (147)

F−
(1,2)k = 0, (148)

with

f (E) = 1

1 + eβ[E−(μB−μ)/2]
= fe(E) = fh(E) (149)

and μB = μe + μh = 2μe = 2μh. From the relations (148)
and (143) immediately follows n̂e

k = n̂h
k, which is a natural

property of the symmetric case with charge neutrality.

D. Photon condensation

Next, let us study the steady-state expression 〈ψ†
q〉 =

〈ψ†
q(t → ∞)〉 for the photonic expectation value 〈ψ†

q(t )〉.
Starting from Eq. (94), we first rewrite

〈ψ†
q(t )〉 = 〈ψ̃†

q(t )〉ρ̃0 , (150)

where ψ̃
†
q is the renormalized photon operator [cf. Eq. (C44)].

The dynamics on the right hand side is governed by H̃
and the expectation value is formed with ρ̃0. According to
Appendix C 3 an appropriate representation for ψ̃

†
q is

ψ̃†
q = z̃qψ

†
q + 1√

N

∑
k

ṽkq : e
†
k+qh

†
−k :, (151)

leading, with Eq. (150), to

〈ψ†
q(t )〉 = z̃q〈ψ†

q(t )〉ρ̃0 + 1√
N

∑
k

ṽkq 〈: e
†
k+qh

†
−k : (t )〉ρ̃0 ,

(152)

where z̃q and ṽkq are the renormalized coefficients. An equa-
tion of motion for the expectation value 〈ψ†

q(t )〉ρ̃0 can be

derived from the generalized Langevin equations (C5)

d

dt
ψ†

q(t ) = iω̃qψ
†
q(t ) + i

√
N �̃∗δq,0 − κψ†

q(t ) + Fψ
q ,

(153)

from which one finds for q = 0:

d

dt
〈ψ†

0 (t )〉ρ̃0 = iω0

(
〈ψ†

0 (t )〉ρ̃0 +
√

N �̃∗

ω0

)
− κ〈ψ†

0 (t )〉ρ̃0 .

(154)

Thereby κ ∼ π
∑

p |�ψ
qp|2δ(ωϕ

p ) is the damping rate for cavity
photons into the free space due to a nonvanishing leakage.
Moreover, �̃∗ is the renormalized field parameter which ac-
counts for a possible photon condensation [cf. Eq. (25)].
Using condition (93), Eq. (154) leads to the steady-state result,
〈ψ†

0〉ρ̃0 = 〈ψ†
0 (t → ∞)〉ρ̃0 ,

〈ψ†
q〉ρ̃0 = −

√
N �̃∗

ω̃0 + iκ
δq0. (155)

Finally, neglecting the fluctuation term being proportional to
〈: e

†
q+kh

†
−k :〉ρ̃0 on the right hand side of Eq. (152), the steady-

state result for 〈ψ†
q〉 becomes

〈ψ†
q〉 = −z̃0

√
N �̃∗

ω̃0 + iκ
δq0. (156)

A corresponding expression for n
ψ
q = 〈: ψ

†
q :: ψq :〉 is found

in Appendix C 3.

E. Comparison with previous results

It may be worthwhile to compare our results (135)–(137)
with those obtained by the Yamamoto group [25,26]. Using a
generating functional approach, the following equations were
derived by these authors:

d

dt
d∗

k (t ) = i
(
ε

HF,e
k + ε

HF,h
k

)
d∗

k (t ) − 2γ
(
d∗

k (t ) − d0∗
k

)
− i�HF∗

k

(
1 − ne

k(t ) − nh
k(t )

)
, (157)

d

dt
ne

k(t ) = 2�[
�HF

k d∗
k (t )

] − 2γ
(
ne

k(t ) − n0
h,k

)
, (158)

d

dt
nh

k(t ) = 2�[
�HF

k d∗
k (t )

] − 2γ
(
nh

k(t ) − n0
h,k

)
. (159)

In Eqs. (157)–(159), the time-independent quantities d0∗
k and

n0
e,k, n

0
h,k on the right hand side are given in an integral formu-

lation. In principle, the time-dependent quantities d∗
k (t ), ne

k(t ),
and nh

k(t ) in Eqs. (157)–(159) should agree with our pre-
vious quantities (100)–(102), however, there are differences.
Calculating the PRM quantities d∗

k (t ), ne
k(t ), and nh

k(t ) via
Eqs. (105)–(107), fluctuation processes from Hg and HU will
be included to infinite order, while in Eqs. (157)–(159) the
interactions Hg and HU enter only in mean-field approxima-
tion. Hence the latter result cannot directly be compared with
the true PRM dynamics of d∗

k (t ), ne
k(t ), and nh

k(t ). However,
one might compare equations (157)–(159) with equations
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(135)–(137) for the PRM quantities d̂∗
k (t ), n̂e

k(t ) and n̂h
k(t )

(with hat symbols):

d

dt
d̂∗

k (t ) = i
(
ε̃e

k + ε̃h
k

)
d̂∗

k (t ) + i�̃∗
k

(
1 − n̂e

k(t ) − n̂h
k(t )

)
− 2γ

(
d̂∗

k (t ) − d̂0∗
k

)
, (160)

d

dt
n̂e

k(t ) = 2�[�̃kd̂
∗
k (t )] − 2γ

[
n̂e

k(t ) − n̂0
e,k

]
, (161)

d

dt
n̂h

−k(t ) = 2�[�̃kd̂
∗
k (t )] − 2γ

[
n̂h

−k(t ) − n̂0
h,k

]
, (162)

where

d̂0∗
k = 1

2ξ ∗
k η∗

kF
+
1k, (163)

n̂0
e,k = |ξk|2fe(Ẽ1k ) + |ηk|2fe(Ẽ2k ), (164)

n̂0
h,k = |ηk|2fh(−Ẽ1k ) + |ξk|2fh(−Ẽ2k ) = n̂0

e,k. (165)

Here, the additional fluctuation terms following from
Eqs. (127)–(129) are absent. However there are differences
between Eqs. (157)–(159) and (160)–(162) which still re-
main: The energies ε̃e

k, ε̃h
k , and �̃∗

k in Eqs. (160)–(165) are
renormalized quantities, whereas the energies ε

HF,e
k , ε

HF,h
k ,

and �HF
k from Eqs. (157)–(159) are not. It remains for us to

compare the time-independent quantities d0∗
k , n0

e,k, and n0
h,k in

Eqs. (157)–(159) with the corresponding quantities d̂0∗
k , n̂0

e,k,
and n̂0

h,k in Eqs. (163)–(165). For this reason let us consider
two limiting cases from Refs. [15,25,26]. Thereby, we use
slightly modified conditions and restrict ourselves again to the
symmetric case and charge neutrality.

1. min|2 Ẽ(1,2)k| � μB − μ

Here min|2Ẽ(1,2)k| is the minimal excitation energy of
electron-hole pairs and the difference μB − μ can be con-
sidered as being responsible for the particle supply from the
pumping baths to the e-h-p system. According to Eq. (149) the
Fermi function f (E) can then be approximated by

f (E) � 1

1 + e−βE
. (166)

Using Ẽ2k = −Ẽ1k, f (Ẽ2k ) = f (−Ẽ1k ) = 1 − f (Ẽ1k ) and
Eq. (147) one has:

F+
1k � 2[2f (Ẽ1k ) − 1] = −2 tanh

βẼ1k

2
, (167)

F+
2k � 2. (168)

Hence, with Ẽ(1,2)k = ±sgn(ε̃e
k + ε̃h

k )Wk/2 and relation (82),
one obtains for Eq. (163)

d̂0∗
k = − �̃∗

k

2(Wk/2)
tanh

β(Wk/2)

2
, (169)

and similarly

n̂0
e,k = n̂0

h,k = 1

2
− ε̃e

k + ε̃h
k

2Wk
tanh

β(Wk/2)

2
. (170)

These results agree with the corresponding expressions from
the Japanese group [15,25,26].

The same results are also obtained with Eqs. (141)–(143)
for the steady-state expressions of d̂∗

k and n̂
e,h
k :

d̂∗
k = − �̃∗

k

2(Wk/2)
tanh

β(Wk/2)

2
, (171)

n̂e
k = n̂h

k = 1

2
− ε̃e

k + ε̃h
k

2Wk
tanh

β(Wk/2)

2
, (172)

and moreover (see Appendix C 3)

〈ψ†
qψq〉 = |z̃q|2 N |�̃|2

ω̃2
0 + κ2

δq,0 + 1

N

∑
k

|ṽkq|2n̂e
k+qn̂

h
−k. (173)

Note that the damping rate γ does not enter the equa-
tions for d̂∗

k and n̂
e,h
k . Using a mean-field approximation, in

Refs. [15,25,26] also a gap equation for the order parameter
�k was derived, which was formally equivalent to a BCS
gap equation. Therefore, β = 1/kBT and μ can be regarded
as the inverse temperature and the chemical potential of the
e-h-p system, even though β and μ were originally introduced
as the inverse temperature of the pumping baths and the
oscillation frequency of the photon and polarization fields. In
other words, in case of vanishing damping κ [see Eq. (173)]
the system can be considered as being in a quasiequilibrium,
because thermodynamic variables are defined. Thus, for κ =
0 the region with min|2Ẽ(1,2)k| � μB − μ is equivalent to
the thermodynamic equilibrium theory of Ref. [30] for the
isolated e-h-p system, apart from the explicit factor eiμt in
Eqs. (13) and (14). For nonvanishing damping κ the number
of cavity photons is only slightly reduced as long as κ is small
compared to the cavity photon frequency ω̃q=0.

2. μB − μ � min|2 Ẽ(1,2)k|
In this case the second term in the exponential of Eq. (149)

dominates, i.e.:

f (E) � 1

1 + e−(β/2)(μB−μ)
=: f0, (174)

and

F+
1k � 0, F+

2k � 4f0. (175)

With Eqs. (163)–(165) one finds for the time-independent
quantities in Eqs. (160)–(162),

d̂0∗
k = 0, n̂0

e,k = n̂0
h,k = f0 � 1, (176)

where additionally in the last relation (β/2)(μB − μ) � 1
was used (low-temperature approximation).

The steady-state results for d̂∗
k and n̂e

k = n̂h
k are found from

Eqs. (174), (175), and (141)–(143):

d̂∗
k = �̃∗

k(
ε̃e

k + ε̃h
k

) + 2iγ

(
n̂e

k + n̂h
k − 1

)
, (177)

n̂e
k+n̂h

k − 1 = 2f0 − 1 + 2

γ
�[�̃kd̂

∗
k ], (178)

from which also follows

n̂e
k + n̂h

k − 1 = 2f0 − 1

1 + 4|�̃k|2
(ε̃e

k+ε̃h
k )2+4γ 2

. (179)
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In the considered regime μB − μ � min|2Ẽ(1,2)k| the e-h-p
system can no longer be perceived as being in a quasiequi-
librium, solely formed by the isolated e-h-p system. This can
be concluded from relation (179), assuming a small influence
of the numerator (|�̃|2). Then for low temperatures the right
hand side of (179) indicates that electrons and holes are
strongly excited and are in the high-density regime. Thus, in-
creasing further the concentration of the total particle number
of the e-h-p system,

nexc = 1

N

[
1

2

∑
k

(
ne

k + nh
k

) +
∑

q

〈ψ†
qψq〉

]
, (180)

only the number of cavity photons will mainly increase since
possible electron-hole excitations tend already to be used up.

Cavity photons are also affected by a nonvanishing leak-
age (κ �= 0) to the external photonic free-space. Then, the
e-h-p system is no longer in an equilibrium situation with
the electronic pumping baths. Therefore, one of the main
differences between the two regimes μB − μ � min|2Ẽ(1,2)k|
and μB − μ � min|2Ẽ(1,2)k| is the relative importance of
electron-hole and photonic excitations. Whereas in the first
regime particle-hole excitations are dominant this is not the
case for the second regime.

