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Spin polarization of photoelectrons in GaAs excited by twisted photons
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Interband photoexcitation of electron states with the twisted photons in GaAs, a direct band-gap bulk
semiconductor, is considered theoretically. Assuming linearity of the quantum transition amplitudes and applying
Wigner-Eckart theorem, we derive a plane-wave expansion of twisted-photon amplitudes. We also obtain relative
probabilities for magnetic sublevel population of the photoelectrons in conduction band. The approach for
calculating the position-dependent electron polarization, resulting from photoabsorption of twisted light, is
described for vertical transitions in the � point. Theoretical predictions for GaAs show modification of the
magnitude and the sign of photoelectron polarization in the region near the photon’s phase singularity.
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I. INTRODUCTION

The interest in orbital angular momentum (OAM) states of
light, or twisted light, has been continuously growing since
the publication by Allen et al. in 1992 [1]. Within the last
two decades considerable progress has been made towards
understanding the mechanism of photon OAM transfer to the
external and internal degrees of freedom in various systems,
including turbid media [2,3], bulk semiconductors [4], and
solid state heterostructures [5]. For recent reviews see, e.g.,
Refs. [6–11].

In this paper we study polarization of photoelectrons
caused by the quanta of OAM light in the conduction band
of bulk GaAs with a zincblende lattice. Due to spin-orbit
effects in its band structure, GaAs is a material of choice
in spin-polarized electron sources for electron accelerators,
polarization electron microscopy, and spintronics [12]. Bulk
GaAs has a theoretical limit of 50% polarization of pho-
toelectrons when exposed to circularly polarized light [13].
To achieve higher polarization, up to the theoretical limit of
100%, mechanical strain is applied [14]. However, strained
or superlattice photocathodes are associated with a number
of technological and operational challenges and have limited
quantum efficiency [12]. Motivated by the need for a robust
and efficient polarized-electron source, the authors of Ref. [4]
tested a hypothesis that OAM of light can result in additional
spin polarization of photoelectrons in GaAs. They obtained a
null result: no effect of OAM on photoelectron polarization
was observed.

To the best of our knowledge, there were no prior cal-
culations of electron polarization in semiconductors excited
by OAM light. Semiclassical formalism for OAM-light pho-
toexcitations in bulk semiconductor and semiconductor het-
erostructures was previously developed in Refs. [15–18],
where electron kinetics in the conduction band was addressed.
In contrast to these previous studies, we focus on impact
parameter dependence of the photoexcited electron states. In
our theoretical model we make use of Löwdin’s theoreti-
cal formalism for conduction band electron wave functions
[19–21], which allows to express Bloch states of conduction

electrons in terms of two separate contributions—remote and
near states. This approach enables direct coupling of photon
total angular momentum to a near conduction electron state
though Clebsch-Gordan coefficients. In a way this approach
is similar to single ion photoexcitaions.

As for the OAM light, we express a quantum mechanical
state of the twisted photon in an angular spectrum representa-
tion [22], relating the twisted amplitudes to plane-wave ones
in a factorized form. This formalism has already successfully
proved itself by describing transfer of OAM to the electrons
bound in a single ion in a Paul trap [23–25]. The correspond-
ing experimental measurements [26,27] are characterized by
high, nanometer-scale, resolution of target ions. In the same
way as topologically structured light reveals details of ions’
structure in free space [25], it is expected that the local
band structure in solid state materials will be probed with
higher resolution. Experimental studies of semiconductor flu-
orescence patterns, similar to such classical experiments as
Ref. [28], but triggered by the OAM light, may enable access
to the information about underlying symmetries in semicon-
ductors. This is also of high importance in polarization and
perturbation spectroscopy of luminescent species.

The paper is structured as follows. In Sec. II we will
outline the earlier developed Löwdin’s formalism for the
photoexcitations in bulk semiconductors, triggered by zero-
OAM light. We will revisit the methods and limitations for
applying the Wigner-Eckart theorem to the electronic states in
valence and conduction bands in GaAs. Section III is focused
on applying the plane-wave approach to photon states with
OAM. In Sec. IV we simplify our treatment by neglecting
remote electron states and provide theoretical predictions of
the resulting position-dependent electron polarization pattern.
We draw conclusions and outline the prospectives in Sec. V.

