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Nonequilibrium steady-state Kubo formula: Equality of transport coefficients
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We address the question of whether transport coefficients obtained from a unitary closed system setting,
i.e., the standard equilibrium Green-Kubo formula, are the same as the ones obtained from a weakly driven
nonequilibrium steady-state calculation. We first derive a nonequilibrium Kubo-like expression for the steady-
state diffusion constant expressed as a time integral of either a current or a conserved density nonequilibrium
correlation function. This expression has certain advantages over the equilibrium Green-Kubo formula, but it
is not clear if it gives the same value of the diffusion constant. We then rigorously show that if the unitary
dynamics is diffusive, the nonequilibrium formula indeed gives exactly the same transport coefficient. The form
of finite-size correction is also predicted. Theoretical results are verified by an explicit calculation of the diffusion
constant in several interacting many-body models.
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I. INTRODUCTION

Transport of conserved quantities is one of the simplest
manifestations of nonequilibrium physics. Depending on the
dynamics, transport may range from ballistic (zero bulk re-
sistance) to diffusive (finite resistance per length), over to
localization (infinite resistance), or, in principle, anything in
between these extremes, usually dubbed anomalous transport.
Our experience tells us that in general transport is diffu-
sive and described by a phenomenological Fourier’s law [1]
(or analogous Fick’s, Ohm’s, etc., law for other conserved
quantities), however starting from a microscopic Hamiltonian,
showing that is anything but simple. In particular, in one-
dimensional systems transport is often not diffusive—there
can be strong effects due to low dimensionality as well as
integrability that typically causes ballistic transport. Under-
standing transport in one-dimensional systems of interacting
particles has a long history, going back to the celebrated
Fermi-Pasta-Ulam-Tsingou numerical experiment [2,3], and
even today it is still very much an open problem of high
interest [4,5].

On a theoretical level, one can use the Green-Kubo linear-
response formula to express transport coefficients in terms
of the equilibrium autocorrelation function of the respective
current [6]. However, calculating the time-dependent corre-
lation function is often too involved even for in principle
solvable systems (such as, e.g., a Bethe ansatz solvable XXZ

spin chain). Furthermore, the Green-Kubo formula involves
two limits that have to be taken in the correct order (which
is in practice difficult), first the thermodynamic limit (TDL)
and then the limit of infinite times. One therefore has to
resort to numerical calculations. Toward that end, two dif-
ferent frameworks are used: (i) closed Hamiltonian evolu-
tion calculating either the equilibrium current autocorrelation
function or spreading of inhomogeneous states, and (ii) direct
simulation of a nonequilibrium steady-state (NESS) transport
by explicitly taking into account driving reservoirs at different

potential. For classical systems, there are plenty of different
reservoirs available (e.g., Langevin, stochastic, Nose-Hoover,
etc.), and a NESS approach is the dominant one [7,8]. In
the quantum domain, efficiently describing reservoirs is trick-
ier. One way is using the Lindblad master equation [9,10],
which is, however, generally difficult to solve. Therefore,
traditionally a unitary closed system setting has been prevalent
[11,12]. With the recent development of matrix-product-based
methods [13], things are changing as direct NESS simulations
of certain Lindblad master equations are efficient and are thus
becoming indispensable [14–22], especially when large one-
dimensional (1D) systems are required. A pressing question,
therefore, is whether the Hamiltonian and NESS approaches
give the same transport coefficient? We stress that even
for weak nonequilibrium driving, the resolution is far from
obvious—on a formal mathematical level the expressions are
completely different and no rigorous connection is known [4],
neither for classical nor for quantum systems. Furthermore,
sometimes concern is expressed that an explicit driving could
modify transport properties, or that the often used boundary
driving is “unrealistic.” Due to the increasingly widespread
use of Lindblad equations in transport, studies resolving this
question are not just of fundamental [4] but also of immediate
practical importance.