As said before, photon excitations are less pronounced in
regime μB − μ � min|2Ẽ(1,2)k|. This means that the system
is less affected by the photon leakage. In contrast, for μB −
μ � min|2Ẽ(1,2)k| the system is in a high-density regime and
is strongly affected by the photon leakage, which suggests that
a large degree of nonequilibrium is achieved.

F. Self-consistency of the steady-state solution

Above we have derived the renormalization equations for
the order parameters �k,λ and �λ and found a compact
representation for the exciton-condensation parameter d∗

k . The
equations can be numerically solved, provided 〈ψ0〉 and μ

are known. However, these quantities are not yet determined
since �̃ in Eq. (156) depends implicitly on 〈ψ0〉 and μ as well
as on the sets of quantities dk and �k,λ. In particular, μ is
not a chemical potential, since the total number of particles
of the e-h-p system together with the particle number of the
electronic baths is not fixed due to the leakage of cavity
photons into the free space. To determine μ and 〈ψ0〉 a “way
out” has been discussed in the literature [13]. The starting
point is Eq. (156),

(ω̃0 − iκ ) 〈ψ0〉 = −z̃0

√
N �̃, (181)

which is a complex equation due to the presence of the
damping rate κ . The final solution for �̃ results from the
renormalization equation (A27):

�λ−�λ = �λ + δ�
(0)
λ + δ�

(c)
λ + δ�

(g)
λ , (182)

where the δ�
(0)
λ , δ�

(c)
λ , and δ�

(g)
λ defined in Eqs. (A3), (A9),

and (A16) become:

δ�
(0)
λ = g

N

∑
k

Ak0(λ,�λ)
(
εe

k,λ + εh
−k,λ

)
dk, (183)

δ�
(c)
λ = g

N

∑
k

Ak0(λ,�λ)
(
1 − ne

k − nh
−k

)
�k,λ, (184)

δ�
(g)
λ = 2g2

N
√

N

∑
k

Ak0(λ,�λ)
(
1 − ne

k − nh
−k

)〈ψ0〉. (185)

The initial value of �λ is

�� = �̂ = � − (g/N )
∑

k

dk (186)

(� = 0+). Note that the contribution δ�
(g)
λ is proportional to

〈ψ0〉 as expected, whereas δ�
(0)
λ and δ�

(c)
λ depend on the order

parameters dk and �k,λ. Similarly, from Eqs. (127) and (130)
one concludes that dk is fixed if the order parameters �̃k
are known. What remains to be shown is that �k,λ is fixed
for given 〈ψ0〉 and dk, which follows from renormalization
equation (73). Thus, putting everything together, �̃ can be
considered as an implicit function of 〈ψ0〉 and μ, i.e., �̃ =
�̃[〈ψ0〉, μ]:

〈ψ0〉√
N

= −z̃0
�̃[〈ψ0〉, μ]

ω̃0 − iκ
. (187)

However, the number of coupled equations by (187) is one less
than the number of unknown variables, since 〈ψ0〉 and �̃ are
in general complex quantities. This can be seen from equation
(124) for A12

k and A21
k . Since the denominator in Eq. (124)

is complex also A12
k and A21

k will be complex. Assuming
〈ψ0〉 is complex, Eq. (187) would contain three unknown
quantities, the real and the imaginary parts of 〈ψ0〉 as well as
the energy parameter μ, whereas the complex equation only
fixes two of them. However the number of unknown variables
can be reduced by fixing the phase of 〈ψ0〉. Taking a phase
for which the imaginary part of 〈ψ0〉 vanishes, the number of
coupled equations becomes equal to the number of unknown
variables and the complex equation (187) only represents two
independent equations for 〈ψ0〉 and μ:

〈ψ0〉√
N

= − z̃0

ω̃2
0 + κ2

(ω̃0 ��̃ − κ ��̃), (188)

0 = z̃0

ω̃2
0 + κ2

(κ ��̃ + ω̃0 ��̃), (189)

where �̃ = ��̃ + i��̃ is complex. From equation (189) one
obtains

��̃ = −(κ/ω̃0)��̃, (190)

which leads for the first equation to

〈ψ0〉√
N

= − z̃0

ω̃0
��̃. (191)

Note that the last relation agrees with what is known for a
closed system in thermal equilibrium, though it is now valid
also for the general case of an open system. Equations (190)
and (191) have to be solved self-consistently for μ and 〈ψ0〉.

G. Limit of vanishing damping rate κ

In this subsection, we study the limit of a vanishing damp-
ing rate κ between the cavity photons and the free space pho-
tons. As stressed before, a finite leakage to external photons
implies that the quantity μ does not act as a common chemical
potential of the total system. The reason is that photons can
escape from the e-h-p system into the free-photon space. On
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the other hand, for vanishing κ thermal equilibrium should
develop. Then μ should become the usual chemical potential
for the remaining system, which is composed of the e-h-p
subsystem and the two electronic baths. In this context, we
are mostly interested in the case of strong damping rate γ for
the coupling rate to the electronic baths.

Analyzing the limit κ → 0, we start from Eq. (190) which
states that the imaginary part of �̃ must vanish:

��̃ = 0. (192)

Thereby �̃ results from the solution of the renormalization
equation (182) for �λ,

�λ−�λ − �λ = δ�
(0)
λ + δ�

(c)
λ + δ�

(g)
λ , (193)

with renormalization contributions δ�
(0)
λ , δ�

(g)
λ , and δ�

(g)
λ , given by Eqs. (183)–(185). One finds for the imaginary parts:

��λ−�λ − ��λ = g

N

∑
k

Ak0(λ,�λ)
[(

εe
k,λ + εh

k,λ

)�dk − (
ne

k + nh
k − 1

)��k,λ

]
(194)

with initial value �λ=� = �̂ = � − g

N

∑
k dk, (� = 0+). Here we have already exploited that δ�

(g)
λ is real. In the following we

again neglect all renormalization contributions to dk and n
e,h
k from Eqs. (127)–(129), thereby replacing dk and n

e,h
k by d̂k and

n̂
e,h
k . Then, according to Eqs. (141) and (142) we obtain

d̂k = �̃ksgn
(
ε̃e

k + ε̃h
k

)
2Wk

F+
1k + 1

2

�̃k(
ε̃e

k + ε̃h
k

) − 2iγ

F+
2k − 2

1 + 4|�̃k|2
(ε̃e

k+ε̃h
k )2+(2γ )2

(195)

and

n̂e
k + n̂h

k − 1 =
∣∣ε̃e

k + ε̃h
k

∣∣
2Wk

F+
1k + 1

2

F+
2k − 2

1 + 4|�̃k|2
(ε̃e

k+ε̃h
k )2+(2γ )2

. (196)

Inserting Eqs. (195) and (196) into Eq. (194) we find

��λ−�λ − ��λ = g

N

∑
k

Ak0(λ,�λ)
[(

εe
k,λ + εh

−k,λ

)��̃k − (
ε̃e

k + ε̃h
−k

)��k,λ

] sgn
(
ε̃e

k + ε̃h
−k

)
2Wk

F+
1k

+ g

2N

∑
k

Ak0(λ,�λ)

[(
εe

k,λ + εh
−k,λ

)�
(

�̃k(
ε̃e

k + ε̃h
−k

) − 2iγ

)
− ��k,λ

]
F+

2k − 2

1 + 4|�̃k|2
(εe

k,λ+εh
−k,λ )2+(2γ )2

. (197)

This result can further be simplified. First of all, we neglect the first term in Eq. (197), which is small. It consists of the difference
of two contributions which are of quite similar character. In particular, for small λ (almost full renormalization) the cancellation
of the two terms is exact, and for λ = � (initial point) contributions from the renormalization are small. Thus

��λ−�λ − ��λ ≈ g

2N

∑
k

Ak0(λ,�λ)

[(
εe

k,λ + εh
−k,λ

)�
(

�̃k(
ε̃e

k + ε̃h
−k

) − 2iγ

)
− ��k,λ

]
F+

2k − 2

1 + 4|�̃k|2
(εe

k,λ+εh
−k,λ )2+(2γ )2

. (198)

Next, let us consider the limit of large damping γ , thereby assuming that the following conditions are fulfilled:

2γ � [
εe

k,λ + εh
−k,λ

∣∣ and 2γ � 2|�̃k| (199)

for most values of k. The first condition is met easier for a semimetal than for a semiconductor. As a consequence of the
conditions (199), an expansion of Eq. (198) for large γ gives to leading order γ −1:

��λ−�λ − ��λ ≈ − g

2N

∑
k

Ak0(λ,�λ)

(
��k,λ − εe

k,λ + εh
−k,λ

2γ
��̃k

)
(F+

2k − 2). (200)

Here the term ∼(1/γ )��̃k followed from the first contribution in the squared brackets of Eq. (198) and the denominator of the
common factor behind the brackets was replaced by one. Expanding Eq. (195) to the same order as Eq. (200), the imaginary part
of the initial condition, �� = � − g

N

∑
k dk (� = 0+), becomes for large γ

��� = �� − g

N

∑
k

(��̃k )sgn
(
ε̃e

k + ε̃h
k

)
2Wk

F+
1k + ��̃k

2γ

F+
2k − 2

2
. (201)

Our aim is to study under which conditions the renormalized
quantity �̃ is real so that ��̃ = 0 is valid. For this, according

to Eq. (200), one also has to study the renormalization of
��k,λ. As is easily seen, ��k,λ renormalizes to zero in
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dominant order, whereas ��̃k stays finite. Therefore, in order
to arrive at the desired result ��̃ = 0, including the less
dominant contribution on the right hand side of Eq. (200),
the common factor (F+

2k − 2) must vanish. This condition can
only be met by fixing the value of μ to the chemical potential
μB of the electronic baths, μ = μB , so that F+

2k − 2 = 0.
The remaining equations for ��λ and ��k,λ are easily

found from Eqs. (183) and (73) and completely agree with
those of the equilibrium case. Also the quantities d̂k and n̂e

k +
n̂h

k − 1 for large γ agree with the corresponding equilibrium
expressions:

d̂k = �̃ksgn
(
ε̃e

k + ε̃h
k

)
2Wk

F+
1k, (202)

n̂e
k + n̂h

k − 1 =
∣∣ε̃e

k + ε̃h
k

∣∣
2Wk

F+
1k. (203)

To sum up, we have shown that the present extension of
the PRM leads back to the usual thermodynamic equilibrium
approach of Ref. [30]. The equilibrium is mainly of electronic
nature with μ = μB for the case that the following two
conditions are fulfilled: (i) the damping κ of cavity photons
to free space photons is zero and (ii) the coupling γ of the
e-h-p subsystem to the electronic baths is sufficiently large in
accordance with Eq. (199). In particular, the second condition
is only fulfilled when �̃k is sufficiently small. However, as
shown in Fig. 4, its photonic part �ph may tremendously
increase at larger values of nexc in the case of large detuning
d = 3.5, whereas at small detuning d = −0.5 the quantity
�ph already starts to increase at comparatively small values
of nexc. As discussed in more detail below, this behavior of
�ph can be understood as a phase space filling and Pauli
blocking effect. At small nexc additional excitations are either
of excitonic or polaritonic nature until the electronic bands are
completely filled. Then, for even larger nexc photonic excita-
tions dominate. Note, however, that even for large nexc, when
�ph and �̃k become large, the total e-h-p subsystem, together
with the electronic reservoirs, has to realize a thermodynamic
equilibrium state for the case that κ is zero or sufficiently
small.

