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The two-dimensional (2D) hole gas at the surface of transfer-doped diamond shows quantum-mechanical
interference effects in magnetoresistance in the form of weak localization and weak antilocalization (WAL) at
temperatures below about 5 K. Here we use the quenching of the WAL by an additional magnetic field applied
parallel to the 2D plane to extract the magnitude of the in-plane g-factor of the holes and fluctuations in the well
width as a function of carrier density. Carrier densities are varied between 1.71 and 4.35 × 1013 cm−2 by gating
a Hall bar device with an ionic liquid. Over this range, calculated values of |g| vary between 1.6 and 2.3 and the
extracted well-width variation drops from 3 to 1.3 nm rms over the phase coherence length of 33 nm for a fixed
geometrical surface roughness of about 1 nm as measured by atomic force microscopy. Possible mechanisms for
the extracted variations in the presence of the ionic liquid are discussed.
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I. INTRODUCTION

Undoped diamond is a bona fide insulator. However, when
the surface is terminated with hydrogen and exposed to air
it develops a pronounced p-type surface conductivity through
a process that is termed transfer doping [1]. Transfer doping
involves an electrochemical reaction between diamond and
the ever-present water layer that leaves holes in the diamond
valence bands and compensating OH− ions at the surface
[2]. As space charges, the holes are confined by a strong
upward band bending to a narrow two-dimensional (2D)
well right below the surface. Typical carrier concentrations
are 1012 to 1013 cm−2 and the width of the well depends
self-consistently on carrier density and lies in the range of
1 to 10 nm [3]. Because transfer doping does not involve
the activation of an acceptor there is no carrier freeze-out
and metallic conductivity is maintained down to at least
250 mK. Low-temperature magnetoresistance measurements
show that electrical transport in the hole accumulation layer
exhibits quantum phenomena that are characteristic for a 2D
quantum system and lead to a deviation from classical Drude
conductivity. They are Shubnikov–de Haas oscillations [4],
a strong hole-hole interaction (HHI), quantum interference
effects that show up as weak localization (WL) [5], and weak
antilocalization (WAL) due to strong spin-orbit interaction
[5]. Using an ionic liquid (IL) as a gate dielectric we were able
to increase the carrier density from 1.1 to 7.23 × 1013 cm−2

with a proportional increase in spin-orbit splitting from 4.6
to 24.5 meV [6]. This large spin-orbit splitting observed for
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a 2D hole system exceeds the atomic spin-orbit splitting
of the valence electrons in diamond (�atomic = 8 meV) [7].
Because the electric field in the highly asymmetrical confining
potential increases with carrier density, the enhanced spin-
orbit splitting was ascribed to the Rashba effect. In particular,
here it is ascribed to the Rashba effect cubic in wave-vector k
for reasons explained in Ref. [8].

With a strong spin-orbit interaction the holes in diamond
are potential candidates for spin manipulation. While the
Rashba effect provides the coupling of the carrier spin to
an electric field, the strength of the coupling to a magnetic
field, i.e., the carrier g-factor, was still missing. That gap was
recently closed by us following Minkov et al. [9] and mea-
suring the low-temperature magnetoresistance as a function
of a magnetic field perpendicular to the 2D hole gas with
an additional parallel field as a parameter [10]. The analysis
of the data yields for the magnitude of the g-factor a value
of 2.6 ± 0.1. In addition, the data showed additional effects
due to variations in effective well width of 3-nm mean-square
roughness over a distance of about 30 nm [10].

Here we extend these measurements to hole concentrations
that are tuned by an ionic liquid gate over the range from
1.71 to 4.35 × 1013 cm−2. The analysis gives a monotoni-
cally rising g-factor while the effective well-width variation
decreases with increasing carrier concentration. Mechanisms
are discussed to rationalize these observations.

