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Interplay between long-range hopping and disorder in topological systems
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We extend the standard Su-Schrieffer-Heeger (SSH) model to include long-range hopping amplitudes and
disorder, and analyze how the electronic and topological properties are affected. We show that long-range
hopping can change the symmetry class and the topological invariant, while diagonal and off-diagonal disorder
lead to Anderson localization. Interestingly, we find that the Lyapunov exponent γ (E) can be linked in two ways
to the topological properties in the presence of disorder—either due to the different response of midgap states to
increasing disorder or due to an extra contribution to γ due to the presence of edge modes. Finally, we discuss
its implications in realistic transport measurements.
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I. INTRODUCTION

The dimer chain is a canonical model in condensed matter,
widely used to study topological properties in atomic chains
with staggered hopping amplitudes [1–7]. For the case of just
nearest-neighbor hopping (NN), it reduces to the well-known
SSH model [4]. However, the addition of long-range hopping
amplitudes is important, as they are ubiquitous in real systems
and their role can be crucial [8–10]. The effect of disorder in
quantum systems can also be significant [11]. In topological
systems in particular, its study has been focused on the change
of the topological invariants [12–15]. However, its relation
with localization has been typically overlooked, with some
exceptions [16–19].

In this paper, we discuss the interplay between long-range
hopping amplitudes and disorder in topological chains. We
show that long-range hopping connecting sites within the
same sublattice breaks chiral symmetry and changes the topo-
logical phase, leading to edge modes without the original
topological protection. For large enough hopping amplitudes,
the edge states mix with the bulk bands and the system
becomes metallic. In contrast, long-range hopping amplitudes
connecting different sublattice sites preserve chiral symmetry
and allow us to increase the value of the topological invariant
and the number of edge modes.

In the presence of disorder, Anderson localization hap-
pens. However, differences between diagonal (DD) and off-
diagonal disorder (ODD) can be observed, when just NN
hopping amplitudes are present due to the breaking of chiral
symmetry in the first case but not the second. Furthermore,
the localization properties for midgap and bulk states are
different, and the Lyapunov exponent (LE) exhibits an extra
contribution due to edge modes. This makes topology and
localization intertwine in an interesting way. When next-
nearest-neighbor (NNN) hopping amplitudes are included, the
effect of both types of disorder is similar due to the lack of
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chiral symmetry in both cases. However, it is possible to find
signatures of topology in transport measurements, even deep
within the metallic phase and for weak disorder.

II. MODEL

The standard SSH model is described in terms of noninter-
acting, spinless electrons populating a chain with alternating
hopping amplitudes between neighboring sites. Its general-
ized Hamiltonian is

HR =
∑

|i−j |�R

(Ji,j + εi,j )c†i cj + H.c. , (1)

where c
†
i creates a fermion at the ith site and Ji,j , i �= j ,

is the hopping amplitude connecting the ith and the j th
sites. R is the maximum range of the hopping and we set
Ji,i = 0. DD and ODD are introduced through εi,j , for i = j

and i �= j , respectively. For the numerical results, we have
considered εi,j ∈ [−w/2, w/2] homogeneously distributed,
although other choices are possible [20–22]. Because Jij are
functions of the distance n = |i − j |, to simplify our notation
we separate hopping processes connecting sites within the
same sublattice Ji,i±n ≡ Jn, with n even, and hopping pro-
cesses connecting sites in different sublattices J2i−n,2i ≡ Jn,
and J2i+n,2i ≡ J ′

n, with n odd.
In absence of disorder, the Hamiltonian can be diagonal-

ized in k-space and written in terms of the Pauli matrices as
HR = d0(k)1 + �d (k) · �σ , with

d0(k) =
∑

p

2J2p cos(pk) , dz(k) = 0 , (2)

dx (k) =
∑

p

{J ′
2p−1 cos[(p − 1)k] + J2p−1 cos(pk)} , (3)

dy (k) =
∑

p

{J2p−1 sin(pk) − J ′
2p−1 sin[(p − 1)k]} , (4)

where HR acts on the pseudospinor �k = (ak, bk )T and
p ranges from 1 to �(R + 1)/2� (�· · · � denotes the floor
function). The dispersion relation is E±(k) = d0(k) ± | �d(k)|,
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FIG. 1. Spectrum for a chain with up to NNN hopping.
(a) Spectrum vs J2 for a finite system with N = 20 unit cells.
(b) Spectrum vs crystal momentum for different values of J2.
(c) Inverse of localization length vs J2 for the edge states. All plots
consider a chain with δ = −0.5.

where + and − correspond to the conduction and valence
band, respectively [see Fig. 1(b)].

