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Metallic states induced by quantum lattice fluctuations
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We developed a tractable many-body theory in which quantum lattice fluctuations beyond the adiabatic
approximation, as well as electronic fluctuations, can be described. A many-body wave function is constructed by
the superposition of direct products of Slater determinants for the electrons and the coherent states of phonons.
The method was applied to a one-dimensional electron system with Su-Schrieffer-Heeger electron-phonon
coupling. We show that, in the heavily doped regime, the quantum lattice fluctuations due to the collective
motion of charged solitons cause a power-law singularity in the wave-number dependence of the electron density
nk at the Fermi wave number k = kF . This indicates that a metallic state is induced by heavy doping, and it is
a Tomonaga-Luttinger liquid. The current results can solve a long-standing problem for the electronic state of
heavily doped polyacetylene, the coexistence of Pauli paramagnetism along with a strong infrared-active light
absorption.
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I. INTRODUCTION

Conducting polymers have a long history of significant
contributions to technology. Nevertheless, the mechanism of
their conductivity is still not well understood. Let us take
trans-polyacetylene as an example. This material has a one-
dimensional dimerized lattice at half filling due to 2kF nest-
ing, which is called a Peierls instability. As a result, the band
is doubly folded, and a Peierls gap opens at the Fermi wave
number kF . Thus, pristine polyacetylene is a semiconductor,
but its conductivity dramatically increases with doping [1].
One of the most mysterious features of polyacetylene is that it
does not show Pauli susceptibility in the lightly doped regime,
at which point its conductivity almost reaches the level of a
metal. A dimerized lattice has doubly degenerate alternating
phases, such as (short bond)-(long bond)-(short bond)... or
(long bond)-(short bond)-(long bond).... Therefore, there exist
topological defects, called solitons, that convert alternating
phases into each other. Interestingly, a charged soliton has a
net charge of e but no spin, while a neutral soliton has no
charge but 1

2 spin [2]. In other words, spin-charge separation
is realized in these solitons on a one-dimensional lattice.
In addition to this lack of Pauli susceptibility, infrared (IR)
absorption experiments [3] show that the carriers are charged
solitons in the lightly doped regime. On the other hand,
polyacetylene shows Pauli susceptibility in the heavily doped
regime [4], which strongly suggests that it acts as a normal
metal. In fact, variational Monte Carlo (VMC) simulation [5]
and density-matrix renormalization-group (DMRG) [6] calcu-
lations have suggested that the lattice dimerization vanishes in
the heavily doped regime mainly due to electron correlation
effects, and the system becomes a simple metal. However,
optical experiments show that polyacetylene still has a strong
IR component, whose intensity is proportional to the doping

ratio [7]. This result indicates that charged solitons survive
heavy doping. As mentioned above, a soliton is a topological
defect that changes the phase of lattice dimerization. There-
fore, the persistence of solitons means that lattice dimerization
is maintained in the heavily doped regime, which contradicts
the above-mentioned theoretical predictions. Thus, the lattice
structure and mechanism of conductivity in polyacetylene
have been open questions for a long time. Similarly, in other
conducting polymers, it is unclear how they become metallic
by doping [8,9].

One of the most difficult aspects in describing conducting
polymers is the strong electron-phonon coupling. In fact,
their lattice structures easily change by doping. To date, such
lattice structures have been described adiabatically by the
Hellmann-Feynman theorem. Usually, this adiabatic treatment
is relatively accurate, because the energy scale of phonons
is smaller than that of electrons. However, in conducting
polymers, lattice solitons (or polarons) form a band inside the
gap between the valence and conduction bands. As a result,
the gap between the valence (or conduction) and soliton (or
polaron) bands becomes very small especially in the heavily
doped regime. In light of this situation, it is better to treat
the lattice quantum mechanically and go beyond the adiabatic
approximation, because the lattice can fluctuate significantly
in real materials. One of the authors (A.T.) suggested that
a quantum-mechanical treatment of the lattice would be im-
portant for understanding the metallic nature of polyacety-
lene using quantum Monte Carlo (QMC) simulations [10].
In that research, however, the nonadiabatic effects of the
lattice were only partially included, and the QMC calculations
could not give clear results on the metallic state or quantum
lattice fluctuations. Recently, we developed a tractable many-
body theory which describes quantum lattice fluctuations
beyond the adiabatic approximation [11]. The lattice is treated
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quantum mechanically using a coherent-state representation,
and nonadiabatic effects are included using the superposition
of different coherent states. This is an extension of the resonat-
ing Hartree-Fock (Res-HF) approximation. In previous Res-
HF wave functions, the electron correlation effects were de-
scribed by the superposition of nonorthogonal Slater determi-
nants [12]. We could visualize the quantum electronic fluctua-
tions by analyzing the Slater determinants. On the other hand,
in the present Res-HF theory, we can directly see quantum
lattice fluctuations, as well as quantum electronic fluctuations,
by analyzing the coherent states and Slater determinants.

