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Charge fluctuations in lightly hole-doped cuprates: Effect of vertex corrections
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Identification of the electronic state that appears upon doping a Mott insulator is important to understand
the physics of cuprate high-temperature superconductors. Recent scanning tunneling microscopy of cuprates
provides evidence that a charge-ordered state emerges before the superconducting state upon doping the parent
compound. We study this phenomenon by computing the charge response function of the Hubbard model
including frequency-dependent local vertex corrections that satisfy the compressibility sum rule. We find that
upon approaching the Mott phase from the overdoped side, the charge fluctuations at wave vectors connecting
hot spots are suppressed much faster than at the other wave vectors. It leads to a momentum dependence of the
dressed charge susceptibility that is very different from either the bare susceptibility or from the susceptibility
obtained from the random phase approximation. We also find that the paramagnetic lightly hole-doped Mott
phase at finite temperature is unstable to charge ordering only at zero wave vector, confirming the results
previously obtained from the compressibility. Charge order is driven by the frequency-dependent scattering
processes that induce an attractive particle-hole interaction at large interaction strength and small doping.

DOI: 10.1103/PhysRevB.99.035161

I. INTRODUCTION

Immediately following the discovery of cuprate high-
temperature superconductors, and the suggestion by Anderson
of the importance of the proximate Mott insulating phase
[1], the study of hole-doped Mott insulators became a central
theme of research. Early Hartree-Fock studies of the hole-
doped Mott insulators provide evidence of charge order, often
accompanied by spin order, so-called stripes [2–5], which
survives even in the presence of frustrating long-range inter-
actions [6,7]. The experimental neutron scattering discovery
of striped phases in La1.6−xNd0.4SrxCuO4 [8] gave credence
to these theoretical results. Further theoretical studies us-
ing Monte Carlo and density-matrix renormalization group
[9–13], slave-boson [14–16], and variational studies [17,18]
of the Hubbard and t-J models confirmed that these models
contain stripe phases. These are particularly evident at dop-
ing p = 1/8 (for reviews see Refs. [19,20]). Charge order,
mostly in BCSSO systems, has been visualized with scanning
tunneling microscopy (STM) [21–28]. Lately, charge order
without spin order has been found in YBCO with quantum
oscillations [29,30], NMR [31–33], and x-ray studies [34],
hard [35,36] and soft [37–40], generating a large theoretical
literature [41–57] that finds charge order mostly around 1/8
filling.

By contrast, two STM studies have focused on lightly
hole-doped compounds (p � 1/8) Ca2−xNaxCuO2Cl2 [58]
and Bi2Sr2−xLaxCuO6+δ [59] in order to investigate how the
Mott state evolves upon doping. The results suggest that a
checkerboard charge order with a wavelength equal to four
times the Cu-Cu bond length emerges first on doping. The
charge order phase is present in both an antiferromagnetic or a
superconducting background implying that it is not primarily

driven by a Fermi surface or magnetic instabilities [59].
Hence, the very-lightly doped Mott insulator by itself should
show an instability towards this phase. This is the problem we
study here.

Dynamical mean-field theory (DMFT) [60], its cluster
[61–63], and diagrammatic extensions [64–67] are methods
of choice to study the Mott transition. The latter two methods
include nonlocal correlations that are missed by DMFT and
have been used to address the charge ordering in interact-
ing systems. In small cluster calculations, uniform charge
separation between a pseudogap phase originating from su-
perexchange and a correlated metal has been found [68–72].
In the electron-doped Mott insulator the variational cluster
approximation [73] and the dynamical cluster approximation
[74,75] suggest phase coexistence between the Mott insulator
and a correlated metal in analogy with single-site DMFT
[76,77]. However, cluster calculations are unable to capture
any ordering that extends beyond the cluster size, except for
some limited special geometries [78–80].

An alternate approach to charge instabilities goes beyond
uniform phase separation and searches for finite-wave vec-
tor divergences or other anomalies of the density-density
response function calculated in the normal phase. The re-
sponse function is given by the second derivative of the free
energy with respect to a conjugate field (scalar potential for
density-density response function) and it is positive, due to the
convexity of the free energy, for a thermodynamically stable
system. Therefore, a sign change of the response function
indicates that the normal phase is unstable. In an interacting
system, the response function takes into account that propa-
gating particles and holes interact not only with the medium
through their self-energy cloud but also with each other with
an amplitude called the full vertex function. The retarded
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part of that vertex originates from the exchange of other
excitations, such as particle-hole (p-h) excitations. This vertex
function is a complex function with, in general, nontrivial
momentum/frequency dependence. It is not taken into account
in any mean-field theory, while it plays a crucial role in driving
charge instabilities [56,57].

Starting from the prototypical Hubbard model for the
cuprates, we show that in the hole-doped system, the spatially
local part of the irreducible vertex in the charge channel be-
comes attractive for a range of low frequencies. This behavior
starts at interaction values comparable with the electronic
bandwidth of the system and becomes more prominent at
larger interactions. A real charge instability occurs only for
interactions larger than what is required to drive a Mott transi-
tion at half filling. This indicates that the charge instability is
an instability of the doped Mott insulator and not of the Slater
antiferromagnet.

We present the model and method in Sec. II. The single-site
DMFT results for the compressibility are recovered in Sec. III.
Section IV describes the unusual structure of the frequency-
dependent vertex in the charge channel, in particular that it
can become attractive. This sets the stage for the calculation
of the physically observable susceptibilities in Sec. V. After
concluding remarks, details of the calculation for the suscep-
tibilities in various approximations are given in Appendix A.
Appendix B shows the results for the compressibility at
lower interaction strength and higher temperature. It is shown
in detail in Appendix C that the compressibility obtained
from single-site DMFT is identical to that deduced from the
zero-wave vector density-density response function at zero
Matsubara frequency, in other words that the compressibility
sum rule is satisfied.

II. MODEL AND METHOD

We consider the Hubbard model on the square lattice with
U the onsite Coulomb interaction and appropriate hopping
parameters for cuprates, i.e., t ′ = −0.3t , t ′′ = 0.2t the second
and third nearest-neighbor hopping amplitudes, t being the
nearest-neighbor hopping [81]. The Hamiltonian is solved
using DMFT and the exact diagonalization (ED) method
[82]. The DMFT(ED) algorithm is also used to compute the
local part of the irreducible vertex function [60,83,84]. The
lattice response function can then be computed as described
in Appendix A. Namely, the DMFT self-energy is included in
the propagators and the vertices are obtained from four point
functions on the self-consistent impurity [60]. The resulting
correlation functions are the building blocks of the ladder
dynamical vertex approximation [84,85]. We focus on the
charge channel because the charge and magnetic channels
are independent in this approach. As in experiment, we see
the charge order as an instability of the Mott insulator that
appears independently of magnetic or superconducting long-
range order. Appendix A contains more details on the method.