V. SINGLE-PARTICLE SPECTRAL FUNCTION

The one-particle spectral function A(k, ω) for the steady
state is defined by the Laplace transform of the time-
dependent electron anticommutator correlation function in the
limit t → ∞:

Ae(k, ω) = 1

π
lim
t→∞ �

∫ ∞

0
dτeiωτ 〈[e†k(t ), ek(t + τ )]+〉

= 1

π
lim
t→∞ �

∫ ∞

0
dτeiωτ 〈[ẽ†k(t ), ẽk(t + τ )]+〉ρ̃0 .

(204)

In the first equation the time dependence is governed by
the original Hamiltonian H, whereas in the second line the
dynamics is again given by H̃, and also the expectation value
is formed with the transformed density operator ρ̃0. Note that
in Eq. (204) the lower integration limit τ = 0 is a time
much larger than τ0. For that time a steady state has already

been reached, with properties that do not depend on the
details of the initial state. Likewise the two-time correlation
function 〈ẽ†q(t )ẽq(t + τ )〉ρ̃0 depends only on the relative time
difference τ and not on t . Thus, the stationary spectrum can
be calculated at any fixed time t . At the end, t is shifted
to infinity. Furthermore, ẽ

†
k is the transformed one-particle

operator (103):

ẽ
†
k = x̃ke

†
k + 1√

N

∑
q

t̃k−q,qhq−k : ψ†
q :

+ 1

N

∑
k1k2

α̃k1kk2e
†
k1

: h
†
k2

hk1+k2−k : . (205)

Let us consider the coherent part of the spectrum, which
results from the first term on the right hand side of Eq. (205):

Ae,coh(k, ω)

= |x̃k|2
π

lim
t→∞ �

∫ ∞

0
dτeiωτ 〈[e†k(t ), ek(t + τ )]+〉ρ0 .

(206)

Decomposing e
†
k and ek into eigenmodes C

(†)
1k and C

(†)
2k of H̃S ,

according to Eqs. (78) and (79), Acoh(k, ω) transforms to

Ae,coh(k, ω) = |x̃k|2
π

lim
t→∞ �

∫ ∞

0
dτeiωτ

× {|ξk|2〈[C†
1k(t ), C1k(t + τ )]+〉ρ0

+ |ηk|2〈[C†
2k(t ), C2k(t + τ )]+〉ρ0

− ξ ∗
k ηk〈[C†

1k(t ), C2k(t + τ )]+〉ρ0

− ξkη
∗
k〈[C†

2k(t ), C1k(t + τ )]+〉ρ0}. (207)

The τ dependence will be treated by employing the Mori-
Zwanzig projection formalism described in Appendix C. Us-
ing the fermionic anticommutator relations we find

〈[C†
1k(t ), C1k(t + τ )]+〉ρ0 = e(−iẼ1k−γ )τ , (208)

〈[C†
1k(t ), C2k(t + τ )]+〉ρ0 = 0. (209)

This leads for Acoh(k, ω) to

Ae,coh(k, ω) = |x̃k|2
π

lim
t→∞ �

∫ ∞

0
dτeiωτ {|ξk|2e(−iẼ1k−γ )τ

+|ηk|2e(−iẼ2k−γ )τ }. (210)

Finally, by integrating over τ and taking into account only the
dissipative part of the integral, one finds

Ae,coh(k, ω) = |x̃k|2
π

{
|ξk|2 γ

(Ẽ1k − ω)2 + γ 2

+ |ηk|2 γ

(Ẽ2k − ω)2 + γ 2

}
. (211)

Thus, the spectrum Ae,coh(k, ω) consists of resonances at
the quasiparticle energies Ẽ1k and Ẽ2k with damping γ and
weights which are determined by |ξk|2 and |ηk|2, respectively.
The spectral function Ah,coh(k, ω) for holes can be written in
the form (211) as well, however, with the weights |ξk|2 and
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|ηk|2 interchanged. The incoherent part of Ae(k, ω) can be
obtained by help of the second and third term in Eq. (205) and
is expected to lead to a background spectrum for the coherent
part.

VI. STEADY-STATE LUMINESCENCE

The steady-state emission spectrum is obtained from the
Laplace transform of the photon correlation function [33]:

S(q, ω) = 1

π
lim
t→∞ �

∫ ∞

0
dτ eiωτ 〈ψ†

q(t )ψq(t + τ )〉 (212)

or—with the help of relation (94)—by

S(q, ω) = 1

π
lim
t→∞ �

∫ ∞

0
dτ eiωτ 〈ψ̃†

q(t )ψ̃q(t + τ )〉ρ̃0 .

(213)

Again, in Eq. (212), the time dependence is governed by the
original Hamiltonian H, whereas in Eq. (213) the dynamics
is given by the transformed Hamiltonian H̃. Moreover, ψ̃

†
q is

the transformed photon operator (151), and the expectation
value in Eq. (213) is formed with the transformed initial
density operator ρ̃0. We note that a quite similar photon corre-
lation function B(q, ω) was studied in Ref. [30] for thermal
equilibrium. However, in contrast to S(q, ω) the function
B(q, ω) was a response function, that is a photon commutator
correlation function. We would like to point out here that the
renormalization equations (B41) and (B36) in Ref. [30] are
not completely correct. The correct equations are given by the
present Eqs. (C41) and (C42).

A. Coherent part

Also the luminescence spectrum consists of two parts. The
coherent part results from the first term on the right hand side
of Eq. (151):

Scoh(q, ω) = |z̃q|2
π

lim
t→∞ �

∫ ∞

0
dτ eiωτ 〈ψ†

q(t )ψq(t + τ )〉ρ̃0 .

(214)

The time dependence of ψ
†
q(t ) on the right hand side of

Eq. (214) is found from the solution of the equation of motion
(153):

ψ†
q(t ) = − i

√
N �̃∗

iω̃0 − κ
δq,0 +

(
ψ†

q + i
√

N �̃∗

iω̃0 − κ
δq,0

)
e(iω̃q−κ )t .

(215)

Substituting (215) into Eq. (214) leads to

Scoh(q, ω) = N |z̃0|2|�̃|2
ω̂2

0 + κ2
δq,0 δ(ω), (216)

which shows that in the condensed phase a delta-function peak
appears at ω = 0.

B. Incoherent part

The incoherent part of S(q, ω) is given by

Sinc(q, ω) = 1

π
lim
t→∞ �

∫ ∞

0
dτ eiωτ 〈: b†q(t ) : : bq(t + τ ) :〉ρ̃0 ,

(217)

where b
†
q creates an exciton with wave vector q which is

modified by the coefficients ṽkq:

b†q(t ) = 1√
N

∑
k

ṽkq (e†k+qh
†
−k )(t ). (218)

Thus

Sinc(q, ω)

= 1

Nπ
lim
t→∞

∑
kk′

ṽkqṽ
∗
k′q�

∫ ∞

0
dτ eiωτ

× 〈: (e†k+qh
†
−k )(t ) : : (h−k′ek′+q)(t + τ ) :〉ρ̃0 . (219)

In a factorization approximation this simplifies to

Sinc(q, ω)

= 1

Nπ
lim
t→∞

∑
k

|ṽkq|2�
∫ ∞

0
dτ eiωτ

× 〈e†k+q(t )ek+q(t + τ )〉ρ̃0〈h†
−k(t )h−k(t + τ )〉ρ̃0 .

(220)

Note that expectation values 〈:(e†k+qh
†
−k )(t ):〉ρ̃0 and

〈:(h†
−k′ek′+q)(t + τ ):〉ρ̃0 drop out in Eq. (219) so that only the

pairwise factorization of Eq. (220) survives.
What remains to be done is the τ integration in Eq. (220).

Again, this can best be achieved by using Bogolyubov quasi-
particles in accordance with Eqs. (78) and (79). With

h
†
−k = η∗

kC1k + ξ ∗
k C2k, (221)

e
†
k = ξ ∗

k C
†
1k − η∗

kC
†
2k, (222)

one finds

〈e†k(t )ek(t + τ )〉ρ̃0

= |ξk|2〈C†
1k(t )C1k(t + τ )〉ρ̃0 + |ηk|2〈C†

2k(t )C2k(t + τ )〉ρ̃0

− ηkξ
∗
k 〈C†

1k(t )C2k(t + τ )〉ρ̃0

− η∗
kξk〈C†

2k(t )C1k(t + τ )〉ρ̃0 (223)

and

〈h†
−k(t )h−k(t + τ )〉ρ̃0

= |ηk|2〈C1k(t )C†
1k(t + τ )〉ρ̃0 + |ξk|2〈C2k(t )C†

2k(t + τ )〉ρ̃0

+ η∗
kξk〈C1k(t )C†

2k(t + τ )〉ρ̃0

+ ηkξ
∗
k 〈C2k(t )C†

1k(t + τ )〉ρ̃0 . (224)

As before, the τ dependence in Eqs. (223) and (224) is treated
by employing the Mori-Zwanzig projection formalism. From
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the corresponding equations of motion one finds

〈e†k(t )ek(t + τ )〉ρ̃0

= |ξk|2e(−iẼ1k−γ )τ 〈C†
1k(t )C1k(t )〉ρ̃0

+ |ηk|2e(−iẼ2k−γ )τ 〈C†
2k(t )C2k(t )〉ρ̃0

− ηkξ
∗
k e(−iẼ2k−γ )τ 〈C†

1k(t )C2k(t )〉ρ̃0

− η∗
kξke

(−iẼ1k−γ )τ 〈C†
2k(t )C1k(t )〉ρ̃0 (225)

and

〈h†
−k(t )h−k(t + τ )〉ρ̃0

= |ηk|2e(iẼ1k−γ )τ 〈C1k(t )C†
1k(t )〉ρ̃0

+ |ξk|2e(iẼ2k−γ )τ 〈C2k(t )C†
2k(t )〉ρ̃0

+ η∗
kξke

(iẼ2k−γ )τ 〈C1k(t )C†
2k(t )〉ρ̃0

+ ηkξ
∗
k e(iẼ1k−γ )τ 〈C2k(t )C†

1k(t )〉ρ̃0 (226)

with γ being the damping rate of the electrons and holes of
the e-h-p system due to the coupling to the fermionic baths.
Combining all parts of the correlation functions with the same
τ dependence one obtains:

〈e†k(t )ek(t + τ )〉ρ̃0 = ae
1k(t ) e(−iẼ1k−γ )τ + ae

2k(t ) e(−iẼ2k−γ )τ

(227)

and

〈h†
−k(t )h−k(t + τ )〉ρ̃0 = ah

1k(t )e(iẼ1k−γ )τ + ah
2k(t )e(iẼ2k−γ )τ .

