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Microscopic description of displacive coherent phonons
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We develop a Hamiltonian-based microscopic description of laser pump induced displacive coherent phonons.
The theory captures the feedback of the phonon excitation upon the electronic fluid, which is missing in the
state-of-the-art phenomenological formulation. We show that this feedback leads to chirping at short timescales,
even if the phonon motion is harmonic. At long times, this feedback appears as a finite phase in the oscillatory
signal. We apply the theory to BaFe2As2, explain the origin of the phase in the oscillatory signal reported in
recent experiments, and we predict that the system will exhibit redshifted chirping at larger fluence. Our theory
also opens the possibility to extract equilibrium information from coherent phonon dynamics.
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I. INTRODUCTION

The development of femtosecond laser pumps has led to
new probes of complex metals whereby systems are driven
out of equilibrium with the aim to study their relaxation
dynamics [1–3]. Simultaneously, pump-probe setups allow
the fascinating possibility to study phenomena that have no
analog in equilibrium physics, such as the transient excitation
of coherent optical phonons [4–7]. A “coherent” phonon is
excited when the relevant atoms of the crystalline solid, which
are macroscopic in number, vibrate with identical frequency
and phase [see Fig. 1(a)]. This is to be contrasted with inco-
herent motion triggered by quantum and thermal fluctuations
in equilibrium where, from atom to atom, the frequencies and
phases are uncorrelated. More recently, it has been recognized
that the physics of Floquet dynamics can be made experimen-
tally accessible via coherent phonon excitations [8,9].

Experimentally, a typical signature of a coherent phonon
excitation is an oscillatory signal on a decaying back-
ground in time-resolved spectroscopic probes such as x-ray
spectroscopy, photoemission and reflectivity measurements.
Coherent phonons have been studied in a variety of materials
that include semiconductors [10–12], semimetals [13–19],
transition metals [20], Cu-based [21–24], and the Fe-based
[25–33] high-temperature superconductors, charge density
wave systems [34–38], as well as Mott [39–42] and
topological [43–45] insulators.

On the theory side, this phenomenon is usually described
either as displacive excitation of coherent phonons (DECP)
[46,47] or as impulsive stimulated Raman scattering (ISRS)
[48,49]. In the former mechanism, photoexcitation leads to
a shift in the equilibrium position of the phonon [46,47],
while in the latter, the electromagnetic radiation provides
a short impulsive force to the atoms [48,49]. Note, if the
photoexcitation does not involve crossing phase boundaries,
then typically only the fully symmetric Raman A1g phonon is
excited in DECP. It has been argued that in absorbing medium
these two mechanisms are not distinct [50]. Using the above
concepts, first-principles calculations have been successfully
applied to understand coherent phonon dynamics in a variety
of systems [51–55].

The purpose of this work is to develop, within the concep-
tual framework of DECP, a microscopic Hamiltonian-based
description of coherent phonons in an environment where
the timescale for the photoexcited carriers to thermalize is
rather short, such as a metal with gapless charge excitations.
Here, we focus on coherent phonon excitation driven by laser
heating of carriers, a phenomena which is relevant experi-
mentally, but which has received less attention theoretically.
As we show below, the microscopic formulation provides a
better treatment of electron-phonon interaction compared to
the phenomenological model that is currently used to analyze
experimental data [46]. In particular, our theory captures how
the coherent phonon excitation modifies the electronic fluid,
and how this modification feeds back on the coherent phonon
dynamics.

The main advances of our work compared to the phe-
nomenological theory of Zeiger [46] are the following. (i) In-
cluding the lattice feedback effect leads to a richer description
of the dynamics. In particular, we show that at short timescales
this leads to chirping or temporal variations of the oscillation
frequency, while staying within a harmonic description of
the coherent phonons. On the other hand, at long times the
feedback leads to a finite phase in the oscillatory signal. The
origin of this phase is distinct from that in the phenomeno-
logical DECP theory [46], and it is likely to be dominant
quantitatively. Importantly, the theory predicts that the sign
of the phase is determined by whether the chirping is red- or
blueshifted. (ii) A Hamiltonian formulation opens the possi-
bility of extracting microscopic equilibrium information from
coherent phonon studies. (iii) The microscopic formulation
can be refined systematically using methods of many-body to
deal with various interaction effects.