We address the relation between “equilibrium” and NESS
transport coefficient in 1D quantum systems, specializing in
particle transport at high temperature, where derivations are
the simplest. We obtain two main results. First, we derive
a NESS Kubo-like formula for the transport coefficient in a
form that is useful in itself. Second, we use this formula to
make a comparison with the Green-Kubo formula, showing
in full generality that, provided the unitary (Hamiltonian)
dynamics is diffusive, the two approaches give the same
transport type and in particular the same diffusion constant.
Theoretical results, which also predict a particular conver-
gence with system size L, are verified in explicit many-body
interacting models.
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II. THE SETTING

A common way to account for an explicit coupling to
reservoirs is by an appropriate master equation. Any quantum
evolution should preserve the positivity of density matrices as
well as its trace. If one in addition assumes that the reservoir
is infinite and fast, i.e., induces a Markovian evolution, one is
led to the Lindblad master equation [9,10]

dρ

dt
= L(ρ) = i[ρ,H ] + Ldis(ρ), (1)

where Ldis(ρ) = ∑
k 2LkρL

†
k − ρL

†
kLk − L

†
kLkρ is a dissi-

pator that depends on a set of Lindblad operators Lk . Trans-
port properties are determined by the scaling of the current in
the NESS. For weak driving, we can write the Lindbladian as
a sum of two linear operators,

L = L0 + μL1, (2)

where μ is some small parameter and L0 is Lindbladian.
The (unique) steady state of L0 is denoted by ρ0, L0ρ0 =
0. For small μ we look for a perturbative NESS solution
ρ = ρ0 + μρ1 + · · · , obtaining the well-known linear correc-
tion L0ρ1 = −L1ρ0 =: −R. Formally, one can write ρ1 =
−L−1

0 (R). This expression has a unique solution provided
R is orthogonal to the kernel of L0. Alternatively, one can
do a time-dependent perturbation theory (see Appendix A),
arriving at [15]

ρ1 = ρ1(t → ∞) =
∫ ∞

0
eL0τR dτ =

∫ ∞

0
R(τ )dτ. (3)

III. NESS KUBO

In transport studies, one often employs Lindblad operators
that act only at the chain boundaries [23], arguing that in the
TDL [26] and for a self-thermalizing system [27] the precise
form of driving should not matter for bulk physics, i.e., far
away from boundaries. A popular choice, both due to the
existence of exact solutions [28] as well as frequent efficiency
of numerical MPS-based methods [13] enabling simulation
of 1D quantum systems of several hundred sites, is to take
Lj that acts only on the system’s boundary. To be able to
execute all the steps of our derivation explicitly without any
further assumptions, we shall focus on the simplest and also
the most common case [15,16,20–22,29–35] of particle (mag-
netization) driving where one uses Lindblad operators L1 =√

�
√

1 + μσ+
1 , L2 = √

�
√

1 − μσ−
1 , L3 = √

�
√

1 − μσ+
L ,

L4 = √
�

√
1 + μσ−

L . � is the coupling strength while μ

is the driving strength. The dissipator at the left edge acts
on boundary Pauli matrices as LL(σ x

1 ) = −2�σ x
1 , LL(σ y

1 ) =
−2�σ

y
1 , LL(σ z

1 ) = −4�σ z
1 , LL(11) = 4�μσ z

1 , and similarly
with a reversed sign of μ at the right end. The unique steady
state of such a one-site dissipator is ∼1 + μσ z, i.e., driving
tries to impose magnetization +μ. Together with H that
conserves total magnetization, such a Lindblad equation can
be used to study high-temperature magnetization transport in
many-body systems—a question of high interest; see, e.g.,
[12,22,36–40] (using Jordan-Wigner transformation, it is
equivalent to particle transport).

For weak driving, we split L into an equilibrium Lindbla-
dian L0 := L(μ = 0) (the steady state of L0 is an infinite-

temperature state ρ0 ∼ 1) and perturbation μL1 := L − L0

(such decomposition is exact; there are no higher-order terms
in μ). To get ρ1, we need R = L1(ρ0) = 4�(σ z

1 − σ z
L). Here

we explicitly see that R is indeed orthogonal to the kernel of
L0. For small μ the NESS expectation value of any traceless
A is (3),

〈A〉 = 4�μ

∫ ∞

0
tr
(
AeL0t

(
σ z

1 − σ z
L

))
dt. (4)

We remark that the limit of small μ is (always) well behaved
in a sense that the convergence radius is finite (typically large)
in the TDL.

