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We exploit topological semimetallic phases resulting from the Kondo screening in Anderson lattice models. It
is shown that by including spin-orbit interactions both in the bulk electrons and in the hybridization between
the conduction electrons and electrons in the f orbit, all types of topological semimetallic phases can be
realized in Anderson lattice models. Specifically, upon either broken time-reversal symmetry or broken inversion
symmetry, we find that either the Weyl semimetallic phase, Dirac semimetallic phase, or nodal-ring semimetallic
phases always emerge between insulating phases and can be accessed by tuning either temperature or spin-orbit
interaction. For Anderson lattice models with general three-dimensional spin-orbit hybridization between the
conduction electrons and electrons in the f orbit, we find that Weyl nodal-ring semimetallic phases emerge
between strong and weak topological insulating phases. Furthermore, in the presence of an exchange field,
Weyl semimetallic phases form after two Weyl points of charge ±1 split off from a Dirac point at time-reversal
momenta. On the other hand, when the spin-orbit interaction is included in the conduction electron, we find
that upon the rotation symmetry being broken with anisotropic hopping amplitudes, a Weyl semimetallic phase
emerges with a double Weyl node with charges of ±2. Furthermore, the Weyl semimetallic phases with charges
of ±2 can be tuned into Weyl semimetallic phases with charges of ±1 through the inclusion of the Rashba
spin-orbit interaction. Our analyses indicate that Anderson lattices with appropriate spin-orbit interactions
provide a platform for realizing all types of topological semimetallic phases.
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I. INTRODUCTION

Topological semimetals have recently attracted a lot of
attention in condensed-matter physics due to their bulk mass-
less electronic structures and the presence of surface states
in specific surfaces [1–4]. Starting from graphene discovered
in 2004 [5,6], in which massless two-dimensional (2D) Dirac
fermions were realized, several materials that realize three-
dimensional (3D) version of semimetals, Dirac semimetals
(e.g., Na3Bi [7], Cd3As2 [8,9]) and Weyl semimetals (e.g.,
TaAs [10–12]), were found subsequently. More recently,
massless points that form nodal lines were further found in
PbTaSe2 [13] and ZrSiS [14]. In these materials, the conduc-
tion and valence bands cross at either discrete points (Dirac
or Weyl semimetal [15]) or at lines (nodal line [16] or ring
semimetals) in the Brillouin zone (BZ). The crossing points
are protected by symmetries [17] and are responsible for a
number of novel transport properties (such as the anomalous
Hall effect and the chiral magnetic effect) in these materials.
While these topological semimetals are usually formed by
symmetries with fixed electronic structures, the corresponding
semimetallic phase is the critical phase that controls phase
transitions between two insulating phases with different topo-
logical properties. In particular, this implies that semimetallic
phases can be accessed through phase transitions. In the case
of discrete massless points, it is known that the mass of the
Dirac point controls the transition between the topologically

trivial and the topologically nontrivial phases [18]. Right at
the point when the mass vanishes, the material is a Dirac
semimetal which is at a quantum critical point between the
hole Fermi liquid and the electron Fermi liquid [19]. Recently,
it was shown that the Kondo screening in the Anderson lattices
provides a platform to access the Dirac semimetallic critical
point [20]. The semimetallic critical point was also shown to
be realized in a Kondo-Heisenberg Hamiltonian with integer
filling of electrons [21]. In particular, the electronic structure
due to the Kondo screening depends on temperature [22–24],
so the Dirac semimetallic phase can also be accessed by tun-
ing temperatures [20]. Indeed, several reports have indicated
that tuning temperatures or spin-orbit coupling strength to
assess semimetallic phases is feasible experimentally [25–28].
Motivated by these observations, it is therefore appealing to
explore possible semimetallic phases that can be accessed by
the Kondo screening in Anderson lattices.

In this work, we explore topological semimetallic phases
resulting from the Kondo screening in simple cubic Anderson
lattices. It is shown that by including appropriate spin-orbit
interactions, all types of topological semimetallic phases can
be realized in simple cubic Anderson lattices. Specifically, we
shall show that upon either broken time-reversal symmetry
or broken inversion symmetry, either the Weyl semimetallic
phase, Dirac semimetallic phase, or nodal-line semimetallic
phases always emerge between insulating phases with dif-
ferent topological properties. Furthermore, these topological
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semimetallic phases can be accessed by tuning either temper-
ature or spin-orbit interaction. Our results reveal the unusual
interplay between the topology of the electronic structures
and the Kondo screening in the strongly correlated Anderson
lattices and pave the way for systematically engineering topo-
logical semimetals based on Kondo lattice systems.