II. PHOTOABSORPTION IN BULK SEMICONDUCTORS

A. Conventional formalism: Overview

In this section we consider the case with the direct-band-
type semiconductor v − c transition being photoexcited by a
zero-OAM laser beam. The general photoabsorption matrix
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element is known to be [29,30]

Mμ
vc =

∫
V

ukc
(rrr )e−ikckckc ·rrr eiqqq·rrr (ε̂qqqλ ·ppp)ukv

(rrr )eikvkvkv ·rrrd3r, (1)

where uk (rrr ) are the Bloch states, ε̂qqqλ is the photon polarization
state, and kkkc,kkkv,qqq are the electron, hole, and photon wave
numbers correspondingly. The term in the underbracket corre-
sponds to the plane-wave vector field. Here one usually makes
a common assumption of kkkv,kkkc,qqq being much less than the
zone boundary momentum π/a0 (a0 = 5.65Å for GaAs)

q � π/a0. (2)

Hence the transition matrix can be approximated as

Mμ
vc =

∑
�

ei(kkkv−kkkc+qqq )·RRR�

∫
cell

ukc
(rrr )(ε̂qqqλ · ppp)ukv

(rrr )d3r, (3)

or in terms of the momentum matrix element

Mμ
vc =

∑
�

ei(kkkv−kkkc+qqq )·RRR� (εqqqλ)μpμ
vc, (4)

with RRR� being the vector pointing to the center of the �th cell
in the crystal. The momentum matrix is typically extracted
from the perturbation theory together with the dispersion rela-
tions for the band structure. Forbidden transitions proportional
to the

∫
d2r ucuv were neglected assuming the orthonormality

of the Bloch states.

B. Hamiltonian matrix element

In our formalism we will assume that the electronic state
in a bulk semiconductor is represented by basis states of
remote (r) and near (n) classes and follows Löwdin’s [19–21]
procedure for treating the remote states as a perturbation to
the near states. The Hamiltonian matrix can be schematically
expressed as follows:

Ĥvc = Ĥ0 + Ĥ{vc}∈n + Ĥ{vc}∈r , (5)

where the last term is responsible for coupling away from
the � point and can be considered as insignificant in direct
interband absorption in the � point. The wave functions for
the near states, on the other hand, are dictated by the point
symmetry group of the crystal lattice, and usually can be
expressed in terms of spherical tensors [19]. This means that
one of the proper bases is the total angular momentum basis. It
is important to note that the corresponding operator Ĥ should
be projected onto the extended set (|ψr〉

⊕ |ψn〉).
To extract the electronic near states in total angular mo-

mentum (TAM) basis we propose to consider coupling to the
conduction band in the standard Luttinger Hamiltonian matrix
in a 6-band model:

H{vc}∈n(kkk) =

⎛
⎜⎜⎜⎜⎝

1√
2
S

√
2R

√
2Q

√
3
2S

−√
32S∗ √

Q

−√
2R∗ 1√

2
S∗

⎞
⎟⎟⎟⎟⎠, (6)

where

P = h̄2

2m0
γ1

(
k2
x + k2

y + k2
z

)
;

Q = h̄2

2m0
γ2

(
k2
x + k2

y − 2k2
z

)
;

S = h̄2

2m0
2
√

3γ3(kx − iky )kz;

R = h̄2

2m0

( −
√

3γ2
(
k2
x − k2

y

) + 2i
√

3γ3kxky

)
;

and (γ1, γ2, γ3) are the Luttinger parameters [19], which are
known to be (6.85, 2.10, 2.90) for GaAs correspondingly.
These terms are correct in proximity to kkk = 0, where one
can work with only the near basis of the electron/hole wave
functions. In many cases, excitonic contributions may be
considerable even for vertical transitions in direct vicinity
to the � point. This is known not to be the case for GaAs
photoinjection [31], so we assume no excitonic contribution
in this work.

