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The coupled-wire construction provides a useful way to obtain microscopic Hamiltonians for various two-
dimensional topological phases, among which fractional quantum Hall states are paradigmatic examples. Using
the recently introduced flux attachment and vortex duality transformations for coupled wires, we show that this
construction is remarkably versatile to encapsulate phenomenologies of hierarchical quantum Hall states: the
Jain-type hierarchy states of composite fermions filling Landau levels and the Haldane-Halperin hierarchy states
of quasiparticle condensation. The particle-hole conjugate transformation for coupled-wire models is also given
as a special case of the hierarchy construction. We also propose coupled-wire models for the composite Fermi
liquid, which turn out to be compatible with a sort of the particle-hole symmetry implemented in a nonlocal way
at ν = 1

2 . Furthermore, our approach shows explicitly the connection between the Moore-Read Pfaffian state
and a chiral p-wave pairing of the composite fermions. This composite-fermion picture is also generalized to a
family of the Pfaffian state, including the anti-Pfaffian state and Bonderson-Slingerland hierarchy states.
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I. INTRODUCTION

Fractional quantum Hall (FQH) states are quintessential
examples of topological phases in which strong interaction
between electrons plays a fundamental role for their stability.
The FQH states are nontrivial many-body states that can-
not be understood by perturbative approaches from a free-
electron gas. After a remarkable success of the Laughlin’s
wave functions for incompressible states at filling fraction
ν = 1/q with an odd integer q [1], two physical pictures
emerged that allow us to view the Laughlin states in terms
of composite particles. One is the composite boson picture,
in which an odd number of flux quanta are attached to each
electron to form a composite particle with bosonic statistics
[2]. In this picture, the Laughlin states can be viewed as a
condensate of composite bosons [2,3], which are described by
a Chern-Simons Ginzburg-Landau theory [4]. The other is the
composite-fermion picture, in which every electron binds an
even number of flux quanta to form a composite particle with
fermionic statistics [5,6]. Then, the Laughlin states can be
seen as an integer quantum Hall state realized in a filled lowest
Landau level of the composite fermions [5,6], and the corre-
sponding Chern-Simons theory has also been developed [7].

Aside from these developments, there have been earlier
attempts to explain other quantum Hall plateaus that do
not fall into the Laughlin states. Soon after the Laughlin’s
discovery, Haldane and Halperin independently proposed a
systematic way to construct descendant FQH wave functions
from the Laughlin states [8,9]. In a heuristic point of view of
their construction, a new wave function is obtained by excit-
ing quasiparticles in a parent Laughlin state and condensing
them into a bosonic Laughlin state. This procedure can be
repeated to generate a hierarchy of FQH states. An intriguing
observation is that if we adopt the composite boson picture,
quasiparticle excitations can be seen as vortex excitations

with a gap above the composite boson condensate [10–12].
Utilizing the vortex duality [13–15], these hierarchy states can
also be formulated as a bosonic Chern-Simons theory through
the condensation of vortices [16–18]. Several years after the
proposal by Haldane and Halperin, Jain proposed different
FQH wave functions at ν = p/(2pn ± 1) with integers p and
n, which are obtained by filling p Landau levels of the com-
posite fermions [5,6]. At some filling fractions, both Haldane-
Halperin and Jain hierarchy states can be constructed, but their
wave functions have different forms. Despite their apparent
distinction, however, these states are known to have the same
quasiparticle properties and thus possess the same topological
order [19]. Such topological properties can be understood
from an effective hydrodynamic description using the Chern-
Simons theory for Abelian FQH states [20,21]. For a more
detailed account of the history and recent developments of the
hierarchy states, see Ref. [22].

The idea of the composite fermions is also fruitful for
understanding the physics of interacting electrons at the filling
fraction ν = 1/M with an even integer M , where composite
fermions of electrons with 2πM flux quanta see a zero mag-
netic field on average. In this case, the composite fermions
can form either a Fermi liquid or a superconductor. The
former possibility was pointed out and examined in detail by
Halperin, Lee, and Read, who proposed the composite Fermi
liquid (CFL) for the compressible state of strongly interacting
electrons at ν = 1

2 [23]. The other possibility was discussed
in depth by Read and Green [24]. In particular, they argued
that a spinless chiral p-wave pairing of composite fermions
corresponds to the Moore-Read Pfaffian state [25], in which
quasiparticles are non-Abelian anyons.

The composite-particle pictures are conceptually quite use-
ful and have led to many nontrivial discoveries on the physics
of FQH states and their topological order. However, trial wave
functions must be verified by direct large-scale numerical
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calculations of microscopic models of finite size, while
Chern-Simons approaches are effective theories that require
an additional justification from numerics or experiments.

A notable progress that can bridge the gap between FQH
states and microscopic Hamiltonians has been made by Kane
and co-workers [26], who used electron wires placed in a mag-
netic field as building blocks for FQH states. This coupled-
wire approach allows us to analyze a two-dimensional (2D)
array of the interacting quantum wires in a more controllable
fashion with the help of bosonization technique and conformal
field theory (CFT). It also enables us to study topological
properties of the FQH states, such as edge states, quasiparticle
statistics [26,27], and ground-state degeneracy on a torus
[28]. After the original construction of Abelian FQH states
[26], the coupled-wire construction has been extended to non-
Abelian FQH states [27,29–31] and surface topological or-
ders of three-dimensional (3D) topological crystalline phases
[32–37].