The rest of the paper is organized as follows. In Sec. II, the
generic Anderson lattice model on a simple cubic lattice with
spin-orbit interactions is introduced. By using the slave-boson
method, the mean-field Hamiltonian is constructed. In Sec. III,
we examine the Anderson lattice model without time-reversal
symmetry. The resulting Weyl semimetallic phase is inversion
symmetric, with Weyl nodes being split off from a Dirac point
at time-reversal momenta. In Sec. IV, we show that the Weyl
nodal-ring semimetallic phase generally emerges when the
inversion symmetry is broken in the Anderson lattice model
with general hybridization between the conduction electron
and the f electron. Section V is devoted to the investigation of
the Anderson lattice without inversion symmetry through the
bulk spin-orbit interaction. It is shown that depending on the
nature of spin-orbit interaction in hybridization, the emergent
Weyl semimetallic phase can host Weyl nodes with monopole
charges being ±1 or double Weyl nodes with charges being
±2. Finally, in Sec. VI, we conclude and discuss possible
effects due to fluctuations that go beyond the mean-field
theory.

II. THEORETICAL MODEL

We start by considering the generic Anderson lattice model
that includes spin-orbit interactions on a simple cubic lattice.
The model that describes the effects of Kondo screening can
be generally described by the following Hamiltonian:

H =
∑
kσ

(
ξkc

†
kσ ckσ + ξd

k d
†
kσ dkσ

) + HSO

+
∑
kσσ ′

(
V σσ ′

k c
†
kσ dkσ ′ + H.c.

) + U
∑

i

nd
i↑nd

i↓. (1)

Here c
†
kσ and d

†
kσ create conduction and more localized elec-

trons in the f orbit with momentum k and spin σ , respectively.
ξk is the energy dispersion due to the nearest hopping ampli-
tude t and is equal to εk − μ, with εk = −2t

∑
i=x,y,z cos ki

and μ being the chemical potential. ξd
k = εd − ηεk − μ char-

acterizes the narrow band formed by d electrons, with η being
the bandwidth and εd being the relative shift of the band
center. HSO is the spin-orbit interaction and is generally given
by

HSO =
∑
kσσ ′

(
2λσσ ′

k c
†
kσ ckσ ′ + 2λ̄σσ ′

k d
†
kσ dkσ ′

)
, (2)

where λσσ ′
k and λ̄σσ ′

k can be either Dirac-type spin-orbit
interaction, σ · sin k [22], or Rashba-type interaction, ẑ ·
σ × sin k2D . Here sin k denotes (sin kx, sin ky, sin kz), while
sin k2D denotes (sin kx, sin ky, 0). Vk is the hybridization ma-
trix (taken to be real) that describes the hybridization between
c and d electrons and will be taken in the form v0 + VSO (k),
with VSO (k) being due to spin-orbit interaction and being
linear in k [20,22]. Finally, U describes the Hubbard repulsion
between d electrons.

In order to access the electronic structures in the large-U
limit, the slave-boson method is employed. In this method,
the creation operators of d electrons are represented by d

†
iσ =

f
†
iσ bi , where fiσ and bi are the spinon and holon opera-

tors, respectively, which satisfy the constraint
∑

σ f
†
iσ fiσ +

b
†
i bi = 1. This constraint can be satisfied by introducing a

Lagrangian field λi . In the low-temperature limit, we ap-
ply the mean-field approximation by assuming holons con-
dense, so that 〈bi〉 = 〈b†i 〉 = r and λi is replaced by its
mean value λ. Consequently, the Hamiltonian becomes HM =∑

kσ (ckσ , fkσ )†hk(ckσ , fkσ ) + Nλ(r2 − 1), with

hk =
(

ξk1 + λk Ṽk

Ṽk ξ̃ d
k 1 + r2λ̄k

)
. (3)

Here Ṽk = rVk, ξ̃ d
k = (εd + λ) − ηr2εk − μ, N is number

of lattice points, and we have made use of
∑

σ f
†
iσ fiσ =∑

σ d
†
iσ diσ . Given the Hamiltonian hk, λ and r are determined

by minimizing the free energy with respect to λ and r . As a
result, we find that λ and r can be determined by solving the
following mean-field equations self-consistently:

1

N

∑
kσ

〈f †
kσ fkσ 〉 + r2 = 1, (4)

1

N

∑
kσσ ′

[
Re

(
V σσ ′

k 〈c†kσ fkσ ′ 〉)
− r

(
2λ̄σσ ′

k + ηεkδσσ ′
)〈f †

kσ fkσ ′ 〉] + rλ = 0. (5)