In cases when H is reflection-symmetric, PHP † = H ,
with P being a reflection of site k around the midpoint,
k → L + 1 − k, the full L0 is as well, and so we can fur-
ther desymmetrize and write ρ1 = ρ̃1 − P ρ̃1P

†, where ρ̃1 :=
−4�L−1

0 (σ z
1 ) = 4�

∫ ∞
0 σ z

1 (t )dt and σ z
1 (t ) := eL0t σ z

1 . In par-
ticular, the NESS current is odd under P and so the contri-
butions from the σ z

1 and σ z
L are the same, and one has j =

8�μ
∫ ∞

0 tr(jk,k+1e
L0t σ z

1 )dt (due to the continuity equation, it
is independent of k). The diffusion constant D is defined via a
Fick’s law relation in the NESS,

j = −D
zL − z1

L
, D := L

j

z1 − zL

, (5)

where zk := tr(ρσ z
k ) is the NESS expectation of magnetiza-

tion. Besides the current, we therefore also need the bound-
ary magnetization. Provided the system is not ballistic, such
that the NESS current decays to zero in the TDL, one will
have z1 → μ and zL → −μ. To see that, one writes the
NESS condition at the boundary: taking ρ ∼ 1 + (

∑
k zkσ

z
k +

j

8

∑
k jk,k+1 + · · · ), we get for our magnetization driving

the exact stationary condition L(ρ) = 0 = [4�μ − 4�z1 −
j ]σ z

1 + · · · , where the dots represent terms orthogonal to σ z
1 ;

the three terms in the bracket that in the NESS must sum
to zero come from the injection of magnetization [LL(1)],
absorption [LL(σ z

1 )], and continuity equation (current flowing
from the first site due to [j1,2,H ]), respectively. We have an
exact relation (independent of the details of H and the value
of μ) 4�(μ − z1) = j , and 4�(μ + zL) = j . These relations
show that, provided j → 0, one has z1 → μ and zL → −μ.
Therefore, in the TDL z1 − zL → 2μ and one can write a
Kubo-like NESS expression (see Ref. [41] for classical heat
conduction and Ref. [34] for quantum expression), abbreviat-
ing σ z

1 (t ) = eL0t σ z
1 ,

D = lim
L→∞

4�L

∫ ∞

0
tr
(
jk,k+1σ

z
1 (t )

)
dt. (6)

This expression can be transformed into an alterna-
tive form by using the continuity equation for mag-
netization (see later derivations), obtaining [34] D =
limL→∞ L

∫ ∞
0 tr(jk,k+1e

L0t jp,p+1)dt , holding for any p

and k. By trivially defining the extensive current J :=
Ljk,k+1, the above expression can also be recast into D =
limL→∞ 1

L

∫ ∞
0 tr(JJ (t ))dt , with J (t ) := eL0t J . Although

looking deceptively similar to the standard (equilibrium)
Green-Kubo formula [6], the content is completely different
(unitary versus dissipative evolution).

We now rewrite Eq. (6) to a form that is better suited
for comparison with a unitary setting. Let us denote
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expectation values in a dissipatively propagated
operator eL0t σ z

1 as z
(0)
k (t ) := tr(σ z

k eL0t σ z
1 ) and j

(0)
k (t ) :=

tr(jk,k+1e
L0t σ z

1 ). Taking the time derivative and evaluating
L0(σ z

1 ), one gets

ż
(0)
1 = −4�z

(0)
1 − j

(0)
1 , ż

(0)
L = −4�z

(0)
L + j

(0)
L−1, (7)

while in the bulk one has ż
(0)
k = j

(0)
k−1 − j

(0)
k . These are merely

the continuity equations. The initial condition is z
(0)
k (0) =

δk,1. Integrating (7) over time from 0 to ∞, noting that
z

(0)
k (∞) = 0, one sees that the integral of j

(0)
L−1(t ) needed for

D is in turn equal to the integral of z
(0)
L (t ),

∫ ∞
0 j

(0)
k (t )dt =

4�
∫ ∞

0 z
(0)
L (t )dt = 1 − 4�

∫ ∞
0 z

(0)
1 (t )dt . The diffusion con-

stant can therefore be written as

D = lim
L→∞

16�2L

∫ ∞

0
tr
(
σ z

Lσ z
1 (t )

)
dt, σ z

1 (t ) = eL0t σ z
1 .