The remote contributions are accounted for in expansion
coefficients S(kkk), which depend on the global symmetries of
the crystal lattice and can be extracted from the group theory
analysis. The Hamiltonian expanded in the TAM basis can be
symbolically expressed as

pμ
vc = h̄

m0
〈αc; f |pppμ|αv; i〉

= h̄

m0
×

∑
mc,mv

S∗
c (kkk)Sv (kkk)〈jcmc|pppμ|jvmv〉,

where |αs ; i〉 represents the linear combination of near and
remote states describing the “exact” overall behavior of the
electron anywhere on the lattice, while |jm〉 are the near
�-point atomic-like basis states, see Ref. [20] for details.
This formulation allows us to extract the selection rules for
the plane-wave excitation of a bulk semiconductor using the
Wigner-Eckart theorem:

pμ
vc = h̄

m0

∑
mc,mv

C
jcmc

jvmvjm√
2jf + 1

〈jc||pcv||jv〉S∗
c (kkk)Sv (kkk). (7)

This way coupling of the photon TAM state to the state of the
valence electron being excited becomes explicitly controlled
through the Clebsch-Gordan coefficients.

Going back to Eq. (4), one can rewrite it as

Mμ
vc = h̄

m0

∑
�

ei(kkkv−kkkc+qqq )·RRR�

jc∑
mc=−jc

jv∑
mv=−jv

C
jcmc

jvmvjm√
2jf + 1

× (εqqqλ)μ〈jc||pcv||jv〉S∗
c (kkk)Sv (kkk).

One can see that in this form coupling of the photon helicity
to the electronic TAM is explicitly extracted via the Wigner-
Eckart theorem.

III. PHOTOABSORPTION OF AN OAM PHOTON STATE

We use Bessel modes to describe the twisted photon states
[22]. The corresponding photon vector potential can be ob-
tained by angular spectrum decomposition into plane waves
with the fixed longitudinal wave vector �qz and pitch angle
θq = arctan(|�q⊥|/qz):

Aμ
κmγ qz�

(�r, t ) = e−iωt

∫
d2q⊥
(2π )2

aκmγ
(qqq⊥)εμ

qqqσ eiqqq·(ρρρ−bbb), (8)
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where aκmγ
(qqq⊥) = A(−i)mγ δ(κ − q⊥) exp(imγ φq ) is the

Fourier amplitude. The global polarization basis can be ex-
pressed as

εμ
qqqσ =

∑
m

D1 ∗
σm(0,−θq,−φq )ημ

m (9)

in terms of a local set of photon helicity states such as

η
μ
±1 = 1√

2
(0,∓1,−i, 0), η

μ
0 = (0, 0, 0, 1), (10)

where σ = ±1 is photon helicity and m = ±1, 0. For a more
detailed description of the twisted photon state we refer the
reader to, e.g., Refs. [22,32,33]. When substituting the plane-
wave vector potential in the underbracket of Eq. (1) with
Eq. (8) for a twisted beam, we get

Mμ
vc =

∫
d2q⊥
(2π )

aκmγ
(qqq⊥)e−iqqq⊥·bbb�

∫
V

ukc
(rrr )

× e−ikkkc ·rrreiqqq·rrr (ε̂qqqσ · ppp)ukv
(rrr )eikkkv ·rrrd3r, (11)

where the photon’s transverse wave vector is κ =
√

q2
x + q2

y .
Distinctively from the plane-wave case, qqq = qqq(φq, ρ, z) can-
not be assumed to be aligned with any particular direction,
but instead forms a cone with a fixed opening half-angle θq

around the beam axis (for the considered Bessel mode). The
reference frame is intuitively chosen to be at the optical axis
of the beam.

To evaluate photoelectron excitation rates and spin polar-
ization, we can proceed further in the following two steps.
1. Calculate transition matrix elements at the � point and
limit ourselves to the case when electrons in the conduction
band can be assumed to be quasilocalized at a particular ion
bbb� ≈ RRR�, or within an elementary cell of a crystal. 2. Consider
the possibility for electrons to migrate bbb� �= RRR�, in which
case OAM will be transferred from the photon to the electron
remote states, as well as ionic near states.

In what follows we will choose the first step and discuss
the second one at the end. Making the same approximations
as before and equating RRR� and bbb� we get

Mμ
vc =

∑
�

ei(kkkv−kkkc )·RRR�

∫
d2q⊥
(2π )2

aκmγ
(qqq⊥)eiqqq⊥·RRR�

×
∫

V

ukc
(rrr )eiqqq·rrr (ε̂qqqσ · ppp)ukv

(rrr )d3r. (12)

This result is similar to the one before Eq. (2) in
Ref. [16], except we keep the (qqq · rrr )-dependent exponent
inside the integral and use the expansion in vector spherical
harmonics