The paper is organized as follows. In Sec. II, we intro-
duce the microscopic model, we discuss the rationale for
treating the effect of the pump as a quench of the electronic
temperature, and we derive the equation of motion of the
coherent phonon using Heisenberg equation of motion. In
Sec. III, we solve the above equation, and we discuss our main
results, emphasizing the new physics introduced by taking
into account the feedback of the lattice. In Sec. IV, we apply
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FIG. 1. (a) Sketch of an A1g coherent phonon motion in a two-
atom (red balls) unit cell. A macroscopic number of atoms oscillate
with identical phase and frequency ω0. Green arrows indicate the
instantaneous velocities at two instants. The motion preserves the
point group symmetry. (b) The effect of the laser pump is idealized
as a temperature quench from a measured base temperature TL to a
high temperature TH over a short time set to zero, and the subsequent
relaxation of temperature over a time-scale τe. In the theory, (TH , τe )
are phenomenological parameters (see text). The temperature and
timescales are representative.

the theory to BaFe2As2 and we show that the data from a
recent time resolved x-ray study can be successfully described
by our theory, using a more constrained fit. We conclude in
Sec. V.

II. MODEL AND FORMALISM

We consider a multiorbital electronic system interacting
with a zero wave vector uniform A1g phonon mode. It is
described by the Hamiltonian

H =
∑

k,a,b,σ

[ε(k)ab − μδab]c†kaσ ckbσ + N h̄ω0(b†b + 1/2)

+ λ
∑

k,a,b,σ

C(k)abc
†
kaσ ckbσ (b† + b). (1)

ε(k)ab describe the dispersion in an orbital basis, and μ is
the chemical potential. c†kaσ and ckaσ are electron creation and
annihilation operators, respectively, with lattice wave vector
k, orbital index a, and spin σ . The operators (b†, b) describe
creation and annihilation operators for the A1g phonon with
frequency ω0, and N is the total number of sites. Electron-
phonon interaction is described by λC(k)ab, where λ < 1 is
a dimensionless small parameter and C(k)ab is order Fermi
energy. Thus electron-phonon interaction can be treated per-
turbatively in orders of λ. For clarity, we ignore the phonon
modes that are not coherently generated. We also ignore
electron-electron and phonon-phonon interaction. Later, we
comment on their effects.

After the pump the initial dynamics of the system is
dominated by light-matter and by electron-electron interac-
tions. However, as time and angle resolved photoemission
(tr-ARPES) experiments have shown [19,30], due to electron-
electron scattering the electronic subsystem equilibrates after
a time τr of order few tens of femtoseconds. At longer times,
an instantaneous electronic temperature T (t ) can be defined.
In this work, we focus on the regime t � τr . Accordingly,
we assume τr → 0, such that the effect of the laser pump
can be modeled as inducing a temperature quench of the

electrons. We assume that the electronic temperature relax-
ation is characterized by a timescale τe, and is described
phenomenologically by

T (t ) = TL + (TH − TL) e−t/τe , (2)

where TL ≡ T (t = 0−) = T (t → ∞) and TH ≡ T (t = 0+)
[see Fig. 1(b)].

The dimensionless mean atomic displacement u ≡ 〈b +
b†〉 follows the equation of motion (∂2

t + ω2
0 )u = F (t ), where

the out-of-equilibrium force is

F (t ) = −2ω0

N λ
∑

k,a,b,σ

C(k)ab〈c†kaσ (t )ckbσ (t )〉H,T (t ).

Here, 〈X〉H,T (t ) ≡ Tr[ρX]/Tr[ρ] and ρ ≡ |n〉〈n| e−En/T (t ),
where |n〉 and En are the eigenfunctions and eigenvalues,
respectively, of H in Eq. (1).