In the present paper, we try to clarify the lattice and
electronic structure of polyacetylene. In particular, the goal
is to understand the doping dependence of the carriers and
the lattice structures in the framework of quantum mechanics,
beyond the adiabatic approximation. Through such doping
dependence, we can reasonably understand the IR and Pauli
paramagnetic susceptibility experiments. We calculate the
wave-number dependence of the electron density nk , to find
if the carriers have a Tomonaga-Luttinger liquid (TLL) con-
tribution or not. In a TLL (a Fermi liquid), nk has a power-law
singularity (a jump) at the Fermi wave number kF [13], while
nk has neither a power-law singularity nor a jump at kF in an
insulator. We will show that nk changes gradually around kF

in the lightly doped regime, which indicates that the carriers
are not simple holes (or electrons). In fact, from the structures
of the Slater determinants and coherent states, we will see that
the carriers are charged lattice solitons, which is consistent
with previous work [3]. On the other hand, nk shows an abrupt
change with a singularity at kF in the heavily doped regime,
which indicates that the heavily doped state is a TLL. The crit-
ical exponent for nk in the vicinity of k = kF , characteristic of
a TLL, is roughly estimated to be 0.23 at 16% hole doping.
We should note that a TLL in one dimension can produce
the Pauli susceptibility seen in Fermi liquids in higher di-
mensions [13]. Furthermore, from the structures of the Slater
determinants and coherent states, we can see directly that
charged solitons survive heavy doping. Therefore, the strong
IR components can be explained by charged solitons, even in
the heavily doped regime. We propose that the quantum lattice
fluctuations beyond the adiabatic approximation close the gap
between the valence (or conduction) and soliton bands, and
as a result, the system has a TLL contribution even with
charged lattice solitons. These results can explain the Pauli
paramagnetic susceptibility and IR experiments consistently.

The present paper is organized as follows. The theoretical
framework is introduced in Sec. II. The results and discussion
are given in Sec. III. Finally, we give a brief summary in
Sec. IV.

II. METHODS AND MODEL

In this research, the lattice is treated quantum mechanically
using a coherent-state representation, which is given by

|φ〉 = e−|z|2/2ez·b† |0〉 , (1)

where |0〉 is vacuum of phonons. z = {zk} is a probability
amplitude for the corresponding phonon mode represented by
b† = {b†k}, where −π � k < π . These phonon modes consti-
tute the basis set to describe the lattice quantum mechanically.

In the following one-dimensional system, we set the uni-
form equidistant lattice as the corresponding crystal structure.
Then, displacements from the corresponding structure and
momentum of nth site can be described using the second
quantization form:

qn =
∑

k

√
h̄

2MNω(k)
(bk + b

†
−k )eikn, (2)

pn = i
∑

k

√
Mh̄ω(k)

2N
(b†k − b−k )e−ikn, (3)

where ω(k) = 2(K/M )1/2| sin k/2|. The lattice points can
deviate from their equidistant positions, but they never leave
the solid, which leads to

〈φ|pn|φ〉 = i
∑

k

√
Mh̄ω(k)

2N
(z∗

k − z−k )e−ikn = 0. (4)

Here, we use the fact that the coherent state is an eigenstate of
the annihilation operator, such that

bk |φ〉 = bke
−|z|2/2ez·b† |0〉 = zk |φ〉 . (5)

From Eq. (4), we obtain

z∗
k = z−k. (6)

Then, the lattice displacement is given by

〈φ|qn|φ〉 =
∑

k

√
h̄

2MNω(k)
(zk + z∗

−k )eikn

=
∑

k

√
2h̄

MNω(k)
zke

ikn. (7)

Thus, probability amplitude {zk} is directly related to the
lattice displacement {qn}.

Now, we show how to apply this coherent-state represen-
tation. In the following, we employ the extended Hubbard
model with Su-Schrieffer-Heeger (SSH) electron-phonon
coupling [2], in which the Hamiltonian is given by

H = HSSH + Hph + He−e

= −
N∑
i,σ

(t − αXi )(c
†
i+1,σ ci,σ + c

†
i,σ ci+1,σ )

+
N∑
i

[
1

2M
p2

i + K

2
X2

i

]

+U

N∑
i

ni,↑ni,↓ + V

N∑
i

ni+1ni, (8)

Xi = qi+1 − qi, (9)

where c
†
i,σ (ci,σ ) represents a creation (annihilation) operator

for an electron with spin σ at the ith site, while ni,σ =
c
†
i,σ ci,σ and ni = ni,↑ + ni,↓. Here, we impose a periodic

boundary condition. This periodic ring has DN symmetry,
where N represents the system size. The parameters t, U ,
and V denote the hopping integral for the nearest-neighbor
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sites of the uniform equidistant lattice, the on-site, and the
nearest-neighbor Coulomb interactions, respectively. α and K

represent the electron-lattice interaction parameter and spring
constant, respectively, while M is the mass of a lattice point.
This model is often used to investigate trans-polyacetylene,
in which the lattice points are carbon atoms. When an atom
moves from its equidistant position, its bonds with neigh-
boring atoms lengthen or shorten, and the electron hopping
integrals of the bonds change. This bond-length dependence
of the electron hopping integral is included up to the first order
in the deviation Xi . These {qi} and {pi} are treated quantum
mechanically, as shown in Eqs. (2) and (3).