III. DMFT COMPRESSIBILITY

We first present the DMFT results, which are in qualitative
agreement with previous DMFT results obtained at t ′ = t ′′ =
0 [76]. In the DMFT framework, the possibility of a first
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FIG. 1. Compressibility, ∂n/∂μ, as a function of hole density, p,
for U = 12t , t ′ = −0.3t , t ′′ = 0.2t at various temperatures, either
computed directly within the DMFT framework, labeled 1P in the
figure and discussed in Sec. III, or computed from the lattice density-
density correlation function, indicated as 2P and discussed in Sec. V.
Inset: The hole density as a function of chemical potential for T =
0.02t has a jump for a chemical potential μc � 4.8 with a discon-
tinuous first-order derivative at that chemical potential, implying the
discontinuous compressibility seen in the main panel.

order phase transition can be assessed by direct calculation
of the charge compressibility, defined as κ = (1/n2)∂n/∂μ,
as a function of hole-doping p. A vanishing compressibility
characterizes the Mott insulator, while a divergence indicates
a second-order transition and a discontinuity a first-order
transition. Let Uc denote the DMFT critical interaction beyond
which a Mott insulating phase appears at half filling. The main
panel of Fig. 1 illustrates the compressibility as a function
of hole density for U = 12t > Uc at various temperatures.
The compressibility data labeled with 1P are calculated by
a numerical derivative of the density with respect to the
chemical potential. At T = 0.1t (in blue), ∂n/∂μ contin-
uously decreases upon approaching half filling indicating
the suppression of charge fluctuations. However, at a lower
temperature, T = 0.04t (in red), after an initial decrease, the
compressibility increases and exhibits a peak around p � 0.01
before dropping to zero at half filling. This increase suggests
the proximity to the critical endpoint of a first-order transition
at a locus (Tc, pc). That first-order transition [76] becomes
visible at a lower temperature, T = 0.02t (in green) where the
compressibility is discontinuous. The inset in Fig. 1 shows the
hole density as a function of chemical potential at T = 0.02t .
This illustrates clearly that there is a value of the chemical
potential for which there are two possible values of the hole
doping, as expected in the coexistence region of a first-order
transition. The critical doping, pc, does not depend on U > Uc

sensitively but Tc decreases upon increasing U . The phase
transition is interpreted as a uniform phase separation (q = 0)
since it occurs in the compressibility. The question arises
whether this actually occurs at q = 0 or if a more sophisti-
cated calculation could reveal a finite wave-vector instability
at a higher temperature. The answer to this question demands
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a calculation of the density-density response function at finite
wave vector.

IV. DYNAMICAL VERTEX

No charge instability is predicted by approximations with
a static irreducible vertex, such as the random phase ap-
proximation (see Appendix A 2). Hence we go beyond these
approximations to obtain a reliable calculation for U > Uc.
In a diagrammatic approach, the full vertex function can
be decomposed into the irreducible vertex function and the
generalized bubble susceptibility (see Appendix A). One can
diagonalize the irreducible vertex in spin space to exploit the
conservation of spin in two-body scattering processes and
rewrite it in the charge and magnetic channels, defined as
�c(m),irr = �↑↑,irr + (−)�↑↓,irr . In a normal system, there is
a range and a characteristic relaxation time, beyond which
�c/m,irr becomes negligible. Hence, the spatially local part of
the irreducible vertex function, [�irr

loc(νn)]ωmωm′ , is the domi-
nant part. DMFT gives an accurate estimate of its dependence
on three frequencies, νn the center of mass bosonic frequency
and ωm, ωm′ the fermionic frequencies.

In an interacting system, the electron spectral function
demonstrates a coherent (quasiparticle) peak and high energy
incoherent (Hubbard) satellites. Upon increasing U , the spec-
tral weight is transferred from the coherent peak to incoherent
satellites. Thus, the irreducible vertex function contains two
sets of scattering processes: (i) the scattering of the coherent
part with itself, (ii) the scattering of the incoherent part with
itself and with the coherent part. The latter contribution is
smooth and possibly featureless at low U but increases and
requires frequency dependence upon increasing interaction
strength, leading to the nontrivial frequency dependence of
�c,irr for U � W .

Figure 2 displays the real and imaginary parts of the irre-
ducible local vertex in the density channel at zero bosonic fre-
quency, νn, for doping level p = 0.11 and U = 6t < W where
W is the bandwidth. The νn = 0 component measures the
amplitude of scattering processes that occur at all time scales.
For U = 6t , the system is in the perturbative regime and the
behavior of [�c,irr

loc (νn = 0)]ωmωm′ can be understood from low-
order diagrams [83]. The real part of the vertex function for
|ωm| = ω0 and large |ωm′ | or vice versa approaches its static
limit, which is U in the Hubbard model. Here, ω0 denotes
the lowest fermionic Matsubara frequency. Furthermore, the
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FIG. 2. Real (left) and imaginary (right) parts of [�c,irr
loc (νn =

0)]ωmωm′ as a function of two fermionic frequencies ωm and ωm′

for hole doping level p = 0.11 and T = 0.1t , U = 6t . The static
contribution U is substracted from the real part.
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FIG. 3. Real part of [�c,irr
loc (νn = 0)]ωmωm′ for hole doping level

p = 0.11 as a function of two fermionic frequencies ωm and ωm′

and T = 0.1t . On the left panel, U = 8t while U = 12t on the right
panel. The static contribution U is subtracted.

real part of the [�c,irr
loc (0)]ωmωm′ is repulsive and is large on

the primary diagonal, i.e., when ωm = ωm′ . This enhancement
is caused by p-h scattering processes involving the emission
and reabsorption of pairs of fluctuations when the induced
p-h excitations live on the Fermi surface [83]. On the other
hand, the scattering rate along the secondary diagonal ωm =
−ωm′ is due to particle-particle (p-p) scattering processes
with energies ω + ν and ω′ and opposite spin in the Hubbard
model. These scattering processes have a large amplitude for
total energies at the Fermi level, i.e., ω′ = −ω − ν with a
maximum at ν = 0 [83]. The amplitude of the p-p scattering
is smaller than the p-h scattering in the repulsive Hubbard
model and large U . The right-hand panel of Fig. 2 shows
the imaginary part of the irreducible vertex function. The
absolute value of the imaginary part is proportional to the
p-h asymmetry. It increases along the primary diagonal and
changes sign between positive and negative frequencies. The
secondary diagonal peak is missing in the imaginary part.
For interaction strengths smaller than the bandwidth, U < W ,
these characteristics of the [�c,irr

loc (νn = 0)]ωmωm′ are common
for all doping levels.