For further analysis of the energy band, it is con-
venient to rewrite ξk = −μk + mk and ξ̃ d

k = −μk − mk,
with μk = μ − [(1 − ηr2)εk + εd + λ]/2 and mk = [(1 +
ηr2)εk − εd − λ]/2, so that the Hamiltonian can be cast in the
tensor-product form as

hk = −μkτ0 ⊗ σ0 + mkτz ⊗ σ0 + τx ⊗ Ṽk

+ (τ0 + τz) ⊗ λk + r2(τ0 − τz) ⊗ λ̄k, (6)

where τ0 = σ0 = 1, τ = (τx, τy, τz) are the Pauli matrices
that act on the orbital degree (c or f ) of freedom, and σ =
(σx, σy, σz) act on the real spin. In the above orbital and
spin basis, the corresponding time-reversal operator � and
inversion operator P are given by

� = iτ0 ⊗ σyK, P = τz ⊗ σ0, (7)

where K stands for complex conjugation [15]. It is then
straightforward to see that in the absence of spin-orbit in-
teractions (HSO = 0) and when Vk = VSO (k), the Hamilto-
nian hk satisfies �hk�

−1 = h−k and PhkP
−1 = h−k. Hence

the Anderson lattice model without spin-orbit interactions is
both time reversal symmetric and inversion symmetric. It has
been shown that this system supports stable finite-temperature
Dirac points protected by both time-reversal symmetry (TRS)
and inversion symmetry (IS) [20].

III. INVERSION-SYMMETRIC WEYL
SEMIMETALLIC PHASE

We first consider the Weyl semimetallic phase when the
Anderson lattice is inversion symmetric. In this case, we take
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FIG. 1. (a) Phase diagram of the Anderson lattice model with an external magnetic field. Here ελ ≡ (εd + λ)/(1 + ηr2), ελso
≡ rλso/(1 +

ηr2), and εM ≡ M/(1 + ηr2). The shaded regime is the Weyl semimetallic phase, while white regimes are insulating phases with gaps in
electronic structures. When εM = 0, the gapless phases at ελ/t = −6, −2, 2, 6 are Dirac semimetallic phases with corresponding Dirac points
being at time-reversal momenta �, X, M, R, respectively. (b) Emergence of a finite-temperature Weyl point that splits off from the M point.
Here t = 1, λso = 0.14, η = 0.05, εd = 1.837, Mz = 0.001. The transition temperature when the Kondo insulator becomes a Weyl semimetal
occurs at TW = 0.03.

HSO = 0, and the hybridization matrix takes the following
form:

Vk = 2λsoσ · sin k. (8)

The resulting Anderson model describes SmB6, in which
v0 vanishes due to the odd parity of the f orbits [22], so
that the spin-orbit interaction λso dominates. To obtain a
Weyl semimetallic phase, we further include exchange fields

that break the time-reversal symmetry, so that the following
additional Hamiltonian is included:

HM
k =

∑
k

Mc · (c†kασ αβckβ ) + Mf · (f †
kασ αβfkβ ). (9)

Here Mc and Mf are exchange fields for the conduction and d

electrons, respectively, and we have made use of the relation
d
†
kασ αβdkβ = f

†
kασ αβfkβ . For simplicity, we shall set Mc =

Mf = M = Mzẑ. The resulting Hamiltonian is given by

hk = −μkτ0 ⊗ σ0 + mkτz ⊗ σ0 + 2rλsoτx ⊗ σ · sin k + Mzτ0 ⊗ σz. (10)

Clearly, we have �Hk�
−1 	= H−k and PHkP

−1 = H−k. Hence the time-reversal symmetry of the system is broken, while the
inversion symmetry still holds. The energy spectrum has an analytic form and is given by

E
(α,β )
k = −μk + α

√(√
m2

k + 4r2λ2
so sin2 kz + βMz

)2 + 4r2λ2
so sin2 k2D, (11)

where α = (+,−) and β = (+,−) are indices for
signs. It is clear that the branch E

(α,+)
k is always

gapful when Mz > 0, while the branch E
(α,−)
k is

always gapful when Mz < 0. Obviously, gapless phases
are determined by the condition E

