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The notion of topological (Thouless) pumping in topological phases is traditionally associated with Laughlin’s
pump argument for the quantization of the Hall conductance in two-dimensional (2D) quantum Hall systems.
It relies on magnetic flux variations that thread the system of interest without penetrating its bulk, in the spirit
of Aharonov-Bohm effects. Here we explore a different paradigm for topological pumping induced, instead,
by magnetic flux variations 8 x inserted through the bulk of topological phases. We show that § x generically
controls the analog of a topological pump, accompanied by robust physical phenomena. We demonstrate this
concept of bulk pumping in two paradigmatic types of 2D topological phases: integer and fractional quantum
Hall systems and topological superconductors. We show that bulk pumping provides a unifying connection
between seemingly distinct physical effects such as density variations described by Streda’s formula in quantum
Hall phases and fractional Josephson currents in topological superconductors. More importantly, we argue that
bulk pumping provides a generic tool for probing topological phases and inducing robust physical effects, similar
in spirit yet crucially different from Laughlin’s pump. We discuss its generalizations in other topological phases.
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The notion of topological pump introduced by Thouless
[1] underlies some of the most robust quantum phenomena. In
essence, it corresponds to the dynamical implementation of a
gauge transformation, via deformations of the Hamiltonian of
a quantum system in some parameter space. In a topological
pump, the net result of a parameter cycle is nontrivial: Though
the Hamiltonian remains identical up to the applied gauge
transformation, a permutation occurs between the system’s
eigenstates, leading to robust (typically quantized) effects.

Magnetic fluxes offer a natural “knob” to induce inter-
esting pumping effects. One of the most famous examples
is provided by Laughlin’s argument [2,3], which relates the
variation of a magnetic flux to a quantized charge-pumping
effect: the Hall conductance of two-dimensional (2D) quan-
tum Hall systems. Laughlin’s pump paradigm corresponds to
the situation where all system’s eigenstates undergo a flux-
induced circular shift in momentum space (e.g., around a
crystal Brillouin zone).

While Laughlin’s pump relies on variations §® of an
Aharonov-Bohm flux @ [threading the system without pen-
etrating its bulk, as in Fig. 1(a)], variations § x of a magnetic
flux y inserted through the bulk of topological phases can also
give rise to robust phenomena: In 2D quantum Hall phases,
e.g., transverse flux variations §x induce density changes
proportional to the quantized Hall conductance, as described
by Streda’s formula [4]. In 2D topological superconductors,
in contrast, the insertion of flux quanta through the bulk
gives rise to the creation or annihilation (fusion) of Majorana
zero modes [5-7] and to fractional Josephson effects [6,8—12]
(see, e.g., Refs. [13,14] for reviews). Despite their topological
origins, such effects are conventionally derived and under-
stood on a case-by-case basis, without apparent connection
to topological pumping.

In this work, we demonstrate that the insertion of flux
quanta 8y through the bulk of gapped topological phases
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with protected gapless edge states generically leads to robust
pumping effects. We relate §x to the low-energy analog of
a topological pump, which we coin “bulk pump,” and argue
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FIG. 1. (a): Schematic setup for conventional (Laughlin’s) topo-
logical pumping vs “bulk pumping.” A gapped topological phase
with cylinder or Corbino disk geometry is exposed to two types of
magnetic fluxes: an Aharonov-Bohm flux ® threading its hole and a
transverse flux x threading its bulk. In the examples considered here,
phases exhibit counterpropagating gapless edge modes [red (L) and
blue (R)] supporting quasiparticle excitations with charge e/ [, where
! > 1 is an odd integer. (b): Schematic anomalous spectral flow of
low-energy (edge) modes due to small flux variations 6® and .
While Laughlin’s conventional pump corresponds to §® = 2/ (I
flux quanta) [2,3], the bulk pump of interest corresponds to § x = 4ml
(see text). Bulk pumping induces spectral flow at the right edge only
[or opposite flows at opposite edges (shown in gray), in a gauge
where §® — 5O + & /2; see Eq. (7)]. Empty/filled dots represent
empty/filled states (see text), and p denotes the Fermi level energy.
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that the robust phenomena induced by 6 x can be understood
and systematically be searched for using this notion of bulk
pumping. We demonstrate our claims in two paradigmatic
types of topological phases: 2D quantum Hall systems and 2D
topological superconductors. We show that effects associated
with Streda’s formula and fractional Josephson currents are
manifestations of the same bulk pump §x in distinct topolog-
ical phases. We argue that bulk pumping provides a generic
probing tool and useful practical knob for robust effects in
topological phases—similar in spirit yet crucially distinct
from Laughlin’s conventional type of pumping.

I. KEY RESULTS AND OUTLINE

Our goal is to demonstrate that the insertion of flux quanta
through the bulk of gapped phases with topologically pro-
tected gapless edge states induces the analog of a topological
pump, accompanied by robust physical effects. To highlight
the similarities and differences between bulk and conven-
tional topological pumping, we consider a similar setup as
in Laughlin’s argument: 2D gapped topological phases on
a cylinder (or, equivalently for our purposes, on a Corbino
disk), as shown in Fig. 1(a). We consider phases whose low-
energy properties are governed by robust gapless edge modes
appearing at the edges of the cylinder and focus on phases
made of fermions with charge e = 1, minimally coupled to
two types of external magnetic fluxes: (i) an Aharonov-Bohm
flux @ threading the system’s hole—controlling Laughlin’s
pump—and (ii) a transverse flux x inserted through the bulk
of the system—controlling the bulk pump of interest. We
assume that fermions are spinless (or spin polarized) and
set the system’s temperature to zero. Our results are readily
extendable to finite temperature and more complicated types
of geometries.

Our paper is organized as follows: In Sec. II, we demon-
strate the effects of bulk pumping in paradigmatic examples
of noninteracting (integer) and interacting (fractional) 2D
quantum Hall phases [15—-17]. Focusing on low-energy (edge)
modes, we show that flux variations §® and §x control dis-
tinct types of chiral anomalies [18,19]: While §® (Laughlin’s
pump) induces a global momentum shift or unidirectional
spectral flow of all system’s eigenstates, §x essentially in-
duces opposite spectral flows at opposite edges [see Fig. 1(b)].
The physical effects of §® and §x are thus very distinct
yet similarly robust. In the quantum Hall phases of interest,
we show that §x controls the pumping of charges from the
edges into the bulk, or vice versa, in agreement with Streda’s
formula [4]. In particular, the insertion of / bulk flux quanta,
8y = 2ml (in natural units 7 = ¢ = ¢ = 1, where ¢/ is the
charge of underlying quasiparticle excitations), leads to an
apparent fermion-number parity switch. A similar effect was
recently identified for persistent currents in noninteracting
mesoscopic quantum ladders (where [ = 1) [20].

In Sec. III, we extend our discussion to superconducting
analogs of the integer and fractional quantum Hall phases
considered in Sec. II [5,6,10-12]. We construct an effective
field-theory description of low-energy edge modes in the same
vein as conventional edge theories for quantum Hall phases.
We then demonstrate that parity conservation in supercon-

ductors leads to pumping effects that exhibit a robust 4w/
periodicity in §x. We explicitly relate the insertion of bulk
flux quanta to fractional Josephson effects [6,8—12].

We present our conclusions in Sec. IV and provide addi-
tional information and theoretical background in three appen-
dices where the 2D topological phases examined in the main
text are described using coupled 1D wires, in the spirit of
Refs. [21,22]: In Appendices A and B, we detail the effects
of bulk pumping in explicit tight-binding models for 2D
integer (/ = 1) quantum Hall and topological superconducting
phases. In Appendix C, we present explicit derivations of
the effective field theories used to describe edge modes in
the main text. Our construction follows along the lines of
Refs. [23,24], based on a formulation of Abelian bosonization
by Haldane [25].

II. QUASITOPOLOGICAL BULK PUMP IN QUANTUM
HALL PHASES

We start by examining the paradigmatic example of
Abelian quantum Hall phases with filling factor v = 1/1,
where [ > 1 is an odd integer [15-17] [details of the con-
struction and properties of such phases can be found in
Appendices A (tight-binding coupled-wire picture for [ =
1) and C2 (generalized bosonized picture for [ > 1)]. The
system has a global U(1) symmetry reflecting charge con-
servation. Its low-energy physics is governed by a pair of
counterpropagating chiral gapless edge modes, as in Fig. 1(a).
A uniform transverse field x = xo (whose value is irrelevant
here) is required to generate the phase, and we set ® =0,
without loss of generality. In the absence of additional flux
variations 6® and § x, gapless edge modes are described by
the Hamiltonian

/
H, = ”L/dx(ax%){ (1)
4

where 0 = —/+ = L/R identifies the left/right edge of the
system and the corresponding left/right chirality of the edge
modes with velocity v, [see Fig. 1(a)]. The fields ¢, =
¢, (t, x) are chiral bosonic fields. Their chiral nature comes
from their equal-time commutation relations

(@6 (x), 9o (x")] = —o (im/1) sgn(x — x'), @

[oL(x), pr(x)] = (im/1%), 3)

forming a U(1) Kac-Moody algebra at level /. The second
commutator arises from Klein factors, with conventions de-
tailed in Secs. C 1 and C 2 of Appendix C [26]. The fields ¢,
satisfy periodic boundary conditions

¢U(X+Lx):(pa(x)+2ﬂnaa (4)

where n, is an integer, and L, is the length of the system in
the x (azimuthal) direction.

Equations (1)—(4) describe quasiparticles propagating
along the edge o with velocity v,/ and chirality o.
These “Laughlin quasiparticles” are created by opera-
tors proportional to the normal-ordered vertex operators
(WP) = exp[—i@,]. They carry a charge e/l and exhibit
a phase ¢/™/! under spatial exchange (see Appendix C2).
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Operators (Vi) = exp[—ilp,] = [(Wa")']' create fermions
with unit charge, corresponding to “ensembles” of !
Laughlin quasiparticles.