In the nonperturbative regime at larger interaction
strengths, U � W , the irreducible vertex in the charge chan-
nel gradually changes, as illustrated in Fig. 3. Although the
previously mentioned characteristics of [�c,irr

loc (νn = 0)]ωmωm′
are generally maintained in the high energy region, the
low-frequency behavior strongly depends on the interaction
strength and doping level. In the low doping region, the real
part of [�c,irr

νn=0]ωmωm′ around the primary diagonal begins to
show at intermediate fermionic frequencies a sign change be-
tween low and high frequencies: This means that, surprisingly,
the emission and reabsorption of p-h pairs causes an effective
interaction which is attractive for intermediate frequencies
(see left-hand panel of Fig. 3 for U = 8t).

It is worth mentioning that, for (U, T ) considered here and
finite doping where there is no particle-hole (p-h) symmetry,
the irreducible charge vertex does not show the divergence
due to a vanishing eigenvalue of the impurity susceptibility
[86,87]. By contrast with a system having p-h symmetry, the
generalized impurity susceptibility here is a complex matrix
with eigenvalues that are either purely real or appear in com-
plex conjugate pairs. Depending on the interaction strength
and doping level, the generalized impurity susceptibility may
have eigenvalues with negative real part but their zero crossing
occurs at finite imaginary part, leading to a smooth irreducible

035161-3



R. NOURAFKAN, M. CÔTÉ, AND A.-M. S. TREMBLAY PHYSICAL REVIEW B 99, 035161 (2019)

charge vertex. For small U , the eigenvalues remain real for a
small range of doping [88].

At larger U = 12t , the sign change of the irreducible
charge vertex includes the very low frequency region, as can
be seen from the right-hand panel of Fig. 3. Indeed, a behavior
different from the perturbation theory prediction occurs on an
energy scale of order U at low temperatures. Upon increasing
T , the nonperturbative low-frequency region shrinks. The
change in �c,irr

loc for U � W could be a manifestation of the
replacement of the perturbative branch of the self-energy with
the nonperturbative one at the physical self-energy [89].

V. CHARGE SUSCEPTIBILITY

From the irreducible vertex in the charge channel, we can
compute the charge susceptibility. Then, instead of differenti-
ating n(μ), we compute the compressibility from the density-
density correlation function, χ c

ph, using the compressibility
sum rule [with K ≡ (k, iωm)]

∂n/∂μ = 2 lim
q→0,ν→0

(1/Nβ )2
∑
KK ′

[
χ c

ph(q, νn)
]

K,K ′ . (1)

In general sum rules in approximate theories can be violated.
For instance, this happens [90,91] in a different context than
our analysis, for the potential energy computed by means of
DMFT in finite dimensional systems. Here, instead, due to
the 
 derivability of DMFT, the sum rule in Eq. (1) must be
necessarily fulfilled (see Appendix B and Refs. [92,93]).

The density of the self-consistent impurity depends on
μ explicitly and implicitly through the hybridization func-
tion, �(μ), hence, the impurity compressibility is given
by (∂n/∂μ)� + (∂n/∂�)μ(∂�/∂μ) [90]. The equation of
motion for (∂n/∂μ)� and (∂n/∂�)μ includes, respectively,
∂�σ (iωm)/∂gσ (iωm′ ) and ∂�σ (iωm)/∂�σ ′ (iωm′ ) where � is
the impurity self-energy and g denotes local Green’s function
(see Appendix C). However, at strong coupling, multiple
branches appear in the physical self-energy [86,89,94]. This
makes self-energy functional derivatives ill defined when the
perturbative branch crosses the nonperturbative branch. Nev-
ertheless, our numerical results show that the compressibility
calculated either directly from the chemical potential depen-
dence of the density or from the density-density correlation
function yield the same results, confirming that a perturbation
expansion for functional derivatives of the self-energy remains
valid even at strong interaction. This is shown in Fig. 1 for
T = 0.1t (see Appendix B for other interaction values and
temperatures). The frequency summation at Eq. (1) converges
very slowly, in particular, in the vicinity of the phase tran-
sition, hence, here we only show charge susceptibilities at
T = 0.1t . This is not too restrictive because a phase transition
and the wave vector at which it happens is usually seen as
a softening of susceptibilities at temperatures well above the
transition temperature.

Before we continue, we comment on how the negative
eigenvalues of the impurity susceptibility influence the charge
fluctuations. In previous studies of the half-filled p-h symmet-
ric system (t ′ = t ′′ = 0), the appearance of negative eigen-
values of the impurity susceptibility upon increasing U was
interpreted as an indication of the suppression of charge
fluctuation [94,95]. The argument goes as follows: Setting the
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FIG. 4. Left panel: Dressed susceptibility in the charge channel
for U = 12t and T = 0.1t , for several hole doping values. Right
panel: Dressed susceptibility in the charge channel for U = 12t , for
several temperatures at hole doping slightly larger than the critical
doping.

oscillator matrix elements equal to one, the observable impu-
rity susceptibility can be expressed in terms of the generalized
susceptibility as

χ c
imp(iνn) = 1

β2

∑
ωmωm′

[
χ c

imp(iνn)
]
ωmωm′ . (2)

Using an expression of the generalized susceptibility in terms
of its eigenvalues (εi) and its eigenvectors (|i〉), the above
equation can be rewritten as

χ c
imp(iνn) =

∑
i

1

β2

∑
ωmωm′

〈m|i〉εi〈i|m′〉

=
∑

i

εi

∣∣∣∣∣
1

β

∑
ωm

〈m|i〉
∣∣∣∣∣
2

. (3)

It is argued that | 1
β

∑
ωm

〈m|i〉|2 is in general not small, hence,
obtaining a decreasing charge susceptibility upon increasing
U requires that some eigenvalues become negative [96]. Note
that for weak to intermediate couplings where all eigenvalues
are positive, the suppression of charge fluctuations is obtained
by a reduction of the eigenvalues instead.