(228)

Here, we have introduced coefficients

ae
1k(t ) = |ξk|2A11

k (t ) − η∗
kξkA

21
k (t ), (229)

ae
2k(t ) = |ηk|2A22

k (t ) − ηkξ
∗
k A12

k (t ), (230)

ah
1k(t ) = |ηk|2

(
1 − A11

k (t )
) − ηkξ

∗
k A12

k (t ), (231)

ah
2k(t ) = |ξk|2

(
1 − A22

k (t )
) − η∗

kξkA
21
k (t ), (232)

and Anm
k (t ) = 〈(C†

nkCmk )(t )〉ρ̃0 [compare Eq. (116)]. Finally,
inserting the relations (227) and (228) into Eq. (220) and
performing the integration over τ one finds

Sinc(q, ω)

= 1

Nπ
�

∑
k

|v̂kq|2

×
[

2γ

(Ẽ1k+q − Ẽ1k − ω)2 + (2γ )2
ae

1k+q(t ) ah
1k(t )

+ 2γ

(Ẽ2k+q − Ẽ2k − ω)2 + (2γ )2
ae

2k+q(t ) ah
2k(t )

+ 2γ

(Ẽ1k+q − Ẽ2k − ω)2 + (2γ )2
ae

1k+q(t ) ah
2k(t )

+ 2γ

(Ẽ2k+q − Ẽ1k − ω)2 + (2γ )2
ae

2k+q(t ) ah
1k(t )

]
,

(233)

where again only the dissipative part of the integral was
considered. In Eq. (233) the coefficients a

e,h
1k (t ) and a

e,h
2k (t )

still depend on time t . The result for the steady state is
obtained in the limit t → ∞. Thus,

Sinc(q, ω)

= 1

Nπ

∑
k

|ṽkq|2

×
[

2γ

(Ẽ1k+q − Ẽ1k − ω)2 + (2γ )2
ae

1k+q ah
1k

+ 2γ

(Ẽ2k+q − Ẽ2k − ω)2 + (2γ )2
ae

2k+q ah
2k

+ 2γ

(Ẽ1k+q − Ẽ2k − ω)2 + (2γ )2
ae

1k+q ah
2k

+ 2γ

(Ẽ2k+q − Ẽ1k − ω)2 + (2γ )2
ae

2k+q ah
1k

]
. (234)

Choosing the coefficients ae
(1,2)k and ah

(1,2)k to be real is
compatible with Eqs. (227) and (228). We obtain:

ae
1k+q = |ξk+q|2A11

k+q − �(
η∗

k+qξk+qA
21
k+q

)
, (235)

ae
2k+q = |ηk+q|2A22

k+q − �(
ηk+qξ

∗
k+qA

12
k+q

)
, (236)

ah
1k = |ηk|2

(
1 − A11

k

) − �(
ηkξ

∗
k A12

k

)
, (237)

ah
2k = |ξk|2

(
1 − A22

k

) − �(
η∗

kξkA
21
k

)
(238)

with Anm
k = Anm

k (t → ∞)

A11
k = |ξk|2fe(Ẽ1k ) + |ηk|2(1 − fh(−Ẽ1k )), (239)

A22
k = |ηk|2 fe(Ẽ2k ) + |ξk|2(1 − fh(−Ẽ2k )), (240)

and

�(
ηkξ

∗
k A12

k

) = −2γ 2 |ξk|2|ηk|2
(Ẽ1k − Ẽ2k )2 + (2γ )2

(fe(Ẽ1k ) + fe(Ẽ2k )

+ fh(−Ẽ1k ) + fh(−Ẽ2k ) − 2) (241)

with A21
k = (A12

k )∗. Obviously, the denominators of Eq. (234)
describe the frequency dependence of Sinc(q, ω). It is caused
by transitions between energy levels of the quasiparticle
Hamiltonian Ĥ. Whereas the first two excitations in (234)
are due to transitions within the same quasiparticle bands,
Ẽ1k+q → Ẽ1k and Ẽ2k+q → Ẽ2k, the last two excitations
result from transitions between the two bands. The factors
ae

(1,2)k+q and ah
(1,2)k in (234) determine the weight of the

transitions. Note that all transitions are broadened by 2γ , i.e.,
twice the damping rate γ of single electrons or holes into their
respective baths. In particular, for the case q = 0 one finds two
quasielastic excitations around ω = 0 with a broadening of 2γ

as well.

VII. NUMERICAL RESULTS

Evaluating the theory developed so far, we assume, for
simplicity, εe

k = εh
k and charge neutrality μe = μh. We then

self-consistently solve the set of renormalization equations
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FIG. 1. Parameter μ characterizing the steady state description
(13) and (14), where μ becomes the chemical potential in equilib-
rium. Pictured here is μ as a function of μB for different values of
γ at fixed κ = 10−5 (left panels) and, likewise, for different values
of κ at fixed γ = 0.1 (right panels). The two upper panels refer
to detuning d = 3.5, the lower panels refer to d = −0.5; note the
different scales of the ordinates.

(A23)–(A27), (B3)–(B8), and (C41)–(C42), together with
Eqs. (127)–(129), and (156) for the expectation values, in
momentum space (on a grid with N = 160 lattice sites), for
a one-dimensional system. Convergence is assumed to be
achieved when the relative error of all quantities is less than
10−10.

In the numerical work, we fix the interaction parameters
g = 0.2, U = 2.0, the zero-point cavity photon frequency
ωc = 0.5, and consider a finite but very low temperature T =
0.001. All energies will be measured in units of the particle
transfer amplitude t and the wave vectors in units of the
lattice constant a, where we take as typical values t � 2 eV
and a � 5 Å, yielding c � 0.4 c0 for the speed of light of the
microcavity (c0 is the speed of light in vacuum). We found
that the physical properties only slightly depend on the actual
value of c [30].

Since the coupling between electrons, holes, and photons is
most effective in case the excitation energy of an electron-hole
pair (exciton) matches a photonic excitation, we introduce, for
the following discussion, the so-called detuning

d = ωc − Eg, (242)

where Eg denotes the minimum distance (gap) between the
bare electron and hole bands [30]. A positive (negative) Eg

indicates a semiconducting (semimetallic) setting.

A. Expectation values

We will start by examining the relation between μ and μB .
Remember that μe = μh is the common chemical potential of
both electronic baths, a parameter that is fixed from outside.
The quantity μ, on the other side, gets a physical meaning
in (quasi)equilibrium only, where it becomes the chemical
potential of the system. Therefore a difference between μ and
μB can be taken as a measure for an increased importance
of cavity photons (compare Sec. IV E). Figure 1 gives μ as
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FIG. 2. Steady-state parameter μ as a function of the total den-
sity of excitations in the e-h-p microcavity system, nexc from (180).
Shown are results for d = 3.5 (top) and d = −0.5 (bottom) at a fixed
value of κ (left) and γ (right).

a function of μB at fixed damping rate κ (left panels) and γ

(right panels), describing the coupling of the system to the
photonic and electronic baths, respectively. The upper and
lower panels of Fig. 1 reflect large and small detuning, where
d = 3.5, Eg = −3 and d = −0.5, Eg = 1, respectively. In
the former case, we observe a linear dependence of μ on
μB over almost the whole energy range of the electron band
(bare bandwidth 4t); the saturation when μ approaches the
upper band edge originates from electron phase space filling.
In the latter case, μB has to overcome the band gap Eg

first, thereafter μ grows monotonously. If the self-consistently
calculated μ reaches ωc, any further excitation is photonic in
nature in both cases. This is the range where μ notably devi-
ates from μB and nonequilibrium effects become important.
These are more prominent for small detuning and less photon
leakage.

Figure 2 directly relates μ to the total number nexc of
excitations in the electron-hole-photon system, which is given
by Eq. (180). At small-to-moderate excitation densities and
large (small) detuning, the excitations are excitons (polari-
tons) for the most part [30]. Here, the system is close to
(quasi)equlibrium and μ takes over the role of a true chemical
potential. When nexc increases, the photons play a major role,
and the system moves away from the former equilibrium
configuration, which was described by μ = μB . This is why
the curves μ(nexc) flatten for large nexc. Of course, above
nexc = 1 any further excitation has to be photonic. Again, for
large detuning, the overall behavior of μ(nexc) only weakly
depends on the damping/coupling parameters κ and γ .

We now aim at a characterization of the possible condensed
phases of our e-h-p system. In Fig. 3 we show the excitonic
order parameter,

�X = −(U/N )
∑

k

dk, (243)

in dependence on the density of excitations. Figure 4 gives the
corresponding photonic order parameter

�ph = −(g/
√

N )〈ψ0〉 (244)
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FIG. 3. Excitonic order parameter �X [see Eq. (243)], reflecting
the exciton contribution to the condensate in the steady state. De-
picted are the real parts (solid lines) and imaginary parts (dashed
lines) of �X as a function of nexc for large (top) and small (bottom)
detuning at fixed κ (left) and γ (right).

[compare Eq. (37)]. At large detuning (d = 3.5; upper panels),
valence and conduction bands will penetrate each other and—
for the considered values of the Coulomb interaction between
electrons and holes (U = 2) and exciton-photon coupling
(g = 0.2)—a gapful renormalized band structure develops,
just as for a BCS-type excitonic insulator state [28]. Here,
the condensate formed at low and intermediate excitation
densities is mainly triggered by the Coulomb attraction be-
tween electrons and holes and therefore is predominantly an
excitonic one; cf. the vanishing value of �ph in Fig. 4. If
we would have strengthened the Coulomb interaction at fixed
nexc, we would be able to observe a BCS-BEC crossover
in the excitonic condensate [9,34]. Increasing the density of
excitation nexc the location of the correlation-induced gap is
shifted to larger k values, and phase-space and Fermi-surface
effects become increasingly important. This is indicated by
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FIG. 4. Photonic order parameter �ph [see Eq. (243)], reflecting
the photon contribution to the condensate in the steady state. Here,
�ph is given as a function of nexc for d = 3.5 (top) and d = −0.5
(bottom) at fixed κ = 10−5 (left) and γ = 0.1 (right).

FIG. 5. Electron-hole pairing amplitude dk [see Eq. (33)], indi-
cating exciton condensation. Shown is an intensity plot of its real
part in the momentum-density plane for semimetallic (d = 3.5; left
panels) and semiconducting (d = −0.5; right panels) situations.

the downturn of ��X. At still larger values of nexc, photonic
excitations come into play more and more. As a consequence,
the condensate turns from excitonic to polaritonic and finally
to a purely photonic one (lasing regime [26]). For small
detuning (d = −0.5; lower panels), where the system is in
the semiconducting regime from the very beginning, both
excitonic and photonic order parameters are finite, even at
small excitation densities, which can be taken as a clear
signature of a strong coupling between the light and matter
degrees of freedom. As a result, a BEC of polaritons forms.
Again the photons are dominant at large nexc (especially
in the lasing regime). Obviously the influence of the bath
degrees of freedom on the results is more pronounced for
smaller (larger) values of γ (κ). This is in accord with the
analytical results of Sec. IV G, indicating that an equilibrium
description is appropriate in the limit of large (vanishing) γ

(κ). When γ gets smaller, we found self-consistent solutions
of the renormalization equations in a smaller range of nexc

only. Note that the excitonic order parameter receives a finite
imaginary part only for sufficiently large values of κ , almost
irrespective of γ .

Figures 5–7 show the wave-vector resolved, excitation-
density dependent intensity of the real and imaginary parts of
the electron-hole pairing amplitude dk and the photon density
expectation value 〈ψ†

qψq〉. Not surprisingly, the results for
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FIG. 6. Exciton pairing amplitude dk. Shown is the intensity plot
of its imaginary part in the momentum-density plane for d = 3.5
(left) and d = −0.5 (right).

small photon leakage κ and relatively large coupling to the
electronic baths (upper panels) are more or less the same
as in equilibrium [30]. In both the semimetallic (left panels)
and semiconducting (right panels) regimes the amplitude for
electron-hole pairing is largest at k = 0 if nexc → 0. Increas-
ing the excitation density at large detuning, the maximum is
shifted to larger k values in the course of exciton formation,
respecting the band structure, phase space filling, and Pauli
blocking, until, when μ approaches ωc = 0.5 near nexc � 2/3,
the photon field severely interferes. From this moment, the
real (imaginary) part of the pairing amplitude is substantially
reduced (enhanced) and the photon density becomes finite.
Clearly, in view of the above, this effect gets stronger the
smaller γ (see middle panels) or the larger κ will be (see lower
panels). For nexc � 2/3 the pairing amplitude dk is enhanced
for almost all k values, with the exception of the momenta
(energies) where the photons interfere. Here, the system is
more or less characterized by its large photon loss in the
environment, whereby the leakage strengthens at larger κ (see
lower left panels). At even larger nexc one expects to enter
the lasing regime [26]. For small detuning, exciton formation
is intimately related to electron-hole excitation across the
bare band gap, i.e., the coupling to the photons affects the
properties of the system from the very beginning and, as a
consequence, a broad maximum in dk develops when nexc

increases. The strong signatures emerging in the imaginary
part of dk can be attributed to polariton formation. As a matter

FIG. 7. Intensity of the photon field 〈ψ †
qψq〉 in the momentum-

density plane for detunings d = 3.5 (left) and d = −0.5 (right).

of course the maximum intensity of the photon field is always
at q = 0, but the abrupt increase of the photon density changes
to larger excitation densities for larger detuning.