When introducing flux variations §® and &y, the low-
energy edge theory H; + Hp described by Egs. (1)—(4) is
modified in two ways: First, the edge-mode velocities v,
change by a nonuniversal value of order § x /S, where S is the
surface area of the system (see Appendix A). Here, however,
we neglect such corrections by focusing on “microscopic”
flux variations §x < S, corresponding to the insertion of a
small number of bulk flux quanta over the whole system. Sec-
ond, and most importantly, the minimal coupling between the
system’s charges and flux variations leads to the replacement

0o (X) = 0o (x) — ; / dx'5A,(x)) ©)
0

in Eq. (1) (see Appendix C2), where § A, (x) is the value, at
the edge o, of the U(1) gauge field describing both §& and
8. As can be seen in Fig. 1(a), the left (inner) edge o = —
experiences a flux &, while the right (outer) edge o = + is
threaded by a total flux @ + x. A natural choice of gauge is
thus §A,(x) = § A, (uniform), with

SA_=8A; =8D/L,,
SA, =8Ag = (8D +8x)/Ly,

(6)

which is equivalent to the more symmetric expression

8A; = (6P +08x/2)/Ly, 8D — 8D+ 5x/2. @)

Note that §& can be described as a phase “twist” e~*® in
the boundary conditions of the fermionic fields \I/fT [27]. In
particular, the shift §® — §® + §x /2 in Eq. (7) is equivalent
to a phase twist e~/%%/2 for fermions, which corresponds,
for chiral bosonic fields ¢,, to modified (twisted) boundary
conditions

Qo (X + L) =@5(x)+8x/2+2mn,. (8

The low-energy theory described by Eqgs. (1)—(4) exhibits
a chiral anomaly [18,19], which plays a key role in this
work: Under flux variations §®, 6 x, the number of charges
in individual edge modes (the number of fermions with
fixed chirality) is not conserved. Specifically, the oper-
ator describing the total charge in mode ¢,, given by
0, = —ae/(2rr)fdx8x(p(, (see Appendix C 2), only satisfies
0:Qs =i[HL + Hg, Qs] =0 when §® =6x =0. When
flux variations are introduced, in contrast, d, ¢, is replaced by
its covariant analog D, ¢, = 0.¢, — (e/1)§ A, [Eq. (5)], and
the conserved-charge operator becomes

~ oe

0, =35 [ dxDign = 00+ 75 [ dxoa. ©
2 2ml

Expressing 3, 0, = 0 in the gauge defined by Eq. (7), we thus

find edge currents of the form

oe

Jy =0,05 = —

£ 2nl
with implicit shift & — §® + 5 /2 as in Eq. (7). This
expression captures the main behavior of the system under

flux variations: It shows that both types of fluxes §® and
dx contribute to anomalous (nonzero) charge transfers J,

0; (6@ +06x/2), (10)

between the edge modes and the rest of the system (the
bulk). Specifically, Aharonov-Bohm flux variations § ® induce
currents of opposite signs at opposite edges—into the bulk at
one edge, and out of the bulk at the other edge—while bulk
flux variations 8y induce currents of the same sign at both
edges—into or out of the bulk at both edges [see Fig. 1(b)].

The above anomalies are also visible in the edge spec-
trum. Indeed, charge excitations composed of 1 < s < [ edge
Laughlin quasiparticles satisfy

[Hy, [(WP) )] = ov,(—idy — g8 AP, (11)

Moving to momentum space via (P (p) =
[ dxePX[(WaP)T]*(x), the energy dispersion reads

Ea,s(p) = UUa(P - qS(SAO')

83O +0éyx/2
:avg(p—qx—L ), (12)

where g; = (s/1)e is the relevant charge, and p is the (con-
served) momentum in the x direction (p = 2nn/L, with
integer n). Equation (12) shows that flux variations §®, 6 x
induce an anomalous spectral flow [28,29] consistent with the
edge current J, in Eq. (10): While §® generates energy shifts
E;s = Es5 —0v,q;6P/L, of opposite signs at opposite
edges, §x induces shifts E, s — Ey; 5 — Usqs(8x/2)/Ly of
the same sign at both edges [up to an additional global shift
Es,y = Ess —0Vs:q;(8x/2)/L,duetod® — §P +5x/2in
Eq. (7)] [see Fig. 1(b)].

According to Eq. (12), §® = 2x/ is the minimal flux varia-
tion that leaves the low-energy theory of the system invariant,
acting as a gauge transformation on the latter. Formally, this
corresponds to the only true [global U(1)] gauge symmetry of
the system, responsible for charge conservation. In practice,
however, § x = 2ml also leaves the low-energy theory approx-
imately invariant, up to negligible nonuniversal corrections of
the edge-mode velocities v, (see Appendix A).

The above discussion shows that flux variations §&® and & x
couple to two types of anomalies: symmetric and antisymmet-
ric currents

1 e
Jo=~(Jr+J0) = ———8,8x, 13
v 2(R+ L) 177 00X (13)
L= eIy = -5 (14)
u=2 R L) — ZJTlt .

We call these “vector” and “axial” currents, respectively, in
accordance with seminal studies of chiral anomalies by Adler,
Bell, and Jackiw (ABJ) in the context of pion decay [18,19],
later extended to condensed matter systems [24,30-37].

In our setup, the anomaly controlled by §®—known as
chiral, axial, or ABJ anomaly—underpins Laughlin’s charge-
pumping argument [2,3]: The axial current J, represents a
charge transfer between the two edges of the system, corre-
sponding to the standard Hall current. The insertion of / flux
quanta 6P = 2x/ is a topological pumping process whereby
one charge is transferred between the edges [see Egs. (10),
(12), and Fig. 1(b)]. This pump is “topological” for two
reasons: (i) The corresponding anomaly outflows J; and Jg
are nonzero, which requires the bulk to be in a topological
phase, and (ii) J, and Jp exactly cancel out, implying that
8® = 2xl is a topological pump in the sense of Thouless [1],
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i.e., a closed cycle in parameter space leaving the system
invariant up a gauge transformation.

The situation is different for the anomaly controlled by the
bulk flux § x of interest here: The vector current J, induced by
8 x describes a charge transfer from the edges into the bulk (or
vice versa, when § x < 0). The insertion of / bulk flux quanta,
dx = 2ml, is a pumping process whereby exactly one charge
is transferred from the edges into the bulk [see Eqs. (10), (12),
and Fig. 1(b)]. This bulk pump is topological in the sense that
it relies on a topological bulk. In contrast to Laughlin’s pump,
however, it is not topological in the sense of Thouless: As
mentioned above, § x = 2m/ does not represent a true gauge
transformation of the full system. The anomaly outflows Jp
and Jg do not cancel out (they add up), and the bulk must
change in order to absorb the total outflow J; + Jg, corre-
sponding to an additional charge transferred from the edges.
From the viewpoint of low-energy (edge) modes, however,
bulk modifications only lead to corrections of order § x /S < 1
of the edge-mode velocities v, (Appendix A). Therefore, for
low-energy phenomena, the only difference between §y =
27l and a true Thouless pump are small corrections 27//S.
Accordingly, we identify dx = 2w/ as a “quasitopological”
bulk pump.

We remark that the pumps §® = 2n/ and § x = 2n! trans-
fer the same amount of charge despite their distinct physical
and topological nature. This can be regarded as a manifesta-
tion of Streda’s formula relating the Hall conductance induced
by §® to bulk density changes induced by variations §x
of the transverse magnetic field [4]. We emphasize that the
incompressibility (gap for quasiparticle excitations) of the
quantum Hall phases considered so far does not forbid bulk
pumping, but actually enables the quantization of responses
to §® and Jx. Whereas incompressibility refers to density
changes induced by variations of the chemical potential (i.e.,
to the absence thereof), bulk pumping corresponds to density
changes induced by variations of the transverse flux 8y,
typically at a fixed chemical potential.

As we demonstrate in additional examples below, the
insertion of bulk flux quanta §x generically leads to robust
pumping effects. The physical meaning and periodicity (in
number of bulk flux quanta) of these effects depend on the
nature of the underlying topological phase and, more im-
portantly, on the corresponding anomalous low-energy edge
theory. In the quantum Hall phases examined so far, § x = 2x!
induces an anomalous spectral flow where one of the two
occupied edge fermionic modes at the Fermi level flows from
the edges into the bulk, thereby pumping one charge into
the latter. The number of bulk fermionic modes increases by
one in the process. One can then distinguish two scenarios:
(i) If the Fermi level is pinned by an external reservoir of
charges, corresponding to a fixed chemical potential, the total
number of fermions in the system increases by one. (ii) If
the total number of fermions, instead, is conserved (i.e., the
system 1is isolated), the pump leads to an apparent change
of fermion-number parity: For §x = 2nl, one of the two
occupied edge fermionic modes at the Fermi level is emptied,
while for § x = 4ml both are emptied, and the system comes
back to a configuration with occupied edge fermionic modes
and a lower Fermi level (energy of the highest occupied
state). This effective parity “switch” leads to an apparent 47/

periodicity (in § x ) for phenomena that depend on parity. This
could be observed, e.g., via persistent currents in a mesoscopic
system [20].

In general, bulk pumping requires to vary the external
magnetic flux threading the bulk. Thouless pumping has
been realized in systems of cold atoms trapped in optical
lattices [38,39]. The insertion of bulk fluxes required for bulk
pumping could be implemented via artificial gauge fields in
similar setups [40,41], for example, or even in topological
photonic systems built from photonic crystals or arrays of
coupled cavities (see Ref. [42] for a recent review). As bulk
pumping only depends on the response of topological edge
states to §x, the precise location where the flux is inserted is
irrelevant, provided that it lies deep enough in the bulk, i.e., in
a region with negligible spatial overlap with (exponentially
localized) topological edge states. We emphasize that bulk
pumping requires a controlled insertion of bulk flux quanta
8 x,in contrast to, e.g., leaked fluxes which could appear when
threading a Aharonov-Bohm flux in a conventional Laughlin
pump experiment. Uncontrolled leaked fluxes would gener-
ically penetrate regions where topological edge states are
located, leading to nonuniversal, nonrobust physical effects
distinct from the ones discussed above.