(8)
In the absence of reflection symmetry P one has to replace
2 tr(σ z

Lσ z
1 (t )) → tr(σ z

Lσ z
1 (t )) + tr(σ z

1 σ z
L(t )). This equation is

our first main result.
It has several nice features. As opposed to the equilib-

rium Green-Kubo formula, where two limits are necessary,
and where in practice for finite (or anomalous) systems an
infinite time integral is problematic [41,42], here the time
integral always converges regardless of the system size or the
transport type (even anomalous) because L0 is contractive (all
nonzero eigenvalues have negative real parts) and L0(σ z

1 ) �=
0. Dissipative dynamics therefore automatically introduces a
natural cutoff time given by the inverse of the Lindbladian
gap. The only relevant limit to be taken is L → ∞ with the
transport type reflected solely in the L dependence of the
integral. The NESS current j = tr(jk,k+1ρ) is an expectation
in a complicated NESS ρ, while the linear response Eq. (8),
on the other hand, gives a more natural interpretation of the
same quantity: D is expressed as a transfer probability across
the chain, with the evolution L0 that is unitary except at the
boundaries. It suggests that the transport type will be governed
by the bulk unitary evolution. Therefore, it naturally lends
itself to our second goal—showing the equality of Eq. (8) and
standard Green-Kubo.

Before that, let us numerically illustrate Eq. (8). Taking
the Heisenberg XXZ chain in a staggered field, H =∑

j σ x
j σ x

j+1 + σ
y
j σ

y
j+1 + �σ z

j σ z
j+1 + 1

2 (hjσ
z
j + hj+1σ

z
j+1),

with h3k = −h, h3k+1 = −h/2, h3j+2 = 0, one has a
quantum chaotic model (random matrix level spacing
statistics [43]) for which diffusion is expected. We
numerically (see the Appendixes) evaluate different
expectations in eL0t σ z

1 , shown in Fig. 1. The initial
magnetization spreads from site 1, with corresponding
integrals resulting in D.

IV. EQUALITY OF DIFFUSION

Looking at Eq. (8), it is not clear that it gives the same D as
the equilibrium Green-Kubo formula. For example, naively D

looks proportional to �2 (a dependence on � has indeed been
observed in small systems [42]). Our aim is to show rigorously
and in general that, provided the unitary dynamics (i.e., H ) is
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FIG. 1. Illustrating NESS Kubo formula (8) for chaotic XXZ

Heisenberg model with � = 0.5, h = 1, and L = 64. (a) Magneti-
zation profiles tr(σ z

k eL0 t σ z
1 ) at selected times (full red curves). Due

to unitary bulk evolution, magnetization spreads with time from the
first site and is at the same time leaking out at the boundaries (7).
Dashed lines is PDE theory z(x, t ) using Deq = 9.6 (see the text).
(b) Magnetization at the last site (red curve, left axis; its integral
gives D; at long times it decays with a rate given by the gap of L0,
which scales as ∼1/L3/2), as well as the integral of the current at the
middle and the last site (dotted and dashed curves, right axis) again
converging at large times to the same D, Eq. (6).

diffusive, the transport coefficient obtained by (8) is the same
as the unitary Deq.

To show this, we use exact conservation equations at the
boundary (7) while we replace the complicated evolution
equation of the current j

(0)
k by a simpler one, assuming that

Fick’s law holds, j
(0)
k = −Deq(z(0)

k+1 − z
(0)
k ). This is to say,

the dissipative part of L0 is treated exactly while the unitary
evolution in the bulk is assumed to be perfectly diffusive.
Here we specifically stress that Deq is the unitary diffusion
coefficient of bulk dynamics (e.g., obtained from the Green-
Kubo formula), which could be different from the NESS one
D (8) for any of the mentioned reasons (“unrealistic” driving,
boundary driving modifying dynamics, etc.). We show that
this is not the case. Fick’s law in the bulk together with (7)
constitutes a closed set of L coupled differential equations
for z

(0)
k (t ), which are merely a discrete diffusion equation

ż
(0)
k = Deq(z(0)

k+1 + z
(0)
k−1 − 2z

(0)
k ) plus a dissipative boundary

condition (7). We are especially interested in the large-L
behavior, where we write a partial differential equation (PDE)
for z(x, t ), ż(x, t ) = Deqz

′′(x, t ), with boundary conditions,

ż(0, t ) = −4�z(0, t ) − Deqz
′(0, t ),

ż(L, t ) = −4�z(L, t ) + Deqz
′(L, t ), (9)
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and the initial condition z(x, 0) = δ(x − 0+). Absorbing
boundary conditions (9) result in a slightly nonstandard
problem that can nevertheless be solved by a separation of
variables. Writing the solution in terms of eigenfunc-
tions Xn(x) as z(x, t ) = ∑

n cnXn(x)e−Deqk
2
nt , we get (see

Appendix B)