B. Spectral properties

We now consider selected spectral quantities character-
izing the physical properties of the e-h-p system if it is
coupled to electronic and photonic baths. Thereby, we first
examine how the correlations and fluctuations resulting from
the Coulomb and light-matter interactions will renormalize
the band structure. Of course, this band structure has to be
calculated in a self-consistent way for a given excitation
density since the electron and hole contributions to the spec-
tral function are interrelated in the PRM scheme. Hereafter
we consider nexc = 0.8. The quasiparticle band dispersion
shows up in the coherent part of the single-particle spectrum,
Ae,coh(k, ω) in Fig. 8, which probes both the occupied and
unoccupied states as it is defined via the anticommutator
(Green) function in Eq. (207). As briefly mentioned already
above, at large detuning the bare bands interpenetrate and
the electron-hole Coulomb attraction favors the formation of
a macroscopic quantum-coherent excitonic insulator state, in
formal analogy to the occurrence of the BCS-type super-
conducting phase. This becomes evident by looking at the
quasiparticle bands shown in Fig. 8 left panels): Here the (cor-
relation induced) band gaps open at finite momenta (around
kF ), where an almost complete backfolding of the bands is
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FIG. 8. Electron single-particle spectrum in the steady state of
the considered e-h-p microcavity system. The quasiparticle band
dispersion clearly appears in the intensity plot of the coherent part
of the fully renormalized spectral function, Ae,coh(k, ω) given by
Eq. (211). Results are given for typical semimetallic (d = 3.5, left)
and semiconducting (d = −0.5, right) situations. Here, the excitation
density nexc = 0.8. Note that the frequency is measured from μ.

observed. At the considered large nexc the gap appears at the
momenta where the real (imaginary) parts of the electron-hole
pairing amplitude is substantially suppressed (enhanced), cf.
Figs. 5 and 6, which indicates the importance of photons
in both the polariton BEC and lasing phases. A so-called
“lasing gap,” where (light-induced) electron-hole pairs will be
formed around the laser frequency (momentum of the kinetic
hole burning), recently has been predicted theoretically [26],
but has not been observed experimentally so far. For small
detuning the renormalized band structure is different in nature
(right panels). In principle, the quasiparticle bands retain their
(bare) semiconductorlike arrangement, but the particle-photon
coupling causes a noticeable flattening (plateau structure) of
the conduction band bottom and valence band top, thereby
enlarging the single-particle spectral gap. The plateau struc-
ture can be attributed to a polariton (photonic) BEC. For both
detunings, a smaller value of γ will reduce the spreading of
the coherent signal while it enhances its intensity (see middle
panels). A larger value of κ , keeping γ at fixed, will reduce
the magnitude of the gap in the renormalized band structure.
In this case the leakage to the external photon vacuum is

FIG. 9. Steady-state luminescence of the e-h-p microcavity sys-
tem under consideration. Shown is an intensity plot of its incoherent
part, Sinc(q, ω) given by Eq. (234), at nexc = 0.8, for d = 3.5 (left)
and d = −0.5 (right).

enlarged, leading to a weakening of the excitonic order pa-
rameter �̃k and thus to a weakening of the quasiparticle band
gap.

Finally, we will look at the steady-sate luminescence
of the e-h-p system, considering the same parameters as
for the single-particle spectra. Clearly the coherent part of
the luminescence spectrum is the dominant one, however,
Scoh(q, ω) has neither a nontrivial q nor a nontrivial ω depen-
dence [see Eq. (216)]. Therefore, in Fig. 9, we only display
the behavior of the incoherent part of the luminescence,
Sinc(q, ω), which is characterized by particle-hole excita-
tions according to Eq. (218). The results shown in Fig. 9
include all possible annihilation and creation processes of
electron-hole pairs inside and in between the fully renor-
malized quasiparticle bands Ẽ(1,2)k without any additional
photons involved. From Eq. (235)–(238) it is evident that
the interband contributions between the two bands Ẽ1k and
Ẽ2k, caused by terms proportional to |ξk+q|2|ξk|2 in the
prefactor of the next to last term, are the dominant ones.
Special attention deserves the significant flattening of the
excitonic response at small momentum transfer for small
detuning and κ = 10−5, which is due to a strong light-matter
interaction and indicates the formation of an exciton-polariton
condensate.
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VIII. SUMMARY AND CONCLUSIONS

The projector-based renormalization method (PRM) is a
reliable and powerful analytical technique that has already
been successfully applied to a wide range of equilibrium
solid-state physics problems in the past; examples are mag-
netism, superconductivity, charge density wave formation,
phonon-softening, or valence and metal-insulator transitions.
The main purpose of this work was to provide a consis-
tent extension of the PRM for dealing with more general
nonequilibrium situations in open systems, as they appear
when quantum systems are coupled to external reservoirs.
A prime example for this is the light-matter coupling in
semiconductor microcavities, where electrons and holes—for
example, after being excited with light—can form excitonic
bound states due to their Coulomb interaction, or can recom-
bine into photons, when cavity photons can escape into the
vacuum (e.g., because of mirrors with imperfect reflectivity).
Furthermore, in such systems coherent quantum condensates
may arise, realized as BCS or BEC equilibrium states, but
also manifest nonequilibrium (lasinglike) phases. The PRM
framework we developed can treat, if combined with the
Mori-Zwanzig projection technique, these equilibrium and
nonequilibrium situations in a rather unified way. The steady-
state properties of the system are thereby obtained from the
long-term behavior of appropriate expectation values and,
equally important, the many-body correlations and fluctua-
tions processes are taken into account beyond mean field in
the whole range of excitation densities. Besides expectation
values also spectral properties can be evaluated in the steady
state. From a theoretical point of view, this ensures diverse
future application possibilities of the proposed approach.

Other examples, where the newly developed PRM ap-
proach might be applied, coming from the very topical and
promising field of ultracold atomic physics [35]. In these
systems particles (atoms, molecules) or even BECs are loaded
into optical lattices created by dynamic cavity fields and are
studied in connection with different ordering phenomena,
quantum phase transitions, superradiance phase transitions,
driving, and dissipation [36–41]. Here the particles in a quan-
tum many-body correlated phase of matter strongly influence
the properties of light and vice versa, whereby the tunable
interplay between rather short-ranged direct particle-particle
interaction and long-range interaction mediated by the cou-
pling to the optical cavity mode is of particular importance.
Then in particular the quantum properties of light scattered
from the emergent structured cold-atom phases will require
a nonequilibrium or at least steady-state description [42].
The Hamiltonians being normally discussed in this context
are extended Bose-Hubbard-type models supplemented by an
atom-field interaction part or Dicke-type models and take
into account dissipation due to photon leakage (coupling to
reservoirs). The proposed PRM, adjusted correspondingly, is
definitely suitable for treating such models.

In this paper we considered a rather generic open model
system consisting of interacting electrons, holes, and cavity
photons and their corresponding reservoirs. The focus was on
exciton and polariton formation, and their possible condensa-
tion in the course of spontaneous breaking demonstrated by
nonvanishing excitonic and photonic order parameters. In the

steady state, the nature of the condensate changes from an ex-
citon to a polariton and finally to a photon dominated ground
state when the density of excitations increases. Thereby a
finite expectation value of the photonic field operator is intrin-
sically connected with a finite imaginary part of the excitonic
order parameter function and, from a physical perspective,
with photon loss. Having assumed an electron/hole band
symmetric case and charge neutrality, the difference between
the self-consistently determined quantity μ (which takes over
the role of a true chemical potential of the system in thermal
equilibrium only) and the sum of the chemical potentials
of the electron and hole baths μB can be used in order
to quantify nonequilibrium effects. For small-to-intermediate
excitation densities and large detuning (semimetallic situa-
tion) Fermi-surface and Pauli-blocking effects are important
and the condensate is reminiscent of the BCS-type excitonic
insulator phase, whereas for small detuning (semiconducting
situation) the condensate typifies a Bose-Einstein condensate
of preformed electron-hole pairs (excitons). Note that if we
would have increased the Coulomb interaction at fixed exci-
tation density we could realize a BCS-BEC crossover in the
excitonic condensate due to the growing Hartree shift between
valence and conduction bands. In any case the fully renormal-
ized band dispersions were obtained from the coherent part of
the single-particle spectral function and show the opening of
the band gaps and significant differences between large and
small detuning situations, such as a strong band backfolding
and a pronounced band flattening of the valence (conduction)
band top (bottom) in the former and latter case, respectively.
As soon as we enter the regime where the photons and
therefore nonequilibrium effects play an important role, our
results will noticeably depend on the parameters γ and κ

parametrizing, respectively, the couplings to the electron/hole
and photon reservoirs. In this context we have shown that the
present steady-state approach cannot be reduced to the case
of a closed electron-hole-photon system simply by setting
γ and κ to zero; instead one gets a description of thermal
equilibrium in the limit of large γ . On the other hand, the
photon leakage/loss strengthens at larger values of κ .

It might make sense to emphasize once more the key
findings of the nonequilibrium effects of the steady state and
to compare our results with previous results for the thermal
equilibrium situation from Ref. [30]: (i) At small-to-moderate
excitation densities nexc the e-h-p subsystem is close to ther-
mal equilibrium. In particular, for the largest used value γ = 1
of the coupling of cavity electrons and holes to their respective
baths, the results of Figs. 1–4 agree very well with those from
Ref. [30]. But also for smaller γ (and the largest detuning
value d = 3.5) the e-h-p subsystem and the electronic baths
stay in a common (quasi)equilibrium. Note that the linear
slope with μ = μB in Fig. 1 stands alone for an increase of
electrons and holes, whereas the following flattening of μ(μB )
is a Pauli-blocking effect after all quasiparticle states are
already occupied by electrons and holes. Any further increase
of nexc or μB is solely governed by an increase of cavity
photons. (ii) Increasing nexc further the number of cavity
photons increases. Thereby, for a sufficient large number of
cavity photons they become affected by their coupling κ to the
external free photons, which leads to a loss of cavity photons.
This loss is intrinsically connected to the appearance of finite
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imaginary parts of the excitonic order parameters in Fig. 3
or Fig. 6, in particular for larger values of κ . For the case of
small detuning d = −0.5 in Fig. 3 or Fig. 6 this effect is more
pronounced already at small nexc since in the semiconducting
case photons are also present already at smaller excitation
densities nexc. The coupling of cavity photons to free space
photons affects the properties of the system from the very
beginning. To summarize, nonlinear effects become important
whenever a sufficiently large number of cavity photons is
present. Thereby, the coupling κ to external photons plays an
important role but also the detuning of the system and less
important the value of the coupling γ .

The limitations of the present theoretical approach are:
(i) The initial density matrix ρ0 was assumed to be factoriz-
able into a part ρS for the subsystem HS and into a reservoir
density ρR, ρ0 = ρSρR . Thereby ρS was assumed to describe
thermal equilibrium for HS, and ρR should be infinitely large
so that it is not changed by renormalization effects. (ii) The in-
teractions H1 of the subsystem HS was assumed to be ‘small’
and was treated in the renormalization equations in perturba-
tion theory. The renormalization was only done in small steps
�λ, so that extreme high renormalization processes are taken
into account in the fully renormalized quantities. Therefore,

the renormalization method is usually valid for parameters of
H1 which are of the same order as those of H0, i.e., far beyond
usual perturbation theory. (iii) Finally, the influence of the
reservoirs were taken into account in perturbation theory up
to second order in the interaction HSR between the subsystem
HS and the reservoirs HR.