In this paper, we show that the coupled-wire models for
FQH states admit clear physical interpretations of the corre-
sponding states in terms of the composite bosons or composite
fermions. Key ingredients are coupled-wire versions of the
flux attachment and the vortex duality that have been proposed
by Mross, Alicea, and Motrunich as explicit nonlocal trans-
formations on bosonic field variables [38]. The coupled-wire
construction turns out to be a complementary approach to the
conventional wave-function-based or effective Chern-Simons
approaches, giving us an insight to the free-particle pictures of
various quantum Hall states from microscopic Hamiltonians
beyond the Landau level physics. Conversely, this approach
allows us to obtain a “model” coupled-wire Hamiltonian
for the desired quantum Hall states based on their physical
interpretations as the composite bosons or fermions. This will
help us to explore microscopic realizations of the quantum
Hall physics in one-dimensional (1D) or quasi-1D many-body
systems on the lattice or in the continuum.

Outline of the paper

The rest of our paper proceeds as follows. In Sec. II, we
introduce our basic tools to construct and analyze the coupled-
wire models. We then focus on three particular examples
of quantum Hall states in the following sections: Abelian
hierarchy states (Sec. III), CFLs (Sec. IV), and Moore-Read
Pfaffian states (Sec. V). These three sections are independent
of each other to some extent, and the reader may choose to
read them in any order. We then conclude the paper in Sec. VI
with several outlooks. We give a more detailed outline of each
section below.

Section II presents our dictionary of bosonization or
fermionization in 1D and 2D, which is extensively used in the
following sections. We start with the standard bosonization
approach of 1D fermionic or bosonic systems. We then intro-
duce a 2D array of coupled quantum wires as a basic setup
for our construction of the FQH state. The flux attachment
and the vortex duality transformations are explicitly defined
in this 2D array as nonlocal transformations in bosonic fields
[38]. This allows us to visualize the composite particles and
vortices (quasiparticles) as local objects in the coupled-wire
models.

In Sec. III, we consider Abelian hierarchy states. The
discussion starts with reviewing the previous construction
[26,27] of the Laughlin ν = 1/q state as a prototypical exam-
ple of the FQH state (Sec. III A). We confirm that the coupled-
wire Hamiltonian admits both the composite-fermion and
composite-boson interpretations. We then move to hierarchy
states, mainly focusing on the ν = 2

5 and 2
7 states (Sec. III B).

In both cases, the corresponding coupled-wire Hamiltonians
yield FQH states that are regarded as integer quantum Hall
(IQH) states of composite fermions in the Jain sequence
and condensates of quasiparticles in the Haldane-Halperin
hierarchy states. Generalizations to other states in the Jain
sequence or the Haldane-Halperin hierarchy are also given.
We then discuss a systematic way to obtain the particle-hole
(PH) conjugates of FQH states (Sec. III C) and FQH states in
higher Landau levels (Sec. III D), including several examples
including the Laughlin and ν = 4

11 states.
In Sec. IV, we consider the CFL at filling fraction ν =

1/M , where M is an even (odd) integer for fermions (bosons).
We first construct coupled-wire models for the CFL with
an open Fermi surface at general filling fraction ν = 1/M

(Sec. IV A) and then focus our attention to the case of ν = 1
2

(Sec. IV B). In the latter case, we can also construct the
PH conjugate of the CFL at the same filling fraction, called
the anti-CFL or composite hole liquid [39,40], which can
be distinguished from the CFL. It turns out, however, that
the composite hole liquid is obtained from the same coupled-
wire Hamiltonian as that for the CFL. This may indicate a pos-
sible PH symmetry in the CFL although the PH transformation
is implemented in our coupled-wire models in a way that can-
not be realized in a genuinely 2D lattice system. We also dis-
cuss a similar issue for the CFL of two-component (i.e., spin-
ful) bosons at ν = 1

2 + 1
2 and propose the PH transformations

for two-component or single-component bosons (Sec. IV C).
In Sec. V, we focus on the Pfaffian state as another can-

didate FQH state at ν = 1/M . After reviewing the coupled-
wire construction of the Pfaffian state by Teo and Kane
[27], we extend the construction by applying flux-attachment
transformations and discuss the Pfaffian state in terms of a
chiral p-wave pairing state of composite fermions. We then
propose coupled-wire models for Bonderson-Slingerland hier-
archy states [41], which are hierarchy states obtained from the
Pfaffian states by condensing bound pairs of quasiparticles.
We also construct the PH conjugate of the Pfaffian state at
ν = 1

2 , called the anti-Pfaffian state [42,43], and discuss its
interpretation as a composite-fermion pairing (Sec. V C). The
section is closed with a brief discussion on other composite-
fermion pairings (Sec. V D).

Appendices A and B provide the derivation of the kinetic
actions for vortex and hole variables, respectively, coupled
to an external electromagnetic field, whose complete forms
are somewhat tedious and shortened while keeping only
important terms in the main text. Appendix C contains a
detailed discussion on the Klein factors that are introduced
to ensure the anticommutation relations of fermionic fields in
the coupled-wire models for the Pfaffian state.

II. BOSONIZATION/FERMIONIZATION DICTIONARIES

In this section, we summarize the dictionary of bosoniza-
tion/fermionization rule that we shall frequently use in this
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paper. We first present our convention of the bosonization in
one-dimensional (1D) fermionic or bosonic systems and then
introduce a 2D array of coupled quantum wires, each of which
is described by a Tomonaga-Luttinger liquid. This furnishes
elementary constituents of our coupled-wire models [26,27].
Finally, we introduce nonlocal transformations of the bosonic
fields that implement the flux attachment and vortex duality in
2D coupled wires [38].