(+,−)
k − E

(−,−)
k =

2
√

(
√
m2

k + 4r2λ2
so sin2 kz−Mz )2+4r2λ2

so sin2 k2D=0. Hence by

setting sin2 k2D = 0 and
√
m2

kw
+ 4r2λ2

so sin2 kwz
−Mz=0, we

determine all possible gapless momenta kw = (kwx
, kwy

, kwz
),

which satisfy(
εkw − ελ

)2 + 16ε2
λso

sin2 kwz
= 4ε2

M, (12)

where relevant parameters are given by ελ ≡ (εd + λ)/(1 +
ηr2), ελso

≡ rλso/(1 + ηr2), and εM ≡ Mz/(1 + ηr2). It is
clear to see that ελ, ελso

, and εM are the effective parameters
that tune the Kondo insulator into different phases. Solutions
to Eq. (12) give rise to phase diagrams shown in Fig. 1(a),

where the gapless Weyl semimetallic phase is shown as the
shaded regime. Furthermore, by solving the mean-field equa-
tions, Eqs. (4) and (5), we find that it is possible to tune
the Kondo insulator so that it becomes a Weyl semimetal
at finite temperatures. As shown in Fig. 1(b), the transition
occurs at TW = 0.03 when parameters are taken to be t = 1,
λso = 0.14, η = 0.05, εd = 1.837, Mz = 0.001.

Here we further analyze the charge associated with the
Weyl point located at kw = (0, π, kwz

). Near the nodal point,
the linearized Hamiltonian can be recast into the form

hkw+q =
(

ξ+
kw+q 0 ∗ 12×2

0 ∗ 12×2 ξ−
kw+q

)
, (13)

with

ξ±
kw+q ≡ −μkw+qτ0 + (

m̃kw+q ± Mz

)
τz + 2rλsoq±τ+ + H.c.,

(14)
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FIG. 2. Sketch of the distribution of Weyl nodes in the first Brillouin zone. The monopole charges of each Weyl nodes are denoted by − or
+. Weyl nodes move along the dashed lines when the temperature changes. Notice that in order to display Weyl nodes clearly, here E(k) does
not include the effective chemical potential μk.

where τ± = (τx ± iτy )/2, q± = qx ± iqy , and m̃kw+q =√
m2

kw+q + 4r2λ2
so(qz cos kwz

). It is clear that ξ+
kw+q is always

gapful, while ξ−
kw+q can be tuned to a gapless regime. From the

linearized Hamiltonian, we identify the net monopole charge
associated with the Weyl node at (0, π, kwz

) is −1 [29]. A
similar analysis allows one to identify all charges of Weyl
nodes. This is sketched in Fig. 2.

IV. WEYL NODAL-RING SEMIMETALLIC PHASE

In this section, we demonstrate that the Weyl nodal-ring
semimetallic phases emerge in the Anderson lattice model
when inversion symmetry is broken. In this case, we take
HSO = 0, and the hybridization matrix takes the following
form [20]:

Vk = v0 + 2λsoσ · sin k. (15)

After applying the slave-boson approximation, the mean-field
Hamiltonian is given by

hk = − μkτ0 ⊗ σ0 + mkτz ⊗ σ0

+ rτx ⊗ (v0σ0 + 2λsoσ · sin k). (16)

The energy spectrum to hk has an analytic form and is given
by

E
(α,β )
k = −μk + α

√
m2

k + r2(v0 + 2βλso

√
sin2 k)2, (17)

where α and β are + or −. Here it is clear
that the gap is determined by E

(+,β )
k − E

(−,β )
k =

2
√
m2

k + r2(v0 + 2βλso

√
sin2 k3D )

2
. Obviously, when β = +,

E
(α,β )
k remains gapful. Furthermore, gapless points k0 are

determined by setting mk0 = 0 and v0 − 2λso

√
sin2 k0 = 0.

These two equations are equivalent to

∑
i=x,y,z

cos ki = −ελ

2t
,

∑
i=x,y,z

cos2 ki = 3 −
(

v0

2λso

)2

. (18)

The solution, ui = cos ki , to the second equation in

Eq. (18) forms a sphere with radius
√
u2

x + u2
y + u2

z , equal

to
√

3 − (v0/2λso)2, while the first equation represents a
plane. The distance between the center of the sphere and
the plane is given by |ελ/2

√
3t |, so that Eq. (18) has so-

lutions only if |ελ/2
√

3t | �
√

3 − (v0/2λso)2. The solutions
of Eq. (18) form curves illustrated as the boundaries of the
shaded area in Fig. 3(a). Right at the boundary, |ελ/2

√
3t | =√

3 − (v0/2λso)2, the plane and sphere touch at a point,
which gives rises to Weyl nodes. The system is thus a Weyl
semimetal. However, when |ελ/2

√
3t | <

√
3 − (v0/2λso)2, the

intersection of a plane and a sphere is a ring in k space. Hence,
instead of Weyl semimetallic phases, we find that Weyl nodal-
ring semimetallic phases emerge inside the shaded regime in
Fig. 3(a).