II. EXPERIMENT

A commercial IIa single-crystal (001) diamond face was
used to fabricate the Hall bar device. The surface was hydro-
gen terminated at approximately 850 °C in a microwave hy-
drogen plasma with a power of 1500 W for 10 min. In order to
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FIG. 1. (a) Optical image of the ionic liquid gated Hall bar
device. The two bright spots are reflections of the overhead light on
the surface of the ionic liquid. (b) Hole sheet density as a function of
gate voltage. (c), (d) Hole sheet resistivity and mobility, respectively,
as a function of temperature with gate voltage as parameter.

achieve saturation charge-transfer doping, the sample was left
in air for several days following the termination. A Hall bar
with channel length and width of 200 and 40 μm, respectively,
and palladium contacts was fabricated using standard pho-
tolithography and lift-off processing. The conducting regions
are isolated from the rest of the surface by oxygen plasma
exposure. The Hall bar device was gated using the ionic liq-
uid 1-ethyl-3-methyl-imidazolium tris(pentafluoroethyl) tri-
fluorophosphate [C2C1Im]+[FAP]− as a high-capacity gate
insulator. The IL is dropped on the channel of the device using
a micropipette, ensuring coverage on the gate contact as well
[Fig. 1(a)]. The gate bias is applied above the IL melting point
of 236 K in order to ensure the full IL polarization. After
cooling below the melting point the polarization is maintained
and potentials on any of the contacts have no influence on the
effective gate voltage. Magnetotransport measurements are
performed using a Leiden Cryogenics dry dilution refrigerator
with an integrated 9-1-1 T superconducting vector magnet.
Longitudinal and Hall resistivity are measured at temperatures
from 1.5 to 20 K for perpendicular magnetic fields B⊥ up to
1 T and gate biases between 0 and −3.0 V. Zeeman splitting
and microroughness for each gate voltage are derived from
magnetoresistance measurements at 2.5 K when in addition to
B⊥ a constant in-plane field B‖ between 0 and 1 T is applied
in steps of 0.2 T.

III. RESULTS

The analysis of the data follows the one used in our
previous publications [5,6,10]. As a first step, HHI is removed

from ρxx and ρxy by applying a correction to the measured data
according to Goh et al. [11] and the procedure is explained
in the Supplemental Material [12]. From these corrected data
the longitudinal conductivity σxx, carrier concentration, and
mobility, all as a function of gate voltage, are derived in the
usual way. The sample exhibits metallic conductivity down
to the lowest temperatures except for gate voltages of −1.5
and −2.0 V, where a slight increase in longitudinal sheet
resistivity is observed [Fig. 1(c)]. For these two gate voltages
the mobilities are noticeably lower than for the remainder
of the gate voltages [Fig. 1(d)] where mobilities are within
the range reported consistently for air-induced surface con-
ductivity [13,14]. Since mobility and longitudinal resistivity
are back to normal at −3.0-V gate voltage there is no ap-
parent deterioration in sample properties with increasing gate
voltage, and no peculiar behavior in magnetoresistance has
been detected either. As intended, the carrier concentration
increases linearly with gate voltage albeit with a slightly
smaller slope compared to our earlier work as reflected in
the ionic liquid capacitance of 2.2 μF/c m2 vs the previous
2.8 μF/cm2 [6]. Other salient quantities such as diffusion
constant, elastic-scattering times, and mean-free path are col-
lected in the Supplemental Material [12].

We turn now to the magnetoconductance data without
application of a field component parallel to the 2D plane (see
the σxx vs B curves for B‖ = 0 in Fig. 2). For the lowest
carrier density without ionic liquid the magnetoconductivity
exhibits the drop in σxx around B⊥ = 0 characteristic of weak
localization that is modified by the central, cusplike peak
due to weak antilocalization. The WAL feature increases
with gate voltage and thus carrier concentration until it is
the dominant feature of the magnetoconductivity starting
at Vg = −2.0 V.

WAL is due to spin-orbit interaction which destroys the
constructive interference necessary for WL. Spin-orbit inter-
action can ultimately even lead to a conductivity that exceeds
the Drude conductivity due to the destructive interference of
time-reversed backscattering loops [15]. WL is partly restored
by coupling the spins to the external magnetic field which
accounts for the cusplike appearance of WAL in the spectra.
The magnetoconductance curves are fitted to the expression
derived by Hikami et al. [16] as given by Knap et al. [17]
for k3 Rashba spin-orbit interaction. From the fits, crucial
parameters such as the phase and spin coherence lengths of the
carriers and their spin-orbit splitting �so are derived. These
quantities are collected in the Supplemental Material [12] and
�so exhibits a linear increase with carrier density reported
previously [6]. The increase is characteristic for spin-orbit
interaction due to the Rashba effect because there is a direct
connection between carrier density and electric-field strength
in the carrier confining quantum well on account of Gauss’s
law: higher carrier densities result in more asymmetric quan-
tum wells.