Xn(x) = cos (knx) + 4� − Deqk
2
n

Deqkn

sin (knx), (10)

with a transcendental eigenvalue equation for kn,

tan (knL) = −2Deqkn

(
4� − Deqk

2
n

)
(
4� − Deqk2

n

)2 − D2
eqk

2
n

. (11)

Xn are orthogonal with respect to a modified inner
product 〈Xn,Xm〉 := ∫ L

0 Xn(x)Xm(x)dx + Xn(0)Xm(0) +
Xn(L)Xm(L). The initial condition gives cn = 1

〈Xn,Xn〉 . We
can now express finite-L NESS D (8) as

D = 16�2L

∫ ∞

0
z(L, t )dt = 16�2L

Deq

∞∑
n=1

−(−1)n

k2
n〈Xn,Xn〉 .

(12)
In the TDL one can replace the sum with an integral [we
checked (see Appendix B) that this describes the exact sum
(12) well even for not so large L ∼ 16], resulting in

D = Deq

1 + Deq

2�L

≈ Deq

(
1 − Deq

2�L

)
. (13)

This is our second main result.
The linear-response NESS transport coefficient D (8), de-

fined via NESS current scaling (5), is in the leading order in
L exactly equal to the bulk unitary transport coefficient Deq.
Furthermore, finite-size corrections should scale as ∼1/L.
For weak driving μ and fixed coupling �, one always has
D = Deq in the TDL. The only assumption going into de-
riving this result is that in bulk, where one has only unitary
evolution, Fick’s law holds. If Fick’s law holds only on some
hydrodynamic length scale of l∗ lattice spacings, we expect
that the above expression changes to

D � Deq

(
1 − α(�)

(L/l∗)

)
, (14)

with possibly complicated α(�) that is not necessarily 1/�. If
Fick’s law Deq has subleading corrections in L (either due
to a boundary, or due to bulk dynamics), this can modify
the convergence of D, however one will still have D = Deq

in the TDL. The correct order of limits does matter: if one
takes a fixed L and � → 0, the diffusion constant goes to
zero (see Appendix B); if one takes first � → 0 and only
then weak driving μ → 0 and L → ∞, the diffusion constant
diverges [28].

Let us test the result (13) on three microscopic models.
The XX chain with bulk dephasing is a nonquadratic exactly
solvable diffusive model in a single-particle [44] as well as
a many-particle [45] situation, with an exact expression [45]
for the NESS D := j (L−1)

2μ
being D = Deq/(1 + Deq (�+1/�)

2(L−1) ),
where we defined Deq := limL→∞ jL/2μ = 2/γ [45,46]. For
small � this is exactly the same as the above general relation
(13). Next, we take the chaotic staggered XXZ model. In
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FIG. 2. Convergence of NESS D with system size L in the
chaotic staggered XXZ Heisenberg model (h = 1, � = 0.5, μ =
0.02). The horizontal line is the asymptotic value D ≈ 11.45. The
inset shows convergence of 1 − D(L)/D(∞) (full line is 10/L).

Fig. 2 we see that the finite-size correction indeed scales as
1/L, however the dependence on � is not as in Eq. (13)
but rather more general (14). We can see in Fig. 1 (dashed
curves) that the solution z(x, t ) of the PDE (9) describes full
quantum evolution rather well at longer times when diffusion
emerges. Lastly, we take the integrable XXZ chain with h =
0 and � = 1.5 at half-filling, where previous results indicate
high-temperature diffusion; see, e.g., Refs. [16,39,40,47–51].
Our data show (Appendix C) that convergence is in this case
not ∼1/L as predicted for diffusive systems (14), but rather
slower ∼1/Lα with the power around α ≈ 0.5 (see also data
in the supplement of Ref. [29] for similar slow convergence
in a different model). The significance of that is at present not
clear (Appendix C).