A. 1D dictionary

The building block of our analysis is a spinless (or spin-
polarized) electron wire placed in parallel to the x axis. In
the low-energy limit, an electron operator ψ (x) is expanded
around the Fermi points as

ψ (x) ∼ eikF xψR (x) + e−ikF xψL(x), (1)

where ψR/L(x) annihilate right-moving (R) or left-moving
(L) fermion excitations near the Fermi points at the wave
number k = ±kF . The average electron density ρ̄ is related to
the Fermi momentum by kF = πρ̄. Linearizing the spectrum
about the Fermi momenta, we obtain the effective low-energy
Hamiltonian for a single wire,

H
single
0 =

∫
dx[iv(−ψ

†
R∂xψR + ψ

†
L∂xψL)], (2)

where v is the velocity at the Fermi points k = ±kF . We now
apply the bosonization technique [44] to write the Hamilto-
nian in terms of free bosons:

H
single
0 = v

2π

∫
dx[(∂xϕ)2 + (∂xθ )2], (3)

where the bosonic fields θ (x) and ϕ(x) satisfy the commuta-
tion relations

[θ (x), ϕ(x ′)] = iπ�(x − x ′),

[θ (x), θ (x ′)] = [ϕ(x), ϕ(x ′)] = 0, (4)

with �(x) being the Heaviside step function. Equation (4)
implies that ∂xθ (x) and ϕ(x) are canonically conjugate fields.
With these bosonic fields, the fermionic operators are repre-
sented as

ψR/L(x) = 1√
2πα

ei[ϕ(x)±θ (x)], (5)

where α is a short-distance cutoff. The chiral fermion currents
are then given by

ρR = : ψ
†
RψR := 1

2π
(∂xϕ + ∂xθ ),

ρL = : ψ
†
LψL := − 1

2π
(∂xϕ − ∂xθ ), (6)

where : X : denotes normal ordering of X. Thus, ∂xθ and ∂xϕ

are related to the electron density and current

j el
0 = ρR + ρL = 1

π
∂xθ,

j el
1 = v(ρR − ρL) = v

π
∂xϕ, (7)

respectively. A crucial feature of this bosonic representation
is that the forward scattering from density-density interactions

takes a quadratic form in the bosonic field (∂xθ )2. The effect
of interactions is thus incorporated in the free-boson theory of
the Tomonaga-Luttinger liquid Hamiltonian

H LL
0 =

∫
dx

[
v

2π
(∂xϕ)2 + u

2π
(∂xθ )2

]
. (8)

The ratio u/v controls the forward-scattering interaction, and
u = v for free electrons.

While we will mainly consider fermionic systems in this
paper, many of the subsequent discussions can be similarly
applied to bosonic systems. We therefore briefly summarize
the “bosonization” dictionary for bosons [45]. The effective
low-energy theory of 1D interacting bosons is also commonly
given by the Tomonaga-Luttinger Hamiltonian in Eq. (8). The
boson annihilation operator b(x) and density operators ρ(x)
are expressed in terms of the bosonic fields as

b(x) ∼ eiϕ(x),

ρ(x) ∼ ρ̄ + 1

π
∂xθ (x) +

∑
n�=0

e2in[πρ̄x+θ (x)], (9)

where ρ̄ is the average boson density. The last term in ρ(x)
represents the density fluctuations with the wave number
2πρ̄n, which may manifest themselves as a charge-density-
wave order parameter. We identify πρ̄ with the Fermi momen-
tum kF even for bosonic systems and use them interchange-
ably in the following sections.

B. Array of Luttinger liquids

Following Refs. [26,27], we consider a 2D array of elec-
tron wires in the xy plane, where each wire is described
by the Tomonaga-Luttinger liquid Hamiltonian in Eq. (8).
The wires are placed at y = jd0 (j ∈ Z), where d0 is the
spacing between adjacent wires. We take the Landau gauge
(A0, A1, A2) = (0,−By, 0) for the magnetic field applied
perpendicular to the xy plane. The electron operator on the
j th wire is now expanded as

ψj (x) ∼ ei(kF +bj )xψR,j (x) + ei(−kF +bj )xψL,j (x), (10)

around the Fermi points of the j th wire at k = bj ± kF , where
b = d0B is the magnetic flux density per wire in the natural
unit (h̄ = e = c = 1). The unit flux quantum φ0 is equal to
2π . The filling fraction ν is then given by

ν = 2πρ̄

b
= 2kF

b
. (11)

The right- and left-moving fermion operators are bosonized as

ψR/L,j (x) = κj√
2πα

ei[ϕj (x)±θj (x)], (12)

where the bosonic fields obey the commutation relations

[θj (x), ϕj ′ (x ′)] = iπδj,j ′�(x − x ′),

[θj (x), θj ′ (x ′)] = [ϕj (x), ϕj ′ (x ′)] = 0, (13)

and κj is the Klein factor ensuring the anticommutation re-
lation between fermion operators on different wires. We here
choose κj to be a Majorana fermion: {κj , κj ′ } = 2δj,j ′ . We
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take the Hamiltonian to be the sum of identical Tomonaga-
Luttinger liquids over the wires

H0 =
∫

dx
∑

j

[
v

2π
(∂xϕj )2 + u

2π
(∂xθj )2

]
. (14)

We then consider an appropriate interwire interaction H1 to
find a desired quantum Hall state. The interwire interactions
must satisfy the charge and momentum conservations at given
filling fraction ν. Since the ϕj and θj fields come with bjx

and kF x, respectively, from Eqs. (10) and (12), the interwire
interactions of the form

exp

[
i
∑

p

(npϕj+p + mpθj+p )

]
(mp, np ∈ Z) (15)

are allowed only if the conditions

∑
p

np = 0, ν = −2
∑

p pnp∑
p mp

(16)

are satisfied. Furthermore, imposing that the interwire inter-
action in Eq. (15) is given by a product of ψR/L,j+p and
ψ

†
R/L,j+p leads to another condition

mp = np mod 2. (17)