Our goal is to capture, at least qualitatively, the feedback
of the coherent phonon on the electron fluid, for which it is
sufficient to evaluate the force to second order in λ. At this
order, u(t ) can be treated as a classical variable fluctuating in
time, and F (t ) can be evaluated using linear response theory.
We get

F (t )/(2ω0) = −〈Ô〉H0,T (t ) −
∫ ∞

−∞
dt ′�T (t )(t − t ′)u(t ′),

(3)
where �T (t )(t − t ′) ≡ iθ (t − t ′)〈[Ô(t ′), Ô(t )]〉H0,T (t ) is the
response function associated with the weighted electron den-
sity operator Ô ≡ (λ/N )

∑
k,a,b,σ C(k)abc

†
kaσ ckbσ , and H0 ≡

H(λ = 0). Since all the averages involving electronic oper-
ators from now on are defined with respect to H0, hence-
forth we do not mention it explicitly. Note, as discussed in
Appendix A, �T (t )(t − t ′) is a function not just of (t − t ′),
but also of t via its dependence on temperature T (t ). More-
over, the Fourier transform of the response function �T (t )(�)
coincides with the equilibrium retarded phonon self-energy
�ph(�) evaluated to second order in λ and at temperature T

[see Eq. (A3)]. At this stage it is also evident that, if needed,
effects of electron-electron interaction can be systematically
introduced in the evaluation of F (t ).

The fact that the coherent phonon is a well-defined excita-
tion implies that the retardation in �T (t )(t − t ′) is weak, and
it is sufficient to expand in frequency �T (t )(�) ≈ π (T ) +
i�γ (T )/ω0. Here, π (T ) ≡ �R (� = 0, T ) and γ (T )/ω0 ≡
∂��I (�, T )�=0, where �R/I (�, T ) are the real and imagi-
nary parts of �T (t )(�), respectively. Note, in general, both
π (T ) and γ (T ) are time dependent through their T (t ) de-
pendencies. In the following, we simplify the discussion by
assuming the decay rate γ is constant, even though the cur-
rent formulation can handle time-dependent decay rates. This
gives (

∂2
t + 2γ ∂t + ω2

0

)
u = f (t ) (4)

and

f (t ) ≡ −2ω0[〈Ô〉T − 〈Ô〉TL
+ {π (T ) − π (TL)}u(t )]

is the instantaneous out of equilibrium force. In the above,
the second and the fourth terms are added by hand for the
following reasons. The second term involving 〈Ô〉TL

is a
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constant, and adding it is equivalent to setting the zero of the
displacement u to be the atomic position at TL. The fourth
term involving π (TL)u(t ) renormalizes the frequency ω0 and
adding it is equivalent to identifying ω0 with the equilibrium
phonon frequency at TL. Once these two terms are added,
we now get the behavior that is physically expected, namely
f (t = 0−) = f (t → ∞) = 0, see Eq. (2).

The functions 〈Ô〉T and π (T ) are well-defined thermody-
namic quantities which, in the absence of a phase transition,
are analytic in T . Thus they can be expanded around TL and,
using Eq. (2), they can be expressed as series in powers of
e−t/τe . In practice, these series can be truncated after the first
few terms:

〈Ô〉T − 〈Ô〉TL
=

∑
n

ane
−nt/τe ≈ −(X1/2) e−t/τ1 ,

π (T ) − π (TL) =
∑

n

bne
−nt/τe ≈ −(X2/2) e−t/τ2 , (5)

where TL is the base temperature of pump-probe
experiments, an = dn〈Ô〉T

dT n |T =TL
(TH − TL)n, bn = dnπ

dT n |T =TL

(TH − TL)n, X1 = −2(〈Ô〉TH
− 〈Ô〉TL

) ∼ O(λ), X2 =
−2(π (TH ) − π (TL)) ∼ O(λ2). In other words, we assume
that each of the series

∑
n ane

−nt/τe and
∑

n bne
−nt/τe can be

modeled as a single decaying exponential with effective decay
rates τ1,2 ∼ τe, respectively. The temperature dependencies of
〈O〉T and π (T ) can be obtained from the microscopic theory.
Then, the parameters [X1, X2, τ1, τ2] can be calculated using
Eq. (5), provided we know [TH , τe]. Hence the theory has
only two phenomenological parameters, namely, [TH , τe]. We
get

f (t ) = ω0(X1 e−t/τ1 +uX2 e−t/τ2 ), (6)

where the second term is the lattice feedback, which can be in-
terpreted as the effect of the change in the electron dispersion
due to the coherent phonon excitation. Equations (4) and (6),
together with the initial conditions u(0) = 0 and ∂tu(0) = 0,
describe the coherent phonon dynamics.