For the electron-phonon coupled system, the wave function
is constructed using the superposition of direct products of
Slater determinants for electrons and the coherent states of
phonons. In the present Res-HF method, we approximate this
using the superposition of a finite number (NS) of direct
products of the following form:

|�〉 =
∑
P

NS∑
f =1

Cf P̂ |ψf 〉 |φf 〉 =
∑
P

NS∑
f =1

Cf P̂ |ψf φf 〉 , (10)

where |ψf 〉’s represent the Slater determinants for electrons
while |φf 〉’s denote the coherent states of phonons. Cf ’s are
the superposition coefficients. In the Res-HF method, we em-
ploy the unrestricted Hartree-Fock (UHF) symmetry-broken
Slater determinants and coherent states. Each Slater determi-
nant (and coherent state) is nonorthogonal to the others. The
large quantum fluctuations are effectively described by using
such nonorthogonal Slater determinants (and coherent states).
Because the true many-body wave function should possess
the original symmetry of the system represented by DN , we
carry out symmetry projections, schematically represented by
P̂ in Eq. (10). When we apply the spatial symmetry projec-
tions, the electronic states and the lattice are simultaneously
translated and rotated. In the case of NS = 1, it becomes the
Hartree-Fock (HF) approximation, especially if we do not
adopt the symmetry projections P̂ . On the other hand, in the
case of NS � 2, different electron-phonon coupled states are
superposed, and the wave function can describe the quantum
interference or quantum fluctuations. We should note that
all of the Slater determinants and coherent states have their
own independent orbitals and probability amplitudes, respec-
tively. Therefore, nonadiabatic effects are naturally included
in the Res-HF wave function. We optimize the orbitals for all
the Slater determinants and the probability amplitudes in all
the coherent states, as well as the superposition coefficients
[11].

The expectation value of the energy is given by

E =
∑
f,g

Cf Cg 〈φf ,ψf |H |ψg, φg〉 , (11)

where we omit the symmetry projection operator for simplic-
ity. This expectation value is divided into three terms:

〈HSSH 〉fg = −t 〈φf |φg〉
∑
i,σ

〈ψf |hi,σ |ψg〉

+α
∑
i,σ

〈φf |Xi |φg〉 〈ψf |hi,σ |ψg〉 , (12)

〈Hph〉fg
= 〈φf ,ψf |ψg, φg〉

∑
k

h̄ωkz
∗
f,kzg,k, (13)

〈He−e〉fg = 〈φf |φg〉
∑

i

〈ψf |Uni,↑ni,↓ + V nini+1|ψg〉 , (14)

where hi,σ = c
†
i+1,σ ci,σ + (H.c.). For practical calculations of

the coherent states, we can use the relations

〈φf |φg〉 = e− ∑
k |zf,k−zg,k |2/2, (15)

〈φf |qn|φg〉 =
∑

k

√
h̄

2MNω(k)
〈φf |(bk + b

†
−k )|φg〉 eikn

=
∑

k

√
h̄

2MNω(k)
(zg,k + z∗

f,−k ) 〈φf |φg〉 eikn

=
∑

k

√
h̄

2MNω(k)
(zg,k + zf,k ) 〈φf |φg〉 eikn

= 〈φf |φg〉
2

[〈φf |qn|φf 〉 + 〈φg|qn|φg〉], (16)

where we use Eqs. (2), (5), (6), and (7) to derive Eq. (16).
Then, we obtain

〈φf |Xi |φg〉 = 〈φf |φg〉
2

[〈φf |Xi |φf 〉 + 〈φg|Xi |φg〉]. (17)

Details of the optimization procedures can be found in previ-
ous work [11], where we clarified the quantum fluctuations in
the charge density wave (CDW) ground state. One of the most
important points is that the Slater determinants are optimized
for the collective potential energy landscape created by all the
coherent states, not individually. Thus, the present formalism
naturally goes beyond the adiabatic approximation.