The fact that §x = 4nl pumps exactly two fermionic
modes (or charges) from the edges into the bulk, corre-
sponding to a double bulk parity switch, hints at a way to
obtain more robust pumping effects: If the U(1) symme-
try responsible for fermion-number conservation was broken
down to a Z, symmetry corresponding to fermion-number
parity conservation, the bulk would be able to absorb pairs of
fermions without breaking symmetries, which would promote
0y = 4ml to a bona fide low-energy topological pump. We
demonstrate this below by extending our discussion to topo-
logical superconductors.

III. TOPOLOGICAL BULK PUMP IN TOPOLOGICAL
SUPERCONDUCTORS

To examine the effects of bulk flux quanta in topological
phases with Z, fermion-number-parity conservation, we con-
sider the closest superconducting analog of the quantum Hall
phases examined so far: topological superconducting phases
made of spinless fermions with unit charge, and protected by
particle-hole (PH) symmetry alone (i.e., in symmetry class
D of conventional classifications [43,44] containing, e.g., 2D
p-wave topological superconductors [5]). Details regarding
the construction and properties of such phases can be found in
Appendices B (tight-binding coupled-wire picture for [ = 1)
and C3 (generalized bosonized picture for / > 1). As no
background transverse flux is required here, we start with
® = x =0, without loss of generality. As detailed in Ap-
pendix C 3, the relevant low-energy physics is described by
the following PH-symmetric analog of Eq. (1):

()

H, = —

4

where o and ¢, are defined as before, and v, essentially
corresponds, here, to the amplitude of superconducting pair-
ings in the topological phase (see Appendix B). Equation
(15) can be regarded as two “copies”—"“particle” and “hole,”

l 2 ~ 2
dxz[(ax%) + (0:95)°1, (15)
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related by PH symmetry—of the low-energy edge theory
defined by Eqs. (1)—(4) for quantum Hall phases. The fields
@, represent the hole equivalent of ¢,, in a Bogoliubov de-
Gennes (BdG) picture where particles and holes are treated
as independent and, hence, internal degrees of freedom are
artificially doubled (see Appendix C3). Particle and hole
fields ¢, and @, satisfy the same commutation relations as in
Eq. (2) [and Eq. (3), for distinct fields]. The vector (@5, @5 )"
can be regarded as a Nambu spinor. Though ¢, and ¢,
are independent in Nambu space, the subspace of physical
operators is identified by the “reality condition” [45]

(ﬁa = —¢. (16)

By analogy with quantum Hall phases [Eq. (1)], we iden-
tify (W) = exp[—ig,] and (¥ = exp[—i@,] = UL as
creation operators for Laughlin quasiparticles and quasiholes,
respectively.

Under flux variations §&® and 4 x, the fields ¢, and ¢, are
modified according to Eq. (5)—with e/l — —e/l for §,, in
agreement with the fact that (W J*)f and (\Iff,lh ) carry opposite
charges e/l and —e//. In momentum space, we obtain, in a
similar way as in Eq. (11),

[H,, [(WP) (p)]'] = 00 (p — ¢:8A)(FP) (p)]’,

[H,, [(WI) (p)]'] = 006 (p + ¢:8 AT (p)]’,

where g, = (s/l)e with 1 <s </, and p =2mwn/L, with
integer n. These expressions allow us to identify the relevant
(PH-symmetric) low-energy edge quasiparticles of the sys-
tem: superpositions of Laughlin quasiparticles and quasiholes
with center-of-mass momentum 2¢,8 A, created by operators

LAOE® (p))F + (¥ (p — 2¢,8A)T). (18)

The corresponding energy dispersion is, as in Eq. (12),

a7

vl (p) =

Ea,s(p) = UUU(P - qsaAU)
8<I>+(1+0)6X/2}
L, ’

=0V, [p —qs 19)
where we use the gauge defined in Eq. (6), here and in the
remainder of this work, for convenience.

Low-energy edge quasiparticles created by yd,(p) are
known as chiral Majorana modes (fractional ones, when/ > 1
and s <) [7,10-12,46—48]. They do not carry any charge, as
their constituent Laughlin quasiparticles and quasiholes carry
opposite charges. The reality condition in Eq. (16) implies that

WP)i(p) = w(—p), and
Vo o(P) = Vou (—P + 2458 Aq), (20)
Egy(p) = —Eqs(—p + 2q:8As). Q1)

Therefore, modes with energy E, ;(p) = 0 can be regarded as
the only physically distinct degrees of freedom.

Modes with E, ;(p) = 0, known as Majorana zero modes
[5,6,14], appear at the edge o with momentum p, g = ¢,6A,
and Hermitian operator yJ,S( Po.o) = Vs.5(Po,o) provided that
Do.0 1s an allowed momentum value, i.e., if and only if

Lypoo = qs[8® + (1 +0)5x/2] =2mn, (22)

ox = 2wl

L\/ \/M

L R
<HIL+H]R+HJ>

lOW . 47rl

FIG. 2. Effects of bulk flux quanta §x in 2D topological super-
conductors. (a) To insert §x through the superconducting bulk, we
split the system into two parts, “left” (L) and “right” (R). When
these parts are fully disconnected, a pair of chiral Majorana modes
yr.s(p) and yg (p) (shown with simplified notations) appears at the
edges, with another pair y,, (p) and y,x(p) at the junction. (b)
Accordingly, the spectra of left and right parts exhibit a pair of coun-
terpropagating chiral Majorana modes centered around momentum
p =0and p = ¢q,6x/L,, respectively (setting §® = 0 as in the text),
where L, is the system’s length in the x direction. Shown here is the
integer case / = 1 (see text), where dots represent nonfractionalized
single-particle chiral Majorana states. Arrows illustrate the spectral
flow induced by 8 x = 2z/, which only acts on the right part of the
system. (¢) When introducing a weak coupling H; between junction
modes (with low-energy Hamiltonian H,; and H,g, respectively),
the change in energy E; = (H;, + H,r + H;) exhibitsadx = 4xl
periodicity (assuming that parity is conserved, see text), correspond-
ing to a fractional Josephson current I, = 0 E,;/dx with the same
periodicity. The energy levels sketched here are the two fermionic
modes resulting from the hybridization of the junction Majorana
modes, for/ = 1.

Coupling H ;
between junction
modes

for some integer n. Majorana zero modes therefore appear
at both edges when §® =8 =0 (at pp, =0, for any 1 <
s < 1) [49], and remain present for & = (27r/)m with integer
m (corresponding to an even number m of superconducting
flux quanta w, when [ = 1). Flux variations §x only affect
modes at the right edge (o0 = +1). When §® = (2n])m, they
preserve the Majorana zero mode at the right edge provided
that § x = (2nl)n with integer n too. Particle-hole symmetry
ensures that zero modes always come in pairs [50]. Therefore,
any zero mode that disappears from the right edge due to § x
must appear in the bulk where é x is inserted. We discuss such
a situation below and in Appendix B.

We now examine the effects of bulk flux variations §yx
more broadly, setting §® = 0, without loss of generality. To
insert 8 x in the superconducting bulk, we consider a slightly
modified system where superconductivity is weak or absent in
a narrow annular region of the bulk [see Fig. 2(a)]. This setup
can be regarded as a Josephson junction or weak link between
two cylindrical topological superconductors, “left” (L) and
“right” (R). Flux variations §® thread both superconductors,
whereas §x threads the right one only. The details of the
junction are essentially irrelevant for our purposes (an explicit
model can be found in Appendix B, for/ = 1).

We first examine the situation where left and right super-
conducting parts of the bulk are completely disconnected. In
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that case, each part exhibits a pair of chiral Majorana modes:
one at an edge of the whole system and one at the junction. We
denote the edge modes as y;, ;(p) and yg s(p), as in Eq. (18),
and the junction (bulk) modes as y;. (p) and y;r(p).
Since the spectra of chiral Majorana modes and Laughlin
quasiparticles have the same form [compare Eqgs. (12) and
(19)], flux variations induce the same anomalous spectral flow,
here in Nambu space, as in the quantum Hall phases examined
above. In particular, the spectrum of low-energy edge and
junction modes is invariant under variations §® = (2xl)m
and §x = (2xl)n with integer m, n.

From the viewpoint of the edge modes, § x = 27/ pumps
exactly one chiral Majorana fermion yg;(p) (with s =1)
across the zero-energy (Fermi) level, from the right edge into
the bulk [see Fig. 2(b)]. This Majorana fermion represents
a superposition of a quasiparticle and a quasihole with unit
charge [q; = e in Eq. (18)]. When it crosses zero energy, the
energy of these constituents changes sign [Eq. (17)], and one
can distinguish two scenarios: (i) If the system is connected
to an external reservoir of charges, the Z, fermion-number
parity of the ground state changes. (ii) If parity is conserved,
instead, § x = 2x/ leads to an excited state, and 6 x = 4l is
required for the system to come back to its initial ground state
and parity. In summary, §x = (2m/)n induces real [case (i)]
or apparent [case (ii)] parity switches, in a similar way as in
quantum Hall examples. Here we focus on the case (ii) with
parity conservation. The key difference with the quantum Hall
case where the fermion number is conserved is twofold: First,
the bulk is invariant under double parity switches. Second, the
edge-mode velocities v, in Eq. (15) are not modified [51].
In topological superconductors, § x = (4m!)n (with integer n)
thus represents a bona fide topological pump.