Although we exclusively focused on the exciton-polariton
problem in this contribution, the extended PRM, bridging
equilibrium, and steady state descriptions can be used to
tackle other strongly open/driven quantum model systems
with strong correlations, which opens an avenue for explor-
ing many-body effects in nonequilibrium situations, i.e., for
ultracold atoms in coupled to radiation fields. Work along this
line is in progress.
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APPENDIX A: RENORMALIZATION OF Hλ

The renormalization equations for the λ-dependent parameters of Hλ will be derived from Eq. (43) which transforms Hλ to
Hλ−�λ. For sufficiently small renormalization steps �λ, when the expansion in g and U can be limited to O(g2) and O(U 2), we
have

HS,λ−�λ = H0,λ + Hc,λ + H1,λ + [Xλ,�λ,H0,λ + Hc,λ + H1,λ] + · · · , (A1)

where the representation (60) for HS,λ has been used. Renormalization contributions arise from the three commutators on the
right hand side which must be evaluated explicitly. Contributions of order O(X2

λ,�λ) and higher will be neglected. From the first
commutator [Xλ,�λ,H0,λ] one finds renormalization contributions to �k,λ and �λ. They read according to Sec. III B:

δ�
(0)
k,λ = − g√

N
Ak0(λ,�λ) ω0,λ〈ψ0〉 − U

N

∑
k1

Bk1k,−k1,−k(λ,�λ)
(
εe

k1,λ
+ εh

−k1,λ

)
dk1 , (A2)

δ�
(0)
λ = g

N

∑
k

Ak0(λ,�λ)
(
εe

k,λ + εh
−k,λ

)
dk, (A3)

where we have used expressions (65)–(67) for the generator Xλ,�λ

Xλ,�λ = X
g

λ,�λ + XU
λ,�λ = −X

†
λ,�λ (A4)

with

X
g

λ,�λ = − g√
N

∑
kq

Akq(λ,�λ)[: e
†
k+qh

†
−kψq : −H.c.], (A5)

XU
λ,�λ = −U

N

∑
k1k2k3

Bk1k2;k3,k1+k3−k2 (λ,�λ) :e†k1
ek2 h

†
k3

hk1+k3−k2 :. (A6)

Note that both parts X
g

λ,�λ and XU
λ,�λ contribute to δ�

(0)
k,λ, whereas only X

g

λ,�λ contributes to δ�
(0)
λ . For the second commutator

[Xλ,�λ,Hc,λ] one finds:

[
X

g

λ,�λ,Hc,λ

] = g√
N

∑
k

(
Ak0(λ,�λ)�k,λ

(
1 − ne

k − nh
−k

)
ψ

†
0 + H.c.

)

+ g√
N

∑
k

(Ak0(λ,�λ)�k,λ〈ψ†
0〉(1 − e

†
kek − h

†
−kh−k ) + H.c.) − g�λ

∑
k

(Ak0(λ,�λ) e
†
kh

†
−k + H.c.),

(A7)
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[
XU

λ,�λ,Hc,λ

] = −U

N

∑
kk1

[
Bk1,k,−k1,−k(λ,�λ) �k,λ

(
d∗

k1
(1 − e

†
kek − h

†
−kh−k ) + (

1 − ne
k − nh

−k

)
e
†
k1

h
†
−k1

) + H.c.
]

(A8)

(omitting irrelevant constants), where again only renormalization contributions of the operator structure of HS,λ are retained. We
point out that the contributions in Eqs. (A7) and (A8) which renormalize εe

k and εh
−k are of second order in the order parameters;

they should be small and will be neglected. The remaining contributions renormalize �λ and �k,λ:

δ�
(c)
λ = g

N

∑
k

Ak0(λ,�λ)�k,λ

(
1 − ne

k − nh
−k

)
, (A9)

δ�
(c)
k,λ = −g�λAk0(λ,�λ) − U

N

∑
k1

Bk,k1,−k,−k1 (λ,�λ) �k1,λ

(
1 − ne

k1
− nh

−k1

)
. (A10)

Next we look at the last commutator [Xλ,�λ,H1,λ] in Eq. (A1). Neglecting off-diagonal commutators we first obtain,

[
X

g

λ,�λ,Hg,λ

] = 2g2

N

∑
kq

Ak−q,q(λ,�λ)
(
nψ

q + nh
q−k

)
e
†
kek + 2g2

N

∑
kq

Akq(λ,�λ)
(
nψ

q +ne
q+k

)
h
†
−kh−k

− 2g2

N

∑
kq

Akq(λ,�λ)
(
1 − ne

k+q − nh
−k

)
(ψ†

qψq − δq,0(〈ψ†
0〉ψ0 − 〈ψ0〉ψ†

0 )), (A11)

where we have introduced the following expectation value for the photon fluctuations:

nψ
q = 〈ψ†

qψq〉 − δq,0〈ψ†
0〉〈ψ0〉. (A12)

Equation (A11) leads to renormalization contributions of εe
k,λ, εh

−k,λ, ωq,λ, and �λ:

δε
e(g)
k,λ = 2g2

N

∑
q

Ak−q,q(λ,�λ)
(
nψ

q + nh
q−k

)
, (A13)

δε
h(g)
kλ

= 2g2

N

∑
q

Akq(λ,�λ)
(
nψ

q + ne
q+k

)
, (A14)

δω
(g)
q,λ = −2g2

N

∑
k

Akq(λ,�λ)
(
1 − ne

k+q − nh
−k

)
, (A15)

δ�
(g)
λ = 2g2

N
√

N

∑
k

Ak0(λ,�λ)
(
1 − ne

k − nh
−k

)〈ψ0〉. (A16)

The evaluation of the second commutator [XU
λ,�λ,HU,λ] to [Xλ,�λ,H1,λ] is more evolved. Our starting point is

[
XU

λ,�λ,HU,λ

] = U 2

N2

∑
k1k2q
k′

1k′
2q′

�
k1,k1−q;k2,k2+q
k′

1,k
′
1−q′;k′

2,k
′
2+q′ (λ,�λ)

[
: e

†
k1

ek1−qh
†
k2

hk2+q :, h†
k′

2+q′hk′
2
e
†
k′

1−q′ek′
1

:
]
, (A17)

where we have introduced

�
k1,k1−q,k2,k2+q
k′

1,k
′
1−q′,k′

2,k2+q′ (λ,�λ) (A18)

= 1
2

[
Bk′

1,k
′
1−q′,k′

2,k
′
2+q′ (λ,�λ) �k1,k1−q,k2,k2+q,λ + Bk1,k1−q,k2,k2+q(λ,�λ) �k′

1,k
′
1−q′,k′

2,k
′
2+q′,λ

]
. (A19)

We first extract the part of the commutator (A17) that renormalizes the electronic one-particle energies. It reads

U 2

N2

∑
k1k2q

∑
k′

1k′
2q′

�
k1,k1−q;k2,k2+q
k′

1,k
′
1−q′;k′

2,k
′
2+q′ (λ,�λ)

[
δk2+q,k′

2+q:e†k1
ek1−q:h†

k2
hk′

2
:e†k′

1−q′ek′
1
: − δk2,k′

2
: e

†
k1

ek1−q : h
†
k′

2+q′hk2+q : e
†
k′

1−q′ek′
1

:

+ δk1−q,k′
1−q′ : h

†
k′

2+q′hk′
2

: e
†
k1

ek′
1

: h
†
k2

hk2+q: − δk1,k′
1

: h
†
k′

2+q′hk′
2

: e
†
k′

1−q′ek1−q : h
†
k2

hk2+q :
]
.

From this, by truncation, we extract those contributions which are proportional to e
†
kek or h

†
−kh−k and arrive at the

renormalization contributions to εe
k and εh

k:

δε
e(U )
k,λ = U 2

N2

∑
k2q

(
Bk,k−q;k2,k2+q(λ,�λ)

[(
nh

k2
− nh

k2+q

)(
1 − ne

k−q

) + nh
k+q

(
1 − nh

k2

)
−Bk+q,k;k2,k2+q(λ,�λ)

[(
nh

k2
− nh

k2+q

)
ne

k+q + nh
k+q

(
1 − nh

k2

)])
, (A20)
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δε
h(U )
k,λ = U 2

N2

∑
k1q

(
Bk1,k1−q;k−q,k(λ,�λ)

[(
ne

k1
− ne

k1−q

)(
1 − nh

k−q

) − ne
k1

(
1 − ne

k1−q

)
−Bk1,k1−q;k,k+q(λ,�λ)

[(
ne

k1
− ne

k1−q

)
nh

k+q − ne
k1

(
1 − ne

k1−q

)])
. (A21)

In the same way, the renormalization contributions to �k,λ can be extracted from (A17). Again, by truncation, we collect the parts
being proportional to e

†
kh

†
−k or h−kek. Since XU (λ,�λ) and HU,λ are time-ordered expressions, a truncation within XU (λ,�λ)

and within HU,λ is thereby forbidden. One finds

δ�
(U )
k,λ = −U 2

N2

∑
k1q

(
�

k1+q,k1;−k,−k+q
k1+q,k;−k1,−k+q (λ,�λ)

(
ne

k1+q − nh
−k+q

)
dk1 + �

k,k−q;−(k1+q),−k1
k1,k−q;−(k1+q),−k (λ,�λ)

(
ne

k−q − nh
−(k+q)

)
dk1

)
. (A22)

Summing up, the following renormalization equations between the energy parameters of Hλ and Hλ−�λ were found:

εe
k,λ−�λ = εe

k,λ + δε
e(g)
k,λ + δε

e(U )
k,λ , (A23)

εh
k,λ−�λ = εh

k,λ + δε
h(g)
k,λ + δε

h(U )
k,λ , (A24)

ωq,λ−�λ = ωq,λ + δω
(g)
q,λ, (A25)

�k,λ−�λ = �k,λ + δ�
(0)
k,λ + δ�

(c)
k,λ + δ�

(U )
k,λ , (A26)

�λ−�λ = �λ + δ�
(0)
λ + δ�

(c)
λ + δ�

(g)
λ . (A27)

APPENDIX B: RENORMALIZATION OF ELECTRONIC OPERATORS

Starting from an appropriate ansatz for the single-fermion operators e
†
k,λ and h

†
−k,λ, according to Eqs. (103) and (104), we

have

e
†
k,λ = xk,λe

†
k + 1√

N

∑
q

tk−q,q,λhq−k : ψ†
q: + 1

N

∑
k1k2

αk1kk2,λ e
†
k1

: h
†
k2

hk1+k2−k :, (B1)

h
†
−k,λ = yk,λh

†
−k + 1√

N

∑
q

uk,q,λ eq+k : ψ†
q: + 1

N

∑
k1k2

βk1k2,k2−k1−k,λ : e
†
k1

ek2 : h
†
k2−k1−k. (B2)

In analogy to the renormalization equations for the parameters of Hλ, one derives the following set of renormalization equations
for the coefficients tk−q,q,λ, αk1k2k3,λ, uq,−k,λ, and βk1k2k3,λ:

tk−q,q,λ−�λ = tk−q,q,λ + gxk,λAk−q,q(λ,�λ), (B3)

αk1kk2,λ−�λ = αk1kk2,λ − Uxk,λBk1kk2
(λ,�λ), (B4)

ukq,λ−�λ = ukq,λ − g yk,λAk,q(λ,�λ), (B5)

βk1k2,k−k1+k2,λ−�λ = βk1k2,k−k1+k2,λ − Uyk,λBk1k2,k−k1+k2 (λ,�λ). (B6)

To obtain renormalization equations for xk,λ and yk,λ we use the anticommutator relations for fermionic operators,
[e†k(λ), ek(λ)]+ = 1 and [h†