ε̂qqqσ eiqqq·rrr = −
√

4π
∑
jm

√
2j + 1

2
Dj ∗

σm(0,−φq,−θq )

× ση+1ij+ηA
μ

jη(qqq, rrr ), (13)

where A
μ

jη(qqq, rrr ) is the vector potential of multipolarity η and
order j . Substituting into the expression for the transition

matrix element, we obtain

Mμ
vc = −

√
4π

∑
jm

√
2j + 1dj

σm(θq )ση+1iη+j

×
∑

�

ei(kkkv−kkkc )·RRR�

∫
d2q⊥
(2π )2

aκmγ
(qqq⊥)eiqqq⊥·RRR�eimφq

×
∫

V

ukc
(rrr )[AAAjη(qqq, rrr ) · ppp]ukv

(rrr )d3r. (14)

If one would work out the dipolar approximation explicitly
for r ∼ a0 one will get

A
μ

E1 ≈ 1√
6π

j0(qr )
∑

i

χ̂ i
μ, (15)

where i is the summation over the chiral polarization basis.
After substituting it in Eq. (14) one gets

Mμ
vc = −

√
2

3

∑
jm

dj
σm(θq )ση+1iη+j

∑
�

ei(kkkv−kkkc )·RRR�

×
∫

d2q⊥
(2π )2

aκmγ
(qqq⊥)eiqqq⊥·RRR�j0(qR�)eimφq

×
∑

i

χ i
μ

∫
V

ukc
(rrr )pμukv

(rrr )d3r, (16)

where we are following the classical treatment for now and
assuming Eq. (2) as before. The last integral is the matrix el-
ement that one extracts from conventional methods of solving
for the semiconductor band structure. We can now factorize
and calculate the integral over the reciprocal space using the
vertical transition approximation∫

d2q⊥
(2π )2

aκmγ
(qqq⊥)eiqqq⊥·RRR�j0(qR�)eimφq

= (−i)2mγ −m

√
κ

2π
j0(q ′R�)Jmγ −m(κR⊥

� ), (17)

where q ′ = √
κ2 + q2

z . Substituting it into Eq. (16) and using
the form of the matrix element Eq. (8), we get

Mμ
vc = −

√
κ

3π

h̄

m0

∑
jm

(−i)2mγ −mdj
σm(θq )ση+1iη+j

×
∑

�

ei(kkkv−kkkc )·RRR�j0(q ′R�)Jmγ −m(κR⊥
� )

×
∑

mc,mv

√
2j + 1

2jf + 1
C

jcmc

jvmvjm〈jc||pppμ||jv〉S∗
c (kkk)Sv (kkk).

(18)

As one can see from this equation, c.f. Ref. [33], in this
case the quantum selection rules coming from the symmetry
of the individual ions of the lattice are not affected. The
momentum transfer to the crystal lattice is described by the
sum ∑

�

ei(kkkv−kkkc )·RRR�j0(q ′R�)Jmγ −m(κR⊥
� ). (19)
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An important observation to make is that in Eq. (18) we
have three factorized contributions: angular, envelope, and
ionic. Angular contribution d

j
σm(θq ) and the envelope sum

(19) are the terms, analogous to the ones in Eq. (13) in
Ref. [33], responsible for the modified selection rules. Sim-
ilar to the results of Refs. [32,33], Wigner rotation matrices
d

j
σm(θq ) suppress transitions with m �= σ , while the Bessel

function imposes the TAM projection conservation at the op-
tical vortex center, mγ = m, where m = mf − mi is ensured
by Clebsch-Gordan coefficients. These atom-like selection
rules adequately describe photoexcitations in � point in GaAs
[13,34], correctly predicting spin polarization of photoelec-
trons excited into the conduction band by Gaussian beams.

Coming back to the case when the equality RRR� = bbb� is
strongly broken, meaning that the excited electrons migrate
substantially from the location of its photoexcitation within
the time frame of interest (before ejection/recombination etc.),
the situation changes substantially. One should explicitly
calculate the lattice response, describing coupling of the
photon topological charge to the near and remote states of
the electrons. In this case one is not allowed to make an
approximation (2) since it assumes that the electromagnetic
field varies insignificantly in the photoexcited region of the
crystal, meaning that the optical response of all the ions is to
a large degree similar. However, this condition is violated for
singular beams. This development is the subject for extensive
group-theoretical analysis and computational effort. It should
involve singular beam modeling and the electron dynamics
simulations. Though having great potential, it is left outside
of the scope of this paper.