In previous papers, we demonstrated that the Res-HF
method can well describe the electron correlation effects
for the one- and two-dimensional Hubbard models without
the electron-phonon coupling [14,15]. On the other hand, in
the present system, many-body effects due to the electron-
phonon coupling are also important. There are pioneering
works which treat SSH electron-phonon coupling quantum
mechanically using the DMRG [16] and QMC [17,18] meth-
ods. To check the accuracy of the present Res-HF method,
we compare the ground-state energies at half filling. The
ground-state energy using the DMRG method depends on
the number of oscillator levels per site, and it changes from
−58.440 (single phonon per site) to −60.221 (seven phonons
per site) at half filling with N = 40, ω = t, U = 4V = 2.5t ,
and g =

√
α2/Kt = 0.1 [16]. On the other hand, the Res-HF

energy for the ground state with NS = 5 generating Slater de-
terminants and coherent states is −60.148. Thus, the Res-HF
approximation gives 98% of the correlation energy (difference
in energy from the HF ground state) calculated by DMRG,
and we can safely say that the Res-HF method is a very
good approximation to describe correlated systems with the
electron-phonon coupling. Furthermore, for Ns � 3, nk very
weakly depends on NS as shown later, and this convergence
behavior shows that the present Res-HF method with Ns = 5
is reliable to calculate nk .
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III. RESULTS AND DISCUSSION

Before showing our results, we define several physical
quantities, through which we are able to analyze the lattice
and electronic structure, including

Qf (l) = 〈ψf , φf | ql |ψf , φf 〉 ,

CDf (l) = 〈ψf , φf |
∑

σ

(c†lσ clσ − 1) |ψf , φf 〉 ,

SDf (l) = 〈ψf , φf |
∑

σ

σc
†
lσ clσ |ψf , φf 〉 .

Qf (l) represents the lattice displacement from the corre-
sponding equidistant position for the f th configuration, while
CDf (l) and SDf (l) denote the charge and spin density, re-
spectively. To see the lattice and electronic structure clearly,
physical quantities, represented by Of (l), can be decomposed
into their net (NO) and alternating (AO) components, as in

Of (l) = NOf (l) + (−1)lAOf (l). (18)

In the following calculations, the energy is scaled by t .
α and K are set at 0.29 and 0.23, respectively, while ω =
2(K/M )1/2 is set at 0.066. These values are reasonable for
polyacetylene [2,19]. First, we show the structure of the wave
function for U = V = 0. If we treat the lattice classically and
determine the lattice displacements qi adiabatically, we can
easily diagonalize the Hamiltonian for U = V = 0. However,
it gives the approximate classical adiabatic solution. This
Hamiltonian cannot be exactly solved even for U = V = 0, if
we treat the lattice quantum mechanically and go beyond the
adiabatic approximation. We should note that this comes at the
cost of a substantial increase in complexity. The model intrin-
sically includes a many-body problem because of the electron-

phonon coupling. In fact, we have shown in a previous paper
that a quantum nonadiabatic treatment for the lattice yields
a significantly lower ground-state energy, compared with a
classical adiabatic treatment [11]. In the current calculations,
we superpose five configurations (NS = 5), each of which is
composed of direct product of a Slater determinant and the
coherent state, to construct the many-body wave function. In
Fig. 1, we show the lattice structure of the wave function at
half filling (N = Ne = 198). Here, N represents the system
size, and Ne is the number of electrons. For the sake of
brevity, the lattice structures of three typical configurations
are shown. As mentioned above, the Qf (l) values for the
lattice structure are obtained from the optimized f th coherent
state using Eq. (7). In this figure, a positive (negative) Q

value denotes that the lattice point moves right (left). We can
see that all of the optimized coherent states have dimerized
lattices. Therefore, the ground state can be regarded as a
bond order wave (BOW) state. However, from AQ values
representing the amplitudes of the dimerization, it is clear that
these lattices have some modulation compared with a uniform
dimerization. Translation and inversion of each configuration
along with superpositions of these configurations form the
many-body wave function. There are no significant spin or
charge components, though they are omitted from Fig. 1.
Thus, the quantum fluctuations can be primarily described
by the translational motion of these modulations from the
uniform lattice in the case of half filling. Much larger defects,
such as lattice solitons, do not play an important role in this
case.

Next, we show in Fig. 2 the lattice and electronic struc-
ture for the wave function with N = 198 and Ne = 194,
which corresponds to approximately 2% hole doping. The
wave function is also composed of five configurations, and

FIG. 1. Lattice structures for three of the five coherent states superposed to generate the wave function at half filling.
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FIG. 2. Lattice and electronic structures for three of the five coherent states superposed to generate the wave function at N = 198 and
Ne = 194.

we show the structures of three typical examples. All of
the lattices deviate largely from uniform dimerization, and
significant charge components appear. To investigate these
structures more closely, the alternating components of the
lattice displacements (AQ) and charge densities (ACD), as
well as the net components of the charge densities (NCD),
are shown in Fig. 3. The configurations are the same as in
Fig. 2. All of the AQ values change their signs four times,
which corresponds to the number of holes. The ACD and
NCD components arise where the AQ values change signs.
We can consider the lattice and electronic structures shown in
Figs. 2 and 3 as charged lattice solitons, since they convert the
phase of the dimerization, and have net charge but no spin. It
should be noted that the present calculation is not a simple
HF approximation, but a nonorthogonal multiconfiguration
approach. As a result, the character of the charged soliton from
the HF approximation appears to be slightly modified. Nev-
ertheless, we can safely conclude that doped holes become
charged lattice solitons. To observe the essential quantum
fluctuations, we show the AQ components of all five config-
urations in Fig. 4. In this figure, the lattice points are shifted
so that the first soliton occurs at the 17th site. We can see that
the distances between solitons are different in different con-
figurations. These differences lead to the quantum vibrational
(breathing) motion of solitons. Thus, quantum fluctuations in
the present lightly doped system can be primarily described by
the translational and vibrational motions of the charged lattice
solitons.