III. ABSENCE OF DISORDER

The topological properties of the standard SSH model are
captured with the Zak phase [23] or, equivalently, the winding
number W of the Bloch vector �d (k) [24].

As the SSH model has time-reversal, particle-hole, and
chiral symmetry, it supports two distinct topological phases
|W| ∈ {1, 0} featuring either a pair of edge states or none [25].
When longer-range hoppings are added, one can either break
particle-hole and chiral symmetry if they connect the same
sublattice (even hoppings) or preserve the symmetries if they
connect different sublattices (odd hoppings). Even hoppings
change the topological class from BDI to AI [26], while odd
hoppings do not change the topological class and allow for
larger values of the topological invariant [27]. Its maximum
value is ultimately fixed by the range of the hoppings consid-
ered |W| � (R + 1)/2. Finding a closed expression for W as
a function of the system parameters is, in general, a hard task
for couplings beyond NNN [28]. In Appendix A, we show
how this can be done for first and third neighbors.

With arbitrary long-range hopping amplitudes, the system
may still feature edge states, but there is not a one-to-one cor-
respondence between the number of edge states and the topo-
logical invariant: The presence of even hopping introduces
a term proportional to the identity matrix, which does not
change the bulk eigenstates (leaving Z unaffected) but mod-
ifies the spectrum, making the bands overlap for sufficiently
large values of the hopping amplitudes, changing the system

from insulating to metallic. This is seen in Fig. 1(a), where
the spectrum, as a function of the NNN hopping amplitude
J2, makes the edge modes mix with the bulk bands when the
single particle gap closes [8].

In a finite system, the presence of even hopping amplitudes
also affects the spatial profile of the midgap states, as they do
not come in chiral pairs anymore. Their localization length
generally increases, diverging when they mix with the bulk
bands. This can be seen already for NNN hopping: From
perturbation theory, one can see that the energy of the edge
states varies as Eedge 	 −2J2J

′
1/J1. Then, looking for solu-

tions of the dispersion relation with k = π ± iζ , we obtain the
following expression for the inverse of the localization length:

ζ = 1

λloc
= acosh

[
J ′

1

J1
− J1J

′
1

4J 2
2

+ 1

4J 2
2

√
4J 2

2

(
J 2

1 − J ′2
1

) + J 2
1 J ′2

1

]
, (5)

which is plotted in Fig. 1(c). There, the divergence of the
localization length signals the transition to the metallic phase.

In the following, we focus on the effect of disorder, as well
as on the transport properties with NNN present. For conve-
nience, we reparameterize J1 = J (1 − δ) and J ′

1 = J (1 + δ)
in terms of the dimerization factor δ, and the average NN
hopping amplitude J . In this convention, the topologically
nontrivial (trivial) phase with |W| = 1 (|W| = 0) occurs for
δ < 0 (δ > 0).

IV. DISORDER

DD modifies the on-site energies, and therefore acts within
the same sublattice, breaking the chiral symmetry initially
present in the standard SSH model. This modifies the topo-
logical phases, leads to a splitting of the zero-energy modes,
and produces Anderson localization. On the other hand, ODD
preserves chiral symmetry (well known for the Anderson
model [21,22,29–31]) and keeps the topological phase well
defined for weak disorder. In this case, the bulk electrons also
localize but the edge states remain gapless until disorder is of
the order of the dimerization factor w ∼ δ.