Turning to the traces with parallel field component we
observe a quenching of the WAL feature with increasing B‖.
This is most apparent for the lowest carrier densities where
WAL is still rather weak in the absence of B‖. Two factors
contribute to this reduction: fluctuations in effective well
width and the Zeeman effect [18,19]. They are accounted for
in the Hikami formula for the change in conductance �σ by
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two additional parameters �r and �s [9]:
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Here, � is the digamma function and Bφ and Bso are char-
acteristic fields that scale with the phase-breaking inelastic-
scattering rate 1/τφ and the spin-relaxation rate 1/τso due
to spin-orbit interaction according to 1/τφ = 4eDBφ/h̄ and
1/τso = 4eDBso/h̄, where D is the diffusion constant.

Fluctuations in the well width mean carriers that are
backscattered and interfere after traversing time-reversed
loops are no longer confined strictly to a plane and will
therefore be susceptible to a magnetic field parallel to the 2D
plane. This allows an additional Aharonov-Bohm phase to be
involved. Hence �r =

√
π

2
e
h̄

d2L
l B2

‖ is added to Bφ in the above
formula as an additional phase-breaking effective field that

FIG. 2. Longitudinal conductivity σxx as a function of B⊥ with
different applied in-plane fields B‖: (a) when the device is ungated,
without ionic liquid; (b)–(e) with gate biases of −1.5, −2, −2.5, and
−3 V, respectively. The open circles are the data points and the lines
are the fits.

scales with d2L
l , the product of the mean-square well-width

fluctuations d2 and the correlation length of the fluctuations L
divided by l , the elastic mean-free path.

The term �s = τso
4eh̄D (gμBB‖)2 scales with the square of the

in-plane Zeeman splitting gμBB‖ where g and μB are the g-
factor of the carriers and the Bohr magneton, respectively. The
correction �s is applied only to the singlet term (dependent on
Bφ only) and not the triplet term (dependent on Bφ and Bso) in
Eq. (1) [9].

All magnetoconductivity curves for B‖ = 0 were first fitted
to Eq. (1) with �r , �s set to zero. From these fits the
characteristic fields Bφ and Bso are derived which in turn yield
the inelastic- and spin-orbit scattering times and the spin-
orbit splitting as a function of gate voltage and hence carrier
density. All these values are collected in the Supplemental
Material and they are in agreement with earlier data derived
from the magnetoconductivity of the hole gas in diamond in
the absence of B‖ [5,6].

Next, �r and �s were varied in Eq. (1) to fit the curves
for finite B‖ while keeping Bφ and Bso fixed at the value
previously determined for each gate voltage in the absence
of B‖. Satisfactory fits were obtained as demonstrated by the
solid lines in Fig. 2 for a selection of gate voltages. In Fig. 3,
�r and �s so obtained are plotted vs B2

‖. Both scale—the
latter with some scatter—linearly with B2

‖ as required for
Eq. (1) to be applicable. From the slopes of linear regressions,
the factors d2L and g are calculated according to the above
expressions and they are plotted as a function of carrier
density in Fig. 4.

The error bars were calculated using error progression
from the standard deviations obtained in the fitting procedures
or estimated as 5% for the diffusion constant D. D is directly
traced to the Drude conductivity σD and this error therefore
reflects the precision of the conductivity measurement. How-
ever, we ascribe a considerably larger systematic error of
20% to D that represents the uncertainty in identifying the
conductivity at 30 K with the true Drude conductivity at the
measurement temperature.

IV. DISCUSSION

The use of magnetoresistance as a nondestructive method
to characterize the roughness of 2D systems was pioneered
by Wheeler and coworkers [20–22], and it was taken up by
Minkov et al. [23] and Cabañas et al. [24] with the theoretical
underpinning provided by Mathur and Baranger [25]. In these
works the attenuation of weak localization in the presence
of an additional magnetic field parallel to the plane of the
2D system was taken as evidence for interface roughness in
Si/SiO2 interfaces of metal-oxide-semiconductor field-effect
transistor (MOSFET) structures [20–22] and of well-width
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FIG. 3. Parameters �s and �r as extracted from fits to the magnetoconductivity curves in Fig. 2 plotted vs B2
‖ for the gate voltages indicated

in each frame; W/O IL: without ionic liquid. The lines are linear regressions to the data points.