The Weyl nodal ring lies on the surface defined by mk =
0. Following Ref. [15], near the center of the ring on the
surface, by performing the expansion of the wave vector in the
local frame to linear terms and removing the smooth energy
background term, we find that the effective Hamiltonian is
given by

heff (k′) = rv0τx ⊗ σ0 + 2rλsoτx ⊗ (σxk
′
x + σzk

′
z), (19)

where k′ = (k′
x, k

′
y, k

′
z), with k′

x and k′
z being the components

parallel and perpendicular to the surface defined by mk = 0,
respectively. Here the local coordinates are chosen such that
the component parallel to the surface defined by mk = 0
is aligned with the k′

x axis. The Hamiltonian heff is mirror
symmetric,

M−1heff (k′
x, k

′
y,−k′

z)M = heff (k′
x, k

′
y, k

′
z), (20)

where M = τx ⊗ iσx is the corresponding representation of
the mirror symmetry operator. The system is thus mirror sym-
metric with respect to the surface defined by mk = 0. Since
the inversion symmetry is broken when v0 is nonvanishing, the
Weyl nodal ring emerges as the consequence of the presence
of mirror symmetry and the broken inversion symmetry [30].
In addition, the effective Hamiltonian is time reversal invariant
and has particle-hole symmetry, with the charge conjugation
being given by C = −τy ⊗ iσyK . The nodal ring is protected
by these symmetries and belong to the class CII, with R+−
defined in Ref. [31].
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FIG. 3. (a) Topological phase diagram in the presence of constant hybridization v0 between c and f electrons; shaded regimes indicate
gapless phases, while white regimes are insulating phases, labeled by a strong topological insulator (STI), weak topological insulator (WTI),
and Kondo insulator (KI) when the valence bands are filled [20]. Here ελ ≡ εd+λ

1+ηr2 and (ν0; ν1, ν2, ν3) are topological indices. (b) The phase
transition path (the red dashed line) in the phase diagram with t = 1, εd = 1.724, v0 = 0.01, λso = 0.2. When the temperature increases from
T = 0.02 to T = 0.04, the Anderson lattice goes through Weyl nodal-ring semimetallic phases.

The Anderson lattice is tunable in temperature. In Fig. 3(b),
we demonstrate that finite-temperature phase transitions be-
tween a strong topological insulating phase (STI) and a weak
topological insulating phase (WTI) through the Weyl nodal-
ring semimetallic phase can be achieved by changing temper-
ature. By solving the corresponding self-consistent equations,
Eqs. (4) and (5), we find that there is a phase transition from
STI (ελ/t = 2.001, T = 0.02) to WTI (ελ/t = 1.997, T =
0.04) through the Weyl nodal-ring semimetallic phase (ελ/t =
2, T = 0.03), as illustrated by the red dashed line in Fig. 3(b).

V. TIME-REVERSAL-SYMMETRIC WEYL
SEMIMETALLIC PHASES

In this section, we explore the possibility of forming the
Weyl semimetallic phases in the Anderson lattice that are
time reversal symmetric. For this purpose, the Anderson lat-
tice model must break the inversion symmetry. In addition,
the emergence of Weyl semimetallic phases requires certain
crystal symmetries, in which 3D rotational symmetry breaks
down to axial symmetries [29]. Therefore, to realize the
Weyl semimetallic phase with time-reversal symmetry, the

Anderson lattice is assumed to have layered structure with
axial symmetry. The energy dispersion εk is given by

εk = −2t
∑

i=x,y,z

ai cos ki, (21)

where ai represents the relative hopping strength of each
direction and we set 0 < az < ay < ax = 1. In addition, the
hybridization matrix takes the two-dimensional form with
either

V1
k = 2λsoσ · sin k2D (22)

or the Rashba spin-orbit interaction

V2
k = 2λRaẑ · σ × sin k2D, (23)

where λso and λRa describe the strength of different forms of
2D spin-orbit interactions.