To gain insight into the localization properties in the stan-
dard SSH model, we have calculated a moment expansion of
the LE [32]:

γDD(E) 	 log |A| − E2σ 2

(E2 − 4J 2)(E2 − 4J 2δ2)
, (6)

γODD(E) 	 log |A| − h(E)σ 2

2(A2 − 1)2J 2
1 J ′2

1

, (7)

where

A(E) = [
f (E) ±

√
f (E)2 − 4J 2

1 J ′2
1

]
/2J1J

′
1 , (8)

f (E) = E2 − J 2
1 − J ′2

1 , (9)

h(E) = (A4 − 8A2 − 1)J 2
1 − 4A(A2 + 3)J1J

′
1

+ (A4 − 8A2 − 1)J ′2
1 . (10)
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FIG. 2. (a) Comparison between γDD [Eq. (6), dashed green line] and γODD [Eq. (7), orange line] for the states in the lower energy band
with δ = −0.5 and w/J = 0.1. Inset: Numerically calculated γODD(E = 0) in the trivial (yellow dots) and topological (purple dots) phase as a
function of the disorder strength w. The analytic formula Eq. (7) corresponds to the continuous orange line. (b) γDD vs E for different disorder
strengths w in the SSH model. The dashed line (dark green) corresponds to the analytical approximation Eq. (6) and the dots to the numerical
calculation. Parameters: δ = −0.5.

(Details of the calculation can be found in the Appendix B.)
Equation (6) corresponds to the case of weak DD, and Eq. (7)
corresponds to the case of weak ODD. Figure 2(a) shows
a comparison between the two analytic formulas. They dis-
play similar behavior, with the exception that ODD produces
stronger localization. This is expected because values of the
hopping amplitudes close to zero lead to full localization, and
therefore disorder in the hopping amplitudes should produce
stronger effects, for the same disorder strength.

Equations (6) and (7) recover the expressions for the
Anderson model obtained by the same method: γ (E) ∝
−σ 2/(E2 − 4J 2) in the limit δ → 0 (valid for both DD and
ODD, being the prefactors the only difference between them).
Importantly, as Eqs. (6) and (7) do not depend on the sign of
δ, the trivial and topological phases cannot be distinguished
by their localization properties for weak disorder, at least
to second order in the perturbative expansion. This is not
surprising because topological properties are not captured by
local quantities.

Interestingly, due to the poles structure in Eqs. (6) and (7),
there is a crossover region within the gap where localization
is anomalous, changing sign for the states in the gap, which
become less localized for increasing disorder. This is well-
known in nontopological systems, but topological systems
provide an extra twist: They display midgap states (only
present in the topological phase) that delocalize as disorder
increases, while the bulk states become more localized. This is
important for measurements depending only on these mid-gap
states, such as edge modes transport. Nevertheless, it is also
important to keep in mind that structural defects such as im-
purities and dangling bonds can also produce these localized
states within the gap. However, one could distinguish them
with additional measurements, as, for example, testing the
robustness of the topological states to remain at zero energy
under small perturbations.

As a check, we have calculated numerically the Green’s
function G = (E − H )−1 and by fitting the disorder-averaged
elements − log(〈G1,L〉2), (L = 1, . . . , 2N ), we have obtained
γ (E) from its slope. Figure 2(b) shows the LE vs E for

different values of DD and a comparison with the analytical
expression for weak disorder. The agreement is excellent and
captures the previously discussed delocalization of midgap
states. For large disorder, this phenomenon disappears and all
states become more localized for increasing w, as typically
observed in Anderson localization.

An interesting property, missing in the perturbative calcu-
lation, is shown in Fig. 2 (inset). It shows that the difference
in γ (E = 0) for the trivial and the topological phase, when
ODD is added, is a nonvanishing function of the disorder
strength (with variance always smaller than this difference).
We have checked that this difference remains for different
system lengths (N = 50, 100, 150, and 200), which means
that it should remain in the limit N → ∞. Furthermore, this
difference scales as σ 2, which would indicate that it does
not correspond to higher orders in the perturbative expansion.
Therefore, this evidence indicates that this contribution is a
consequence of the presence of the edge modes.