The dependence of eigenvalues or of the overlaps on
doping or temperature is more complex than their dependence
on U and they do not necessarily change monotonically. For
example, for U = 8t and T = 0.1t , the positive eigenvalues
originally decrease upon approaching the half filling while
the absolute value of negative eigenvalues increase. However,
in close vicinity to half filling, this trend stops and reverses,
leading to an enhancement of the charge fluctuations, as can
be seen from Fig. 7, top panel. Hence, while the decrease of
the local charge susceptibility at large doping and large U
is associated with the appearance of negative eigenvalues, as
one approaches half filling charge fluctuations can begin to
increase again at low temperature even if negative eigenvalues
are still present, albeit with a smaller absolute value.

Figure 4 left panel shows the dressed charge susceptibility
along a path as a function of hole density. At large doping the
dressed charge susceptibility peaks at the same momenta as
the bare or RPA susceptibilities. Although the RPA suscepti-
bility maintains this peak structure for lower doping values,
the peak structure of χ c

ph changes; the peak momentum moves
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to X (Y ) point and eventually to the � point upon reducing
p. Indeed, the charge susceptibility at (π, π ) decreases much
faster than the other wave vectors, as can be seen from this
figure. This behavior is induced by the frequency dependence
of the vertex function and cannot be captured by the RPA
approximation (see Appendix A 2).

Going back to our original question regarding whether or
not the system undergoes a uniform phase separation, the
momentum dependence of the dressed susceptibility in the
charge channel at a hole doping slightly larger than the critical
doping is shown in the right-hand panel of Fig. 4 for U = 12t
at several temperatures. As can be seen, upon reducing T
the charge susceptibility at q = 0 grows faster than at the
other wave vectors, indicating a charge instability at lower
T at this momentum. This confirms previous results from
compressibility studies [89].

Finally, it is worth mentioning that the largest
eigenvalue of the (dimensionless) matrix −(1/β2)

∑
ωm′′

[�c/m,irr
loc (0)]ωmωm′′ [χ̃0

ph(q, 0)]ωm′′ ,ωm′ with [χ̃0
ph(Q)]ωm,ωm′ ≡

(1/N )2 ∑
k,k′ [χ0

ph(Q)]K,K ′ is called the Stoner factor. When it
is a real number, it measures the distance from a continuous
phase transition. With a static vertex function, as in the
RPA approximation, the Stoner factors in the magnetic and
charge channels are purely real. However, the eigenvalue
problem that needs to be solved to search for an instability is
a non-Hermitian eigenvalue problem in general. Nevertheless,
the susceptibilities are always real. While our numerical
results show that the Stoner factor in the magnetic channel
is always real and increases with increasing U , eventually
approaching unity, in the charge channel it is real only
for U < W . For U > W , the eigenvalues appear mostly
in complex conjugate pairs, with large real and imaginary
parts, in particular at low doping. Therefore, in this regime,
the Stoner factor is not well defined and cannot serve as a
probe of an instability. The appearance of the complex
conjugate pairs might indicate a tendency towards short-range
charge orders, but further investigation is required to
be conclusive.

VI. CONCLUDING REMARKS

In summary, we have calculated the dressed charge sus-
ceptibility of strongly correlated metals to investigate pos-
sible charge instabilities. We verified that even for strong
interactions, the compressibility sum rule is satisfied consis-
tently with the 
 derivability of DMFT. Our results showed
that the momentum-dependent dressed charge susceptibility
of a doped Mott insulator has a completely different peak
structure than what an RPA analysis would predict. This is a
consequence of the complicated frequency dependence of the
irreducible vertex function. Indeed, the charge susceptibilities
with wave vectors connecting hot spot decrease faster than
at the other wave vectors upon approaching the Mott phase.
Furthermore, the phase transition of a lightly hole-doped Mott
insulator occurs at the q = 0 wave vector in agreement with
the DMFT compressibility studies. Although the single-band
Hubbard model does not show any charge instability with a
finite momentum, including more degrees of freedom, such as
oxygen p orbitals, may change the physics. In Ref. [56], finite

momentum instabilities were found. It may also be that the
q = 0 instability corresponds in a more realistic model to an
intra-unit-cell charge pattern [97].
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APPENDIX A: RESPONSE FUNCTIONS

The response function of an interacting system can be
decomposed into the bubble response and vertex corrections.
The bubble response describes independent, but interaction-
renormalized, propagation of a particle-hole (p-h) excitation
created by the field, while the vertex corrections introduce
changes in the response functions due to scattering processes
in which propagating particle and hole exchange multiple
real or virtual p-h excitations. Denoting the amplitude of all
these scattering events by the full vertex function, defined as
�c(m), f = �↑↑, f + (−)�↑↓, f for charge and magnetic chan-
nels, the dressed susceptibility is given by [98,99]

[χ c/m(Q)]K,K ′ = [
χ0

ph(Q)
]

K,K ′ −
1

N2β2

∑
K1,K2

[
χ0

ph(Q)
]

K,K1

× [�c/m, f (Q)]K1,K2

[
χ0

ph(Q)
]

K2,K ′ , (A1)

where the bubble susceptibility is[
χ0

ph(Q)
]

K,K ′ = −(Nβ )G(K + Q)G(K )δK,K ′ . (A2)

Here, G(K ) is the dressed particle propagator, K ≡ (k, iωm)
denotes momentum/energy three-vectors (the lattice is two-
dimensional), N is the number of k points, and β = 1/(kBT ).
In Eq. (A1) the bosonic variable Q ≡ (q, iνn) is always inac-
tive in the multiplication or conserved during the scatterings
within each channel. Equation (A1) is the common part of
the response to an external field and solely depends on the
electronic structure of the system. An observable response
function, on the other hand, is obtained by closing the external
legs of Eq. (A1) using appropriate oscillator matrix elements,
O(Q) and O(−Q), which depends on the field wave vector and
frequency [100]. The oscillator matrix elements for the charge
channel are given by [SU (2) symmetric case]

OR1R2 (q) ≡ 1√
V

∫
dre−iq·rφ∗

R1
(r)φR2 (r), (A3)

where φR1 (r) the atomic orbital residing at the lattice point R1.
In a correlation-driven phase transition, it is the full vertex

function, [�c(m), f (Q)]K,K ′ , that causes a singular or discontin-
uous response. It consists of all connected diagrams. Some
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of these diagrams are two-particle fully irreducible. Other
diagrams are reducible, i.e., cutting two Green function lines
separates the diagram into two pieces. Indeed, each diagram
is either fully irreducible or reducible in exactly one channel
(particle-hole ph, particle-hole transversal ph, and particle-
particle pp), so [85]

[�c(m), f (Q)]K,K ′ = [
�c(m)(Q)

]
K,K ′ +

[



c(m)
ph (Q)

]
K,K ′

+ [



c(m)
ph

(Q)
]

K,K ′ +
[

c(m)

pp (Q)
]

K,K ′ .