fluctuations in an AlGaAs heterostructure [20]. In all cases the
interpretation follows the one given here, namely the addition
of a B‖-dependent phase-breaking rate when the time-reversed
electron loops deviate from a strictly planar path and thus
expose open loops to B‖ as well. Interface roughness or well-
width variations are extracted analogously to the procedure
described above, and qualitative [22] as well as quantitative
[23] agreement between the interface roughness determined
by magnetoresistance and atomic force microscopy has been
reported. In one case, the interface roughness parameter was
determined as a function of carrier density in the inversion
channel of a gated MOSFET device [21]. Here, despite an
unchanged topological roughness, the apparent magnetoresis-
tance roughness increased about twofold for an increase in

carrier density by a factor of three. The authors ascribe that to
the fact that the electron wave function is brought closer to the
interface as the confining potential narrows with increasing
carrier density and hence becomes more susceptible to the
interface roughness. This is the opposite of what we observe
and we shall come back to it below.

The first to study the effect of interface roughness and
Zeeman splitting on weak antilocalization in the presence of
a parallel field component were Minkov et al. [9] and they
derived g-factor and interface roughness for carriers in an
InGaAs quantum well. Similar work on the 2D electron gas in-
duced by the intrinsic polarization of GaN at the AlGaAs/GaN
interface was performed by Cabañas et al. [24], for example.
However, this is an instance where both interface roughness or
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FIG. 4. (a) In-plane g-factor and (b) microroughness parameters
d2L as calculated from the slopes of the lines in Fig. 3 vs hole density.
The error bars on each data point are the statistical errors. An overall
20% systematic error due to the uncertainty in the diffusion constant
(see text) is indicated by the isolated error bar. The solid lines are
guides to the eye and APL 2018 refers to the g-factor of Ref. [10].

well-width variation and in-plane g-factor are systematically
studied as a function of carrier density in a 2D hole gas.

We start with the result for the in-plane g-factor as given
in Fig. 4(a). We tacitly presuppose that we are always talking
about the magnitude of the g-factor in what follows and ignore
for the time being the 20% systematic uncertainty alluded to
above. It is satisfying albeit to be expected that the g-factor
without IL agrees with that derived previously for an ungated
device of otherwise identical properties [10]. Once the IL is in
place the calculated in-plane g-factor increases monotonically
from 1.3 to 2.3 as the carrier density is doubled from 2.2 to
4.4 × 1013 cm−2, thus bracketing the free-electron value of
g = 2. Similar values were previously derived by the same
method for electrons in the InGaAs quantum well (1.7 ± 0.3)
[9], and 1.95 in an AlGaAs/GaN interface layer [24]. In lieu of
any relevant measurements or calculations of the g-factor for
the valence bands of diamond we can only speculate about
the origin of the variation in g-factor. Since any deviation
from g = 2 has to be a band-structure effect, two closely
related factors come to mind: band filling and hybridization.
As shown previously [3], the carriers in the hole accumulation
layer of diamond occupy the lowest 2D band based on the first
quantum state derived from the heavy-hole valence band in
bulk diamond. The next higher, empty band is that based on
the lowest quantum state derived from the light-hole valence
band. These two bands eventually cross for sufficiently large
k vectors because the “light-hole band” has an effective mass
that is larger than the 2D mass of the “heavy-hole band”
for in-plane dispersion. Hence, any filling of the heavy-hole
band moves the Fermi wave vector kF closer to the crossing
point and thus increases the hybridization of the states that
matter for transport. A change in hybridization of the two
bands as a consequence of varying carrier densities could give
rise to changes in g-factor. However, there is a caveat. As the
carrier density increases, the width of the confining potential
decreases, which in turn affects the quantization energies of
the heavy- and light-hole bands, i.e., their energy at k =
0. That could, in principle, overcompensate the band-filling
effect and move the energies of the two bands at kF apart.

Using a simple band calculation, based upon a triangular
well approximation [26], the 2D hole dispersion of the light-
hole and heavy-hole bands has been estimated, as shown in the

Supplemental Material [12]. For the carrier densities achieved
in this experiment, the Fermi wave vector is predicted to reside
well below the crossing point so the extent of hybridization of
the two bands may be limited. However, the exact mechanism
has to await a full calculation including the self-consistent
solution of the Schrödinger and Poisson equations along the
lines given in Ref. [3].