When NNN hopping amplitudes are included, the elec-
tronic properties can be severely affected due to the changes
in the energy bands, and especially due to the transition to
a metallic phase with electron and hole pockets for large J2.
Figure 3 shows the value of γ (E) for different values of J2 and
disorder. For small J2, the chiral symmetry is weakly broken
and the system still displays a gap, see Fig. 1. As J2 increases,
the bands and the LE become increasingly asymmetrical. It is
interesting to see how DD and ODD disorder act in a similar
way when NNN are present (purple and orange lines in Fig. 3).
This is because chiral symmetry is already broken by J2, and
ODD also introduces fluctuations within the same sublattice
[33]. For large J2, the system becomes metallic and although
the LE behaves similarly for DD and ODD, we demonstrate
that transport in the trivial and in the topological phase can be
quite different.

V. SINGLE-PARTICLE TRANSPORT

Coupling the ends of the SSH chain to voltage-biased
leads allows for particle transport. We use second-order
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FIG. 3. Lyapunov exponent vs energy for a chain with fixed
NN hopping amplitudes and different values of the NNN hopping
amplitudes. The dots correspond to diagonal disorder, while the
dashed orange line corresponds to off-diagonal disorder. Parameters:
δ = −0.5.

perturbation theory to integrate out the leads and obtain a
master equation for the reduced density matrix of the chain
ρ, which in the infinite bias regime assumes the following
Lindblad form [7,34]:

ρ̇ = Lρ ≡ −i[HR, ρ] + �LD(c†1)ρ + �RD(c2N )ρ , (11)

where D(A)ρ ≡ AρA† − {A†A, ρ}/2. The last two terms on
the right-hand side of Eq. (11) correspond to incoherent
tunneling of particles from the left lead into the first site of
the chain at rate �L, and tunneling out from the last site of the
chain to the right lead at rate �R .

We analyze transport, considering there is at most one
particle in the system. This is the case if the interaction
between particles inside the chain is strong enough such that
higher chain occupancies are forbidden. The current in the
stationary regime can be computed as I = tr(J ρ0), where ρ0

is the stationary solution of the master Eq. (11) and J ρ =
�Lc

†
1ρc1 is the current superoperator.

In Fig. 4, we show the current in a pristine dimer chain
with hopping amplitudes up to second neighbors as a function
of the different hopping amplitudes. In the insulating regime
in the topologically nontrivial phase (δ < 0), we find the topo-
logical edge-state blockade already studied in Refs. [7,35]. As
J2 increases, the blockade remains up to the transition to the
metallic phase. In the trivial region (δ > 0), the current van-
ishes along the line J2 	 −δJ/2 + J/2, which corresponds
to a configuration where the lower energy band is almost
flat. For large enough J2, the system is in the metallic phase
and the current shows a pattern of dips in both the trivial
and topological phases produced by exact crossings of energy
levels with opposite parity (see the spectrum shown in Fig. 1).
Whenever two states with opposite parity become degenerate,
a superposition of both with zero occupation at the ending site
of the chain becomes a steady state of the system. A particle
in this superposition prevents any new particle from tunneling
into the chain, and it cannot escape to the drain, thus blocking
the current. Remarkably, most of these degeneracies occur

FIG. 4. (a) Current with �L = �R = 0.1J , for a chain with N =
40 dimers. The dashed vertical line marks the topological phase
transition, while the upper triangle delimited by continuous lines
marks the region where the system is metallic. (b) Local density of
states at the ending site for a semi-infinite system with J2 = J and
δ = −0.5 (topological case) or δ = 0.5 (trivial case).

for the same values of |δ| and J2/J in the topological and
trivial regimes. Nonetheless, most of the dips in the trivial
region cannot be appreciated in Fig. 4 since they are much
sharper than those in the topological regime (see Fig. 6 in
Appendix C). The reason why resides in the way these states
with opposite parity split near the degeneracy, and also in the
relative weight they have on the ending sites of the chain
as we demonstrate in Appendix C by analyzing a minimal
model with three energy levels. This latter fact relates the local
density of states at the ending sites of the chain [36], shown in
Fig. 4(b), with the features observed in the current.

We have also computed the Fano factor, which is a measure
of the shot noise in the transport process. Previous studies
showed that for the standard SSH model, the Fano factor
is approximately equal to 1 in the topological regime [7],
meaning that transport is purely Poissonian. We find that
for finite J2 it is generally larger than 1 and presents clear
differences between the topological and trivial phases. In the
metallic region, it presents a characteristic peak-inside-a-dip
shape at the exact crossings discussed above, that can again
be related to the edge-local density of states (LDOS), as we
show in Appendix C.