We further introduce an external electromagnetic field
Aext

μ,j (τ, x). The Euclidean action for the electron wires mini-
mally coupled to Aext

μ,j (τ, x) is given by

S0 =
∫

τ,x

∑
j

{
ψ

†
R,j

[
∂τ − iAext

0,j − iv
(
∂x − iAext

1,j

)]
ψR,j

+ ψ
†
L,j

[
∂τ − iAext

0,j + iv
(
∂x − iAext

1,j

)]
ψL,j + · · ·},

(18)

where the ellipsis contains intrawire forward-scattering in-
teractions yielding u �= v, and we have used the shorthand
notation

∫
τ,x

= ∫
dτ dx. In terms of the bosonic fields, the

action is written as

S0 =
∫

τ,x

∑
j

[
i

π
∂xθj

(
∂τϕj − Aext

0,j

)

+ v

2π

(
∂xϕj − Aext

1,j

)2 + u

2π
(∂xθj )2

]
. (19)

We can also use the same action to describe a coupled-wire
system of charged bosons with unit charge. For simplicity, we
will take the Aext

2,j = 0 gauge in this paper.

C. 2D dictionary

We here present a coupled-wire formulation of the flux
attachment and vortex duality, introduced by Mross, Alicea,
and Motrunich [38], as explicit nonlocal transformations for
the bosonic fields. This offers a bosonization/fermionization
dictionary in 2D, which helps us to gain more physical in-
sights from the coupled-wire construction of various quantum
Hall states.

1. Flux attachment

Let us consider the action (19). We now attach the 2πm

flux to electrons to obtain composite particles, which obey
fermionic (bosonic) statistics when m is an even (odd) integer.
The 2πm-flux attachment is performed through a nonlocal
transformation

�CP
j (x) = ϕj (x) + m

∑
j ′ �=j

sgn(j ′ − j )θj ′ (x),

�CP
j (x) = θj (x). (20)

These bosonic fields satisfy the commutation relations[
�CP

j (x),�CP
j ′ (x ′)

] = −iπm sgn(j − j ′),[
�CP

j (x),�CP
j ′ (x ′)

] = 0, (21)[
�CP

j (x),�CP
j ′ (x ′)

] = iπδj,j ′�(x − x ′).

Substituting these expressions into Eq. (19) yields a highly
nonlocal theory, but it can be turned into a local form by
introducing an auxiliary field a1,j (x):

a1,j (x) = m
∑
j ′ �=j

sgn(j ′ − j )∂x�
CP
j ′ (x). (22)

We implement this constraint using a Lagrange multiplier
a0,j+1/2(x) defined between adjacent wires

S0 =
∫

τ,x

∑
j

⎡
⎣ i

π
∂x�

CP
j

(
∂τ�

CP
j − Aext

0,j

)

+ v

2π

(
∂x�

CP
j − a1,j − Aext

1,j

)2 + u

2π

(
∂x�

CP
j

)2

+ i

2πm

⎛
⎝a1,j − m

∑
j ′ �=j

sgn(j ′ − j )∂x�
CP
j ′

⎞
⎠

× (a0,j+1/2 − a0,j−1/2)

⎤
⎦. (23)

This action can be rewritten as

S0 =
∫

τ,x

∑
j

{
i

π
∂x�

CP
j

[
∂τ�

CP
j − 1

2
(Sa0,j−1/2) − Aext

0,j

]

+ v

2π

(
∂x�

CP
j − a1,j − Aext

1,j

)2 + u

2π

(
∂x�

CP
j

)2

+ i

2πm
a1,j (�a0,j−1/2)

}
, (24)

where we have introduced the shorthand notations (Sak ) =
ak+1 + ak and (�ak ) = ak+1 − ak . Notice that the Lagrange
multiplier terms in Eq. (23) generated two contributions:
a temporal component of the minimal coupling between
the composite-particle field �CP

j and the fictitious gauge
field aμ,j , and a discrete analog of the Chern-Simons term
(i/4πm)εμνλaμ∂νaλ in the a2 = 0 gauge.

The action (24) can be understood as follows. In Eq. (24),
the constraint (22) can be recast into

(�a1,j ) = −2πm × 1
2

(
jCP

0,j + jCP
0,j+1

)
, (25)
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where jCP
0,j = (1/π )∂x�

CP
j is the composite-particle density,

which is equal to the original electron density j el
0,j [see Eqs. (7)

and (20)]. This precisely implements the 2πm-flux attachment
in our coupled-wire system, and the composite particles will
see an effective magnetic flux ∝bCP = b − 2πmρ̄. This can be
seen as a coupled-wire version of the familiar Chern-Simons
flux attachment introduced in Ref. [4]. The statistics of the
composite particles is encoded in the commutation relations in
Eq. (21), from which we may define local composite-particle
operators by vertex operators of the bosonic fields �CP

j and
�CP

j , which are nonlocal in the original bosonic operators.
Detailed discussions on the construction of such operators and
their statistics are given with specific examples of coupled-
wire models in the subsequent sections.

2. Vortex duality

Suppose that we have composite bosons after performing
the above 2πm-flux attachment with an odd integer m. We
replace the superscript “CP” with “CB” accordingly. Follow-
ing Ref. [38], we apply the vortex duality transformation by
defining vortex fields

�VCB
j+1/2(x) =

∑
j ′

sgn(j ′ − j − 1/2)�CB
j ′ (x),

�VCB
j+1/2(x) = 1

2

[
�CB

j+1(x) − �CB
j (x)

]
. (26)

The bosonic fields are defined between adjacent wires, i.e., on
dual wires. They satisfy the commutation relations[

�VCB
j+1/2(x),�VCB

j ′+1/2(x ′)
] = 0,

[
�VCB

j+1/2(x),�VCB
j ′+1/2(x ′)

] = iπm

4
(δj,j ′−1 − δj,j ′+1), (27)[

�VCB
j+1/2(x),�VCB

j ′+1/2(x ′)
] = iπδj,j ′ [�(x − x ′) − 1].