III. RESULTS

(i) Evaluating the force f (t ) to linear order in λ

is equivalent to ignoring the lattice feedback by setting
X2 = 0 in Eq. (6). In this limit, we recover the phe-
nomenological result of Zeiger et al. [46], namely, u(t ) =
(X1/ω0)[e−t/τ1 − e−γ t cos(ω0t − φ0)/ cos φ0], with the phase
φ0 ∼ max[γ /ω0, 1/(ω0τ1)]. However, the detection of a co-
herent phonon necessarily implies that in a typical experimen-
tal situation

ω0 � γ, 1/τ1/2, (7)

and so φ0 � 1, which means that the phase obtained within
the phenomenological framework is negligible. As we show
below, keeping the lattice feedback term also leads to a
finite phase of a different physical origin, and this latter is
quantitatively more significant than φ0.

(ii) Finite X2 leads to a richer dynamics and a modi-
fied solution. In the limit [γ /ω0, 1/(ω0τ1/2)] → 0, which is

FIG. 2. Calculations for representative parameter values. Fre-
quency ω0/(2π ) = 5.5 THz, X1/ω0 = 0.5, τ1 = 0.7 ps, τ2 = 0.6 ps,
and γ −1 = 5 ps, and for different strengths of the lattice feedback
term X2. X2 = 0 corresponds to the phenomenological theory [46].
(a) Coherent phonon displacement u(t ), see Eqs. (8) and (9) and the
associated text. The inset, a blow-up of the dashed rectangle, shows
signature of the finite phase φ for different values of X2. (b) The
effects of the feedback at different timescales. At short times (t � τ2)
a finite X2 leads to chirping. At long times (t � τ2), it leads to a finite
phase φ, see also inset in (a). τ2 is defined in Eq. (5).

experimentally relevant, we get [see Eq. (B11)]

u(t ) = X1 e−t/τ1

ω0 − X2 e−t/τ2
− X1 e−γ t

ω0 − X2
cos[ω0t + �(t )], (8)

where

�(t ) ≡ −X2τ2

2
(1 − e−t/τ2 ). (9)

Equations (8) and (9) summarize the main results of this work.
At face value, the above is a five parameter description of

the coherent phonon. However, if the microscopic prescrip-
tion is followed, (X1, X2, τ1, τ2) can be obtained from the
phenomenological parameters TH and τe defined in Eq. (2)
by using the approximate relations of Eq. (5). Furthermore,
if the theory to O(λ2) is quantitatively sufficient, then γ −1

is the equilibrium phonon lifetime measured by, say, Raman
response.

(iii) For t � τ2, the feedback �(t ) describes temporal
variation of the oscillation frequency, i.e., chirping, with a
frequency variation �ω0 ∼ −X2/2, see Fig. 2. On the other
hand, for t � τ2, we get a finite residual phase φ ≡ �(t →
∞) = −X2τ2/2, see Fig. 2. Note, even if |�ω0|/ω0 � 1 and
the chirping is not experimentally observable at low fluence,
the phase φ = (�ω0/ω0)(ω0τ2) can be substantial since it
involves the large parameter ω0τ2, c.f., Eq. (7). Note, the time
dependent phase �(t ) is qualitatively different from a constant
phase that is usually discussed in the literature.

The chirping discussed here is related to the temperature,
and hence, to the time dependence of the phonon frequency
due to electron-phonon interaction. This is to be contrasted
with other mechanisms of chirping discussed in the literature
such as that due to phonon anharmonicity [15] and carrier
diffusion [17,52,53].

(iv) Equilibrium Raman spectroscopy of BaFe2As2 shows
that the A1g phonon frequency softens with increasing tem-
perature [56]. Simultaneously, the phonon lifetime [56] has
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FIG. 3. Quantitative description of the A1g coherent phonon
[frequency ω0/(2π ) = 5.5 THz] of BaFe2As2, and comparison with
experiment [31]. (a) Calculated equilibrium expectation value of the
weighted electron density 〈Ô〉T for λ = 0.25. (b) Solid (black) line:
the T dependence in (a) is transformed into a time dependence using
Eq. (2) for representative values of the phenomenological parameters
(TH , τe ). Base temperature TL = 140 K. Dashed (red) line: fit using
Eq. (5), and estimate of (X1, τ1). (c) Solid lines: temporal variation
of x-ray form factor calculated using Eq. (8) at different fluences
(FL in mJ/cm2). The table gives estimates of (TH , τe ) used in the
calculation. The fit uses γ −1 = 5 ps, which is the equilibrium lifetime
[56]. Symbols represent data points extracted from Ref. [31].