We now switch on the coupling between left and right parts
of the system and examine the behavior of the latter at the
junction where & x is inserted. From the viewpoint of junction
modes, §x modifies the energy E; = (H,. + Hyr + H;)
arising from the weak coupling H; between y;. ;(p) and
ysr.s(p) (described by low-energy effective Hamiltonians
Hj; and H,pg, respectively, where (...) denotes the ground-
state expectation value). This flux-dependent energy modifi-
cation gives rise to a dc Josephson supercurrent [52] between
left and right superconductors,

oE,
Iy =—-. (23)
dx
The junction modes y;r ((p) and y;r s(p) experience the
same anomalous spectral flow as the edge modes y; ;(p) and
yr.s(p). In particular, § x = 2x/ pumps one chiral Majorana
fermion in mode y; ;(p) across the Fermi level, leading to
an excited state with an apparent parity switch. Assuming
that parity is conserved, the energy E; and current /; are
periodic under §x = (4wl)n with integer n, for an arbi-
trary constant coupling H; between junction modes. In other
words, the topological pump §x = (4xl)n identified above
from the behavior of edge modes manifests itself as a 4!
periodic Josephson current in the bulk where 8 x is inserted
[see Fig. 2(c)]. We thus find a direct connection between
topological pumping and the so-called fractional Josephson
effects identified in other settings focusing on Majorana zero
modes [6,8,9] and their fractional analogs (/ > 1) [10-12].

We remark that 6x controls the superconducting phase
difference across the junction. Indeed, generic fermionic
fields W(x) on either side of the junction transform as
Wi(x) > Wix)exp[—i [; dx'8Aq(x")] under flux variations
[recall Eq. (5)]. In our chosen gauge [Eq. (6)], § x induces
a phase exp[—i(§x/L,)x] for fermionic fields in the right
superconductor, corresponding to a phase change A(x, x') —
A(x, x")expli(8x/Lyx)(x + x")] for the superconducting or-
der parameter A(x,x’) of the latter (see Appendix B for
an explicit example). On “average,” the superconducting
phase difference across the junction (with x’ = x) is therefore

(1/L) fOL dx(2§x/L.)x = 6. Note that fluxes ® and y take
quantized values, in practice, corresponding to integer mul-
tiples of the superconducting flux quantum 7 (i.e., 6® = 7m
and 8 x = mn with integer m, n) [53]. This flux quantization is
required for the center-of-mass momentum 28 y /L, of Cooper
pairs to be commensurate with allowed momenta.

We remark that the identification of §x = (4xwl)n as a
low-energy topological pump is independent of how §y is
threaded [54]. In particular, § x could be inserted in the form
of vortices. In that case, § x = 27l would correspond to the
introduction of a vortex carrying a bound Majorana zero mode
(see, e.g., Refs. [5,14]), and § x = 47l would correspond to
the introduction and subsequent “fusion” of two such vortices,
known to leave the system invariant [13,14].

IV. CONCLUSIONS

We have shown that the insertion of flux quanta § y through
the bulk of gapped phases with topological gapless edge
states provides a generic knob for robust physical phenomena.
The robustness of these effects can be traced to the direct
connection between § x and topological (Thouless) pumping,
which originates from anomalous low-energy (edge) spectral
flows. We have demonstrated this generic connection in two
paradigmatic types of noninteracting (integer) and interacting
(fractional) topological phases: 2D quantum Hall systems and
topological superconductors.

In the quantum Hall phases examined here (with elemen-
tary quasiparticle excitations with charge e/ 1), we have shown
that flux variations §x = 4m/ result in the injection of two
fermions (charges) from the edges into the bulk, which can be
observed, e.g., via persistent currents in a mesoscopic system
[20]. In superconducting analogs of these phases, in contrast,
we have shown that 6 x = 4m/ induces an apparent double
parity switch, which can be seen, e.g., in Josephson currents.

Although parity switches in persistent currents, frac-
tional Josephson currents, and other effects of bulk mag-
netic fluxes have been explored in a variety of settings (see,
e.g., Refs. [6,8-12,20]), our work identifies the concept of
bulk pumping as a general framework to derive and under-
stand such seemingly distinct effects in a systematic way.
It will be interesting to explore the robust effects of bulk
pumping in more exotic types of topological phases with
protected edge or higher-dimensional surface states, such as
topological (crystalline) insulators [55-60], Weyl and Dirac
semimetals [61-63], or simulated four-dimensional quantum
Hall systems [64,65]. In topological insulators with conserved
spin (e.g., two-component Haldane models [66] without
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spin-nonconserving spin-orbit coupling), the penetration of
magnetic Aharonov-Bohm fluxes into the bulk has been linked
to important physical effects [67]. In such systems, we expect
spin-independent bulk pumping to break the Z, symmetry
and induce opposite anomalous vector currents from the edges
into the bulk in opposite spin sectors, leading to the controlled
creation of a spin imbalance in the bulk.

To conclude, we emphasize that the concept of bulk pump-
ing put forward in this work could be formulated as a gener-
alized Thouless or Laughlin’s pump scheme by seeing bulk
fluxes as Aharonov-Bohm fluxes inserted through infinitesi-
mal punctures into the bulk. This highlights the rich variety of
topological phenomena that can be generated by bulk pump-
ing, through variations of geometry and topological phases.
More broadly, bulk pumping provides a practical probe of
gapped topological phases with surface states, irrespective of
the presence of disorder and interactions, in the same vein as
Laughlin’s conventional topological pumping.
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APPENDIX A: BULK PUMPING IN AN EXPLICIT
TIGHT-BINDING MODEL FOR INTEGER (I =1)
QUANTUM HALL PHASES

In this first Appendix, we revisit the example of integer
(I =1) quantum Hall phases in an explicit noninteracting
tight-binding model. Our goal is to detail the effects of flux
variations §® and §x in a minimal concrete setting including
bulk and edge modes.

Following the approach of Refs. [21,22], we construct
the quantum Hall phase of interest in an array of coupled
1D wires. Specifically, we consider a set of N, identical
parallel wires wrapped around a cylinder [Fig. 3(a)], with
periodic boundary conditions in the x direction, and indices
y=1,..., N, corresponding to wire positions in the y di-
rection (with unit interwire spacing). We assume that each
wire can be modeled as a translation-invariant lattice system
of noninteracting spinless fermions with unit charge, with one
site per unit cell and a total of N, cells. We set the lattice
spacing along wires to unity, so that wires have a length
L, = N,.

As in the main text, the system is exposed to an Aharonov-
Bohm flux & and a bulk transverse flux x. Assuming that
x 1is uniform, the total flux threading each wire (or ring) is
® 4+ (y —1)x/(Ny, —1). In a Landau gauge consistent with
Eq. (6) in the main text, this is described by a U(1) gauge
field A(x, y) = A(y) with x component

1 X
A(y)=ﬁ P+ —-Do—

X

} (AD)

Ny —1

y=1 2 ... N,

p— T

Right
mover

FE 1% Left
L k \./.\./.\./.\./ mover

1 2 ... N,

FIG. 3. Coupled-wire description of the system in a noninteract-
ing integer quantum Hall phase with filling factor v = 1. (a) Generic
setup consisting of N, 1D wires (red to blue) wrapped around a
cylinder threaded by Aharonov-Bohm and transverse fluxes ® and
Xx. A constant background flux x = xo is present, tuned with the
Fermi level p so that v = 1. Low-energy degrees of freedom are
illustrated on the right: Each wire with index y and energy dispersion
€k, exhibits a pair of left- and right-moving modes at the Fermi level
(fermionic modes with unit charge). Neighboring wires are coupled
by some tunneling 6, [Eq. (A4)] so that right movers in wire y couple
to left movers in wire y + 1, leaving a pair of uncoupled modes at the
edges. (b) Resulting (schematic) band structure: Bands of individual
wires (faint colors) are shifted with respect to each other due to x
[Eq. (A3)]. They resonantly couple at the Fermi level, creating a
gapped phase with counterpropagating gapless edge modes.

and vanishing y component. The system’s charges minimally
couple to this field, leading to momentum shifts

k—k— A(y) (A2)

in individual wires, where k is the crystal momentum in
the x direction (k = 2nn/N, withn=0,1,..., N, —1).In
terms of the creation operators ci,y for fermions on site x
of wire y (satisfying periodic boundary conditions cyiy, , =
Cx,y), these shifts are described by the replacement ¢, , —
¢'A0%¢, | in the Hamiltonian. The Hamiltonian of individual

wires then takes the generic form

Hy =" &_ameh ycry. (A3)
k

where &;_4(,) is the momentum-shifted energy dispersion
(band) of each wire y. We assume that &_,(,) is such that
wires exhibit a pair of left- and right-moving chiral fermionic
modes at the Fermi level u, as shown in the inset of Fig. 3(a).
For example, &,_s(,) = 1 + €x,y = p — tj cos[k — A(y)], for
a simple tunnel coupling between nearest-neighboring sites
with strength —z /2.

To generate the integer quantum Hall phase of interest,
we start with a uniform ‘“background” transverse flux
X = Xo, Which induces a relative momentum shift Ak =
xo/[Nx(N, — 1)] between energy bands of neighboring wires
[Fig. 3(b)]. We tune Ak and the Fermi momentum kp of
uncoupled wires so that the filling factor is v = 2kp/Ak = 1
[this requires a macroscopic flux xo = 4w (N, — 1)]. In that

035150-7



BARDYN, FILIPPONE, AND GIAMARCHI

PHYSICAL REVIEW B 99, 035150 (2019)

case, bands of uncoupled wires cross at the Fermi level where
wires exhibit left- and right-moving modes, such that right
movers in wire y are resonant with left movers in wire y + 1.
We open a topological gap at these crossings by introducing
a tunnel coupling between neighboring wires:

t ;
Hy 1 = - Z(c,{,wck,y +H.c.), (A4)
k

where t; > 0. The resulting spectrum is illustrated in
Fig. 3(b): As desired, a pair of counterpropagating chiral
fermionic modes with velocity v, ~ vp (vr being the Fermi
velocity of uncoupled wires) remains ungapped at the edges:
the left- and right-moving modes originating from wires
y=1 and y =N,. These two modes are exponentially
localized around these edge wires [68] and are topologically
protected against quasilocal perturbations by their spatial
separation. They govern the low-energy physics of the
system, described by Egs. (1)-(4) in the main text (in
bosonized form, setting / = 1).