For later convenience, we give the inverse transformation

�CB
j (x) = −

∑
j ′

sgn(j ′ − j + 1/2)�VCB
j ′+1/2(x),

�CB
j (x) = −1

2

[
�VCB

j+1/2(x) − �VCB
j−1/2(x)

]
. (28)

The duality transformation maps a superfluid phase of
the composite bosons driven by the interaction cos(�CB

j −
�CB

j+1) to a Mott insulating phase of the vortices driven by
cos(2�VCB

j+1/2) as the standard vortex duality does. It also simi-
larly maps a Mott insulating phase of the composite bosons to
a superfluid phase of the vortices.

We now apply the vortex duality transformation to the
action (24). Since the transformation (26) is nonlocal, the
action in terms of the vortices also becomes nonlocal. A cure
is to introduce another auxiliary field αμ as in Ref. [38].
For the composite bosons coupled with the “Chern-Simons”
field aμ, we anticipate that integrating out aμ should yield a
Chern-Simons term of αμ that relates the flux of αμ with the
vortex density. We thus define the auxiliary field α1,j+1/2(x)
by

α1,j+1/2(x) = − 1

m

∑
j ′ �=j

sgn(j ′ − j )∂x�
VCB
j ′+1/2(x), (29)

which implies the relation between the flux of αμ (in the α2 =
0 gauge) and the vortex density jVCB

0,j+1/2 = (1/π )∂x�
VCB
j+1/2:

α1,j+1/2 − α1,j−1/2 = 2π

m

(
jVCB

0,j+1/2 + jVCB
0,j−1/2

)
. (30)

The constraints (22) and (29) are rewritten as

a1,j = m

2

(
∂x�

VCB
j+1/2 + ∂x�

VCB
j−1/2

)
,

α1,j+1/2 = 1

2m

(
∂x�

CB
j+1 + ∂x�

CB
j

)
. (31)

Plugging these expressions into Eq. (24) and introducing a
Lagrange multiplier α0,j (x), we can rewrite the theory in
terms of the vortex field in a local form. We finally obtain

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCB
j+1/2

(
∂τ�

VCB
j+1/2 − 1

2
(Sα0,j )

)

+ m2v

2π

(
∂x�

VCB
j+1/2 − α1,j+1/2

)2 + v

2π

(
∂x�

VCB
j+1/2

)2

+ u − m2v

8π

(
�∂x�

VCB
j−1/2

)2 − i
m

2π
α1,j+1/2(�α0,j )

− v

2π
∂x�

VCB
j+1/2

(
�Aext

1,j

)− i

4π

(
SAext

1,j

)
(�α0,j )

+ i

2π
Aext

0,j (�α1,j−1/2) + · · ·
]
, (32)

where the ellipsis contains terms involving the second deriva-
tive of Aext

μ . The derivation is outlined in Appendix A. In
this vortex theory, the vortices are minimally coupled to the
gauge field αμ through the discretized level-m Chern-Simons
term with α2 = 0. The external electromagnetic field Aext

μ

is coupled to the 2π flux of αμ through a discrete version
of the mutual Chern-Simons term (−i/2π )εμνλA

ext
μ ∂ναλ in

the Aext
2 = α2 = 0 gauge. On the other hand, the external

magnetic field (�Aext
1,j ) is coupled to the vortex density in

the form of a chemical potential. This physically means that
the applied magnetic field dopes vortex excitations (or excites
quasiparticles) on top of the condensate of composite bosons.
This will be highlighted in the Haldane-Halperin picture
for hierarchy states discussed in Sec. III B 2. We summarize
several field variables in Table I that have been introduced in
this section and will be used in the following discussion.

III. ABELIAN HIERARCHY

In this section, we apply the flux attachment and vor-
tex duality transformations introduced above to the coupled-
wire models of Abelian hierarchy states. We first review
the coupled-wire model of the Laughlin states at ν = 1/q

[26,27] and then show that it admits both interpretations of the
Laughlin states as a filled lowest Landau level of composite
fermions or a condensate of composite bosons. We extend the
discussion to hierarchy states obtained from a parent Laughlin
state, whose coupled-wire models are shown to admit the Jain
and/or Haldane-Halperin interpretations. At the end of this
section we introduce a PH conjugate state as a special case
of the Haldane-Halperin hierarchy state, and propose a simple
method to construct coupled-wire models for FQH states at
higher Landau levels.
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TABLE I. List of field variables used in this paper. Their physical meanings and the equations in which they are defined are given.