V. CONCLUSION

Studying nonequilibrium steady-state physics of 1D quan-
tum systems, focusing on high-temperature particle (magne-
tization) transport, we derive a weak driving nonequilibrium
Kubo-like expression for the diffusion constant. It has some
advantages over the equilibrium Green-Kubo formula and
lends itself to comparison with unitary transport calculation.
Without any further assumptions, we show that provided
the unitary dynamics is diffusive (Fick’s law is valid), the
nonequilibrium formula gives exactly the same diffusion con-
stant as the equilibrium Green-Kubo formula. We also predict
a universal ∼1/L convergence with system size. While the
result is derived for a specific quantum boundary driving, it
could be generalized to any boundary-driven NESS setting,
including, e.g., classical stochastic models [52]. The nonequi-
librium Kubo formula should be of wide use in transport
studies of diffusive as well as anomalous many-body systems.
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APPENDIX A: LINDBLADIAN PERTURBATION THEORY

Let us write the Lindbladian as a sum of two linear opera-
tors (in the examples L0 is also Lindbladian while L1 is only
linear but not Lindbladian),

L = L0 + μL1, (A1)

where μ is some small parameter. The (unique) steady state
of L0 is denoted by ρ0, L0ρ0 = 0. For small μ we look for a
perturbative solution

ρ = ρ0 + μρ1 + · · · , (A2)

getting a standard perturbation theory expression for the
steady-state linear correction ρ1,

L0ρ1 = −L1ρ0 =: −R, (A3)

where we defined R := L1ρ0. Formally, one can write

ρ1 = −L−1
0 (R). (A4)

This expression is well defined (has a unique solution) pro-
vided R is orthogonal to the kernel of L0, in other words, if
L1ρ0 is orthogonal to ρ0 (this holds true for cases of interest
discussed later).

Alternatively, one can write the linear-response equation
for a time-dependent perturbation ρ1(t ),

ρ̇1(t ) = L0ρ1 + L1ρ0, (A5)

which is a linear inhomogeneous equation for ρ1(t ). The for-
mal solution satisfying ρ1(0) = 0 is ρ1(t ) = ∫ t

0 eL0(t−τ )R dτ ,
where R := L1ρ0. The steady-state correction can therefore
also be written as [15]

ρ1 = ρ1(t → ∞) =
∫ ∞

0
eL0τR dτ =

∫ ∞

0
R(τ )dτ, (A6)

which is a formal way of writing the (pseudo)inverse in
Eq. (A4). Note that R(t ) = eL0tR goes to zero (in any norm)
at long times because of contractivity of L0 and the fact that
R is orthogonal to the kernel of L0. Even in a finite system,
the integral therefore converges regardless of the dynamics.

APPENDIX B: SOLVING THE PDE

We solve for time evolution by L0 by using exact dissi-
pative boundary conditions, while for a constitutive relation
that connects local current to other local observables (such
as magnetization), and which is in principle complicated and
depends on the specifics of each H , we take Fick’s law,

j
(0)
k = −Deq

(
z

(0)
k+1 − z

(0)
k

)
. (B1)

This makes for a close set of equations for magnetizations
z

(0)
k . In the continuum limit, we can replace a set of L

coupled differential equations by a PDE. Namely, we want
to solve (a dot denotes time derivatives, primes denote spatial
derivatives)

ż(x, t ) = Deqz
′′(x, t ), (B2)

with boundary conditions

ż(0, t ) = −4�z(0, t ) − Deqz
′(0, t ),

ż(L, t ) = −4�z(L, t ) + Deqz
′(L, t ), (B3)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
kn/π

FIG. 3. Solutions of Eq. (B6) (red points) for Deq = 2.3, � = 1,
and L = 16. The two sets of curves are the left- and right-hand sides
of Eq. (B6).

and the initial condition z(x, 0) = δ(x − 0+). We write the
solution as

z(x, t ) =
∑

n

cnXn(x)e−Deqk
2
nt , (B4)

in terms of eigenfunctions Xn(x) satisfying the
eigenequation X′′

n + k2
nXn = 0. Eigenfunctions are

Xn(x) = A cos (knx) + B sin (knx) and have to satisfy
boundary conditions (4� − Deqk

2
n )Xn(0) − DeqX

′
n(0) = 0

and (4� − Deqk
2
n )Xn(L) + DeqX

′
n(L) = 0. Choosing A = 1

and B = (4� − Deqk
2
n )/(Deqkn) satisfies the first boundary

condition, so that the unnormalized eigenfunctions are

Xn(x) = cos (knx) + 4� − Deqk
2
n

Deqkn

sin (knx), (B5)

while the second one leads to a transcendental equation for
eigenvalues kn,

tan (knL) = −2Deqkn

(
4� − Deqk

2
n

)
(
4� − Deqk2

n

)2 − D2
eqk

2
n

. (B6)