Under flux variations §® and 6y, gapless edge modes
experience the anomalous spectral flow [28,29] discussed
in the main text (with [ = 1, here): Laughlin’s pump [2,3]
corresponds to the insertion of an Aharonov-Bohm flux §® =
27 (one flux quantum), which pumps exactly one state from
the right edge into the bulk, below the Fermi level i, and
exactly one state from the bulk into the left edge, above . The
net anomaly outflow from the edges into the bulk vanishes.
Bulk flux quanta § x = 2, in contrast, pump only one state
from the right edge into the bulk, below the Fermi level u
[in agreement with Fig. 1(b) of the main text]. The bulk must
change in order to absorb the corresponding net anomaly
outflow from the edges. Indeed, flux variations § y modify the
spacing between bands of uncoupled wires by §x /[N, (N, —
1)] [see Eq. (A1)], leading to spectral modifications of order
O(6x/S), where S = N, N, is the surface area of the system.
Since edge modes are off-resonantly coupled to bulk modes
by the interwire couplings, their velocity v, &~ vp is modified
by a small correction O(5x /S).

Finally, we remark that the gauge field A(y) in Eq. (Al),
corresponding to a uniform bulk flux y, is not the only
possibility for bulk pumping. Indeed, bulk pumping depends
on the response of topological edge states to x, when the
chemical potential or Fermi level lies in a gap as in Fig. 3(b).
This response, crucially, does not depend on where the flux x
is inserted, provided that it is inserted sufficiently deep into the
bulk, i.e., inside the effective quasi-1D (ring) system defined
by low-energy topological edge states, exponentially localized
at the edge. In the above construction, in particular, x could
be inserted in the middle of the bulk between wires y = N, /2
and N,/2 + 1 (for even N,). The corresponding gauge field
in Eq. (A1) would read A(y) = 1/N,[® +60(y — N,/2)x],
where (.. .) denotes the standard Heaviside step function. In
that case, wires y = 1to y = N, /2 would not enclose any flux
X, while wires y = N,/2+1 to N, would all be threaded
by the same flux x/N,. According to minimal coupling
[Eq. (A2)], the spectrum illustrated in Fig. 3(b) would then
exhibit the same topological edge states—with modified bulk
modes only, irrelevant for bulk pumping.

(a) (b)\ E
A\
X ; 8
o1l 1o6L] |oL £ Couple |-
L Y “.  wires
Joseplison Jjunction
(c
+Ak L || R
Left Right ®
mover E s mover I T
J
PH symmetry I YIL VIR YR

FIG. 4. Coupled-wire description of the system in a noninteract-
ing (integer) topological superconducting phase. (a) Same setup as in
Fig. 3(a), with two modifications: (i) no background flux x, and (ii)
superconducting pairings induced, e.g., by an underlying supercon-
ductor (gray striped background). Each wire corresponds to a gapless
Kitaev chain [6], i.e., to a 1D superconductor with a pair of left- and
right-moving modes crossing at the Fermi level u [Eq. (B5)]. Due to
particle-hole (PH) symmetry, each mode represents a superposition
of quasiparticles and quasiholes (fermionic ones, with unit charge).
Neighboring wires are coupled by a combination §, of tunneling
and pairing [Eq. (B7)] so that right movers in wire y couple to left
movers in wire y + 1, leaving a pair of uncoupled modes at the edges.
(b) Resulting (schematic) single-particle band structure: Bands of
individual wires (shown in black) resonantly couple, leading to a
gapped phase with PH-symmetric counterpropagating gapless edge
modes (red and blue). (c) Josephson junction created by the insertion
of bulk flux quanta §x (see text).

APPENDIX B: BULK PUMPING IN AN EXPLICIT
TIGHT-BINDING MODEL FOR INTEGER (I =1)
TOPOLOGICAL SUPERCONDUCTING PHASES

We now detail the effects of flux variations 6P and §yx
in an explicit noninteracting tight-binding model for integer
(I = 1) topological superconducting phases. 2D topological
superconductors can be constructed from coupled 1D wires
in a similar way as in Appendix A [23,24,69-71]. As for
quantum Hall phases, the desired topological phase can be
obtained by coupling right- and left-moving modes in neigh-
boring wires y and y 4+ 1 in such a way that gapless modes
remain at the edges only. Here, however, right and left movers
can be made resonant without background transverse flux o,
as detailed below.

We start from the same coupled-wire array as in
Appendix A, with & =0, without loss of generality,
and with yo = 0. We then add superconducting pairings
induced, e.g., by proximity coupling to a superconductor [see
Fig. 4(a)]. In the absence of flux variations 6® and éx (i.e.,
for & = y = 0), the Hamiltonian of individual wires takes
the standard particle-hole (PH) symmetric Bogoliubov-de
Gennes (BdG) form

1
HYO = 23 W MWy + Eo, (BI)
k
A
H, = (ik; _ka) (B2)
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where \Il,i,y = (c,i’y, C_ky), & 1is the energy dispersion of
individual wires, and Ey = (1/2))", & is an energy shift
which we set to zero [72]. Pairings are described by Ay.

As in the main text, we consider the effects of transverse
flux quanta 6 x inserted deep into the bulk, say, between wires
Y and Y + 1 in the middle of the latter (choosing ¥ = N, /2
for even Ny). The resulting system can be regarded as two
parts [left (L) and right (R), as in Fig. 2(a) of the main text]
coupled to distinct uniform gauge fields

y <Y,

0,
A(y) = {5_)(
N
where we have used the same (Landau) gauge as in Eq. (6)
of the main text. The flux §x threads the right part of the
system alone, inducing a uniform momentum shift k — k —
8 x /N, in the latter. As in Appendix A, the minimal coupling
of system’s charges to 6 is described by the replacement
Cry = €A0%¢, | in the Hamiltonian. The Hamiltonian of
uncoupled wires becomes

1 ~ -
=5 > ‘l’g,kafAm‘l’k,y, (B4)
K

where \IJ (ck y» Cok42A(), y), with A(y) given by
Eq. (B3). The spectrum of individual uncoupled wires y
is determined by Hj_4(,): It is centered around k = A(y)
(i.e., around k = 0 and k = §x /N, for wires in the left and
right parts of the system, respectively), with eigenenergies
satisfying Ej_a() = —E_g4a(y), due to PH symmetry
[73]. Pairing occurs between fermionic quasiparticles and
quasiholes with momentum k and —k + 2A(y), respectively,
corresponding to Cooper pairs with center-of-mass
momentum 2A(y) [74]. As we consider spinless fermions,
the pairing function A is odd under k — —k. In particular,
Ag_a(y) vanishes at k = A(y) in wire y.

To generate a topological phase in each part of the system
(left and right), we follow a similar strategy as for quantum
Hall phases in Appendix A: We try to reach a situation where
individual wires support a pair of left- and right-moving
modes and introduce a suitable interwire coupling to make
right movers in wire y couple to left movers in wire y + 1,
to open a gap in the bulk while leaving gapless edge modes.
Due to PH symmetry, wires can only exhibit chiral modes if
they are gapless. We thus start from gapless uncoupled wires,
tuning the chemical potential so that &§_ 4,y =0 atk = A(y)
[75]. Assuming that Ai_ 4y vanishes linearly at k = A(y) (as
in p-wave superconductors [5,6,14]), the low-energy physics
of uncoupled wires is given by Eq. (B4) with

Hi—amli~aey) = Alk — A(y)loy,

where o, denotes the standard Pauli matrix. As desired,
wires in each part of the system exhibit a pair of right- and
left-moving modes (corresponding to the eigenstates of o,
with eigenvalues 1) with velocity v, = A. Explicitly, each
wire supports low-energy chiral Majorana fermionic modes

given by
yk+,y 1 6757{/4 eir[/4 B
Ve :E oiT/4 pmim/4 Wiy
»y

(B5)

(B6)

Consequently, in each part of the system, the desired interwire
couplings between right movers (4) in wire y and left movers
(=) in wire y + 1 read

Hy y+1 —l Z(Vk )+1) Vk) + H.c.

__Z k)+l< U7+170x>‘1’kv+HC

B7)

where we recall that U = (c] . c_i12a0y) With A(Y)
given by Eq. (B3). These interwire couplings represent a
combination of tunnel coupling and superconducting pairing
between nearest-neighboring wires in each part of the system,
with equal amplitude t;, = A} =4;.

By construction, the set of interwire couplings H,
(forall y=1,..., N, except y = Y) gap out all low-energy
modes except for one pair of counterpropagating edge modes
in each part of the system: the left- and right-moving modes
of wiresy = landy =Y,y =y, and y;/, = y,., and the
left- and right-moving modes of wires y —Y+1land y=
Ny, ¥iy41 = vsr and y,:va = yg [see Fig. 4(c) and Fig. 2(a)
of the main text]. We call y;; and y,& the junction modes.
These four integer (nonfractionalized, [ = 1) chiral Majorana
fermionic modes with velocity v, = A govern the low-energy
physics of the system when left and right parts are decoupled
[H; = 01in Fig. 4(c)]. Each mode is described by an effective
Hamiltonian of the form of Eq. (15) in the main text (in
bosonized form, with [ = 1), with Eq. (B6) providing the
analog of Eq. (18), for [ = 1.

As argued in the main text, the above low-energy modes
are superpositions of chiral fermionic quasiparticles and
quasiholes as found in the integer quantum Hall case [cy,,

and ¢! k+24(y),y i Eq. (B6)]. Consequently, their spectral flow
behaves in a similar way: Each bulk flux quantum §x = 27
pumps exactly one chiral Majorana fermionic mode across
the Fermi level w, from the right edge into the bulk [see
Fig. 2(b) of the main text]. If the system is connected to
an external reservoir of particles, the parity of the ground
state changes in the process. Here, however, § x = 27 leads
to an excited state with an apparent parity switch only, and
8 x = 4 isrequired to come back to the original ground state.
Low-energy observables are thus typically 4 periodic in § .