Symbol Physical meaning Definition

ϕj , θj Bosonic fields for original particles Eq. (5) for fermions, Eq. (9) for bosons
�CF

j , �CF
j Bosonic fields for composite fermions Eq. (20) with even (odd) m for fermions (bosons)

ψCF
R,j , ψCF

L,j Composite-fermion fields Eq. (46)

�CB
j , �CB

j Bosonic fields for composite bosons Eq. (20) with odd (even) m for fermions (bosons)

�VCB
j+1/2, �VCB

j+1/2 Bosonic fields for vortices (quasiparticles) Eq. (26)

ϕhole
j+1/2, θhole

j+1/2 Bosonic fields for holes Eq. (98) or (100)

Aext
0,j , Aext

1,j External electromagnetic gauge fields Action in Eqs. (18) or (19)
a0,j+1/2, a1,j Gauge fields coupled to composite particles a1,j from Eq. (22), a0,j+1/2 are Lagrange multipliers
α0,j , α1,j+1/2 Gauge fields coupled to vortices α1,j+1/2 from Eq. (29), α0,j are Lagrange multipliers

A. Laughlin states

At filling fraction ν = 1/q with odd (even) q, fermions
(bosons) can form the celebrated Laughlin state. We review
the coupled-wire construction of the Laughlin state, which
has been proposed in Ref. [26] and extensively analyzed in
Ref. [27]. Suppose that the kinetic action is given in the form
of Eq. (19) for each wire. The interwire tunneling interaction
for the ν = 1/q Laughlin state is given by

H1 = g

∫
x

∑
j

κj κj+1e
i(ϕj +qθj −ϕj+1+qθj+1 ) + H.c. (33)

To treat the bosonic and fermionic Laughlin states on equal
footing, we choose the factor κj to be a Majorana fermion for
odd q and to be the identity operator for even q. It is important
to note that the interwire interaction (33) is built out of local
electron operators (10) for odd q or local boson operators (9)
for even q. The tunneling Hamiltonian is schematically shown
in Fig. 1(a). This tunneling process picks up oscillation factors
e−ibx from the hopping of a particle in the applied magnetic
field and ei2qkF x from density fluctuations, which are precisely
canceled at ν = 1/q.

The chiral bosonic fields defined by

φ̃R,j = ϕj + qθj , φ̃L,j = ϕj − qθj (34)

satisfy the commutation relations

[∂xφ̃r,j (x), φ̃r ′,j ′ (x ′)] = 2iπrqδr,r ′δj,j ′δ(x − x ′), (35)

where r = R/L = +/−. The tunneling term is then written
as

H1 = g

∫
x

∑
j

κj κj+1e
i(φ̃R,j −φ̃L,j+1 ) + H.c. (36)

Assuming that the coupling constant g flows to the strong-
coupling limit, we see that the tunneling term opens a gap
in the bulk and leaves unpaired gapless chiral modes at the
outermost wires, which correspond to the boundaries of the
FQH system. The commutation relations of the edge modes
are given by Eq. (35) and consistent with those obtained from
the Chern-Simons theory [21]

L = −i
q

4π
εμνλαμ∂ναλ. (37)

We show in Sec. III A 2 that a discrete analog of this Chern-
Simons theory is obtained from the condensation of composite
bosons.

We remark that the tunneling term (33) is actually irrele-
vant in the renormalization group (RG) sense at the fixed point
of decoupled Luttinger liquids (19) because the tunneling
g has scaling dimension 1/(2K ) + q2K/2 � q, where K is
the Luttinger parameter defined by K = √

v/u, However,
the tunneling becomes relevant in the presence of additional
interwire forward-scattering interactions. To see this, let us
define fields on dual wires by

ϕ̃j+1/2 = 1
2 (φ̃R,j + φ̃L,j+1),

θ̃j+1/2 = 1
2 (φ̃R,j − φ̃L,j+1), (38)

which satisfy the commutation relations

[∂xθ̃j+1/2(x), ϕ̃j ′+1/2(x ′)] = iπqδj,j ′δ(x − x ′). (39)

The particle density on the dual wire at y = j + 1/2 can
be defined by ρ̃j+1/2 = (1/πq )∂xθ̃j+1/2, as the unit-charge
particle operators eiφ̃R,j (x) or eiφ̃L,j+1(x) create a kink of the

(a) Original particle (b) Composite fermion

(c) Composite boson (d) Vortex (quasielectron)

FIG. 1. Tunneling Hamiltonian for the ν = 1/q Laughlin state
in terms of (a) the original particles, (b) composite fermions,
(c) composite bosons, and (d) vortices from the composite bosons.
The horizontal lines represent wires where the bosonic fields are
defined. The red straight arrows represent single-particle hopping
involving the ϕj field. The red curly arrows represents charge density
fluctuations involving θj with the wave number kF multiplied by
the factor indicated in red. For the composite fermions, the black
horizontal arrows and the red curved arrows, respectively, represent
chiral fermion modes ψCF

R/L and single-fermion hopping terms. The
associated Chern-Simons couplings are also shown.
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height −πq in θ̃j+1/2. If the coupled-wire Hamiltonian of each
wire has the form

H̃0 = ṽ

2π

∫
x

∑
j

[
K̃ (∂xϕ̃j+1/2)2 + 1

K̃
(∂xθ̃j+1/2)2

]
, (40)

then the tunneling term g cos(2θ̃j+1/2) has the scaling dimen-
sion qK̃ and becomes relevant for K̃ < 2/q [27]. Thus, we
expect that the Laughlin state should be stabilized by adding
to the action (19) the interwire forward-scattering interactions

H inter-forward
0

= w

2π

∫
dx
∑

j

(∂xθ̃j+1/2)2

= w

8π

∫
x

∑
j

[∂x (ϕj + qθj − ϕj+1 + qθj+1)]2, (41)

with w > 0. In the following analysis, we assume the sliding
Luttinger liquid action S0 + ∫

τ
H inter-forward

0 .
A pair of a quasiparticle and its antiparticle is created by

the bare 2kF backscattering operator [27]

ei2θj = ei(φ̃R,j −φ̃L,j )/q . (42)

As this operator creates ∓π kinks in θ̃j±1/2, it hops a quasi-
particle with charge −1/q from the dual wire j + 1

2 to j − 1
2 .