See Fig. 3 for an illustration.
Because the boundary conditions depend on the eigenvalue

kn, one gets a modified inner product (it is not one of the
usual, simpler, Sturm-Liouville homogeneous boundary con-
ditions with fixed coefficients). Using the standard procedure,
multiplying the eigenequation for Xn by Xm, integrating over
x, and making one per-parts integration, one ends up with
(k2

n − k2
m)〈Xn,Xm〉 = 0, leading to the orthogonality of Xn

with respect to the inner product defined as

〈Xn,Xm〉 :=
∫ L

0
Xn(x)Xm(x)dx

+Xn(0)Xm(0) + Xn(L)Xm(L). (B7)

The initial condition in turn fixes the expansion coefficients cn

to simple cn = 1/〈Xn,Xn〉 because one always has Xn(0) =
1. At the other end one has Xn(L) = (−1)n+1. See Fig. 4 for
an example of a few eigenfunctions. We can now express the
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FIG. 4. First eight eigenfunctions Xn(x ) (B5). Part (a) shows
unnormalized and (b) normalized eigenfunctions, both for � = 1,
Deq = 2.3, and L = 16.

NESS finite-L diffusion constant (8) as

D = 16�2L

∫ ∞

0
z(L, t )dt = 16�2L

Deq

∞∑
n=1

−(−1)n

k2
n〈Xn,Xn〉 ,

(B8)
where kn are solutions of Eq. (11). The norm of Xn can
be evaluated, and is after simplification [taking into account
(B6)]

〈Xn,Xn〉 = L

2

(
1 +

(
4� − k2

nDeq
)2

k2
nD

2
eq

)
+ 1 + 4�

Deqk2
n

. (B9)

Denoting f (kn) := 1
k2
n〈Xn,Xn〉 , in the limit of large L, when

kn ≈ nπ
L

, we are dealing with a sum (B8) of terms
like f (nπ/L) − f [(n + 1)π/L] ≈ −f ′(k)π/L. Replacing
the sum with an integral, one gets

D = 16�2L

Deq

∫ ∞

0

−f ′(k)

2
dk. (B10)

Despite a complicated f ′(k), the integral can nevertheless be
evaluated in a closed form, resulting in

D = Deq

1 + Deq

2�L

. (B11)
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FIG. 5. Comparison of the NESS diffusion coefficient D ob-
tained from the exact sum (B8) over eigenvalues kn satisfying (B6)
(symbols; we use the lowest ∼8L eigenvalues) and continuum theory
[full curves, Eq. (B11)]. Already for small L, Eq. (B11) obtained
by replacing the sum with an integral describes the dependence
perfectly. At fixed coupling strength � and increasing L, the NESS
diffusion constant D converges to Deq = 2.3.

In Fig. 5 we compare the continuum formula (B11) and the
exact sum (B8), seeing that the replacement of a sum with an
integral gives good results already for small L = 16.

It is instructive to understand where the ∼1/L correction
in D comes from. It is due to the last term in the norm
(B9), namely due to 4�

Deqk2
n
. In the norm (B9) the first term,

proportional to L, is simply due to the length of the interval
while the last, L-independent 4�/Deqk

2
n, is due to the fact

that one does not have an integer number of oscillations in
x ∈ [0, L] (see Fig. 4). For instance, integrating cos2 (knx) =
[1 + cos (2knx)]/2 one gets “boundary” terms like sin (2knL).
In other words, the last term responsible for ∼1/L correction
is due to the boundary condition that causes a “phase shift”
such that the boundary condition Xn(0, L) = ±1 is satisfied.

Writing this term as 8a
k2
n
, one would get Deq

D
= 1 + aD2

eq

�2L
. The

stronger the effect of the boundary, i.e., the larger a is, the
larger is the finite-size correction.