The effect of disorder on the current, when hoppings up
to NNN are included, is similar for both DD and ODD, see
Fig. 5. In the topological phase, near the exact crossings, the
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FIG. 5. Current as a function of the disorder strength for J2 =
0.9J , N = 40, and �L = �R = 0.1J . Both diagonal (a), (c) and
off-diagonal disorder (b), (d) is considered. The distribution of εij

is the same as the one used in the other figures. Each point has been
obtained by averaging over a total of 103 instances of disorder. The
parameters have been chosen such that on the upper plots, the current
without disorder has a dip in the topological regime, while on the
lower plots, the current shows a maximum in the topological regime.

current shows a nonmonotonic behavior, it increases for small
disorder and decreases for large disorder. In the trivial phase,
by contrast, the current decays monotonically with increasing
disorder. This can be understood as follows: For zero disorder,
near the exact crossings, the current is much smaller in the
topological case than in the trivial, as it is carried mainly
by almost-degenerate states with opposite parity, while in the
trivial case it is carried equally by all states in the spectrum.
Therefore, for small disorder, the current in the topological
phase increases as disorder lifts the degeneracies that are
blocking the current. On the other hand, in the trivial case
the current decreases due to the increasing localization of the
states. For large disorder, the current decreases in both phases
as expected.

VI. CONCLUSIONS

We have studied a generalized SSH model including long-
range hopping amplitudes and disorder. We have shown that
the effect of hopping amplitudes connecting sites within the
same sublattice, and those connecting sites of different sub-
lattices is very different. The reason is that the former breaks
particle-hole and chiral symmetry, changing the topological
class, while the later maintains chiral symmetry and allows us
to increase the value of the winding number. With both types
of hopping processes, space inversion symmetry forces the
topological invariant to have quantized values, but the bulk-
edge correspondence breaks down. This is clear when NNN
hopping amplitudes dominate, producing a metallic phase and
the merging of the edge states with the bulk bands.

We have investigated the role of disorder using the LE. It
shows that for NN hopping only, DD and ODD localize the
bulk electrons, but their effect on midgap states is different,
with a crossover from reduced to increased localization as
a function of disorder strength. In addition, our numerical
calculations find an extra contribution to γ (0), as a function
of ODD strength, that leads to a difference between the trivial
and topological phase. This contribution is linked to the pres-
ence of edge modes. When NNN hoppings are added, chiral
symmetry is broken and fluctuations in J2 act similarly to DD.
Nevertheless, we have shown that transport measurements
for weak disorder can still distinguish between phases with
different W . Furthermore, the current in the metallic phase
shows interesting features that also allow us to differentiate
between them.

Our findings could be observed experimentally with arrays
of quantum dots [37] in which the large Coulomb repulsion
needed to keep at most one electron in the system could
be engineered by capacitively coupling all dots together. In
quantum dots, first-neighbor hoppings are of the order of
10 meV, while disorder strongly depends on the material and
sample configuration.

Also, our results are relevant to the transport of excitations
in analog systems, which could be implemented in platforms
such as trapped ions [38] or cold atoms [39,40].
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APPENDIX A: PHASE DIAGRAM WITH LONG-RANGE
HOPPING AMPLITUDES

We derive here the phase diagram for a chain with up
to fourth-neighbor couplings (R � 4). It only depends on
the odd hopping amplitudes, i.e., on the ratios x = J1/J

′
1,

y = J ′
3/J

′
1 and z = J3/J

′
1. The two-dimensional surfaces that

delimit the regions with definite winding number are those
points in parameter space for which the system of equa-
tions dx (k) = dy (k) = 0 has a solution for some k ∈ [−π, π ].
These turn out to be the equations of two planes P1(x, y, z) =
0, P2(x, y, z) = 0, and a quadric Q(x, y, z) = 0, with

P1(x, y, z) = 1 + x + y + z , (A1)

P2(x, y, z) = 1 − x − y + z , (A2)

Q(x, y, z) = z − z2 − xy + y2 . (A3)