The quasiparticle excitations are deconfined not only along
the wires (as typical in 1D systems), but also across the
wires. This can be understood by considering a string of the
backscattering operators ei2θj ei2θj+1 . . . ei2θj+k with length k.
The bosonic fields inside the string acquire a finite expectation
value ei(2/q )〈θ̃j+1/2〉 when acting on the ground state and thus
are replaced by a constant. As a result, the string of the
backscattering operators leaves quasiparticle excitations with
charge ±1/q at the ends of the string, which are separated by
k wires away from each other. Furthermore, one can transfer a
quasiparticle along the dual wire j + 1

2 from x1 to x2 using a
string operator exp( i

q

∫ x2

x1
dx ∂xφ̃R,j ). With these string opera-

tors, we can create quasiparticle excitations deconfined in the
full 2D space. We can then compute the braiding statistics of
quasiparticles [27] or the ground-state degeneracy on a torus
[28] using the string operators.

1. Composite-fermion picture

We here perform the 2π (q − 1)-flux attachment to bosons
(fermions) for even (odd) q, and convert them to composite
fermions. As proposed by Jain [5,6], the Laughlin ν = 1/q

state is understood as the state corresponding to the filled
lowest Landau level of the composite fermions at the effective
filling fraction νCF = 1. We now implement the flux attach-
ment, as discussed in Sec. II C 1, through the transformation
(20):

�CF
j = ϕj + (q − 1)

∑
j ′ �=j

sgn(j ′ − j )θj ′ , �CF
j = θj . (43)

In terms of these bosonic fields, the kinetic action (19) with
the forward scattering (41) is given by

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

CF
j

(
∂τ�

CF
j − 1

2
(Sa0,j−1/2) − Aext

0,j

)

+ v

2π

(
∂x�

CF
j − a1,j − Aext

1,j

)2 + u

2π

(
∂x�

CF
j

)2

+ w

8π

(
∂x�

CF
j + ∂x�

CF
j − ∂x�

CF
j+1 + ∂x�

CF
j+1

)2

+ i

2π (q − 1)
a1,j (�a0,j−1/2)

]
, (44)

which is written in the local form by introducing the gauge
field aμ. The tunneling term (33) takes the form

H1 = g

∫
x

∑
j

κj κj+1e
i(�CF

j +�CF
j −�CF

j+1+�CF
j+1 ) + H.c., (45)

which is schematically shown in Fig. 1(b). We then define the
composite-fermion fields by

ψCF
R/L,j (x) ∼ κj√

2πα
ei�CF

j (x)±i�CF
j (x). (46)

Recall that κj is a Majorana fermion for odd q, while κj = 1
for even q. This ensures the anticommuting property of ψCF

R/L,j

from the commutation relations (21) with m = q − 1. With
these fermionic fields, the action can be written as

S0 =
∫

τ,x

∑
j

[∑
r=±

ψ
CF†
r,j

(
∂τ − i

2
(Sa0,j−1/2) − iAext

0,j

)
ψCF

r,j

−
∑
r=±

irvψ
CF†
r,j

(
∂x − a1,j − Aext

1,j

)
ψCF

r,j

+ i

2π (q − 1)
a1,j (�a0,j−1/2) + · · ·

]
, (47)

H1 = 2παg

∫
dx
∑

j

eiπ (q−1)/2ψ
CF†
R,j ψCF

L,j+1 + H.c. (48)

Here, the ellipsis in S0 contains four-fermion forward-
scattering terms of the composite fermions and the subscript
r = R/L = +/−. This theory may be seen as a discrete
version of the fermion Chern-Simons theory [7]. We note that
at the naive mean-field level with aμ = 〈aμ〉, the tunneling
term (48) becomes a mass term of the composite fermions
and appears to be relevant in the RG sense. However, this
is not quite correct as discussed above, and the actual RG
flow is controlled by the forward-scattering interactions. If
the coupling constant g flows to the strong-coupling fixed
point, the bulk is gapped while a single gapless chiral fermion
mode remains at the boundary. Thus, the composite fermions
form the IQH state with Chern number C = 1, which may be
thought of as the filled lowest Landau level of the composite
fermions. This illustrates the Jain picture of the Laughlin state
in the coupled-wire approach.

2. Composite-boson picture

We now attach 2πq flux to bosons (fermions) for even
(odd) q and convert their statistics to bosonic. In this
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composite-boson picture, the Laughlin ν = 1/q state is in-
terpreted as a condensate of the composite bosons since they
now see a zero magnetic field on average, as described by the
Ginzburg-Landau theory for the FQH states [2–4]. The flux
attachment is again achieved by the nonlocal transformation
(20):

�CB
j = ϕj + q

∑
j ′ �=j

sgn(j ′ − j )θj ′ , �CB
j = θj . (49)

We then find the local kinetic action after introduction of the
Chern-Simons gauge field aμ:

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

CB
j

(
∂τ�

CB
j − 1

2
(Sa0,j−1/2) − Aext

0,j

)

+ v

2π

(
∂x�

CB
j − a1,j − Aext

1,j

)2 + u

2π

(
∂x�

CB
j

)2

+ w

8π

(
�∂x�

CB
j

)2 + i

2πq
a1,j (�a0,j−1/2)

]
. (50)

The tunneling term (33) becomes

H1 = g

∫
dx
∑

j

κj κj+1e
i(�CB

j −�CB
j+1 ) + H.c. (51)

The commutation relations in Eq. (21) with m = q ensure
that the operators κj e

i�CB
j and ei2�CB

j are bosonic. Thus, the
tunneling term is a hopping of the composite bosons between
neighboring wires [Fig. 1(c)]. When the coupling constant g

flows to the strong-coupling limit, the interaction (51) leads
to condensation of the composite bosons. As the composite
bosons are not local objects in terms of microscopic variables,
this boson condensate does not host gapless Goldstone modes.
Instead, they are Higgsed by the Chern-Simons gauge field aμ

and become massive excitations.
We now switch to the dual vortex picture [10–12], which

enables us to deduce an effective hydrodynamic description
of the Laughlin state in terms of the Chern-Simons theory.
The vortex duality transformation in the coupled wires is
performed via the nonlocal transformation in Eq. (26). In
terms of the vortices, the kinetic action (50) is given by