an atypical temperature dependence across the magnetic tran-
sition of BaFe2As2, which is very reminiscent of the T

dependence of resistivity [57], implying that the phonon tem-
perature dependencies are likely due to interaction with the
electrons. Thus, from these equilibrium trends, we conclude
that X2 > 0, and we predict that the coherent A1g phonon
of BaFe2As2 will show redshifted chirp at sufficiently high
fluence.

(v) Since in our theory the frequency shift �ω0 and the
residual phase φ both depend on X2, an important conclusion
is that redshifted (blueshifted) chirp is accompanied by neg-
ative (positive) residual phase. Note, the above expectation
is indeed correct for the A1g coherent phonon of BaFe2As2,
which softens with increasing temperature, and for which a
negative phase φ = −0.1π has been reported [30,31], see also
the discussion in Sec. IV.

IV. QUANTITATIVE DESCRIPTION OF THE A1g

COHERENT PHONON IN BaFe2As2

In this section, we apply the theory quantitatively to the co-
herent A1g phonon of the strongly correlated metal BaFe2As2,
and we compare the theory results with a recent time-resolved
x-ray study [31], see Fig 3. BaFe2As2 is the parent compound
of a class of high temperature superconductors that also have

rather interesting magnetic and nematic properties [58]. The
A1g coherent phonon in this system, associated with the
motion of the As atoms, has also been widely studied using
a variety of pump-probe techniques [26,28,30,31], including
time-resolved x-ray spetcroscopy [31], which provides the
most direct information about the As motion. The electronic
properties of the BaFe2As2 are known [59] to be very sensitive
to the As height, which makes the study of the coherent
phonon motion all the more interesting.

Our overall goal in this section is to check to what extent a
microscopic tight-binding model, that has been successfully
used to understand equilibrium properties, can be used to
describe the transient temperature dependencies involved in a
pump-probe setting. Such an exercise is a step in the direction
of extracting information about equilibrium properties from a
pump-probe setup.

As a first step, we define the various parameters that we
use to describe BaFe2As2 with the microscopic Hamiltonian
of Eq. (1). We take the electronic kinetic part εab(k) from
Ref. [60], which itself is obtained as a tight-binding fit of
the LDA band structure onto a basis of five d Fe orbitals
[61]. Note, this particular set of tight-binding parameters has
been used widely in the literature. Relatively less detailed
information is currently available concerning the orbitally
resolved electron-phonon matrix elements C(k)ab of Eq. (1).
However, it is well-accepted that an increase of the dimen-
sionless arsenic height u = 〈b† + b〉 is accompanied by a
reduction of the hopping integrals and the bandwidths [62]
since the hopping of the electrons between Fe atoms can
also be mediated by the As atoms. Taking into account this
physical expectation, we found that a simple way to model
the electron-phonon matrix elements is to assume

C(k)ab = −[tnn]ab(k), (10)

where [tnn]ab is the diagonal nearest-neighbour entries of the
tight-binding parameters εab(k). Thus, in our scheme, the
entire electron-phonon coupling is ultimately described by
a single additional dimensionless parameter λ, which can
later be absorbed in an overall scaling factor between the
calculated u(t ) and the experimental x-ray intensity [see also
the discussion following Eq. (13) below].