Here, we briefly mention the difference between the
present results and previous ones in Ref. [11]. In the previous
paper, we investigated the quantum fluctuations in the CDW
ground state. When we dope the CDW state, charged CDW
solitons are formed. These charged CDW solitons induce the
BOW-like structure around the soliton centers. On the other
hand, in the present studies, the BOW state is the ground

state, and charged lattice solitons are created by doping. These
charged lattice solitons induce the CDW-like structure around
the soliton centers. As a result, in both cases, the BOW and
CDW structures are coexisting. They look quite similar but we
should note that they are physically different. In the present
paper, we are investigating quantum fluctuations in the BOW
state by changing the doping ratio.

Moving to a heavily doped system, Fig. 5 shows the
lattice and electronic structures for N = 198 and Ne = 166,
which corresponds to approximately 16% hole doping. The
wave function is constructed using five configurations, and
we show the lattice and electronic structures of four typical
configurations. First, from AQ and ACD values in Fig. 5(1),
we can see that 32 lattice solitons occur in this configuration.
The structures of the NCD are rescaled in the second panel of
the right column, and it can be seen that the charge comes
primarily from the lattice solitons. This configuration also
contains extra structures between sites 196 and 5 (wrapped
around due to the periodic boundary condition). The SD
and NCD show that this defect has both spin and charge
components. Although we did not find clear HF states corre-
sponding to these structures, we can suggest that they would
be an electronic polaron-antipolaron pair inside the charged
lattice solitons. The charged lattice solitons induce a charge
density wave (CDW) regime and a polaron-antipolaron pair
appear in this CDW regime. In fact, the electronic polaron
is known to induce spin density waves (SDWs) and bond
order waves (BOWs) in the CDW regime [20]. If this induced
BOW matches (or mismatches) the alternating phase of the
lattice dimerization, the AQ is enhanced (or suppressed).
We can see such an electronic polaron-antipolaron pair in
Figs. 5(3) and 5(4). Polarons or bipolarons are often ob-
served in nondegenerate systems, while the present model
has degenerate alternating phases for the lattice dimerization.
Therefore, finding quantum fluctuations due to polaron pairs
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FIG. 3. Alternating components of the lattice structure (upper panel), and alternating and net components of the charge density (middle
and lower panels, respectively) with N = 198 and Ne = 194. The coherent states and Slater determinants in Fig. 2 are decomposed.

is interesting. However, the contributions of the polarons to
the total charge are small, and such quantum fluctuations
will play a minor role, compared with those of the charged
solitons. In fact, Figs. 5(2)–5(4) show that lattice solitons are
also formed in these configurations, and they dominate the
total charge calculations. The distances between solitons are
different in different configurations. Furthermore, the shapes
of the solitons are also different. These differences, as well
as the translation of solitons, cause the dominant quantum
fluctuations in the system.

These solitons are very important when explaining the
result of IR experiments. The IR intensity cannot be from a
uniform charge distribution, as in a simple metal, but requires
a spatially dense and sparse distribution of charge. As shown
above, the charged solitons produce such a charge distribution.
Therefore, the persistence of the charged solitons accords
with the IR experiments. Furthermore, our results show that
the number of solitons increases linearly with doping. In
fact, the experimentally observed IR intensity also increases
proportionally with the doping ratio [4]. Thus, the current

FIG. 4. Alternating components of the lattice structure for all five configurations. We focus on the lattice points where the AQ value
changes sign.
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FIG. 5. Alternating components of the lattice structure and charge density (left panels), overall and rescaled net components of the charge
density (upper and middle panels right, respectively), and the spin density (right bottom panel) at N = 198, Ne = 166.

results are consistent with the IR experiments on doped
polyacetylene.

One of the most serious inconsistencies with IR exper-
iments is the measured Pauli susceptibility. In the heavily
doped regime of polyacetylene, a finite Pauli susceptibility has
been observed [4]. A TLL in one dimension can yield such a
Pauli susceptibility, but charged solitons cannot. Recall that

charged solitons do not have a spin component. Therefore,
the origin of the Pauli susceptibility has been debated for a
long time. In this research, we show the possibility that the
quantum fluctuations due to the charged lattice solitons create
a significant TLL component in the doped system. Figure 6
shows the doping dependence of nk . Here, nk represents
the momentum dependence of the electron density, which is
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FIG. 6. Doping dependence of nk for N = 198. kF is given
by Neπ

2N
.

defined by

nk = 1

N

∑
l,l′,σ

〈�| c†l,σ cl′,σ e−ik(l−l′ ) |�〉 . (19)