(A4)

Here, �c(m) and 

c(m)
l denote, respectively, the fully irre-

ducible vertex in all channels and reducible vertex in l chan-
nel. Moreover, one can define the irreducible diagrams in a
certain channel l as �c(m), f = �

c(m),irr
l + 


c(m)
l . For example,

for the ph channel[
�

c(m),irr
ph (Q)

]
K,K ′ = [

�c(m)(Q)
]

K,K ′ +
[



c(m)
ph

(Q)
]

K,K ′

+ [

c(m)

pp (Q)
]

K,K ′ . (A5)

Having the irreducible vertex in a given channel l , the re-
ducible one can be obtained from the Bethe-Salpeter equa-
tions (BSE) as [98]

[�c/m, f (Q)]K,K ′ = [
�

c/m,irr
ph (Q)

]
K,K ′ −

1

N2β2

×
∑
K1,K2

[�c/m, f (Q)]K,K1 [χ0(Q)]K1,K2

× [
�c,irr

ph (Q)
]

K2,K ′ . (A6)

The irreducible vertex function can be evaluated using various
quantum many-body approaches.

In general, [�c/m,irr (Q)]K,K ′ depends on the transferred
momentum/frequency in a scattering process, Q, and on
the incoming momentum/frequency variables. The out-
coming variables are determined by conservation laws.
[�c/m,irr (Q)]K,K ′ describes the irreducible interaction of the
two elementary excitations. The spatially local part of the
irreducible vertex function in channel l , [�c/m,irr

loc,l (νn)]ωmωm′ ,
can be calculated in the framework of the DMFT approxima-
tion [83,84]. A common approximation is substituting �

c/m,irr
ph

by �
c/m,irr
loc (νn) and neglecting the nonlocal part [60]. This

allows us to perform the summations over momentum of the
internal legs in Eq. (A6), leading to a full vertex function that
satisfies a similar equation but with the bubble susceptibility
replaced by

[
χ̃0

ph(Q)
]
ωm,ωm′ ≡

(
1

N

)2 ∑
k,k′

[
χ0

ph(Q)
]

K,K ′ . (A7)

Hence, the resulting full vertex depends on three frequen-
cies but only one momentum (transferred momentum). This
approximation captures the dynamics of the screening ef-
fects, which plays a significant role in correlated electron
systems [101].

Focusing on the particle-hole channel, the DMFT approx-
imation for the irreducible vertex �

c(m),irr
ph on the left-hand

side of Eq. (A5) implies the momentum dependence of the
reducible vertices in the transverse particle-hole, 


c(m)
ph

, and
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ν n
=

0)
] ω

0,
ω

m
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FIG. 5. [χ c
loc(νn = 0)]ωmωm′ with ωm = ω0 = π/β as a function

of ωm′ calculated with nb = 3 and nb = 5. The doping level is
p= 0.06, U = 12t .

particle-particle channels, 
c(m)
pp , are neglected [see Eq. (A5)].

On the other hand, the dependence of the reducible ph vertex
on the transferred momentum is taken into account.

1. Numerical considerations

We employed the exact diagonalization (ED) technique to
solve the DMFT equations and to calculate the irreducible
impurity vertices. The latter calculation is very expensive
and grows very fast with the number of bath levels in the
ED method. Furthermore, calculating the dressed susceptibil-
ity requires [�c/m,irr

loc (νn)]ωmωm′ calculated on a large number
of fermionic Matsubara frequencies. For instance, for com-
pressibility calculations, we took 512 positive frequencies.
Hence, we only consider three bath levels, nb, to calculate
the irreducible impurity vertices. We checked that the re-
sults do not change when increasing the number of bath
level by performing calculations with five bath levels, nb =
5, for some interaction strengths and doping levels, albeit
on a much smaller frequency range. For instance, Fig. 5
demonstrates the dressed impurity susceptibility in the charge
channel, [χ c

loc(νn = 0)]ωmωm′ , at zero bosonic frequency and
ωm = ω0 = π/β as a function of ωm′ calculated with nb = 3
and nb = 5. As one can see the difference between the two
calculations is negligible. The DMFT calculation of com-
pressibility, presented in Fig. 1, on the other hand, is done
using five bath levels.

2. Random phase approximation

Calculations with a dynamical irreducible vertex function,
as in the ladder dynamical vertex approximation, differ from
those done in RPA with a static vertex. In RPA, the irreducible
vertex is approximated with a static, though screened, interac-
tion which is smaller than the bare one and remains repulsive.
It is parametrized by a screened Hubbard interaction Us. With
a static vertex, the summation over internal frequencies can be
done and hence in RPA the internal bubble susceptibilities are
replaced by

χ
0,ph
RPA (Q) =

(
1

β

)2 ∑
m,m′

[
χ̃0

ph(Q)
]
ωm,ωm′ . (A8)
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FIG. 6. Spectral weight at zero frequency (left panel) for hole
doping levels p = 0.18 (red), and p = 0.04 (blue) for U = 12t , t ′ =
−0.3t , t ′′ = 0.2t at T = 0.1t on the square lattice. The dashed line
shows the antiferromagnetic Brillouin zone. The wave vectors Q1···4
connect hot spots when p = 0.18. The corresponding RPA bubble
susceptibility is in the right-hand panel.

This makes the instability eigenvalue problem a real-
symmetric one. Furthermore, while [χ̃0

ph(Q)]ωm,ωm has both

real and imaginary parts, the RPA susceptibility, χ
0,ph
RPA (Q), is

purely real.
To gain insight into the problem, consider the prediction

of RPA when dressed propagators are used. The left panels
of Fig. 6 display the locus of maxima of the spectral weight
at zero frequency, A(k, ω = 0), for two hole-doping values:
one at large doping p = 0.18 (red) and one at small doping
p = 0.04 (blue) for U = 12t and T = 0.1t . Note that the
depicted A(k, ω = 0) should not be interpreted as the Fermi
surface (FS) since that concept is strictly defined only for a
Fermi liquid at zero temperature. At large doping, the spectral
weights intersect the antiferromagnetic (AF) Brillouin zone
(BZ) at the so-called hot spots, i.e., regions of FS where the
probability of Umklapp and (π, π ) scattering events is ap-
preciable. The bubble susceptibility calculated in RPA shows
peaks at the wave vectors connecting hot spots. At smaller
U , such as U = 8t , A(k, ω = 0) crosses the AF-BZ for both
doping values. At U = 12t , however, the hot spots disappear
at low doping due to the combination of interactions, which
make the spectrum less coherent, and finite temperature. This
influences the RPA bubble susceptibilities, as shown in the
right-hand panel of Fig. 6. In RPA, the charge susceptibility
is small and the leading instability occurs in the magnetic
channel with wave vectors (1, 1 − δ)π/a and (1 − δ, 1)π/a,
where δ is small and vanishes at half filling.