As a second step, we describe the calculation of the out-
of-equilibrium force F (t ) [see also the discussion in the
paragraph following Eq. (2)] to first order in λ. This involves
the calculation of the thermal average of the weighted electron
density operator. From Eq. (3), we get

〈Ô〉H0,T ≡ λ

N
∑

k,a,b,σ

C(k)ab〈c†kaσ ckbσ 〉H0,T

= λ

N
∑
k,ν,σ

C̃(k)ννnF [ξν (k) − μ(T ), T ], (11)

where the last equality is written in the band basis. Here, nF

is the Fermi function, ξν (k) is the energy of an electron in
the band ν with momentum k, C̃(k)νν is the electron-phonon
matrix element in the band basis, and μ(T ) is the chemical po-
tential at the transient temperature T (t ) at time t . We assume
that there is no electronic diffusion [27], and that the particle
number is conserved during the pump-probe cycle, which
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is consistent with the conclusions of a recent time-resolved
photoemission study [30]. We divide the Brillouin zone into a
(10 × 10 × 10) grid, and diagonalize H0 at each point of the
grid to obtain the electronic dispersion ξν (k). The chemical
potential is then calculated by solving the particle number
conservation equation numerically. In Fig. 3(a), we show the
result of our calculation of 〈Ô〉H0,T for temperatures ranging
from 0 to 3500 K. This T dependence can be transformed
into a time dependence using Eq. (2) provided we have an
estimate of the phenomenological parameters (TH , τe ) at each
pump fluence. Henceforth, the base temperature is taken as
TL = 140 K. The solid (black) line of Fig. 3(b) gives such a
transformation 〈Ô〉H0,T → 〈Ô〉(t ) for a representative value
of (TH , τe ). The resulting time dependence can be modeled by
a single decaying exponential using Eq. (5). This leads to an
estimate of (X1, τ1) for each pump fluence, see dashed (red)
line of Fig. 3(b).

Note, the above step should not be construed as a mere
replacement of two phenomenological parameters (X1, τ1)
by two other phenomenological parameters (TH , τe ). This is
because in our scheme the estimation of (X1, τ1) at each
fluence is obtained via the evaluation of 〈Ô〉H0,T from the mi-
croscopic Hamiltonian (1) whose parameters are themselves
fluence independent. Thus the modeling is highly constrained,
and it is not obvious that the (X1, τ1) needed for a given
fluence can be obtained in our scheme for reasonable values of
(TH , τe ) once the Hamiltonian is fixed. One way to appreciate
the nontrivial step involved in our quantitative modeling is
to note that our scheme can provide meaningful (TH , τe )
only if 〈Ô〉H0,T is a monotonically increasing function of
temperature. On the other hand, such a property is a priori
not guaranteed. Likewise, if the slope of the function 〈Ô〉H0,T

is too large/small it would lead to values of TH that are too
small/large compared to the estimates currently available from
time-resolved photoemission studies [30].

In the third step, we discuss the relevance of the λ2 con-
tribution to the force F (t ) that is implied in the experiment
of Ref. [30,31]. This contribution can be estimated from
the following argument. To λ2 accuracy, π (T ) can also be
identified as the equilibrium phonon self-energy whose T

dependence can be inferred from equilibrium Raman mea-
surement of ω0(T ) [56]. For TL = 140 K and TH ∼ 500 K,
an extrapolation of ω0(T ) reported in Ref. [56] gives �ω0 =
0.4 THz, and therefore X2

ω0
≈ 0.01, see Eq. (9). This small

fraction implies that the λ2 contribution to the force F (t ) is
unimportant for the fluences used in Ref. [31]. Nevertheless,
for the fits, we kept the phase �(t ) generated by the feedback
effect, and we used the expression

u(t ) = (X1/ω0)(e−t/τ1 − e−γ t cos[ω0t + �(t )]), (12)

by setting X2
ω0

→ 0 in Eq. (8). To model �(t ), we assume
that it is fluence independent and that the experimentally
reported phase φ = −0.1π [30,31] can be identified with
�(t → ∞) = −X2τ2/2 [see Eq. (9)], from which we get
τ2 ≈ 800 fs. Note also, for time t � τe, the quality of the
fit is marginally affected by including the feedback �(t )
term. Thus, following the above three steps, we are able
to compute u(t ) for a given fluence provided we have an
estimate of (TH , τe ).