They divide the parameter space in finitely many regions.
Computing the winding number inside each of these regions,
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we obtain the whole phase diagram. For positive hopping
amplitudes, the results are summarized in the following table
(note that the plane P1 does not appear):

|W| Conditions

0 (Q > 0 and P2 > 0) or (Q < 0, P2 > 0 and |y − x| > 2|z|)
1 P2 < 1
2 Q < 0, P2 > 0 and |y − x| � 2|z|

APPENDIX B: CALCULATION OF
THE LYAPUNOV EXPONENT

In the weak disorder limit, the analytic expressions for
the LE can be obtained perturbatively from the equation of
motion (EOM). This can be done by introducing the parameter
λ � 1 in the disorder term as E − λεα

m (where α is the
sublattice index, A and B), and Jij + λεij , for the diagonal
and off-diagonal cases, respectively. As the SSH model is
bipartite, each sublattice has an associated EOM, but they can
be combined into a single one (for instance, for sublattice A).

By defining Rm = am/am−1, where am is the probability
amplitude of the electronic wave function in the mth A-site of
the chain, the LE can be written as

γ (E) = lim
M→∞

1

M

〈
M∑

m=1

ln |Rm|
〉

, (B1)

where is M is the number of cells in the chain and 〈·〉 denotes
configuration average. To find the LE, Rm can be expanded
over the parameter λ in the following way:

Rm = AeλBm+λ2Cm+λ3Dm+... , (B2)

which in the limit λ � 1 yields

γ (E) = lim
M→∞

1

M

M∑
m=1

[〈ln |A|〉 + λ〈Bm〉 + λ2〈Cn〉 + ...] .

(B3)

By obtaining the leading orders of λ from the correspond-
ing EOM, one can calculate 〈ln |A|〉, 〈Bm〉, and 〈Cn〉. The λ0

order of the combined EOM let us solve A as a function of the
hopping amplitudes and energy, which yields the following
result for both the DD and ODD cases:

A± =
E2 − J 2

1 − J
′2
1 ±

√(
E2 − J 2

1 − J
′2
1

)2 − 4J 2
1 J

′2
1

2J1J
′
1

,

(B4)

where A− is valid within the band and the gap energy
regions and A+ outside the bands. This choice is neces-
sary to ensure γ (E) is positive for all E. Thus, γ (E) =
limM→∞ 1

M

∑M
m=1〈ln |A|〉 defines the localization properties

of the pristine SSH model. As expected, γ (E) is zero within
the energy bands and nonzero outside. Particularly, γ (0) =
1/l = log |J1/J

′
1| in the topological phase, which matches the

well-known result for the localization length of the edge states
[24].

Next, 〈Bn〉 can be obtained through the λ1-equation upon
averaging. For DD, we choose 〈εm〉 = 0 for both sublattices,
as the chemical potential in the pristine system has been set
to zero for all sites and the randomness induced by disorder
is assumed to fluctuate around that value. For ODD, we set
〈εij 〉 = 0. In both cases, this results in a recursive equation
for 〈Bm〉, which can be solved with 〈Bm〉 = 0 without loss of
generality.

Then, the 〈Cm〉 is calculated from the λ2-equation after
averaging. At this point, it is important to note that disorder,
as introduced in the system, displays no correlations, and
hence 〈εα

mε
β
n 〉 = δαβδmnσ

2 for DD and 〈εij εmn〉 = δij δmnσ
2

for ODD, where σ 2 is the standard deviation of the probability
distribution followed by the random terms.

Finally, the LE can be written as γ (E) = ln |A| + 〈Cm〉 for
both cases. For DD, this yields

γ (A) = ln |A| − A(AJ1 + J ′
1)(J1 + AJ ′

1)

(A2 − 1)2J 2
1

σ 2 . (B5)

For ODD, one obtains

γ (A) = ln |A| +
[

(A4 − 8A2 − 1)J 2
1 − 4A(A2 + 3)J1J

′
1

2(A2 − 1)2J 2
1 J

′2
1

+ (A4 − 8A2 − 1)J
′2
1

2(A2 − 1)2J 2
1 J

′2
1

]
σ 2 . (B6)

As a function of the energy, it is easy to compare the LE
for ODD and DD cases,

γDD(E) = ln |A| − κ (E)σ 2 , (B7)

γODD(E) = ln |A| − κ (E)σ 2 + ξ (E)σ 2 , (B8)

where

κ (E) = 4E2

(4J 2 − E2)(4J 2δ2 − E2)
, (B9)

and

ξ (E) = [8J 2δ2 − E2(1 + δ2)]
√

(4J 2 − E2)(4J 2δ2 − E2)

J 2(4J 2 − E2)(4J 2δ2 − E2)(δ2 − 1)2
.