We now turn to the roughness parameter d2L as shown as
a function of carrier density by the full circles in Fig. 4(b).
Again, our present result for the ungated device (open square)
agrees with that of our previous publication (280 nm3) [10].
Because well-width fluctuations beyond the scale of the
phase-coherence length Lφ are of no relevance to the analysis
presented here, we show by the red crosses in Fig. 4(b)
the roughness parameter divided by Lφ . This should repre-
sent directly an effective mean-square roughness and it is
clear from its carrier dependence that geometrical surface
roughness alone cannot explain our results because the latter
would not depend on carrier density. Indeed, in Ref. [10] we
reported—measured by atomic force microscopy (AFM)—
a mean-square surface roughness of dAFM

2 = 1.2 ± 0.3 nm2

over a correlation length on the order of the phase-coherence
length Lφ of about 30 nm. Significantly, this is the value that
our current data approach from above as the carrier density
increases. Hence it is obvious that the bulk of the measured
roughness is due to fluctuations in well width rather than
surface roughness. For the ungated device a fluctuation in
well width of about 3 nm would be required to obtain the
measured d2 of about 10 nm2 provided the two contributions,
surface roughness and well-width fluctuations, are uncorre-
lated and add geometrically. Well-width fluctuations of about
3 nm could arise from lateral variations in carrier density by
about one order of magnitude [3]. This is in keeping with
the requirement of spatially inhomogeneous carrier densities
of a comparative level in order to interpret Shubnikov–de
Haas oscillations in the hole accumulation layer on (111)
diamond [4]. The reduction in well-width fluctuation would
then be the result of a more homogeneous carrier distribution
as more holes are attracted to the 2D layer with increasing gate
voltage.

Lateral inhomogeneities in carrier density may be traced to
the haphazard transfer-doping mechanism with its statistical
distribution of OH− anions in the adsorbed water layer. We
note that the above analysis does not consider the possibility
that the introduction of the ionic liquid layer may modify the
correlation length and magnitude of these doping fluctuations
in a manner which would affect the applicability of Eq. (1).
In Fig. 3, a linear fit was used to describe the dependence of
the correction �r on B2

‖, consistent with Eq. (1). However,
for cases where the IL is in place, the experimental data
may exhibit a nonlinear line shape. Additionally, we presently
have no explanation for the substantial drop in g-factor as the
IL is placed on the device despite the very small change in
carrier density. The above analysis considers only well-width
fluctuations that are short range, where L ∼ l , which introduce
an additional dephasing on the WAL but do not affect the
line shape of the corresponding magnetoconductance curves.
It is possible that the introduction of the IL may modify the
distribution of OH− anions, for example due to the distortion
that may arise in the IL as it is cooled, causing deviations in
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the short-range fluctuations. The introduction of long-range
correlations in the doping distribution would give rise to
changes in the line shape of the WAL magnetoconductance
curves in a way that would modify the analysis presented
here. The correlation length of doping fluctuations in the IL
requires a more detailed investigation but this mechanism may
illuminate the differing behavior of the data obtained with and
without the IL in place.

V. SUMMARY

We have presented here a systematic investigation of g-
factor and well-width fluctuations in the hole accumulation
layer of diamond as a function of carrier density. The results
were obtained by analyzing the quenching of the weak antilo-
calization feature in the low-temperature magnetoresistance
as a function of a magnetic-field component parallel to the
2D hole gas while the carrier density was varied by an ionic
liquid gate. For carrier densities between 2.27 and 4.35 ×
1013 cm−2 the magnitude of the in-plane g-factor increases

monotonically from 1.3 to 2.3. The roughness parameter
derived from the same measurements drops by a factor of
three over the same range of densities and it is evident that
initially the geometrical surface roughness as measured by
atomic force microscopy contributes only marginally. The
main contribution comes from variations in well width traced
to lateral inhomogeneities in carrier density. The carrier inho-
mogeneity is smoothed out as more holes are pulled in by the
gate voltage and the roughness parameter approaches within a
factor of two the geometrical surface roughness. Variation of
the correlation length of fluctuations in the doping distribution
in the presence of an ionic liquid, and indeed other commonly
used adlayer materials such as transition-metal oxides or gate
dielectrics, are likely to influence the spin transport properties
in the underlying hole gas.
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