APPENDIX B: COMPRESSIBILITY AT LOWER
INTERACTION STRENGTH AND HIGHER

TEMPERATURE

The transition to the charge ordered state, discussed in the
main text, is absent at lower interaction strengths. Figure 7
shows the compressibility for U = 8t and T = 0.1t (top
panel) and U = 12t and T = 0.4t (bottom panel) computed
from the derivative of the density with respect to chemical
potential and from the uniform density-density correlation
function. Both methods again agree very well at all doping
values considered here and they do not show a tendency
towards phase separation.
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FIG. 7. Compressibility dn/dμ computed from the density and
from the uniform density-density correlation function, labeled by 1P
and 2P, respectively, as a function of hole density for U = 8t and
T = 0.1t (top panel) and U = 12t and T = 0.4t (bottom panel).

APPENDIX C: THERMODYNAMIC DERIVATIVE
OF THE DENSITY IN THE DMFT APPROXIMATION

In this section we show that the two approaches we
have employed to calculate the compressibility—namely the
derivative of the density with respect to the chemical po-
tential and the zero-frequency zero-momentum lattice charge
susceptibility—are equivalent within a local self-energy, local
vertex approximation, as long as the Luttinger-Ward func-
tional remains single valued. For an exact calculation, the two
results would obviously be equal, as required by a thermody-
namic sum rule.

1. Preliminary considerations

The density is given by

n = 1

β

∑
ωm,σ

e−iωm0−
gσ (iωm)

= 1

βN

∑
kωm,σ

e−iωm0−

iωm + μ − εk − �σ (iωm)
, (C1)

where the first line is for the impurity and the second
line is for the lattice. Since the DMFT self-consistency
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equation is

gσ (iωm) = 1

N

∑
k

Gkσ (iωm), (C2)

the density on the impurity is equal to the density on the lattice
for all values of the chemical potential and (∂n/∂μ)T will be
identical in the two cases.

However we can also obtain (∂n/∂μ)T from the suscepti-
bility on the lattice, using the irreducible particle-hole vertex.
That quantity is calculated from correlation functions on the
impurity by inverting the Bethe-Salpeter equation.

Remembering that the chemical potential is space-
independent and imaginary-time independent, the susceptibil-
ity that is needed on the lattice to compute (∂n/∂μ)T is a
special case of the susceptibility considered in the previous
section, namely

∂Gkσ (iωm)

∂μ
= −Gkσ (iωm)Gkσ (iωm) + Gkσ (iωm)Gkσ (iωm)

× [
�irr

σσ,σ ′σ ′ (νn = 0)
]
ω,ω′

1

N

∑
k′,σ ′

∂Gk′σ ′ (iωm′ )

∂μ
,

(C3)

where [�irr
σσ,σ ′σ ′ (νn = 0)]ω,ω′ is the irreducible particle-hole

vertex, which is momentum independent since it comes from
a calculation on the impurity. Summing over the wave vector
on both sides of the equation and using the notation

Gloc
σ (iωm) = 1

N

∑
k

Gkσ (iωm), (C4)

this gives the following closed equation that can be solved by
considering ωm, ω′

m as matrix indices and inverting:

∂Gloc
σ (iωm)

∂μ
= − 1

N

∑
k

Gkσ (iωm)Gkσ (iωm)

+ 1

N

∑
k

Gkσ (iωm)Gkσ (iωm)

× [
�irr

σσ,σ ′σ ′ (νn = 0)
]
ω,ω′

∂Gloc
σ ′ (iω′

m)

∂μ
. (C5)

If instead of the above approach, we compute the derivative
of the impurity Green function gσ (iωm) (taking into account
the fact that the hybridization function depends on μ as well)
and use the self-consistency equation Eq. (C2), we find the
same equation as above with the following two replacements

[
�irr

σσ,σ ′σ ′ (νn = 0)
]
ω,ω′ → ∂�σ (iωm)

∂gσ ′ (iωm′ )
, (C6)

and

Gloc
σ (iωm) → gσ (iωm). (C7)

Gloc
σ (iωm) and gσ (iωm) are in fact equal because of the self-

consistency equation Eq. (C2). By contrast, for Eq. (C6) to
be an equality, we have to take the functional derivative with
respect to gσ ′ (iωm′ ) on the physical branch when �σ (iωm)
is not single valued. That �σ (iωm) can be multivalued has
been documented [89]. In addition there are two other possible
difficulties. First, the vertex can diverge at points where two

branches of the solution cross [94], a problem that is avoided
for the case we consider. Second, the impurity Green function
depends also on the self-consistent value of the hybridization
function. That self-consistency condition can lead to phase
transitions, such as the Mott transition at half filling. In that
case, precursors of the phase transition can appear in the
vertex function [102]. A more careful look at the separate
effect of the hybridization function is given in the following
section.

2. Detailed derivation

The first derivative of the free energy is related to the
Green’s function as follows

n = − ∂F
β∂μ

= 1

Nβ
TrG = 1

Nβ

∑
rσ

Gσ (rτ, rτ+), (C8)

where F denotes free energy density and μ the chemical po-
tential. The second derivative of the free energy with respect
to the chemical potential gives the electron compressibility.