In contrast to what we found for quantum Hall phases
in Appendix A, dx does not modify, here, the velocity v,
(= A) of the edge modes. The bulk pump §x = 47 leaves the
low-energy theory described by y, ¥y, Vsr, and yg invariant
and, hence, represents a bona fide low-energy topological
pump. Intuitively, this can be understood as follows: §x = 4w
pumps two (chiral Majorana fermionic) states below the zero-
energy (Fermi) level, as in Fig. 1(b). Due to PH symmetry,
this corresponds to an apparent double parity switch or to the
injection of an additional Cooper pair into the bulk.

As discussed in the main text, the 47 periodicity of low-
energy observables can be observed, e.g., by measuring the
Josephson current flowing at the junction between left and
right parts of the system, when the latter are weakly coupled
with Hamiltonian H; [Fig. 4(c)]. This current is proportional
to the energy change I; = 9, (H,;; + H;r + H;) induced by
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dx, where H;; and H;p denote the low-energy effective
Hamiltonians describing the junction modes y,; and y,g,
and (...) denotes the ground-state expectation value. The most
direct coupling between junction modes reads

) by _
H}hrect =Hyy, = 17 Z()/k’yjrl)fykfy + H.c.
k

1 - t A -
=3 Z ‘"Ij]]cL,Y-&-l <—Ejaz + ZTJO'X)\I’k,Y + H.c,,
k

(B8)

as in the rest of the bulk [Eq. (B7)], with amplitude §; = t; =
Aj. Since superconductivity is suppressed at the junction
where the flux §x is inserted (i.e., A; ~ 0), however, a more
natural coupling is

1 - t ~
H; = E Z \I’;’YJFI (—EJO'Z>\IJk’y + H.c.,
k

.8 _
~ IZ’ > Wiy vy + He, (B9)
k

with tunneling alone, where we have projected H; onto the
subspace of low-energy junction modes, in the second line.
From the viewpoint of low-energy modes, this coupling only
differs from H{"' by a factor 1/2. The resulting low-energy
single-particle spectrum (spectrum of H;; + Hygr + Hy) is
illustrated in Fig. 5. It exhibits a clear 47 periodicity in 8,
as expected. The key features of this spectrum are the energy
crossings appearing at odd values of §x /7.

We emphasize that the details of the junction coupling
are mostly irrelevant for our purposes: Two energy crossings
generally appear when varying 6 x by 4m, for arbitrary cou-
plings H; # H;. The strict 47 periodicity of the Josephson
current requires H, to have a constant overlap with H; when
projected onto the subspace of low-energy junction modes.
As mentioned in the main text, 4 periodic Josephson effects
have been identified in various setups based on integer topo-
logical superconductors [6,8,9]. Our results show that they can
be understood as manifestations of the same bulk pump §.

APPENDIX C: GENERALIZED COUPLED-WIRE
DESCRIPTION OF INTEGER AND FRACTIONAL
(I > 1) TOPOLOGICAL PHASES

In previous Appendices, we have relied on noninteracting
tight-binding models to demonstrate the pumping effects of
bulk flux quanta explicitly. We have focused on two types
of integer (short-range entangled) 2D topological phases
amenable to a convenient coupled-wire description: quantum
Hall and topological superconducting phases (belonging to
classes A and D of standard classifications [43,44], respec-
tively). Here, we generalize this coupled-wire approach to
describe interacting analogs of these phases, focusing on
fractional (long-range entangled) variants thereof. We follow
the formalism of Refs. [23,24], based on Refs. [21,22] and on
a formulation of Abelian bosonization by Haldane [25].

0.25
-
=0
)
—0.25 i i i
0 1 2 3 4
ox/m

FIG. 5. Low-energy BdG spectrum of the noninteracting (inte-
ger) topological superconductor described by Eqs. (B4) and (B7),
with flux §x inserted between wires ¥ and Y + 1 where supercon-
ductivity is absent. The resulting Josephson junction is governed by
the weak coupling H, between these two wires [chosen here as in
Eq. (B9)], which couples the two chiral Majorana fermionic modes
appearing at the junction, when H; = 0 (y,, and y, in Fig. 4). The
low-energy spectrum visible here shows the two modes arising from
the hybridization of y,;,; and y,g. All other modes are gapped, ap-
pearing at higher energies of the order of the bulk interwire coupling
strength §, [Eq. (B7)]. For clarity, low-energy edge modes (y, and
yr in Fig. 4) are also gapped out by a direct coupling of the form
of Eq. (B7). For even §x /m, the pair of Majorana zero modes that
appears at the junction is gapped by H,. For odd §x /7, in contrast,
a single Majorana zero mode is present at the junction, and, hence,
the effect of H; is exponentially small. The above plot shows the
actual spectrum corresponding, for / = 1, to the schematic spectrum
in Fig. 2(c). In general, energy levels cross the Fermi level at odd
dx/m in an exponential way. The energy-dispersion and pairing
functions in Eq. (B2) are chosen here as & = p — t cos(k) and
Ay = iAsin(k) with u = ¢, such that decoupled wires correspond
to gapless Kitaev chains [6].

1. Main framework

As in previous Appendices, we consider a cylindrical
system consisting of N, coupled identical wires (rings) ori-
ented along the x direction, with periodic boundary condi-
tions and indices y =1, ..., N, corresponding to wire po-
sitions in the y direction. We assume that individual wires
have N, internal fermionic degrees of freedom—indexed by
v=1,..., N,—forming a total of N,N, fermionic fields

described by creation and annihilation operators 1//} (x) and
¥ ;(x), respectively [where j =1,..., NyN, corresponds to
the composite index (y, v)]. Fields are collected into a vector
U(x)=[yYi(x),..., wN)_NV(x)]T, and we omit their explicit
time dependence. We assume that interwire couplings are
weak as compared to couplings within wires, so that the
latter can be seen as Luttinger liquids with N, fermionic
channels, contributing to a total of N, N, channels. This set
of channels can be bosonized following the conventional
prescriptions of Abelian bosonization. Specifically, one can
define a vector ®(x) of Hermitian fields ¢;(x) related to the
original fermionic fields by the Matthis-Mandelstam formula

W(x)=:exp[iK®(x)]:, (C1)
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@,

where . .7 denotes normal ordering. Here, K is a
symmetric integer-valued N,N, x NyN, matrix which is
block-diagonal [Kjx = K(y,)(y.,v) = 8yy Ky ], since wires
are identical. The fields ¢;(x) satisfy the equal-time bosonic
Kac-Moody algebra [25]

[ (x), pe(x)] = —im [K i sgn(x — xX)+K 1 Ljw Ky ],
(623
and periodic boundary conditions

K®(x + N,) = K®(x) 4 2nn, (C3)

where n is a vector of integers, and N, is the length of the
system in the x direction. The matrix L is antisymmetric,
defined as L = sgn(j — k)(Kjx + q;qx), where g; is the
charge of fermions in channel j, and sgn(j — k) = 0 when
j = k. The term Kj_j,le/kr Kk_,,l in Eq. (C2), sometimes called
“Klein factor” [25], ensures that vertex operators such as the
¥;(x) in Eq. (C1) obey proper mutual commutation relations.
We consider fermions with unit charge g; =1 for all j (in
natural units 7 = e = c = 1).

We first examine the situation without flux variations § ®
or §x [corresponding to §A(y) = 0 in the main text and in
previous appendices]. In that case, the many-body Hamilto-
nian describing the low-energy effective field theory of the
coupled-wire array can be expressed in the generic form

H=Hy+» H., (C4)
ceC
Hy = /dx[8x<1>(x)]TV(x)[8x<I>(x)], (C5)
H = /dxac(x)e”’ﬂf()‘) l_[ W}-}”(x) +H.c.
J
= Z/dxozc(x) scos [VIK®(x)+ B.(x)]:.  (C6)

The Hamiltonian term Hp, which is quadratic in the fields,
describes two types of contributions in individual wires:
one-body terms and two-body density-density interactions
(or “forward-scattering” terms [21,22]). The corresponding
NyN, x NyN, matrix V (x) is real symmetric and block diag-
onal: Vj; = 8,,V, v (no density-density interactions between
wires, for simplicity). The Hamiltonian terms H,, which are
typically not quadratic in the fields, describe all other types of
couplings between fermionic channels. We denote the relevant
set of couplings by C, and represent each coupling ¢ € C by a
vector v, with elements v. ; € {—1, 0, 1}, with the convention
that w;}"" x)= 1//; (x) for v. ; = —1. The coupling amplitude
and phase are defined by real quantities «.(x) > 0 and B.(x).