When there are no interactions or lattice distortions, the
system has a metallic band without ever exhibiting a gap.
In such a case, the momentum is a good quantum number
to determine the state of electrons, and the quasiparticles
are just bare free electrons. At zero temperature, as is being
considered here, the nk values show a jump at the Fermi
wave number. When the electron-electron or electron-phonon
interactions are switched on in the system, the quasiparticle
loses its free-electron component. As a result, the jump in nk

at the Fermi wave number decreases. If the system becomes an
insulator, nk is analytic even at k = kF without a singularity.
On the other hand, if the system is a metal, nk values show a
singularity at k = kF . In the case of one-dimensional systems,
such a metallic state is believed to be a TLL. Thus, instead of
measuring the band gap itself, which is quite complicated to
determine in the correlated systems, we focus on the doping

dependence of nk , which gives important information on the
electronic states of the system. If nk shows an abrupt singular
change and does not show a jump at the Fermi wave number,
the electrons there must possess significant TLL components,
and we can conclude that the system is metallic.

Now, we turn to Fig. 6. In the case of half filling (black
circles), nk changes very gradually at the Fermi wave number.
In this case, as is well known, a Peierls gap opens at the Fermi
wave number due to perfect nesting. This Peierls mechanism
is essentially the same as with the usual band-gap formation
due to the nesting of the reciprocal vectors. The original
free-electron component is drastically reduced by the mixing
of states connected by the 2kF reciprocal vectors. As a result,
nk does not possess a singular component at the Fermi wave
number. Thus, the current situation with nk that gradually
changes at the Fermi wave number corresponds to a Peierls
insulator at a half filled system. The change in nk at the Fermi
wave number is still gradual in the case of Ne = 194, which
corresponds to approximately 2% doping. It starts to show an
abrupt change at the Fermi wave number when Ne is less
than 186. In the case of heavy doping, like Ne = 170 and
166, nk shows a very steep change at the Fermi wave number,
which suggests that the carriers have large TLL contributions.
Therefore, the present result suggests that the system becomes
metallic in the heavily doped regime.

To see how critically nk changes at k = kF , we show
the system size dependence of the first- and second-order
derivatives of nk at k = kF in Figs. 7(a) and 7(b), respectively.
In these figures, ρ represents Ne/N , and the hole-doping ratio
corresponds to 1 − ρ. For each ρ, we choose several sets of
N and Ne, whose ratio Ne/N become ρ up to the second
decimal place. In the half filled (black circles) and 2% doped
(gray circles) cases, the first-order derivatives are saturated
and the second-order derivatives go to zero as the system size
increases. This indicates that nk is a smooth function, and
k = kF is a normal inflection point in the half filled and lightly
doped cases. On the other hand, the first-order derivatives
keep increasing with increasing system size, for ρ � 0.94.
Furthermore, the second-order derivatives also keep increas-
ing in these cases. These results show that both the first- and
second-order derivatives diverge at k = kF , which indicates

FIG. 7. Size dependence of the absolute values of the first-order (a) and second-order (b) derivatives of nk at k = kF for U = V = 0.
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FIG. 8. Lattice and electronic structures of three of the five coherent states superposed to generate the wave function for (U, V ) = (1.0, 0.5)
at N = 198 and Ne = 194.

that nk has a singularity at k = kF in the heavily doped
regime. From the critical behavior in nk at k = kF , shown
above, we can conclude that the system becomes a TLL or
a Fermi liquid. However, the possibility of a Fermi liquid can
be excluded as shown later. We should note that a TLL can
contribute to the Pauli susceptibility [13]. The role of electron-
correlation effects in polyacetylene has been a debating issue
for a long time. In the present research, we demonstrated
that the electron-phonon coupled system can be metallic in
the heavily doped regime without electron-correlation effects.
Our results for U = V = 0, shown above, indicated that the
quantum lattice fluctuations due to the collective motion of
the charged solitons lead to a metallic ground state, which
gives rise to both the observed Pauli susceptibility and the IR
response.

Next, we show results for U = 1.0, V = 0.5. First, we
clarify the differences in the structures of solitons. In the case
of U = V = 0, as shown in Fig. 2, CD does not have any
negative components where solitons are created. These are
called amplitude solitons. To compare the structures of the
solitons, we show the lattice movements Q and CD for U =
1.0, V = 0.5 with Ne = 194 (the same number of electrons as
in Fig. 2) in Fig. 8. We can see the negative components of CD
where the solitons are created. These are called phase solitons.
Sasai and Fukutome pointed out that only phase solitons can
explain the results of x-ray photoelectron spectroscopy (XPS)
and NMR experiments on polyacetylene [21,22]. Thus, the
Coulomb interaction is important in polyacetylene. On the
other hand, in our calculation, the lattice becomes equidistant,
and the solitons disappear, when the Coulomb interactions are
large (U � 1.5), which is consistent with previous DMRG
results [6]. The state with an equidistant lattice and no lattice
solitons is a simple metal, which explains the measured Pauli
susceptibility. However, the simple metal on an equidistant
lattice cannot explain the IR experiments. Thus, the strong
(or even intermediate) electron-correlation effects do not pro-
duce a reasonable ground state for polyacetylene. We suggest

that the Coulomb parameters for polyacetylene must lie in
a very small range, with finite but small U and V values,
which is consistent with previous work [23]. In the case
of U = 1.0, V = 0.5, the doping dependence of the lattice
and electronic structure is qualitatively the same as for U =
V = 0, though the structures of the solitons are different.
We show the size dependence of the first- and second-order
derivatives of nk for U = 1.0, V = 0.5 in Fig. 9, which are
also qualitatively the same as in Fig. 7. Thus, we can conclude
that polyacetylene can be metallic with phase solitons.