To obtain an integral equation for the charge susceptibility,
we apply a perturbation φ(11′) = −μδrr′δττ ′+ [where we have
used the compact notation 1 ≡ (r, τ )] and calculate the re-
sponse in the DMFT approximation. The dimensionless ther-
modynamic derivative of interest is [with (r′

1, τ
′
1) = (r1, τ

+
1 )]

∂Gσ (11′)
∂φ(22′)

= −Gσ (13)
∂G−1

σ (33′; φ)

∂φ(22′)
Gσ (3′1′), (C9)

where we used the identity Gσ (13; φ)G−1
σ (31′; φ) = δ11′ and

a summation over repeated indices is assumed.
The propagator has the following form

Gσ (11′; φ) = −[∂τ + H0 − φ + �σ (G(φ))]−1
11′ , (C10)

where � is the self-energy and the inverse should be under-
stood as a matrix inversion in space and time coordinates. The
field couples to the electron density and therefore it appears
only on diagonal elements of Eq. (C10). The inverse propa-
gator depends on the field explicitly and implicitly through
the dependence of the self-energy on the propagator. From
Eq. (C9) and Eq. (C10), one can see that the explicit field
dependence contribution at the derivative is given by

−Gσ (12)Gσ (2′1′), (C11)

where we used the identity ∂G−1
σ (33′; φ)/∂φ(22′) = δ3,2δ3′,2′ .

In the DMFT approximation, the self-energy is fully
local, i.e., �DMFT

σ (11′) = �σ (11′)δrr′ . In other words, the
DMFT self-energy is only a functional of the local propaga-
tor �DMFT

σ = �DMFT
σ (Gloc(φ)), where Gloc denotes the local

propagator Gloc,σ (τ, τ ′) = (1/N )
∑

r Gσ (rτ, rτ ′). Employing
the fact that the DMFT self-energy is a functional of Gloc, the
derivative of the self-energy with respect to the field can be
written as

Gσ (13)
δr3r′

3
∂�DMFT

σ (33′; φ)

∂φ(22′)
Gσ (3′1′)

= Gσ (13)δr3r′
3

[
∂�DMFT

σ (r3τ3, r3τ3′ )

∂Gloc,σ ′ (τ4, τ4′ )

∂Gloc,σ ′ (τ4, τ4′ )

∂φ(22′)

]

× Gσ (3′1′)
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= Gσ (13)δr3r′
3
Gσ (3′1′)�σσ ;σ ′σ ′ (τ3τ3′ ; τ4τ4′ )

× ∂Gloc,σ ′ (τ4, τ4′ )

∂φ(22′)
, (C12)

where

∂�DMFT
σ (r3τ3, r3τ3′ ; φ)

∂Gloc,σ ′ (τ4τ4′ )
≡ �irr

σσ ;σ ′σ ′ (τ3τ3′ ; τ4τ4′ ). (C13)

Diagrammatically, �σσ ;σ ′σ ′ is obtained by removing one inter-
nal line from the self-energy in all possible ways.

The complete equation for the susceptibility then takes the
form

∂Gσ (11′; φ)

∂φ(22′)
= −Gσ (12)Gσ (2′1′) + Gσ (13)δr3r′

3
Gσ (3′1′)

×�
ph,irr
σσ ;σ ′σ ′ (τ3τ3′ ; τ4τ4′ )

∂Gloc,σ ′ (τ4, τ4′ )

∂φ(22′)
.

(C14)

Setting r1 = r′
1 on the left-hand side, the derivative of n and

the above derivative become the same. Then, iterating the
resulting equation gives the BSE used in this study.

So far we were working with the lattice model. Now, we
follow closely the analysis of Ref. [92] to obtain the impurity
compressibility. In DMFT, the lattice model is mapped on an
auxiliary impurity site embedded in a noninteracting bath.
The bath parameters are determined self-consistently. The
impurity Green’s function is

gσ (11′; φ) = −[∂τ − φ + �σ (φ) + �σ (g(φ))]−1
11′ , (C15)

where � denotes the hybridization function determined
through the self-consistency relation

gσ − Gloc,σ = 0, (C16)

which is solved in the imaginary-time independent case, i.e.,
for every Matsubara frequency. We leave the two imaginary
times 1 and 1′ free in Eq. (C15), but since the derivative
we are interested in is for φ equal to the chemical potential,
which is independent of imaginary time, the derivation
goes through if the self-consistency Eq. (C16) depends
only on imaginary-time difference. Note that the inverse
should be understood as a matrix inversion in imaginary time
coordinates (indices are not bold anymore). Furthermore, we
have gσ (12)g−1

σ (21′) = δ11′ .
The impurity Green’s function depends on φ explicitly

and implicitly through the hybridization function. Then the
variation of the impurity density with respect to the field is
given by (with 1′ = 1+)

∂gσ (11′)
∂φ(22′)

∣∣∣∣
�

+ ∂gσ (11′)
∂�σ ′ (33′)

∣∣∣∣
φ

∂�σ ′ (33′)
∂φ(22′)

. (C17)

Using the definition of the impurity Green’s function, one can
easily show that

∂gσ (11′)
∂φ(22′)

∣∣∣∣
�

= [
χ

0,ph
loc,σσ

]
11′;22′ − [

χ
0,ph
loc,σσ

]
11′;33′

∂�σ (33′)
∂φ(22′)

∣∣∣∣
�

= [
χ

0,ph
loc,σσ

]
11′;22′ −

[
χ

0,ph
loc,σσ

]
11′;33′�

ph,irr
σσ ;σ ′σ ′ (33′; 44′)

× ∂gσ ′ (44′; φ)

∂φ(22′)

∣∣∣∣
�

, (C18)

where [χ0,ph
loc,σσ ′]11′;22′ ≡ −gσ (12)gσ (2′1′)δσσ ′ . Note that the

relevant part of the above expression is the part with 2 = 2′
since φ is diagonal.

The dependence of g on the hybridization function at
constant field is

∂gσ (11′)
∂�σ ′ (33′)

∣∣∣∣
φ

= −[
χ

0,ph
loc,σσ ′

]
11′;33′ − [

χ
0,ph
loc,σσ

]
11′;44′

∂�σ (44′)
∂�σ ′ (33′)

∣∣∣∣
φ

= −[
χ

0,ph
loc,σσ ′

]
11′;33′ − [

χ
0,ph
loc,σσ

]
11′;44′�

ph,irr
σσ ;σ ′′σ ′′

× (44′; 55′)
∂gσ ′′ (55′; φ)

∂�σ ′ (33′)

∣∣∣∣
φ

. (C19)

Note that all imaginary time 3, 3′ must be considered.
One can iterate Eq. (C18) and Eq. (C19) to find the corre-

sponding dressed susceptibilities. The susceptibility obtained
from Eq. (C18) describes the response of a non-self-consistent
impurity model to a change in the chemical potential. It
is a physical response and therefore positive definite at a
stable state. On the other hand, the susceptibility obtained
from Eq. (C19) does not describe any physical response and
therefore it is not necessarily positive definite.