Finally, we compare the calculated arsenic displacement
u(t ) with that measured in time resolved x-ray scattering [31]
for a fluence range of 0.7 to 3.5 (mJ/cm2). The intensity is
convolved with a Gaussian pulse to account for the limited
time resolution [31]. In the kinematic approximation [31],
the variation of the intensity is proportional to the arsenic
displacement and is given by

�I

I0
(t ) = B

τr

√
π

∫ ∞

0
e−( t−τ

τr
)2
u(τ )dτ, (13)

where I0 is the equilibrium intensity, �I is the variation of
intensity out of equilibrium, τr ≈ 96 fs is the experimental
resolution of the probe pulse, and u(t ) is computed using
Eq. (12) following the three steps mentioned above. B is a di-
mensionless proportionality constant, independent of fluence,
that sets the overall scale of the theoretically evaluated �I/I0

with respect to the experimentally measured ones. Physically,
B is related to the change of the relevant x-ray form factor
with the As atomic position. Within our scheme, the constant
B and the dimensionless electron-phonon coupling λ cannot
be estimated separately. We find that best fits are obtained
for λB = 4.9. In Fig. 3(c), we compare the calculated �I/I0

(lines) with the data of Ref. [31] (solid symbols).
From Fig. 3(c), we conclude that the two-parameter fit is

quite reasonable, given the simplicity of the starting model.
Furthermore, our estimation of (TH , τe ), given in the inset
of Fig. 3(c), compares well with the experimental estima-
tions given in Ref. [30]. The above attempt at a quantitative
description is an important step towards making connection
between equilibrium microscopic description of electrons
with out-of-equilibrium pump-probe data. Note, the above
calculation does not include temperature dependencies of
the single-electron properties arising due to electron-electron
interaction. While such interaction effects can be incorporated
in the current formalism, it is beyond the scope of the current
work.

V. CONCLUSIONS

We developed a microscopic theory of displacive coher-
ent phonons driven by laser heating of carriers. Our theory
captures physics beyond the standard phenomenological de-
scription, namely the modification of the electronic energy
levels due to the phonon excitation, and how this change feeds
back on the phonon dynamics. This effect of electron-phonon
interaction leads to chirping at short timescales, and at long
times it appears as a finite phase in the oscillatory signal. We
successfully applied the theory to the A1g coherent phonon
of BaFe2As2, thereby demonstrating that pump-probe data
can be related to microscopic quantities and eventually to
equilibrium physics. We explained the origin of the phase in
the oscillatory signal reported in recent experiments [30,31]
on this system, and we predict that it will exhibit redshifted
chirping at larger fuence.
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APPENDIX A: STRUCTURE OF �T (t )(t − t ′ )

The response function used in the main text is defined by

�T (t )(t − t ′) ≡ iθ (t − t ′)〈[Ô(t ′), Ô(t )]〉H0,T (t ), (A1)

where Ô ≡ (λ/N )
∑

k,a,b,σ C(k)abc
†
kaσ ckbσ is the weighted

electron density operator, H0 ≡ H(λ = 0), and the Hamilto-
nian H is given by Eq. (1) in the main text. In equilibrium,
�T (t )(t − t ′) is a function of (t − t ′) only, but this is no longer
the case out of equilibrium. Here, we discuss the t and t ′
dependencies of �T (t )(t − t ′). We write the response function
in the Lehmann representation where the time structure can be
made explicit

�T (t )(t − t ′) = iθ (t − t ′)
∑
n,m

| 〈n| Ô |m〉 |2ei(t−t ′ )(En−Em )

× (e−β(t )Em − e−β(t )En ), (A2)

where En and |n〉 are respectively a complete set of eigenen-
ergies and eigenstates of the Hamiltonian H0. We see from
(A2) that the response function is a function of the time
difference (t − t ′), and that the explicit time t dependence
enters only through the electronic temperature T (t ). We can
then define the Fourier transform of the response function
with respect to the time difference (t − t ′) evaluated at the
electronic temperature T (t ):

�T (t )(�) =
∑
n,m

| 〈n| Ô |m〉 |2 1

En − Em − � + iη

× (e−β(t )En − e−β(t )Em ), (A3)

where η is an arbitrarily small positive constant that ensures
the convergence of the Fourier transform. By inspection, we
see that the response function in frequency domain (A3) is the
equilibrium retarded phonon self-energy evaluated to second
order in the electron-phonon interaction (λ2) at temperature
T (t ) = 1/β(t ).