We shall first consider V1
k. For bulk spin-orbit interactions,

in the simplest situation, both c and d electrons are governed
by the same bulk spin-orbit interactions, which are character-
ized by setting λk = σ · sin k and r2λ̄k = σ · sin k in Eq. (6).
As a result, the total Hamiltonian is given by

hk = −μkτ0 ⊗ σ0 + mkτz ⊗ σ0 + 2rλsoτx ⊗ σ · sin k2D

+ λ̃so(τ0 + τz) ⊗ σ · sin k + λ̃so(τz − τ0) ⊗ σ · sin k, (24)

where λ̃so describes the strength of the bulk spin-orbit interaction. In this case, the energy spectrum of Eq. (24) has an analytic
form, which is given by

E
(α,β )
k = −μk + β

√
m2

k + 4r2λ2
so sin2 k2D + 4λ̃2

so sin2 k + 4αλ̃so

√
m2

k sin2 k + 4r2λ2
so|sin k × sin k2D|2, (25)

where α and β equal to ±1. It is clear that E
(+,β )
k re-

mains gapful at all times. Hence the gapless phase occurs in
the branch α = −1. The gapless point occurs by requiring
| sin k × sin k2D| to reach its maximum value, i.e., sin k ·
sin k2D = 0 and, at the same time, sin2 k2D = 0. As a result,
we find mk − 2λ̃so

√
sin2 k=0 has to be satisfied. The condition

for the occurrence of the Weyl semimetallic phase is then
given by

(εkw − ελ)2 = 4ε2
λ̃so

sin2 kwz
, (26)

where ελ̃so
≡ λ̃so/(1 + ηr2). In the isotropic limit where az =

ay = ax = 1, solutions to Eq. (26) form the boundary curve
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FIG. 4. Topological phase diagram in the presence of the bulk
spin-orbit interaction in c and d electrons with equal strength. Here
the hopping amplitude is isotropic, with az = ay = ax = 1. The
shaded regime is the Weyl semimetallic phases, while the white
regime is the Kondo insulating phase.

between the Weyl semimetallic phase and the Kondo insulat-
ing phase, as illustrated in Fig. 4.

The monopole charge of the Weyl node in this case can be
analyzed by linearizing the Hamiltonian near the node. Taking
the Weyl node at point X, kw = (0, π, kwz

), as an example,
after linearization, the Hamiltonian can be rewritten in the
form of Eq. (13) with

ξ±
kw+q = ( − μkw+q ± Kz

)
τ0 + (

mkw+q ± Kz

)
τz

+ 4rλso

sin kwz

q2
±τ+ + H.c., (27)

where Kz = 2λ̃so(qz cos kwz
+ sin kwz

). Clearly, ξ+
kw+q is gap-

ful, while ξ−
kw+q can be tuned into gapless phases. The

monopole charge corresponding to Eq. (27) is −2 [29]. Hence
the monopole charges of Weyl nodes in the Weyl semimetallic
phase shown in Fig. 4 are ±2.

In real materials, bulk spin-orbit interactions in c and d

electrons are generally not of the same strength. Therefore
we consider the relative strength in the spin-orbit interaction

of d electrons. After applying the mean-field slave-boson
approximation, the Hamiltonian is given by

hk = −μkτ0 ⊗ σ0 + mkτz ⊗ σ0

+ 2rλsoτx ⊗ σ · sin k2D + λ̃so(τ0 + τz) ⊗ σ · sin k3D

+ ηr2λ̃so(τz − τ0) ⊗ σ · sin k3D. (28)

Unfortunately, the energy spectrum to hk in Eq. (28) no longer
has an analytic form. However, because the system is axial
symmetric with respect to the z axis and the gapless phase
occurs when sin2 k2D = 0, the relevant spectrum for the Weyl
semimetallic phase is determined by the spectrum along the z

axis. As we can see, along the z axis, E(α,+)(0, 0, kz) remains
gapped. The possible gapless phases are thus determined
by E

(−,+)
k − E

(−,−)
k |k=(0,0,kz ) = 2[mkz

− λ̃so(1 + ηr2) sin kz].
Hence mkz

= 2λ̃so(1 + ηr2) sin kz and sin2 k2D = 0 deter-
mine all possible gapless phases with the corresponding nodal
point kw = (0, 0, kwz

). The condition for the Weyl semimetal-
lic phase is then given by(

εkw − ελ

)2 = 4λ̃2
so sin2 kwz

. (29)

By including the anisotropy of hopping amplitudes with εk =
−2t

∑
i=x,y,z ai cos ki and 0 < az < ay < ax = 1, solutions

to Eq. (29) form the boundary curve between the Weyl
semimetallic phase and insulating phases, as illustrated in
Fig. 5(a). Here insulating phases are WTI or STI, labeled by
the corresponding topological indices [32]. Furthermore, by
solving the mean-field equations, Eqs. (4) and (5), we find
that it is possible to tune the Kondo insulator across Weyl
semimetallic phases at finite temperatures. As illustrated in
Fig. 5(b), the transition occurs at TW = 0.03 when parameters
are taken to be t = 1, λso = 0.2, η = 0.05, εd = 0.705, λ̃so =
0.001, ay = 0.5, and az = 0.001. It is seen that the critical
temperature for the emergence of Weyl nodes is TW = 0.03.
In addition, as indicated by the linearized Hamiltonian in
Eq. (27), the net monopole charge associated with each Weyl
node is ±2. The distribution of Weyl nodes is sketched in
Fig. 6.