The self-energy and the hybridization function are func-
tionals of the Green’s function. For strong interactions, these
functionals change from a nonperturbative functional at low
frequency to a perturbative functional at high frequency, i.e.,
� ≡ �per[g] or � ≡ �nonper[g]. This causes an ambiguity in
defining the vertex functions in Eq. (C18) and Eq. (C19) when
one frequency is on the perturbative branch of the self-energy
(or hybridization function) and the other frequency is on the
nonperturbative branch. Nevertheless, our numerical verifica-
tion of the compressibility sum rule confirms that Eq. (C18)
and Eq. (C19) remain valid, at least in the range of parameters
considered here.

Further progress requires evaluating the derivative of the
hybridization function with respect to the field. This can be
found from the self-consistency condition, i.e.,

[Fσ (φ,�(φ))]11′ ≡ gσ (11′; φ) + 1

N

∑
k

[
H0(k) − g−1

σ (φ)

−�σ (φ)
]−1

11′ = 0, (C20)

where we define Fσ (φ,�(φ)) for convenience. The variation
of the above equation with respect to the field is

∂Fσ (11′)
∂φ(22′)

∣∣∣∣
�

+ ∂Fσ (11′)
∂�σ ′ (33′)

∣∣∣∣
φ

∂�σ ′ (33′)
∂φ(22′)

= 0, (C21)

which gives

∂�σ ′ (33′)
∂φ(22′)

= −
[

∂F

∂�

∣∣∣∣
φ

]−1

σ ′σ ′;σ ′′σ ′′
(33′; 11′)

∂Fσ ′′ (11′)
∂φ(22′)

∣∣∣∣
�

,

(C22)

where we assume ∂F/∂� is invert-able. One the other hand,
we are assuming that ∂g/∂� is finite [see the discussion after
Eq. (C19)]. At the vicinity of a Mott phase F (�) may go
through an extremum with zero derivative, breaking down the
above assumption.

The derivative of Fσ (φ,�(φ)) with respect to the field
at constant hybridization function can be written as follows,
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using Eq. (C18),

∂Fσ (11′)
∂φ(22′)

∣∣∣∣
�

= ∂gσ (11′)
∂φ(22′)

∣∣∣∣
�

− 1

N

∑
k

Gkσ (13)g−1
σ (34)

∂gσ (44′)
∂φ(22′)

∣∣∣∣
�

g−1
σ (4′3′)Gkσ (3′1′)

= ([
χ

0,ph
loc,σσ

]
11′;33′ − [

χ̃0,ph
σσ (q = 0)

]
11′;33′

)[
χ

0,ph
loc,σσ

]−1
33′;44′

∂gσ (44′)
∂φ(22′)

∣∣∣∣
�

= ([
χ

0,ph
loc,σσ

]
11′;33′ − [

χ̃0,ph
σσ (q = 0)

]
11′;33′

)(
δ23δ2′3′ − �

ph,irr
σσ ;σ ′σ ′ (33′; 44′)

∂gσ ′ (44′; φ)

∂φ(22′)

∣∣∣∣
�

)
, (C23)

where [
χ̃

0,ph
σσ ′ (q = 0)

]
11′;33′ = (−1/N )

∑
k

Gkσ (13)Gkσ (3′1′)δσσ ′ . (C24)

The derivative of the Fσ (φ,�(φ)) with respect to the hybridization function at constant field is

∂Fσ ′ (11′)
∂�σ (33′)

∣∣∣∣
φ

= ∂gσ ′ (11′)
∂�σ (33′)

∣∣∣∣
φ

− [
χ̃

0,ph
σ ′σ (q = 0)

]
11′;33′ − 1

N

∑
k

Gkσ ′ (14)g−1
σ ′ (45)

∂gσ ′ (55′)
∂�σ (33′)

∣∣∣∣
φ

g−1
σ ′ (5′4′)Gkσ ′ (4′1′)

= (
δσ ′σ ′′δ15δ1′5′ + [

χ̃
0,ph
σ ′σ ′ (q = 0)

]
11′;44′�

ph,irr
σ ′σ ′;σ ′′σ ′′ (44′; 55′)

)∂gσ ′′ (55′)
∂�σ (33′)

∣∣∣∣
φ

, (C25)

where we have used Eq. (C19).
To show that Eq. (C17) for ∂n/∂μ on the impurity is identical to the q = 0 susceptibility on the lattice, note that the second

term in Eq. (C17) can be rewritten using Eq. (C22) as

− ∂gσ (11′)
∂�σ ′ (33′)

∣∣∣∣
φ

[
∂F

∂�

∣∣∣∣
φ

]−1

σ ′σ ′;σ ′′σ ′′
(33′; 44′)

∂Fσ ′′ (44′)
∂φ(22′)

∣∣∣∣
�

. (C26)

Using Eq. (C25), the multiplication of the first two terms at Eq. (C27) is

∂gσ (11′)
∂�σ ′ (33′)

∣∣∣∣
φ

[
∂F

∂�

∣∣∣∣
φ

]−1

σ ′σ ′;σ ′′σ ′′
(33′; 44′) = (

1 + [χ̃0,ph(q = 0)]�ph,irr
)−1

σσ ;σ ′′σ ′′ (11′; 44′), (C27)

where 111′σ ;44′σ ′′ = δσσ ′′δ1,4δ1′4′ . Therefore, Eq. (C17) for ∂n/∂μ on the impurity can be rewritten as follows, using Eq. (C23)
and Eq. (C27)

∂gσ (11′)
∂φ(22′)

∣∣∣∣
�

− (1 + [χ̃0,ph(q = 0)]�ph,irr )−1
σσ ;σ ′′σ ′′ (11′; 44′)

([
χ

0,ph
loc,σ ′′σ ′′

]
44′;33′ − [

χ̃
0,ph
σ ′′σ ′′ (q = 0)

]
44′;33′

)

×
(

δ32δ3′2′ − �
ph,irr
σ ′′σ ′′;σ ′σ ′ (33′; 66′)

∂gσ ′ (66′; φ)

∂φ(22′)

∣∣∣∣
�

)
= (1 + [χ̃0,ph(q = 0)]�ph,irr )−1

σσ ;σ ′′σ ′′ (11′; 44′)
[
χ̃

0,ph
σ ′′σ ′′ (q = 0)

]
44′;22′ .

(C28)

Therefore, the above expression for ∂n/∂μ on the self-consistent impurity equals to the lattice BSE only when the self-energy is
a functional of Green’s function described by the perturbative branch.
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