IV. SINGLE ION APPROXIMATION

It is known in the field [34] that GaAs electron wave
functions can be modelled with p-like (valence zone) and
s-like (conduction zone) single-atom electron wave functions.
This approximation is valid for transitions near the bandgap
qqq ∼ 0. According to Pierce et al. [13], “...when h̄ω � Eg ,
only transitions between states with well-defined orbital an-
gular momentum, characteristic of �, are induced...” for bulk
GaAs. These relate to the formalism, developed in Sec. III
by neglecting the photon TAM transfer to the ion lattice in
Eq. (18). For electron states in the � point in GaAs (λ =
871nm, a0/λ � 1) atom-like selection rules for the interband
electron transition is known to be a good approximation [34]
for plane-wave photons or Gaussian beams. Here we apply the
modified atom-like selection rules for the case of OAM-light
photoexcitations.

The energy band structure for GaAs is shown in Fig. 1,
along with new transitions allowed only for the twisted
photons. It results in the transition matrix element

Mμ
vc = −

√
κ

3π

h̄

m0

∑
jm

(−i)2mγ −m−η−j σ η+1

× dj
σm(θq )Jmγ −m(κR)

∑
mc,mv

√
2j + 1

2jf + 1

× C
jcmc

jvmvjm〈jc||pppμ||jv〉, (20)

FIG. 1. Energy bands for GaAs, shown along with the transitions
allowed for the twisted photons with right circular polarization.
Numbers in the circles indicate squares of Clebsch-Gordan coeffi-
cients. In addition to transitions with �m = 1 (solid vertical lines),
c.f. Ref. [13], for the twisted photons the transitions with �m = 0
(dash-dotted lines) and �m = −1 (dashed) are also allowed. For
strained GaAs, only the transitions from m = ±3/2 sublevels can
be selected by properly adjusting the laser’s wavelength [14].

where R identifies the position of a particular bound electron
with respect to the photon beam quantization axis. This is
the result identical to the one for photoexcitations of single
trapped ions, developed in Refs. [25,35]. It is important to
note the convenient separation of the terms responsible for
OAM-transfer in the underbracket Eq. (20) from the plane-
wave contribution 〈jc||pppμ||jv〉.

The photoexcitation rates
∑

mvmc
|Mμ

vc|, obtained from
Eq. (20) as a function of distance from the beam center are
depicted in Fig. 2. Since the considered transition P3/2 → S1/2

is of electric-dipole type, the rate is proportional to the beam
intensity profile [33].

In Fig. 3 we plotted the photoelectron’s spin polarization
in the conduction band

P =
∑

mv

(|Mμ
v;1/2|2 − |Mμ

v;−1/2|2
)

∑
mv

(|Mμ
v;1/2|2 + |Mμ

v;−1/2|2
) , (21)

including only transitions from the P3/2 band for unstrained
GaAs (left) and only from m = ±3/2 for strained GaAs
(right) (c.f. Refs. [13] and [14], respectively). The polariza-
tion maxima for circularly polarized cases are narrow and
localized in the low intensity regions at the center and on
the periphery. One can see that the polarization remains
unchanged for spin and OAM aligned with each other, while
it is altered at subwavelength distances near the beam center
for antialigned OAM and spin. The corresponding analytic
expressions for the electron polarization for θq → 0 are listed
in Table I. It should be noted that as long as the pitch angle θq

is small, the spatial pattern of polarization is independent of
it within O(θ2

q ) accuracy. Typical twisted-photon generation
approaches achieve θq ≈ 0.1 [25], making these predictions
accurate at the percent level.
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(a) (b)

FIG. 2. Photoexitation rate as a function of electron’s distance to the optical vortex center for the vortex pitch angle θq = 0.1 rad; long-
dashed blue is mγ = −2, dot-dashed black is mγ = −1, dashed red is mγ = 0, solid green is mγ = 1, dotted purple is mγ = 2. Incoming
photon polarization is (a) left-circular, (b) right-circular.