We now consider the Rashba spin-orbit hybridization inter-
action V2

k. In this case, we shall show that instead of ±2, the
monopole charge associated with the Weyl node is ±1. In this
case, the Hamiltonian becomes

hk = −μkτ0 ⊗ σ0 + mkτz ⊗ σ0 + 2rλRaτx ⊗ σ · sin kRa + λ̃so(τ0 + τz) ⊗ σ · sin k + ηr2λ̃so(τz − τ0) ⊗ σ · sin k, (30)

where we have denoted sin kRa = sin k2D × ẑ. In comparison to the Hamiltonian corresponding to V1
k, it is clear that λRa and

kRa simply replace λso and k2D . However, because sin kRa · sin k = 0, we find that the analytic form of the energy spectrum in
Eq. (30) is given by

E
(α,β )
k = −μk + αλ̃so(1 + ηr2)

√
sin2 k3D + β

√
[mk + α(1 − ηr2)λ̃so

√
sin2 k3D]2 + 4r2λ2

Ra sin2 kRa, (31)

where the anisotropy hopping strength has been considered. Furthermore, we find that E+,β remains gapful. Since

E
(−,+)
k − E

(−,−)
k = 2

√
[mk − (1 − ηr2)λ̃so

√
sin2 k3D]

2 + 4r2λ2
Ra sin2 kRa , the requirements of sin2 kRa = 0 and mk = (1 −

ηr2)λ̃so

√
sin2 k3D give rise to the condition for the emergence of the Weyl semimetallic phase as

(
εkw − ελ

)2 = 4ε̃2
λ̃so

sin2 kwz
, (32)
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FIG. 5. (a)Topological phase diagram when the inversion symmetry of the Anderson lattice is broken. Here the z axis is the high-symmetry
axis, and the anisotropy of the hopping amplitude is characterized by ax = 1, ay = 0.5, az = 0.08. Here gray, green, blue, and purple regimes
are Weyl semimetallic phases with Weyl nodes emerging at kw = (0, 0, kwz

), (0, π, kwz
), (π, 0, kwz

), and (π, π, kwz
), respectively, while the

red regime is the overlap regime with the emergence of both Weyl nodes from the overlapping Weyl semimetallic phases. (b) Emergence of
the Weyl semimetallic phase at finite temperature. Here Weyl nodes emerge in the kz axis from X (π, 0, 0) to M (π, 0, π ). Note that two
intersecting points in the inset may look like a nodal ring. A clear demonstration of these intersecting points being Weyl points is shown
in Fig. 6. Parameters are t = 1, λso = 0.2, η = 0.05, εd = 0.705, λ̃so = 0.001, ay = 0.5, and az = 0.001. The critical temperature for the
emergence of Weyl nodes is TW = 0.03.

where the effective parameter that determines the phase
boundary is given by ε̃λ̃so

= (1 − ηr2)λ̃so/(1 + ηr2). Simi-
larly, solutions to Eq. (30) form the boundary curve between
the Weyl semimetallic phase and insulating phases, as illus-
trated in Fig. 7(a). In addition, solving the mean-field equa-
tions, Eqs. (4) and (5), enables one to find that it is possible
to tune the Kondo insulator across Weyl semimetallic phases
at finite temperatures. As illustrated in Fig. 7(b), the transition
occurs at TW = 0.03 when parameters are taken to be t = 1,
λRa = 0.2, η = 0.05, εd = 0.978, λ̃so = 0.001, ay = 0.5, and
az = 0.001. It is seen that the critical temperature for the
emergence of Weyl nodes is TW = 0.03. In addition, arranging

the linearized form of Eq. (30) in the form of Eq. (13), we find

ξ±
kw+q = [ − μkw+q ± (1 + ηr2)K

]
τ0

+ [
mkw+q ± (1 − ηr2)K

]
τz + 2irλRaq±τ+ + H.c.

(33)

It is clear that ξ+
kw+q is gapful, while ξ−

kw+q can be tuned
through the Weyl nodal point. The monopole charge of the
emergent Weyl node, however, exhibits charge ±1 [29], in
contrast to the double Weyl node for the case with the hy-
bridization matrix V1

k.