(B10)

The term ξ (E) does not contribute in the band region, since
the radicand is negative and hence the square root factor is
imaginary.

APPENDIX C: ANALYSIS OF THE CURRENT AND
FANO FACTOR

Explaining all the features the current and the Fano factor
display is a hard task that requires knowledge of the full
eigenbasis of the system. Here we attempt to give a qualita-
tive understanding of the observed behavior near the exact
crossings of the energy spectrum, which can be achieved
considering a minimal single-particle model comprised of two
almost-degenerate states with opposite parity |±〉 and a third
level |C〉 which is highly detuned from the other two, such
that it can be regarded as an exclusive channel for transport.

We can solve analytically the master equation for this small
system noting that:
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FIG. 6. (a) Current and Fano factor as a function of the NNN
hopping amplitude for δ = ±0.5, in the metallic region. The rest of
the parameters are the same as in Fig. 4. (b), (c) Plot of the current
and Fano factor in the minimal model for different values of α = β

with �R = �L ≡ �. In (b), the width of the dip decreases as α2 and
β2 become smaller (see black arrow). In (c), the height of the peak
(black arrow) increases as α2 and β2 become smaller.

— The coherences between states with different numbers
of particles evolve independently of the coherences between
states with the same number of particles and the level popula-
tions.

— We can do a rotating-wave approximation in
which we neglect coherences between eigenstates that
are far off-resonance, that is, when their energy difference
(εμ − εν ) � �L,R .

Thus, in the particular model under consideration, to a
good approximation we can include only the coherences
between the |±〉 states. Apart from the splitting between
these two states �, the other parameters that enter the master

equation are the weight of the states at the ending sites of the
chain:

〈0| c1 |+〉 = 〈0| c2M |+〉 = α , (C1)

〈0| c1 |−〉 = − 〈0| c2M |−〉 = β , (C2)

|〈0| c1 |C〉| = |〈0| c2M |C〉| =
√

1 − α2 − β2 . (C3)

The parity of state |C〉 is irrelevant regarding the
final result. Solving the master equation in the basis
{|0〉 〈0| , |+〉 〈+| , |−〉 〈−| , |+〉 〈−| , |−〉 〈+| , |C〉 〈C|}, (|0〉
denotes the vacuum state of the system) we obtain for the
current:

I = �2�L�R

�2(3�L + �R ) + (α2 + β2)2�L�2
R

. (C4)

It goes from a finite value to zero when the states |±〉
become degenerate (� = 0). Furthermore, the width of the
dip is proportional to (α2 + β2). For the Fano factor, we will
just give formulas for its value at � = 0, and in the limit
� � �L,R ,

lim
�/�L,R→0

F = 1

2

(
1

α2
+ 1

β2
− 2

)
, (C5)

lim
�/�L,R→±∞

F = 1 − 6�L

3�L + �R

+ 2�L�R

(3�L + �R )2

×
(

1

α2
+ 1

β2
+ 1

1 − α2 − β2

)
. (C6)

They come in handy when analyzing the results shown in
Fig. 6. First, the value of the Fano factor far from the reso-
nances (� � �L,R) is minimal for the case 1/α2 = 1/β2 =
1/3, i.e., when all the single-particle states have equal weight
on the ending sites of the chain. This explains why, on
average, the Fano factor is larger in the topological phase
than in the trivial, as the edge LDOS is much more regular
in this latter case. Furthermore, the minimal model predicts
the appearance of a peak in the Fano factor at the exact
crossings, whose height relative to the base is given by
[−4 + 3/α2 + 3/β2 − 1/(1 − α2 − β2)]/8 in the case �L =
�R . It increases as the edge occupation of the states |±〉
decreases, which is also in accordance with the computed
edge LDOS.
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