Here, we discuss whether the metallic state of polyacety-
lene is really a TLL. In the case of a TLL, nk has a singularity
at k = kF given by

lim
k→kF

∣∣nkF
− nk

∣∣ = C|kF − k|α, (20)

where the critical exponent α(< 1) depends on the system and
doping ratio for the one-dimensional Hubbard model. On the
other hand, in the case of a Fermi liquid, nk has a jump at k =
kF whose amplitude corresponds to the weight of the coherent
component in the quasiparticle. Therefore,

lim
k→kF

∣∣nkF
− nk

∣∣ = const. (21)

In the case of an insulator, nk is differentiable at k = kF , and
therefore

lim
k→kF

∣∣nkF
− nk

∣∣ =
∣∣∣∣dnk

dk

∣∣∣∣
k=kF

× |kF − k|. (22)

Thus, nk of a TLL, a Fermi liquid, and an insulator show
different behaviors in the vicinity of k = kF . Figure 10 shows
the |kF − k| dependence of |nkF

− nk| for N = 198, Ne =
166, and (U,V ) = (1.0, 0.5) in log-log scale. By taking two
points nearest to kF , we obtain α = 0.23. If the system is a
Fermi liquid, α should be 0, or α should be 1 if the system
is an insulator. The obtained value of α = 0.23 clearly shows
that the system is a TLL. It is difficult to determine the critical
exponent α precisely. However, in the present calculations,
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FIG. 9. Size dependence of the absolute values of the first-order (a) and second-order (b) derivatives of nk at k = kF for (U, V ) =
(1.0, 0.5).

|kF − k| is as small as 0.016 in the nearest point and therefore,
α = 0.23 would not be a bad estimation.

The second-order derivative shows how rapidly the curva-
ture changes. In other words, it represents changes beyond
linear behavior. The difference of nk between two neighboring
points changes rapidly when the second-order derivative is
large, while nk varies almost linearly when the second-order
derivative is small. Thus, the second-order derivative is often
used to represent the critical behavior, or abrupt changes
beyond a linear dependence. From the current calculations, we
can conclude that the second-order derivative of nk diverges in
the thermodynamic limit in the heavily doped regime. How-
ever, the change of nk itself is finite at k = kF , and therefore
d2nk

dk2 (�k)2 should be finite there also. So, the second-order
derivative can still be used to represent the critical change of
nk . In Fig. 11, we show the doping dependence of | d2nk

dk2 |(�k)2

at k = kF for N = 198. Interestingly, this doping dependence
qualitatively agrees with the experimentally observed doping
dependence of the Pauli susceptibility [4]. This coincidence is

FIG. 10. |kF − k| dependence of |nkF
− nk| for N = 198, Ne =

166, and (U,V ) = (1.0, 0.5) in log-log scale.

natural, because the amplitude of a singular change at k = kF

will correspond to the weight of a TLL which can give the
Pauli susceptibility. Thus, the present numerical calculations
can explain both the IR and Pauli susceptibility experimental
results consistently.

Finally, we discuss how a metallic state with Pauli sus-
ceptibility can be realized with lattice solitons. A possible
explanation is shown schematically in Fig. 12. Solitons are
known to form midgap states between the valence and con-
duction bands [2]. With increasing doping, these mid gap
states form a so-called soliton band. In the classical adiabatic
approximation, this soliton band is isolated from both the
valence and conduction bands, even in the heavily doped
regime. In other words, a metallic state cannot be realized
in the framework of the classical lattice approximation (left
panel of Fig. 12). In the middle panel of Fig. 12, we show
schematically the nonadiabatic effects of the lattice. For the
Res-HF wave function, we superpose different coherent states
which make different lattice structures. The electron motion
is affected by the potential-energy landscape created by these
different lattice structures. In a previous paper [10], one of

FIG. 11. Doping dependence of | d2nk

dk2 |(�k)2 at k = kF for
(U, V ) = (1.0, 0.5) and N = 198.
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Nonadiabatic

FIG. 12. Schematic representation of the mechanism for the closing of the gap by quantum fluctuations due to charged lattice solitons.

the authors (A.T.) included part of the nonadiabatic potential
energy which comes from the statistical average over different
lattice structures. However, the interference effects of these
different lattice structures were neglected. We believe that the
interference effects are important for realizing the metallic
state, for the following reason. When we neglect the inter-
ference effects, electrons feel the potential energy created by
only one lattice configuration. In that case, even if the bottom
of the soliton band in lattice 1 is lower than the top of the
valence band in lattice 2, electrons cannot move freely without
a gap, because in each lattice configuration, the soliton band
is isolated from both the valence and conduction bands. By
taking interference effects into account, electrons can move
under the potential-energy landscape created by all of the
lattice configurations. As a result, the gap is really closed,
and a metallic state is realized, as shown in the right panel
of Fig. 12.