A crucial observation is that when averaging the electron
polarization over the entire transverse beam profile, one would
get 〈P 〉 = 0.5 cos θq for unstrained GaAs (and left-circularly
polarized light) and twice that value for strained GaAs, which
corresponds to a zero-OAM beam incident at a pitch angle
θq to the quantization axis. The sign of position-averaged
polarization is opposite for right circular polarization, and it
leads to null OAM effect on photoelectron polarization from
linearly polarized light, in agreement with the experiment [4].
Similarly to the twisted-light effect on individual atoms [22],
integration over the beam position results in the same absorp-
tion rate as for standard Gaussian beams up to an overall
factor cos θq . Therefore, subwavelength position resolution

is required for experimentally observing novel polarization
effects due to photon’s OAM.

Electron kinetics and currents generated by twisted light
in a conduction band were extensively studied by Quinteiro
et al. [15–17]. The authors in Ref. [18] further developed that
approach to study spin dynamics and predicted only slight
differences due to the photon OAM, also in agreement with
the experiment [4]. In these references, the electron response
was averaged over the beam profile, see Eq. (11) of Ref. [17]
and Eq. (2) of Ref. [18], that, as we show in our paper, leads
to the insensitivity to optical

OAM. The details of underlying approximations and as-
sumptions were presented in Ref. [16]. In contrast, we explore

(a) (c)

(d)(b)

FIG. 3. Photoelectron polarization as a function of the electron’s distance to the optical vortex center for the vortex pitch angle θq = 0.1
rad; long-dashed blue is mγ = −2, dot-dashed black is mγ = −1, dashed red is mγ = 0, solid green is mγ = 1, dotted purple is mγ = 2. GaAs
sample and incoming photon polarization, are, respectively, (a) unstrained and left-circular, (b) unstrained and right-circular, (c) strained and
left-circular polarization, and (d) strained and right-circular.

035204-5



MARIA SOLYANIK-GORGONE AND ANDREI AFANASEV PHYSICAL REVIEW B 99, 035204 (2019)

TABLE I. Photoelectron polarization for small θq [with accuracy
(O(θ 2

q )] for different sets of photon quantum numbers as a function
of the parameter x = 2πb/λ. Top two rows are for unstrained GaAs
and bottom two rows are for strained GaAs.

σ/mγ −2 −1 0 1 2

1 36−x4

72+36x2+2x4
4−x4

2(4+8x2+x4 )
− x2

4+2x2 −1/2 −1/2

−1 1/2 1/2 x2

4+2x2 − 4−x4

2(4+8x2+x4 )
− 36−x4

72+36x2+2x4

1 36−x4

36+x4
4−x4

4+x4 −1 −1 −1

−1 1 1 1 − 4−x4

4+x4 − 36−x4

36+x4

the impact parameter dependence close to the � point, i.e.,
spacial location of the photoelectron immediately after the
absorption. It is well known that transitions in the � point in
GaAs are well approximated by p-s atomic-like transitions.
Hence we allow OAM coupling to the electron near-states
that modifies the local set of selection rules, similar to single
atoms.

From the calculations and discussion above it follows that
to observe the described polarization effects, one needs to
design an experiment with subwavelength position resolution
and a method to mitigate the effects of photoelectron diffusion
that could smear the spatial distribution of polarization. One
possibility is to use a subwavelength sample of GaAs. For this
purpose, we calculated the average degree of photoelectron
polarization in a conduction band as a function of the GaAs
sample size, centered at the beam’s optical axis Fig. 4. As one

would expect, average asymmetry approaches the plane-wave
(or zero-OAM) limit as the radius r increases. Shaded areas
correspond to the limit when dimensional confinement effects
become strong, and the bulk GaAs approach is no longer
valid. Since confinement effects are not accounted for in
this formalism, our calculations are expected to diverge from
experimental results in the shaded regions. Nevertheless, one
can see from Fig. 4 that sample sizes of ≈200 nm potentially
allow to clearly observe the polarization effects due to OAM.

In our approach we start from Löwdin’s double-group for-
malism, followed by the approximate treatment GaAs electron
wave functions as the ones of s- and p-like single-ion electron
states. These allow exploiting electron OAM-conservation in
the near states with the subsequent description of an angular
momentum coupling via the Wigner-Eckart theorem. Conve-
nient factorization of the plane-wave contributions at the level
of the matrix element has been achieved. In addition, we made
specific predictions for photoelectron polarization from the
twisted light that could not be found in prior literature.