−k(λ), h−k(λ)]+ = 1, which are valid for any λ. We arrive at

|xk,λ|2 = 1 − 1

N

∑
q

∣∣tk−q,q,λ

∣∣2(
n

ψ

k−q + nh
−q

) − 1

N2

∑
k1k2

|αk1kk2,λ|2
[
nh

k1+k2−k

(
1 − nh

k2

) − ne
k1

(
nh

k1+k2−k − nh
k2

)]
, (B7)

|yk,λ|2 = 1 − 1

N

∑
q

|uk,q,λ|2
(
nψ

q + ne
q+k

) − 1

N2

∑
k1k2

∣∣βk1k2,k2−k1−k2,λ

∣∣2[
ne

k1

(
1 − ne

k2

) + (
1 − nh

k2−k1−k

)(
ne

k2
− ne

k1

)]
. (B8)

Here, a factorization approximation was used. The expectation values ne
k, nh

−k, and n
ψ
q on the right hand side are best chosen

as steady-state expectation values and have been defined before in Eqs. (98) and (99). Moreover n
ψ
q = 〈: ψ

†
q : : ψq :〉. Equations

(B3)–(B6) together with Eqs. (B7), (B8), taken at λ → λ − �λ, represent a complete set of renormalization equations for the
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λ-dependent coefficients in Eqs. (B1) and (B2). They connect the parameter values at λ with those at λ − �λ. The initial
parameter values at cutoff λ = � are:

{xk,�, yk,�} = 1, (B9){
tkq,�, ukq,�, αk1kk2,λ, βk1kk2,�

} = 0. (B10)

By integrating the full set of renormalization equations between � and λ = 0 one is led to the fully renormalized one-particle
operators:

ẽ
†
k = x̃ke

†
k + 1√

N

∑
q

t̃k−q,qhq−k : ψ†
q : + 1

N

∑
k1k2

α̃k1kk2e
†
k1

: h
†
k2

hk1+k2−k :, (B11)

h̃
†
−k = ỹkh

†
−k + 1√

N

∑
q

ũk,qeq+k : ψ†
q : + 1

N

∑
k1k2

β̃k1k2,k2−k1−k : e
†
k1

ek2 : h
†
k2−k1−k. (B12)

With (B11) and (B12) one obtains in the limit t → ∞:

ne
k = 〈(ẽ†kẽk )(t → ∞)〉ρ̃0 = |x̃k|2n̂e

k + 1

N

∑
q

|t̃k−q,q|2
(
1 − n̂h

k−q

)
n̂ψ

q + 1

N2

∑
k1k2

∣∣α̃k1kk2

∣∣2
n̂e

k1
n̂h

k2

(
1 − n̂h

k1+k2−k

)
, (B13)

nh
−k = 〈(h̃†

−kh̃−k )(t → ∞)〉ρ̃0 = |ỹk|2n̂h
−k + 1

N

∑
q

|ũk,q|2 n̂ψ
q

(
1 − n̂e

k+q

) + 1

N2

∑
k1k2

∣∣β̃k1k2,k2−k1−k
∣∣2

n̂e
k1

(
1 − n̂e

k2

)
n̂h

k2−k1−k,

(B14)

and similarly

d∗
k = x̃kỹk d̂∗

k − 1

N

∑
k1

(
x̃kβ̃k1,k,−k1 n̂

e
k + ỹkα̃k1,k,−k1

(
n̂h

−k − 1
))

d̂∗
k1

, (B15)

where a small term proportional to αk1,k,−k1βk1,k,−k1 of O(U 2) was neglected. Another small contribution being proportional to
〈(: ψ

†
0 :)t→∞〉ρ̃0 was neglected as well. The quantities n̂e

k, n̂h
−k, and n̂

ψ
q on the right hand side of Eqs. (B13)–(B15) are steady-state

expectation values however formed with the renormalized density ρ̃0 [also compare Eqs. (108)–(110)]:

n̂e
k = 〈(e†kek )(t → ∞)〉ρ̃0 , (B16)

n̂h
−k = 〈(h†

−kh−k )(t → ∞)〉ρ̃0 , (B17)

n̂ψ
q = 〈(: ψ†

q : : ψq :)(t → ∞)〉ρ̃0 . (B18)

The corresponding order parameter for the formation of excitons is

d̂∗
k = 〈(e†kh†

−k )(t → ∞)〉ρ̃0 . (B19)

APPENDIX C: STEADY STATE EXPECTATION VALUES

Evaluating the expectation values 〈A(t )〉 for t → ∞, we use relation (94) and the steady-state condition (93):

〈A(t )〉 = 〈Ã(t )〉ρ̃0 , (C1)

d

dt
〈A(t → ∞)〉 = d

dt
〈Ã(t → ∞)〉ρ̃0 = 0. (C2)

On the right hand sides, the time dependence is governed by H̃. ρ̃0 denotes the fully transformed initial density, and Ã is the
transformed operator of A.

1. Electronic quantities

To analyze time-dependent expectation values for large times, the steady-state condition (93),

d

dt
〈(C†

nkCmk )(t )〉ρ̃0 = 0 for t → ∞, (C3)

must be fulfilled. Here, the time dependence is governed by the renormalized Hamiltonian

H̃ = H̃S + HR + HSR, (C4)
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and the expectation values are formed with the transformed initial density ρ̃0. According to this “recipe,” we first derive equations
of motions using generalized Langevin equations. These dynamical equations are best found within the Mori-Zwanzig projection
formalism [31,32,43] for a set of dynamical variables {Aν = C

†
nkCmk, b

†
e,pbe,p, b

†
h,−pbh,−p} (n,m = 1, 2):

d

dt
Aν (t ) = i

∑
μ

Aμ(t ) ωμν −
∫ t

0
dt ′

∑
μ

Aμ(t − t ′)�μν (t ′) + Fν (t ), (C5)

where we have introduced a generalized scalar product (A|B) = 〈A†B〉ρ̃0 for operator variables A, B. The ωμν and �μν (t ) are
generalized frequencies and self-energies, respectively, and Fν (t ) is the random force:

ωμν =
∑

η

χ−1
μη (Aη|L̃Aν ), (C6)

�μν (t ) =
∑

η

χ−1
μη (Aη|L̃Q eiQL̃Q t QL̃Aν ), (C7)

Fν (t ) = i eiQL̃Q t QL̃Aν . (C8)

The quantity L̃ is the Liouville operator, defined by the commutator of H̃ with any operator observable A, i.e., L̃A = [H̃,A],
and Q is a generalized projector in the operator space which projects perpendicular to the subspace spanned by the set {Aν}.
Moreover χ−1

μη is the inverse of the generalized susceptibility matrix χη′μ = (Aη′ |Aμ):∑
μ

χη′μχ−1
μη = δη′η. (C9)

Since H̃ does not commute with ρ̃0 the expectation values 〈Aν (t )〉ρ̃0 are intrinsically time dependent.
Let us first consider the equations for the electronic variables Anm

k := C
†
nkCmk. Because they are dynamical eigenmodes of

H̃S the frequencies ωμν and self-energies �μν can be easily evaluated in lowest nonvanishing order perturbation theory in the
interaction HSR. One finds in Markov approximation

d

dt
A12

k (t ) = i(Ẽ1k − Ẽ2k )A12
k − A12

k

[|ξk|2 γ e
k (Ẽ2k ) + |ηk|2 γ e

k (Ẽ1k ) + |ξk|2 γ h
k (−Ẽ1k ) + |ηk|2 γ h

k (−Ẽ2k )
]

− ξkη
∗
k

[
A11

k

(−γ e
k (Ẽ1k ) + γ h

k (−Ẽ1k )
) + A22

k

(−γ e
k (Ẽ2k ) + γ h

k (−Ẽ2k )
)]

−πξkη
∗
k

∑
p

∣∣�e
kp

∣∣2(
δ
(
ωe

p − Ẽ1k
) + δ

(
ωe

p − Ẽ2k
))

b†epbep

+πξkη
∗
k

∑
p

∣∣�h
kp

∣∣2(
δ
(
ωh

−p + Ẽ1k
) + δ

(
ωh

−p + Ẽ2k
))

bh,−pb
†
h,−p + F12

k =
(

d

dt
A21

k (t )

)†
, (C10)

d

dt
A11

k (t ) = −2A11
k

(|ξk|2 γ e
k (Ẽ1k ) + |ηk|2 γ h

k (−Ẽ1k )
) + (

ξ ∗
k ηk A12

k + ξkη
∗
kA21

k

) (
γ e

k (Ẽ1k ) − γ h
k (−Ẽ1k )

)
+ 2π |ξk|2

∑
p

∣∣�e
kp

∣∣2
δ
(
ωe

p − Ẽ1k
)
b†epbep + 2π |ηk|2

∑
p

∣∣�h
kp

∣∣2
δ
(
ωh

−p + Ẽ1k
)
bh,−pb

†
h,−p + F11

k , (C11)

d

dt
A22

k (t ) = −2A22
k

(|ηk|2 γ e
k (Ẽ2k ) + |ξk|2 γ h

k (−Ẽ2k )
) + (

ξ ∗
k ηk A12

k + ξkη
∗
k A21

k

) (
γ e

k (Ẽ2k ) − γ h
k (−Ẽ2k )

)
+ 2π |ηk|2

∑
p

∣∣�e
kp

∣∣2
δ
(
ωe

p − Ẽ2k
)
b†epbep − 2π |ξk|2

∑
p

∣∣�h
kp

∣∣2
δ
(
ωh

−p + Ẽ2k
)
bh,−pb

†
h,−p + F22

k . (C12)

Note that the last two terms in equations (C10)–(C12) are proportional to the electron occupation number operators b
†
epbep

and bh,−pb
†
h,−p of the electronic reservoirs. However, the equations of motion for b

†
e,pbe,p and b

†
h,−pbh,−p are not needed. The

electronic baths are assumed to be large and stay in thermal equilibrium even when they are coupled to the e-h-p system.
Moreover, the imaginary parts of the self-energies �γ e,h(ω) will be neglected, which would lead to frequency shifts. The

remaining real parts �γ
e,h
k (ω) lead to a damping of electrons and holes as a result of the coupling to the electronic reservoirs:

�γ e
k (ω) = π

∑
p

∣∣�e
kp

∣∣2
δ
(
ωe

p − ω
)
, (C13)

�γ h
k (ω) = π

∑
p

∣∣�h
kp

∣∣2
δ
(
ωh

−p − ω
)
. (C14)
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To simplify the further evaluation we assume that electrons and holes possess the same damping rate, which is also supposed not
to depend on k and ω, i.e.,

�γ
e,h
k (ω) = �γk(ω) ≈ γ. (C15)

Then Eqs. (C10)–(C12) reduce to

d

dt
A12

k (t ) = i(Ẽ1k − Ẽ2k )A12
k − 2γ A12

k − πξkη
∗
k

∑
p

∣∣�e
kp

∣∣2(
δ
(
ωe

p − Ẽ1k
) + δ

(
ωe

p − Ẽ2k
))

b†epbep

+πξkη
∗
k

∑
p

∣∣�h
kp

∣∣2(
δ
(
ωh

−p + Ẽ1k
) + δ

(
ωh

−p + Ẽ2k
))

bh,−pb
†
h,−p + F12

k =
(

d

dt
A21

k (t )

)†
, (C16)

d

dt
A11

k (t ) = −2γ A11
k + 2π |ξk|2

∑
p

∣∣�e
kp

∣∣2
δ
(
ωe

p − Ẽ1k
)
b†epbep + 2π |ηk|2

∑
p

∣∣�h
kp

∣∣2
δ
(
ωh

−p + Ẽ1k
)
bh,−pb

†
h,−p + F11

k ,

(C17)

d

dt
A22

k (t ) = −2γ A22
k + 2π |ηk|2

∑
p

∣∣�e
kp

∣∣2
δ
(
ωe

p − Ẽ2k
)
b†epbep − 2π |ξk|2

∑
p

∣∣�h
kp

∣∣2
δ
(
ωh

−p + Ẽ2k
)
bh,−pb

†
h,−p + F22

k .