APPENDIX B: SOLUTION OF THE DIFFERENTIAL
EQUATION FOR u(t )

As discussed in the main text, if the instantaneous out-
of-equilibrium force f (t ) is evaluated to second order in
electron-phonon interaction the theory captures the modifica-
tion of the electronic dispersion due to the coherent phonon
excitation, and how that feeds back upon the dynamics of the
phonon itself. Taking this feedback into account the differen-
tial equation governing the atomic displacement u(t ) is given
by [see Eqs. (4) and (6) in main text](

∂2
t + 2γ ∂t + ω2

0

)
u = f (t ) = ω0(X1 e−t/τ1 +uX2 e−t/τ2 ).

(B1)

The parameters (ω0, X1, X2, γ, τ1/2) are defined in the main
text. Here, we discuss the solution of the above differ-
ential equation subject to the initial conditions u(0) = 0
and ∂tu(0) = 0, and in the experimentally relevant limit of

[γ /ω0, 1/(ω0τ1/2)] → 0. The equation of motion (B1) is lin-
ear, the solution is then the sum of the homogeneous and
particular solution u(t ) = yh(t ) + yp(t ). We first discuss the
homogeneous solution, then following the same method we
give the particular solution. We start from the following ansatz
for the homogeneous solution

yh(t ) =
∞∑

n=0

ane
knt + c.c., (B2)

with kn = iω1 − γ − n/τ2, and ω1 =
√

(ω0)2 − γ 2. We insert
(B2) into the homogeneous equation, and obtain an equation
for the coefficients an:

an

(
k2
n + 2γ0kn + (ω0)2) = ω0X2an−1,

a0
(
k2

0 + 2γ0k0 + (ω0)2
) = 0. (B3)

Since k0 satisfies the equation (k2
0 + 2γ0k0 + (ω0)2) = 0, a0

is then an arbitrary complex constant. We solve the coupled
equation (B3), and obtain for an,

an = a0(ω0X2)n
n∏

m=1

1

k2
m + 2γ km + ω2

0

= a0

n!

(
iX2τ2

2ω1

)n n∏
m=1

1

1 + (2i)(m/τ2ω0)

≈ a0

n!

(
iX2τ2

2ω0

)n

, (B4)

where in the last step, we took the limit [γ /ω0, 1/(ω0τ2)] →
0, the homogeneous solution then reads

yh(t ) = a0e
(iω0−γ )t

∞∑
n

1

n!

(
iX2τ1

2ω0
e−t/τ2

)n

+ c.c.

= a0e
−γ t

(
e
iω0+i

X2τ2
2ω0

e−t/τ2 ) + c.c. (B5)

We replace a0 = 1
2Aeiψ and finally obtain for the homoge-

neous solution

yh(t ) = Ae−γ t cos

(
ω0t + X2τ2

2ω0
e−t/τ2 + ψ

)
, (B6)

where (A,ψ ) are arbitrary constants to be determined from
the initial conditions. We follow the same method to find the
particular solution, we start from the ansatz

yp(t ) =
∞∑

n=0

bne
αnt , (B7)

with αn = −1/τ1 − n/τ2. We insert (B7) into the equation of
motion (B1), and get an equation for the coefficients bn:

bn

(
α2

n + 2γ0αn + (ω0)2
) = ω0X2an−1,

b0
(
α2

0 + 2γ0α0 + (ω0)2
) = ω0X1. (B8)

We solve the coupled equations and obtain

bn = ω0X1(ω0X2)n

(1/τ1)2 − 2γ (1/τ1) + (ω0)2

n∏
m=1

1

α2
m + 2γαm + ω2

0

≈ X1

ω0

(
X2

ω0

)n

, (B9)
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where in the last step, we took the limit [γ /ω0, 1/(ω0τ1/2)] →
0, the particular solution then reads

yp(t ) = X1

ω0
e−t/τ1

∞∑
n

(
X2e

−t/τ2

ω0

)n

= X1

ω0 − X2e−t/τ2
e−t/τ1 . (B10)

We use the initial conditions u(0) = 0 and ∂tu(0) = 0 to
calculate the arbitrary constants (A,ψ ). The solution in the

limit [γ /ω0, 1/(ω0τ1/2)] → 0 reads

u(t ) = X1

ω0 − X2e−t/τ2
e−t/τ1 − X1

ω0 − X2
e−γ t

× cos

(
ω0t + X2τ2

2ω0
(e−t/τ2 − 1)

)
, (B11)

where we finally recognize Eq. (8) of the main text.
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