We emphasize that the proposed is an atom-like model ap-
proach applicable near the � point that has to be supplemented
by calculations of electron spin-relaxation effects. Predicted
here is an initial (in time) and localized (in position) photo-
electron polarization evolution of which has to be analyzed by
standard methods previously developed for GaAs.

V. CONCLUSION

We show theoretically that twisted photon beams have the
capability of transferring the angular momentum degrees of

(a) (c)

(d)(b)

FIG. 4. Photoelectron polarization averaged over the circular mesoscopic semiconducting target of radius r centered at the beam axis with
the pitch angle θq = 0.1 rad; long-dashed blue is mγ = −2, dot-dashed black is mγ = −1, dashed red is mγ = 0, solid green is mγ = 1,
dotted purple is mγ = 2. GaAs sample and incoming photon polarization, are, respectively, (a) unstrained and left-circular, (b) unstrained and
right-circular, (c) strained and left-circular polarization, and (d) strained and right-circular. Shadowed vertical regions indicate ten times lattice
periods for GaAs (r = 5.65 nm).
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freedom to electrons in semiconductors, when exciting them
in � point into conduction band of semiconducting crystal
lattice. The transfer signature may be observable in the form
of electron polarization. It differs from the theoretical value of
50% polarization for unstrained GaAs and 100% for strained
in beams without OAM. The spatial distribution of the photon
absorption rates are predicted to be proportional to the beam
intensity profile in the linear regime. As a result, the ab-
sorption rates follow the doughnut-like behavior characteristic
of Bessel or Laguerre-Gaussian beams. On the other hand,
the photoelectron spatial polarization pattern is predicted to
exhibit concentric rings of differing polarization states from
those expected from beams with zero OAM. In the case
with circularly polarized photons, one may expect to observe
polarization singularities near the optical vortex center for the
case when photon OAM and spin are antialigned, as well
as the rings, mentioned earlier. Spatial electron confinement
in arrays of quantum dots can produce similar and even
enhanced (due to higher position resolution) polarization pat-
terns. We find that photoelectron polarization averaged over
the beam position is zero for linearly polarized OAM light, in
full consistency with the experiment [4].

We demonstrate that for electron excitations in the � point
in GaAs, the photon beams with OAM should be able to trans-
fer TAM directly to electron degrees of freedom. It has been
argued that the traditional approach of position-averaging the
optical response over the entire semiconductor will not be
suitable for the more general description of photoexcitations
in a bulk semiconductor by singular beams. Possible ways to
tackle this problem are discussed. We show particular cases
when OAM and spin AM completely cancel each other in their
effect on the electron’s magnetic quantum number, leaving
only electron transitions with �m = 0; or OAM completely
dominates the photon’s spin effect, such that �m has the
opposite sign compared to the transitions caused by plane-
wave photons.

We show that the geometric dimensions of the areas of
the abnormal photoelectron polarization in a vortex center is
only defined by the beam’s topological charge and photons

wavelength in paraxial approximation. It is shown to be inde-
pendent of the vortex pitch angle θq or the “doughnut” radius
in the Bessel-beam intensity profile, while the photoexcitation
rate remains strongly dependent on θq . The electron’s polar-
ization significantly changes over the subwavelength distance
(≈λ/3) away from the vortex center. Therefore the mentioned
independence of the polarization profile on the “doughnut”
size can be instrumental for polarization-enhanced subwave-
length resolution optical microscopy. The same polarization
feature can possibly be used for the alignment of laser beams
in space with subwavelength accuracy.

To verify the above predictions experimentally, it is impor-
tant to localize the photoexcited electron within the photon’s
subwavelength distance around the optical vortex center. Oth-
erwise, the electron’s diffusion would smear the polarization
pattern. Such effects are likely to be seen in submicron-sized
samples of GaAs, or quantum dots, with nonoverlapping
(isolated) atomic-like electron states.

If verified experimentally, the predicted polarization be-
havior could contribute to the study of semiconductor electron
devices, polarized electron sources, and photovoltaic cells.
It will provide new insight into spatial-temporal dynamics
of photoelectrons at the scales of a fraction of photon’s
wavelength. This formalism can be directly applied to the
development of fluorescence theory in GaAs, which poten-
tially could help us learn more about its bulk properties and
band structure. Using the formulation of the photoabsorption
matrix element, from Sec. III, one could also proceed with the
development of the solid state theory of dark excitons [36] in
semiconductors.
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