(C18)

The equations of motions for the expectation values, formed with ρ̃0,

Anm
k (t ) = 〈

Anm
k (t )

〉
ρ̃0

= 〈(C†
nkCmk )(t )〉ρ̃0 , (C19)

can immediately be found from Eqs. (C10)–(C12):

d

dt
A12

k (t ) = [i(Ẽ1k − Ẽ2k ) − 2γ ] A12
k (t ) − πξkη

∗
k

∑
p

∣∣�e
kp

∣∣2(
δ
(
ωe

p − Ẽ1k
) + δ

(
ωe

p − Ẽ2k
)) 〈b†epbep〉ρ̃0

+πξkη
∗
k

∑
p

∣∣�h
kp

∣∣2(
δ
(
ωh

−p + Ẽ1k
) + δ

(
ωh

−p + Ẽ2k
))〈bh,−pb

†
h,−p〉ρ̃0 =

(
d

dt
A21

k (t )

)†
, (C20)

d

dt
A11

k (t ) = −2γ A11
k (t ) + 2π |ξk|2

∑
p

∣∣�e
kp

∣∣2
δ
(
ωe

p − Ẽ1k
) 〈b†epbep〉ρ̃0 + 2π |ηk|2

∑
p

∣∣�h
kp

∣∣2
δ
(
ωh

−p + Ẽ1k
) 〈bh,−pb

†
h,−p〉ρ̃0 ,

(C21)

d

dt
A22

k (t ) = −2γ A22
k (t ) + 2π |ηk|2

∑
p

∣∣�e
kp

∣∣2
δ
(
ωe

p − Ẽ2k
) 〈b†epbep〉ρ̃0 + 2π |ξk|2

∑
p

∣∣�h
kp

∣∣2
δ
(
ωh

−p + Ẽ2k
) 〈bh,−pb

†
h,−p〉ρ̃0 ,

(C22)

where the random forces Fnm
k do to contribute since the 〈Fnm

k 〉ρ̃0 vanish at least up to second order in HSR. Moreover, because
the expectation values of the bath variables 〈b†epbep〉ρ̃0 and 〈b†h,−pbh,−p〉ρ̃0 do not depend on time, we may use Fermi functions for

〈b†epbep〉ρ̃0 = 1

1 + eβ[ωe
p−(μe−μ/2)] = fe

(
ωe

p

)
, (C23)

〈b†h,−pbh,−p〉ρ̃0 = 1

1 + eβ[ωh−p−(μh−μ/2)]
= fh

(
ωh

−p

)
. (C24)

Exploiting the presence of the δ functions, Eqs. (C20)–(C22) can be simplified to

d

dt
A12

k (t ) = [i(Ẽ1k − Ẽ2k ) − 2γ ] A12
k (t ) − γ ξkη

∗
k(fe(Ẽ1k ) + fe(Ẽ2k )) − γ ξkη

∗
k(fh(−Ẽ1k ) + fh(−Ẽ2k ) − 2) =

(
d

dt
A21

k (t )

)†
,

(C25)

d

dt
A11

k (t ) = −2γ A11
k (t ) + 2γ |ξk|2fe(Ẽ1k ) + 2γ |ηk|2(1 − fh(−Ẽ1k )), (C26)

d

dt
A22

k (t ) = −2γ A22
k (t ) + 2γ |ηk|2fe(Ẽ2k ) + 2γ |ξk|2(1 − fh(−Ẽ2k )), (C27)

where Eqs. (C13) and (C15) have been used.
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We are now in the position to evaluate the limit t → ∞ for the expectation values

Anm
k = lim

t→∞
〈
Anm

k (t )
〉
ρ̃0

= lim
t→∞〈(C†

nkCmk )(t )〉ρ̃0 . (C28)

Using the steady-state condition (C3) one finds

A12
k = γ ξkη

∗
k

1

(i(Ẽ1k − Ẽ2k ) − 2γ )
(C29)

× [(fe(Ẽ1k ) + fe(Ẽ2k )) + (fh(−Ẽ1k ) + fh(−Ẽ2k ) − 2)], (C30)

and (for γ �= 0)

A11
k = |ξk|2fe(Ẽ1k ) + |ηk|2(1 − fh(−Ẽ1k )), (C31)

A22
k = |ηk|2 fe(Ẽ2k ) + |ξk|2(1 − fh(−Ẽ2k )). (C32)

2. Derivation of equations (141)–(143)

Let us consider the steady-state result for d̂∗
k , n̂e

k, and n̂h
k, Eqs. (138)–(140), respectively. Here, d̂0∗

k , defined by Eq. (134) with
Eq. (144), takes the form

d̂0∗
k = 1

2ξ ∗
k η∗

kF
+
1k. (C33)

Transforming first the last terms (imaginary parts) in Eqs. (139) and (140), one gets

1

γ
�[�̃kd̂

∗
k ] = −�

γ

{
1

ε̃e
k + ε̃h

k + 2iγ

[|�̃k|2
(
1 − n̂e

k − n̂h
k

) − 2iγ �̃kd̂
0∗
k

]}
(C34)

or
1

γ
�[�̃kd̂

∗
k ] = −�

γ

{ |�̃k|2
ε̃e

k + ε̃h
k + 2iγ

[
(1 − n̂e

k − n̂h
k ) − i γ

Wk
sgn(ε̃e

k + ε̃h
k )F+

1k

]}
. (C35)

Thus

1

γ
�[�̃kd̂

∗
k ] = |�̃k|2(

ε̃e
k + ε̃h

k

)2 + (2γ )2

[
2
(
1 − n̂e

k − n̂h
k

) +
∣∣ε̃e

k + ε̃h
k

∣∣
Wk

F+
1k

]
. (C36)

Here, we have used Eq. (138) for d̂∗
k with d̂0∗

k given by Eq. (C33) and (82):

d̂∗
k = �̃∗

k(
ε̃e

k + ε̃h
k

) + 2i γ

[(
n̂e

k + n̂h
k − 1

) + iγ sgn
(
ε̃e

k + ε̃h
k

)F+
1k

Wk

]
. (C37)

Then, from (C36) together with Eqs. (139) and (140), one finds:

n̂e
k + n̂h

k − 1 =
∣∣ε̃e

k + ε̃h
k

∣∣
2Wk

F+
1k + 1

2

F+
2k − 2

1 + 4|�̃k|2
(ε̃e

k+ε̃h
k )2+(2γ )2

, (C38)

and

n̂e
k − n̂h

k = 1

2
F−

1k +
∣∣ε̃e

k + ε̃h
k

∣∣
2Wk

F−
2k. (C39)

3. Photonic expectation values

To calculate the photon condensation parameter 〈ψ†
q=0〉, we use the ansatz for the λ-dependent photon operator,

ψ
†
q,λ = zq,λψ

†
q + 1√

N

∑
k

vkq,λ : e
†
k+qh

†
−k :, (C40)

where again the operator structure was taken over from a small Xλ,�λ expansion. Furthermore, : e
†
k+qh

†
−k := e

†
k+qh

†
−k −

〈e†k+qh
†
−k〉. In analogy to the preceding section, one easily obtains renormalization equations for the λ-dependent coefficients

zq,λ and vkq,λ:

vkq,λ−�λ = vkq,λ − gzq,λAkq(λ,�λ), (C41)

|zq,λ|2 = 1 − 1

N

∑
k

|vkq,λ|2
(
1 − ne

k+q − nh
−k

)
. (C42)
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Deriving the last equation, the commutator relation [ψq,λ, ψ
†
q,λ] = 1 was used. Equations (C41) and (C42), both taken at λ →

λ − �λ, represent a complete set of renormalization equations for the λ-dependent coefficient in Eq. (C40). Here, the initial
parameter values are

zq,� = 1, vkq,� = 0. (C43)

The integration between λ = � and λ = 0 leads to the fully renormalized photon operator

ψ̃†
q = z̃qψ

†
q + 1√

N

∑
k

ṽkq : e
†
k+qh

†
−k : . (C44)

Using Eq. (94), one finds in the large-t limit:

〈ψ†
q(t → ∞)〉 = z̃q〈ψ†

q(t → ∞)〉ρ̃0 + 1√
N

∑
k

ṽkq 〈(: e
†
k+qh

†
−k :)(t → ∞)〉ρ̃0 � z̃q〈ψ†

q(t → ∞)〉ρ̃0 , (C45)

where the second contribution, being proportional to fluctuation operators, was neglected. Similarly,

〈(ψ†
qψq)(t → ∞)〉 = |z̃q|2〈(ψ†

qψq)(t → ∞)〉ρ̃0 + 1

N

∑
k

|ṽkq|2 n̂e
k+q n̂h

−k. (C46)

We then evaluate the remaining quantities 〈ψ†
q(t → ∞)〉ρ̃0 := 〈ψ†

q〉ρ̃0 and 〈(ψ†
qψq)(t → ∞)〉ρ̃0 := 〈ψ†

qψq〉ρ̃0 . Our starting
point is an equation of motion for the time-dependent photon creation operator ψ

†
q(t ). Using again the Mori-Zwanzig approach

of Sec. C.1, one obtains with Eqs. (77) and (C5),

d

dt
ψ†

q(t ) = iω̃qψ
†
q(t ) + i

√
N �̃∗δq,0 − κψ†

q(t ) + Fψ
q , (C47)

and

d

dt
〈ψ†

q(t )〉ρ̃0 = iω̃q〈ψ†
q(t )〉ρ̃0 + i

√
N �̃∗δq,0 − κ〈ψ†

q(t )〉ρ̃0 , (C48)

where κ is the damping rate of cavity photons into the free space. For the steady state at t → ∞ one finds from Eq. (C48)

〈ψ†
q(t → ∞)〉ρ̃0 = −

√
N �̂∗

ω̃0 + iκ
δq,0,= 〈ψ†

q〉ρ̃0 (C49)

and, with Eq. (C45),

〈ψ†
q(t → ∞)〉 = −ẑq=0

√
N �̃∗

ω̃0 + iκ
δq,0 = 〈ψ†

q〉. (C50)

To evaluate the expectation value 〈(ψ†
qψq)(t → ∞)〉ρ̃0 , one best starts from the solution (215) of the equation of motion

(C47), thereby neglecting the fluctuation force Fψ
q :

ψ†
q(t ) = − i

√
N �̃∗

iω̃0 − κ
δq,0 +

(
ψ†

q + i
√

N �̃∗

iω̃0 − κ
δq,0

)
e(iω̃q−κ )t . (C51)

For t → ∞ one is led to

〈(ψ†
qψq)(t → ∞)〉ρ̃0 = N |�̃|2

ω̃2
0 + κ2

δq,0 = 〈ψ†
qψq〉ρ̃0 . (C52)

For the fluctuation number n̂
ψ
q of cavity photons one obtains with Eq. (C49):

n̂ψ
q = 〈(: ψ†

q : : ψq :)(t → ∞)〉ρ̃0 = 0. (C53)

Thus, the fluctuation number formed with ρ̃0 vanishes. In contrast, for the full quantity n
ψ
q = 〈: ψ

†
q : : ψq :〉, which is formed by

the initial density ρ0, one finds from Eq. (C46) and (C50):

nψ
q = 1

N

∑
k

|ṽkq|2 n̂e
k+q n̂h

−k. (C54)

That is, the full fluctuation number n
ψ
q of cavity photons is determined by the coupling of cavity photons to electronic particle-

hole excitations of the e-h-p system.
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