APPENDIX C: MICROSCOPIC X X Z MODEL

Using the time-dependent density-matrix renormalization-
group (tDMRG) method and the mentioned Lindblad magne-
tization driving, we study spin transport in a class of XXZ

spin chains,

H =
L−1∑
j=1

σ x
j σ x

j+1 + σ
y
j σ

y
j+1 + �σ z

j σ z
j+1

+ 1

2

(
hjσ

z
j + hj+1σ

z
j+1

)
, (C1)

with h3k = −h, h3k+1 = −h/2, h3j+2 = 0. For h = 1 we
have the quantum chaotic model [43], while for h = 0 the
model is integrable. The spin (magnetization) current operator
is jk,k+1 = 2(σ x

k σ
y
k+1 − σ

y
k σ x

k+1). For small driving μ, we
typically use μ = 0.01, the NESS is close to the identity
operator, and one therefore studies infinite-temperature trans-
port at half-filling (zero magnetization). Details of numerical
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FIG. 6. Convergence of the NESS diffusion constant with L for
the integrable XXZ Heisenberg chain with � = 1.5 (h = 0). The
full line is the asymptotic value D(L → ∞) ≈ 2.6. The inset shows
relative error at finite L, i.e., 1 − D(L)/D(∞), that here decays
slower than predicted for diffusive theory (14). Namely, the two
black lines are 1/L0.5 (full) and 0.8/L0.3 (dashed).

implementation can be found in, e.g., [16,21] and references
cited therein.

In the main text, we presented data for a chaotic system.
Here we study the integrable case obtained for h = 0 and � =

1.5, where diffusion was observed. Indeed, we see (Fig. 6) that
with system size, D converges to a constant independent of
�. However, the convergence is slower. Finite-size correction
does not scale as ∼1/L, predicted by our theory for diffusive
bulk evolution, but rather as ∼1/Lα with α ≈ 0.5 for � = 1
(the precise value is hard to determine due to limited L).
We do not at present understand the origin of such slow
convergence. Remember that ∼1/L correction in the case of
diffusion was due to boundary effects, which in a diffusive
system are expected to have a finite extent around the edge.
Stronger finite-size effects, like 1/L0.5, could either suggest
that the effect of a boundary extends further into the system
(it should affect ∼L0.5 sites), or that Fick’s law has ∼1/L0.5

corrections in the bulk. It is not clear if it signals some
nondiffusive physics; we note that in higher NESS current
fluctuations, nondiffusive scaling has indeed been observed
[53]. What is puzzling is that similar slow convergence has
also been observed in a weakly perturbed XXZ model [29]
(which is not integrable anymore), so it could be an effect
having an origin in some particular property of the XXZ

model. An alternative explanation could also be that in the
XXZ model finite-size effects are simply larger, and at L =
256 we might not yet be in the asymptotic regime of ∼1/L

scaling (magnetization profiles, however, are nicely linear for
studied sizes).

[1] J.-B. J. Fourier, Théorie Analytique de la Chaleur (Didot, Paris,
1822).

[2] E. Fermi, J. Pasta, S. M. Ulam, and M. Tsingou, Studies of non-
linear problems, Tech. Rep. LA-1940, Los Alamos Scientific
Laboratory (1955).

[3] T. Dauxois, Fermi, Pasta, Ulam, and a mysterious lady, Phys.
Today 61(1), 55 (2008).

[4] F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, Fourier law: A
challenge to theorists, in Mathematical Physics 2000, edited by
A. Fokas, A. Grigoryna, T. Kibble, and B. Zegarlinski (Imperial
College Press, London, 2010).

[5] M. Buchanan, Heated debate in different dimensions, Nat. Phys.
1, 71 (2005).

[6] N. Pottier, Nonequilibrium Statistical Physics (Oxford Univer-
sity Press, Oxford, 2010).

[7] S. Lepri, R. Livi, and A. Politi, Thermal conduction
in classical low-dimensional lattices, Phys. Rep. 377, 1
(2003).

[8] A. Dhar, Heat transport in low-dimensional systems, Adv. Phys.
57, 457 (2008).

[9] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely
positive dynamical semigroups of N-level systems, J. Math.
Phys. 17, 821 (1976).

[10] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[11] X. Zotos and P. Prelovšek, Transport in one dimensional
quantum systems, in Strong Interactions in Low Dimensions
(Kluwer, Dordrecht, 2004).

[12] F. Heidrich-Meisner, A. Honecker, and W. Brenig, Transport
in quasi one-dimensional spin-1/2 systems, Eur. J. Phys. Spec.
Top. 151, 135 (2007).

[13] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. (NY) 326, 96
(2011).

[14] K. Saito and S. Miyashita, Enhancement of the thermal con-
ductivity in gapped quantum spin chains, J. Phys. Soc. Jpn. 71,
2485 (2002).

[15] M. Michel, J. Gemmer, and G. Mahler, Heat conductivity
in small quantum systems: Kubo formula in Liouville space,
Eur. Phys. J. B 42, 555 (2004).
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