We remark that a macroscopic background transverse flux
Xo may be required to enable the couplings H,. This is the case
in the quantum Hall phases discussed in the main text and in
Appendix A, in particular, where xo controls the filling factor,
or the relative momentum shift between fermionic degrees
of freedom in distinct wires. In the integer case, o ensures
that right movers in wire y are resonant with left movers in
wire y + 1, enabling their direct coupling [see Fig. 3(b)]. In
topological superconducting phases, no background flux is
required. In the integer case, due to particle-hole symmetry,

the desired left and right movers can be coupled directly by
a combination of tunneling and superconducting pairing, as
discussed in the main text and in Appendix B [Fig. 4(b)].
In quantum Hall phases, couplings preserve the total fermion
number (such that »_ j Ve,j = 0), whereas couplings preserve
the total fermion parity (such that jVej = 0 modulo 2) in
topological superconductors.

a. Basis transformations

Before constructing the phases of interest, we discuss
several generic properties of the above theory. We first note
that it is invariant under basis transformations of the form

d(x)=G'd(x), (C7)
K =G"KG, (C8)
L=G"LG, (€9
q=G"q, (C10)
V(x)=G'V(x)G, (C11)
V. =G v, (C12)

where G is an invertible integer-valued Ny N, x N, N, matrix,
and g is a vector of charges ¢;. The Hamiltonian defined in
Egs. (C4)-(C6) remains of the same form under the trans-
formation G, with V(x), v, — V(x), V., and transformed
fields ®(x) obeying the same algebra as in Eq. (C2), with
K,L — K, L. The corresponding vertex operators W(x) =:
expli K ®(x)] : are distinct from the original fermionic fields
defined in Eq. (C1), namely,

W(x) =:expliGT K®(x)] : % W(x). (C13)

We remark that the matrix K is sometimes absorbed in the def-
inition of the fields ®(x) in Eq. (C1) [i.e., K®(x) — ®(x)],
as in Refs. [21,22]. This corresponds to a basis transformation
G=K"

b. Requirements for a bulk spectral gap

The Hamiltonian defined in Eqgs. (C4)-(C6) describes the
competition between two types of terms: the Hamiltonian H,
of uncoupled wires, which supports N, N, gapless modes, and
the interwire couplings H., which gap some (if not all) of
these modes. Starting from the fixed point corresponding to
H, alone, one can introduce couplings H, within a specific
symmetry class, and use renormalization-group theory to
identify coupling vectors v, that make the system flow to a
fixed point corresponding to a gapped phase with robust (topo-
logical) gapless edge modes. Following Ref. [23], we do not
solve such a renormalization problem but focus, instead, on
the strong-coupling limit defined by o (x) — oo in Eq. (C6).
We assume that this limit corresponds to a stable point which
can be reached from H, = 0 without getting trapped in inter-
mediary fixed points along the renormalization-group flow.

Although Hj is negligible in the strong-coupling limit,
quantum fluctuations due to commutation relations between
fields [Eq. (C2)] do not necessarily allow us to find a solution
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which minimizes the energy of all couplings H, separately.
For each H,, energy minimization requires the phase gradient
9, ®(x) to be locked to 9, B.(x) at all times, i.e., we must have

W[vIK®(1, x) + Be(x)] = fu(t, x), (C14)

for some real function f.(¢, x) [25] (where we have briefly
restored the explicit time dependence of fields). For this lock-
ing to survive over time, v/ K 3, ® (¢, x) must be a constant of
motion, i.e., [VCTK 0, ®(x), H-] must vanish for all couplings
¢’ € Cincluding ¢/ = c. As detailed in Ref. [23], this leads to
the so-called “Haldane criterion”

vIKv. =0. (C15)
When Eq. (C15) is satisfied for all ¢, ¢’ € C, couplings H,
are compatible with each other, i.e., they all satisfy a locking
condition as in Eq. (C14). In that case, interwire couplings
H, each gap out a distinct pair of gapless modes, removing
the latter from the low-energy theory of the system. We will
be interested in topological phases where the only remaining
gapless modes are edge modes, which cannot be gapped by
quasilocal perturbations (within a relevant symmetry class)
because of the spatial separation between edges.

¢. Models of interest

The above coupled-wire formalism has been used to con-
struct a variety of gapped topological phases with robust
low-energy gapless edge modes (see, e.g., Refs. [21-24]).
Models are generically specified by: (i) the number and type
of degrees of freedom in each wire, (ii) the symmetries of
the system, and (iii) the interwire couplings. In the following,
we detail explicit models for the two types of phases used in
the main text (and in Appendices A and B) to illustrate bulk
pumping effects: integer and fractional quantum Hall phases,
which do not require any specific symmetry (symmetry class
A of conventional classifications [43,44]), and integer and
fractional topological superconductors, which are protected
by particle-hole (PH) symmetry (symmetry class D). In each
case, we identify a set of interwire couplings that (i) belong
to the desired symmetry class, (ii) act quasilocally, corre-
sponding to short-range scatterings or interactions, and (iii) is
maximal, in the sense that the corresponding coupling vectors
v, form a (typically nonunique) maximal set of linearly inde-
pendent vectors satisfying the Haldane criterion [Eq. (C15)].
Our goal is to identify a set of couplings that gaps all modes
in the bulk while leaving gapless edge modes which cannot be
gapped, as the set is maximal.

2. Explicit model for integer and fractional quantum
Hall insulators

We first examine the case of quantum Hall phases, which
do not rely on any symmetry besides U(1) charge conserva-
tion. As in Appendix A, we start from an array of N, uncou-
pled identical wires supporting each N, = 2 internal degrees
of freedom, namely: left- and right-moving spinless fermionic
modes at the Fermi level [recall the inset of Fig. 3(a)]. In the
above framework, we describe these N, N, fermionic fields
or channels W(x) by chiral bosonic fields ®(x) defined by

Eq. (C1), with

K =1y, ® diag(—1, +1), (Cl16)

where —1 (4-1) corresponds to left (right) movers, and Iy, is
the N, x N, identity matrix. The fields ®(x) obey commuta-
tion relations given by Eq. (C2) (with unit charge g; = 1 for
all fermionic channels). Without density-density interactions
between fermionic channels, uncoupled wires are described
by the Hamiltonian H, in Eq. (C5), with diagonal matrix

V(x) =V = Iy, ® vp diag(~1, 1), (C17)

where vp is the Fermi velocity of noninteracting wires. The
only effect of density-density interactions between channels
is to renormalize vgF — Uf.

To couple wires and generate a gapped phase, we introduce
couplings which, as discussed above, satisfy three require-
ments: (i) They preserve the symmetries [here, U(1) charge
conservation], (ii) they are quasilocal, and (iii) they form
a maximal set satisfying the Haldane criterion [Eq. (C15)].
Focusing on couplings acting on nearest-neighboring wires,
for simplicity, the only possible choice of coupling vectors is,
up to a global integer factor,

Ve =Vy 1 = (0,0 | =1, 14| —I4,1-]...]0,0)7,
(C18)

where [ = (I & 1)/2, and [ is the odd positive integer used in
the main text (vertical lines separate elements from distinct
wires). The corresponding interwire coupling Hamiltonian
H. = H, 1 is given by Eq. (C6), which parallels Eq. (A4)
of Appendix A for the integer case [ = 1 [setting o (x) =
—t1/2 and B.(x) = 0]. The N, — 1 couplings H, , | gap out
2(N, — 1) of the 2N, degrees of freedom of the system. The
two remaining gapless modes are located at the edges and are
topologically protected. Indeed, the only additional coupling

which could satisfy the Haldane criterion is
Vo = (—14,1-10,0]...10,0] — [, )", (C19)

which is highly nonlocal, with support at both edges. To
understand the properties of gapless edge modes, we perform
a basis transformation ®(x) = G~'®(x) as in Egs. (C7)-

(C12), with
1(1 I
-1 _ |+
G — ]IN)‘ ® i <l l+>’

l —I_
G=ln@® (‘7— L >

The relevant interwire coupling vectors become

Yy i1 =G vy 01 =(0,0]...10, 1] — 1,0]...]0,0)",

(C20)

(C21)

Yo =G 'vo=(—1,00,0]...10,00, )",  (C22)

with transformed matrices K, L, V of the form
K =G"KG =1y, ® diag(-1,1), (C23)
L=G"LG =1y, ® (—ioy)l + Zay,, (C24)
V=G"VG =1y, ® vpdiag(—1,1), (C25)
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where o, is the standard Pauli matrix, and X, is an antisym-
metric n X n matrix with elements (2,)jx = (), n)0rv) =
sgn(y — y'). The modified fields ®(x) = G~'®(x) satisfy
commutation relations given by Eq. (C2), with modified
Klein factors L = G LG giving a factor [ in the commutator
[(fﬁj(x), & (x")], when fields éj(x) and ¢ (x") belong to the
same wire.

Equations (C22)—(C25) determine the low-energy theory
of the system: Eq. (C22) shows that the remaining pair
of gapless modes corresponds to the edge fields di(x) =
@1(x) = ¢r(x) and oy, (x) = @2(x) = @g(x), which are not
affected by interwire couplings. The algebra of these fields is
determined by Eqgs. (C23) and (C24), i.e., transformed fields
@ bj(x) obey commutation relations in Eq. (C2) with K, L —
K, L, such that

—in[(Kgt) ; senx —x')
+(Kat) y Le) e (K] (C26)

[o;(x), gr(x")] =

where we have defined

Ker = diag(—1, 1), (C27)

Leff = —l'O'y. (C28)
The corresponding low-energy Hamiltonian is described by
H, in Eq. (C5), with V(x) — V given by Eq. (C25):

UFl

H, = dx(3:¢5 )%, (C29)
yra

where 0 = —/+ indexes the left and right edges of the sys-
tem, respectively [with ¢_(x) = ¢;(x) and ¢, (x) = ¢, (x)].
We thus recover the low-energy theory given by Egs. (1)—
(4) in the main text, with vp — v, in the presence of
density-density interactions between fermionic channels [see
Eq. (C17)].

States in the above coupled-wire model are topologically
equivalent to Laughlin states with index / in the Abelian
hierarchy of fractional quantum Hall phases [15-17]. The
commutation relations in Eq. (C26) (Kac-Moody algebra at
level 1) imply that the low-energy theory supports quasiparti-
cle edge excitations (Laughlin quasiparticles) with fractional
charge e/l and fractional phase /[ under spatial exchange
[76-79]. Indeed, quasiparticle edge excitations are created by
vertex operators

(‘llj.lp)T(x) =:exp[—ig;(x)]: . (C30)
The corresponding charge can be identified by examining the
commutator [Q;, (\D?p)T(x)], where Q; is the total charge
along the edge j. Here we have Q; = G;N;, where §; = —o
is the charge associated with ¢; (x) [Eq. (C10)], and N; is the
density integrated along the edge:

1 [k
Ny = o /0 dx0,;(x), (€31)

which is a conserved quantity, as 9, N; = 0 due to boundary
conditions [Eq. (C3)]. Since [N; ,gok(x)] = l(Keff )jk [from

Eq. (C26) with 9, sgn(x — x") = 28(x — x’)], we find

[0 (¥7) )] = = (Ka) 1 (i) 1) = Z(¥) o).