To support this discussion, we show in Fig. 13 NS

dependence of nk for N = 198, Ne = 178, and (U,V ) =
(1.0, 0.5). nk does not have a singularity at k = kF in the
HF and projected HF (NS = 1) approximations. This means
that the system cannot be metallic or a TLL if many-body
effects are not included enough. In the case of the projected

FIG. 13. NS dependence of nk for (U, V ) = (1.0, 0.5) and
Ne = 178.

HF approximation, we can include many-body effects due to
the symmetry projections. However, each symmetry projected
state has the same band structure because the electronic state
and lattice are simultaneously translated or rotated. Therefore
interference among these symmetry projected states does not
reduce the gap significantly. On the other hand, a singularity
at k = kF appears when the number of Slater determinants
and coherent states is increased. The present result indicates
that many-body effects make the system metallic or a TLL.
These many-body effects are mainly caused by lattice fluctua-
tions beyond the adiabatic approximation, because the system
becomes metallic even for (U,V ) = (0, 0). Furthermore, as
mentioned above, strong electron correlations do not favor the
charged lattice solitons.

The disappearance of the gap would be restricted to the
heavily doped regime, where the gap between the soliton and
valence (or conduction) bands is small. In the lightly doped
regime, the gap is still large, and quantum fluctuations cannot
close it.

Previous DMRG calculations clarified that the electron
correlations make the equidistant lattice stable. In fact, as
mentioned above, lattice dimerization vanishes also in our
calculations when U/t becomes larger than about 1.5. The
equidistant lattice makes the system metallic, but cannot
explain the IR experiments. Therefore, the present results
strongly suggest that the quantum lattice fluctuations, rather
than electron correlations, are important to explain the IR
experiments and Pauli susceptibility correctly.

In experiments, the dopant ions exist near the polyacety-
lene chains. Some researchers [24,25] have suggested that
the random placement of such dopants might make the gap
vanish. In fact, we can imagine that a finite density of states
(DOS) might be induced between the soliton and valence
bands, if the statistical average is taken over the DOSs with
different configurations of dopants. However, in this scenario,
there is no interference among different dopant configurations
(imagine the average of 〈1|H |1〉 and 〈2|H |2〉 in Fig. 12), and
there would be a finite gap in the DOS for each configuration.
Therefore, the total gapless DOS caused by such statistical
averaging does not always lead to a metallic state. In fact,
discrepancies between the pseudogap behavior in the DOS
and the large optical gap in light absorption spectra have been
pointed out for strongly correlated electron systems [26–28].
In contrast, we have shown that polyacetylene can become
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metallic intrinsically by doping without dopant potential.
Such a metallic state could be realized also with electric-field
doping where there are no dopant ions. This technique has
recently been applied to many polymers, including polythio-
phene, with nondegenerate dimerized lattices. Polarons and
bipolarons are the carriers in such conducting polymers. It is
an interesting question whether quantum lattice fluctuations
due to polarons or bipolarons can make the gap vanish in
the absence of dopant ions. Quantum lattice fluctuations in
nondegenerate polymers will be reported elsewhere in the near
future.

IV. SUMMARY

We have introduced a tractable numerical method that can
efficiently describe quantum electron and lattice fluctuations
simultaneously. The wave functions are constructed by the
superposition of direct products of Slater determinants for
electrons and the coherent states of phonons. The lattice is
thus naturally treated beyond the adiabatic approximation.
By analyzing the structures of the Slater determinants and
coherent states, we can visualize the quantum fluctuations.
The method has been applied to a one-dimensional electron

system with SSH-type electron-phonon coupling to clarify the
electronic states of doped polyacetylene. It has been shown
that the charged lattice solitons are formed by doping, and that
lattice dimerization and solitons persist with heavy doping
up to at least 16%. Then, from the k dependence of the
density of states, nk , we have shown that the TLL contribution
increases with increasing doping. The size dependence of the
first- and second-order derivatives of nk clearly indicate that
nk has a singularity at k = kF in the heavily doped regime.
This means that the system becomes a TLL. We have roughly
estimated the critical exponent for nk in the vicinity of k = kF

as α = 0.23 at ρ = 0.16. Quantum lattice fluctuation effects
which are not included in the adiabatic approximation are
responsible for the vanishing of the gap between the soliton
and valence (or conduction) bands. These results are consis-
tent with both the IR and Pauli susceptibility experiments.
Thus, the present calculations have succeeded in describing
the electronic states of polyacetylene.
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