FIG. 6. Sketch of the distribution of Weyl nodes in the first Brillouin zone for Kondo-Weyl semimetals without inversion symmetry. The
monopole charge of each Weyl node is +2 or −2 and is denoted by + or −, respectively. Weyl nodes will move along the dashed lines
with changing parameters of the system. Here parameters are t = 1, λso = 0.3, η = 0.05, εd = 1.305, λ̃so = 0.3, ay = 0.5, az = 0.1, and
T = TW = 0.03. Notice that in order to display Weyl nodes clearly, here E(k) does not include the effective chemical potential μk.
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FIG. 7. (a) Topological phase diagram when the hybridization is governed by Rashba interaction. Here the z axis is the high-symmetry
axis, and the anisotropy of the hopping amplitude is characterized by ax = 1, ay = 0.5, az = 0.08. Gray, green, blue, and purple regimes are
Weyl semimetallic phases with Weyl nodes emerging at kw = (0, 0, kwz

), (0, π, kwz
), (π, 0, kwz

), and (π, π, kwz
), respectively. (b) Emergence

of the Weyl semimetallic phase at finite temperature. Here Weyl nodes emerge in the kz axis from X (π, 0, 0) to M (π, 0, π ). Note that two
intersecting points in the inset may look like a nodal ring. A clear demonstration of these intersecting points being Weyl points is confirmed
by similar plots shown in Fig. 6. Parameters are t = 1, λRa = 0.2, η = 0.05, εd = 0.978, λ̃so = 0.001, ay = 0.5, and az = 0.001. The critical
temperature for emergence of Weyl nodes is TW = 0.03.

VI. CONCLUSION AND DISCUSSION

In conclusion, we have demonstrated that by including
spin-orbit interactions, topological Weyl semimetallic phases
generally emerge from a Kondo insulator upon a change in
either temperature or spin-orbit interactions. Two different
symmetry classes for the emergent topological semimetallic
phases can be realized in the Anderson lattice: the inversion-
symmetric semimetallic phase and the time-reversal-invariant
semimetallic phase. For the inversion-symmetric semimetallic
phase, we found that Weyl nodes appear in pairs with opposite
charges (±1) that are split off from a Dirac node upon broken
time-reversal symmetry. On the other hand, we found that
the Weyl nodal-ring semimetallic phase generally emerges
when the inversion symmetry is broken in the Anderson lattice
with general hybridization between the conduction electrons
and electrons in the f orbit. Furthermore, when the inversion
symmetry is broken through the bulk spin-orbit interaction,
two pairs of Weyl nodes emerge together. Depending on the
nature of the spin-orbit interaction in the hybridization, the
emergent Weyl semimetallic phase can host Weyl nodes with
monopole charges of ±1 or double Weyl nodes with charges
of ±2. All of these topological semimetallic phases are shown
to be accessible by tuning either temperature or spin-orbit
interactions at an integer filling of 2 [21]. In addition, when
the filling of electrons is tuned away from the integer filling
for Dirac or Weyl semimetallic phases, the system becomes
doped topological semimetals and is a hole Fermi liquid or an
electron Fermi liquid, depending on the filling [20]. Further-
more, by tuning the filling, it is expected that the system can
be driven through the quantum critical point between the hole

Fermi liquid and the electron Fermi liquid or can be driven
into the Dirac liquid/Weyl liquid regime [19,20], controlled
by the quantum critical point.

While in this work we considered only results based on
the slave-boson mean-field theory, we expect that our results
are robust qualitatively in the presence of correlation effects
as long as the symmetry of the system is not changed. In
particular, following Ref. [20], the quasiparticle lifetime τ

near the Weyl node can be estimated to be of the order of

τ−1 ∼ ( rVK

εd+λ−μ
)
2 ω2+π2(kBT )2

2(εd+λ−μ) , where h̄ω is the energy of the
quasiparticle and VK is the hybridization at the mean-field
Fermi momentum. Substituting numerical values, we find that
εd + λ − μ ∼ 0.02t ∼ 1–10 meV and rVK ∼ 0.002t . As a
result, for quasiparticles with typical energy scales up to 10
meV, τ−1 ∼ 0.1 meV, and the broadening effect is limited
for kBT � 10 meV. The emergent topological semimetallic
phases predicted in this work are thus well defined in finite
temperatures up to kBT ∼ 10 meV. Our results thus reveal the
unusual interplay between the topology of the electronic struc-
tures and the Kondo screening in the strongly correlated An-
derson lattices and pave the way for systematically engineer-
ing topological semimetals based on Kondo lattice systems.
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