(C32)
with K¢ given by Eq. (C27). This verifies that (\I!?p)T(x)
creates quasiparticles with charge e/ [. The exchange statistics

of these quasiparticles can be derived from Eq. (C26) using
the Baker-Campbell-Hausdorff formula:
VPOWP ) = vPeHEP(x). ..

X exp[—m(K ) sgn(x — x")

”(Keff) (Uv)J’k’( effl)k’k]'
(C33)

x exp| —

This confirms that quasiparticles at one edge (j = k) exhibit a
phase 7 /[ under spatial exchange (corresponding to Abelian
anyons, in the fractional case [ > 1).

When introducing flux variations §®, §x as described in
the main text, corresponding to gauge-field variations §A
at each of the edges j [see Eq. (6)], the above low-energy
edge theory changes according to the standard prescriptions
of minimal coupling, i.e.,

@i(x) > @;(x)— ;/ dx'8A;(x"), (C34)

0
as in Eq. (5) of the main text. This can be understood by
remembering that fermions with unit charge are described by
operators such as \Iljf 2 exp [i (Kegr) jrgr(x)] 2, with Kegp =
diag(—/, 1) [Eq. (C27)].

3. Explicit model for integer and fractional topological
superconductors

To construct the topological superconducting phases with
Majorana gapless edge theory considered in the main text, we
start from the above coupled-wire array in symmetry class A
(quantum Hall insulators), and add superconductor-induced
pairings, i.e., couplings that (i) conserve the fermion-number
parity instead of the total fermion number and (ii) preserve
particle-hole symmetry (PHS), thereby promoting the system
to symmetry class D [43,44]. As in the previous section, our
construction follows along the lines of Ref. [23].

To be able to describe superconducting pairings, we first
move to a Bogoliubov de-Gennes (BdG) picture where par-
ticles and holes in each wire are regarded as independent,
which artificially doubles the number of internal degrees of
freedom. Explicitly, we consider the fermionic fields v;(x)

and w;(x) as independent and collect them into a doubled
vector (Nambu spinor) W(x). The vector ®(x) of bosonic
fields is similarly extended (doubled), ensuring that Eq. (C1)
still holds. Particles and holes are not truly independent,
however, and the relation between ;(x) and w;(x) implies
the existence of an “emergent” PHS for physical operators in
the BAG or Nambu representation. Explicitly, the subspace of
physical operators is identified by the “reality condition”

vl = v, (C35)
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or, equivalently,

Nnern' = —@, (C36)

where IT is the unitary many-body operator representing
the relevant PHS. The action of PHS on the fields can be
represented in the generic form

I = pywe™Pn, (C37)

or, equivalently,

Nnent = ppd + 7K 'dp, (C38)

where Pr is a NyN, x N, N, permutation matrix (such that
Py I = P) describing the exchange of particles and holes in
individual wires, and dpy is an integer-valued vector describing
the corresponding phase (if any), with Dy = diag(dyy). The
system is particle-hole symmetric whenever its Hamiltonian
satisfies

MHI = H. (C39)

Remembering the form of H [Eq. (C4)] and using Eq. (C38),
we obtain the following conditions for PHS:

P7'V(x)Pn = V(x). (C40)

Pi'KPn =K, (C41)

Pav, = £v., (C42)

Be(x) = £[Be(x) + wv! Pndp] (mod 27), (C43)

with the same choice of sign in the last two lines.

We now construct an explicit model for integer and frac-
tional topological superconductors, which, in the integer case,
reduces to the tight-binding model presented in Appendix B.
We start from an array of N, uncoupled wires supporting
each a pair of left- and right-moving spinless fermionic modes
which, in Nambu (doubled) space, translates as N, = 4 de-
grees of freedom. The relevant matrix K reads

K =1y, ®diag(—1, +1, +1, —1), (C44)

where —1, +1, +1, —1, respectively, correspond to left- and
right-moving particles and right- and left-moving holes. In
this picture, PHS is represented by

0 0 0 1
0 0 1 O

Pn=Iy® o1 0 ol dg =0, (C45)
1 0 0 O

where dr; = 0 reflects the spinless nature of particles (and
holes). Using Eq. (C38), the reality condition that must be
imposed in Nambu space [Eq. (C36)] takes the form Pnp® =
— &, such that

q)T = ( .. ¢y,1’ ¢y,27 ¢)’.3 = _¢y,2» ¢y,4 = _¢y,1)a (C46)

where we have omitted explicit position and time depen-
dences. The fields ¢,3 and ¢, 4, which are regarded as
independent degrees of freedom in Nambu space, are thus
directly related to ¢, | and ¢, ». More importantly, the reality
condition Pp® = —® implies that interwire couplings must
satisfy Ppv. = —v, in Eq. (C42) to be physical. Indeed,

couplings depend on fields via v/ K ®(x) [Eq. (C6)], which
vanishes when Ppv. = +v, and Pp® = —®. Without loss
of generality, we can thus introduce a set of fictitious local
couplings v, = V; which satisfy Ppv. = +v, and, hence,
“gap out” unphysical degrees of freedom:

v/ =(0,0,0,0]...] = 1,1,1,—1]...]0,0,0,0)", (C47)

up to an integer factor. Note that (V{ YK ij = 0, as required
by the Haldane criterion [Eq. (C15)].

As in Appendix B, we start from an array of uncoupled
gapless wires supporting a pair of PH symmetric chiral modes.
In analogy with Eq. (BS), the Hamiltonian H of uncoupled
wires takes the form of Eq. (C5), with

AL
V(x)EV:HNy@Edlag(—],1,1,—1), (C48)
where A is the velocity of chiral modes in individual wires.
The factor 1/2 in vy ,,; compensates for the doubling of
degrees of freedom in Nambu space. To gap the system in a
way that generates the topological superconducting phase of

interest, with a pair of chiral gapless modes at the edges, we
introduce interwire couplings

Vy,y+1 = %(Oa Ov O, Ol cee | - l*? l+7 _l+a l*l - l+7 l,,
—1_,14]...10,0,0,0)7, (C49)

acting on nearest-neighboring wires, for simplicity. Here,
Il =({ £1)/2 with odd integer / > 0, as in the quantum
Hall case. In the “integer” case [ =1 (where [, =1 and
[_ =0), Vv, 41 corresponds to the coupling H, ,; introduced
in Eq. (B7) of Appendix B: It describes a direct coupling
between the PH symmetric right-moving mode of wire y and
the PH symmetric left-moving mode of wire y + 1. Since
Pnvy y41 = —V, 41, the corresponding coupling phase must
be real, i.e., Bc(x) = By,y+1 = 0 or 7 [see Eq. (C43)].

Together, the interwire couplings v{, and v, ,| gap out
2N, +2(Ny — 1) = 4N, — 2 of the 4N, chiral gapless modes
of the system. The remaining two modes are topologically
protected chiral edge modes. Indeed, the only coupling
that could gap them while satisfying the Haldane criterion
[Eqg. (C15)] is, up to an integer factor,

Vo= 3(~1. 1 ~1,110,0,0,0] ..

...10,0,0,0] —1_, 1, =1, 1)T. (C50)
To identify the nature of the remaining low-energy gap-
less edge theory, we perform a similar basis transformation
®(x) = G~'®(x) as in the quantum Hall case, with

I, I 0 0
1. 1, 0 o0

-1
G _]IM®7 0o 0 1, | (C51)
0 0 [ I
I, —-I_ 0 0
—I_ Iy 0 0
G=Iy®| 0 - (C52)

0o 0 -1 I
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The relevant matrices K, L, V become

K =G"KG =1y, ®diag(—1,1,1, -1), (C53)
L=G"LG =Ly, ® (—ioy)l + Zun,, (C54)
V=G"VG =1y, ® Adiag(—1,1,1, 1), (C55)

where we recall that (X,)x = (Zu)@,vG,v) = sgn(y — y').
The nonlocal coupling vy in Eq. (C50) becomes

Yo=G'vg=1(-1,0,0,1/0,0,0,0]...

...10,0,0,0[0,1, —1,0)". (C56)

Equations (C53)—(C56) show that the low-energy theory
that remains after integrating out gapped bulk modes is
described by the edge fields ¢(x) = ¢1(x), d4(x) = @2 (x),

Pan,—2(x) = @3(x), and @ay,_1(x) = @4(x), with effective
matrices K, L, V of the form

Kegr = diag(—1, 1,1, 1), (C57)
Lo = X4, (C58)
Vegr = diag(—1, =1, 1, 1), (C59)

and PHS represented by

0O 1 0 O
1 0 0 O

Pl'[,eff = 0 0 0 11’ dl'l,eff =0. (C6O)
0O 0 1 O

The above low-energy theory resembles two PH symmetric
“copies” of the low-energy gapless edge theory derived for
quantum Hall phases [Eqs. (C22)—(C25)], supporting Laugh-
lin quasiparticles with charge e//. Here, however, physical
degrees of freedom are artificially doubled, as we work in
Nambu space. Therefore, the physical low-energy theory actu-
ally corresponds to “half” of these two copies, i.e., it describes
quasiparticles that are equal superpositions of Laughlin quasi-
particles and quasiholes. The physical theory is recovered by
imposing the reality condition defined in Eq. (C36), corre-
sponding to the identification ¢,(x) = —¢;(x) and @4(x) =
—@3(x). When [ =1, low-energy quasiparticle excitations
take the form of chiral Majorana fermions, corresponding
to PH symmetric superpositions of chiral quasiparticles and
quasiholes with unit charge. This was shown explicitly in
the tight-binding model presented in Appendix B. When
! > 1, instead, quasiparticle excitations are superpositions of
Laughlin quasiparticles and quasiholes with fractional charge
e/ 1. A single-particle picture is not suitable in that case, as in-
terwire couplings [Eq. (C49)] correspond to true interactions.
We remark that similar superpositions of Laughlin quasi-
particles and quasiholes have been used to construct bound
states known as “parafermions,” or fractionalized Majorana
fermions (see, e.g., Refs. [10-12]).
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