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCB
j+1/2

(
∂τ�

VCB
j+1/2 − 1

2
(Sα0,j )

)

+ q2v

2π

(
∂x�

VCB
j+1/2 − α1,j+1/2

)2 + v + w

2π

(
∂x�

VCB
j+1/2

)2

+ u − q2v

8π

(
�∂x�

VCB
j−1/2

)2 − i
q

2π
α1,j+1/2(�α0,j )

− v

2π
∂x�

VCB
j+1/2

(
�Aext

1,j

)− i

4π

(
SAext

1,j

)
(�α0,j )

+ i

2π
Aext

0,j (�α1,j−1/2) + · · ·
]
. (52)

The tunneling term (51) is written as

H1 = g

∫
dx
∑

j

κj κj+1e
−i2�VCB

j+1/2 + H.c., (53)

which pins �VCB when this term is relevant. The condensate
of the composite bosons is now seen as a Mott insulator of the

vortices coupled to the gauge field αμ with the level-q Chern-
Simons term [Fig. 1(d)]. The interwire forward-scattering
interaction (41) gives rise to a repulsive interaction between
the vortices and therefore enhances an instability towards a
Mott insulator of the vortices. According to the commutation
relations in Eq. (27) with m = q, the operators ei�VCB

j+1/2 and
κjκj+1e

i2�VCB
j+1/2 behave as bosonic operators.

A physical meaning of the vortex operator ei�VCB
j+1/2 is to

create a single gapped quasiparticle excitation on the dual wire
j + 1

2 . This can be seen by writing it in terms of the bosonic
fields on dual wires (links),

ei�VCB
j+1/2(x) ∝ . . . e−iθj−1(x)e−iθj (x)eiθj+1(x)eiθj+2(x) . . .

= . . . e
− i

q
θ̃j−1/2(x)

e
− i

q
ϕ̃j+1/2(x)

e
i
q
θ̃j+3/2(x)

. . . . (54)

The operator e
− i

q
ϕ̃j+1/2(x) creates a π kink in θ̃j+1/2(x), while

the string of e
± i

q
θ̃j+1/2(x) trivially acts on the ground state

where θ̃j+1/2(x) are pinned. Since ∂x�
VCB
j+1/2 − α1,j+1/2 =

−(1/q )∂xϕ̃j+1/2, the above vortex operator can be rewritten
as

ei�VCB
j+1/2(x) ∝ exp

(
− i

q
ϕ̃j+1/2(x) + i

∫ x

−∞
dx ′α1,j+1/2(x ′)

)
,

(55)

which shows that the vortex operator ei�VCB
j+1/2 is the π -kink

operator e
− i

q
ϕ̃j+1/2 with a Dirac string of the gauge field αμ

inserted from an infinitely distant point. The vortex operator
ei�VCB

j+1/2(x) thus creates a single quasielectron with charge
−1/q at x on the dual wire j + 1

2 . In a similar way, the an-

tivortex operator e−i�VCB
j+1/2 may be seen as an operator creating

a single quasihole with charge 1/q. Such quasiparticle oper-
ators are by no means local operators in terms of the original
particles since any local operator must create quasiparticles in
pairs as in Eq. (42). Finally, neglecting the second and higher
derivative terms, we can regard the action (52) as a discrete
analog of the effective Chern-Simons theory [21]

L = −i
q

4π
εμνλαμ∂ναλ − i

2π
εμνλA

ext
μ ∂ναλ + ijQP

μ αμ, (56)

in the α2 = Aext
2 = 0 gauge, where the quasiparticle cur-

rent is given by j
QP
0,j+1/2 = −(1/π )∂x�

VCB
j+1/2 and j

QP
1,j+1/2 =

−(q2v/π )∂x�
VCB
j+1/2 for the fundamental (smallest charge)

quasielectron. We note that there have been several attempts to
obtain the effective Chern-Simons theory from coupled wires
from different perspectives [46,47].

B. Hierarchy states

After warming up with the Laughlin states, we are now
ready to consider hierarchy states. We focus, in particular, on
the hierarchy states at ν = 2

5 and 2
7 , which are in the Haldane-

Halperin hierarchy obtained by condensation of quasielec-
trons or quasiholes of the Laughlin ν = 1

3 state, respectively
[8,9]. They also appear in the Jain hierarchy as the ν = 2
IQH states of composite fermions [5,6]. It has been shown
that these apparently different approaches lead to FQH states
that belong to the same universality class [16,17,19], i.e., they
are described by the same Chern-Simons theory [20,21]. We
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here show that the coupled-wire approach is also capable
of unifying the Jain and Haldane-Halperin hierarchies at the
corresponding filling fractions in terms of the coupled-wire
Hamiltonian.

Let us first briefly review the construction of the first-level
hierarchy states proposed in Ref. [27]. We suppose that the
action of decoupled wires takes the form of Eq. (19). The
coupled-wire Hamiltonian for the first-level hierarchy states
involves tunneling of particles between second-neighbor
wires. To obtain the hierarchy state at the filling fraction
ν = 2n/(m0 + m1), Teo and Kane proposed the tunneling
Hamiltonian [27]

H1 = g

∫
x

∑
j

κn
j κn

j+2 exp[i(nϕj + m0θj + 2m1θj+1

− nϕj+2 + m0θj+2)] + H.c. (57)

For electronic (bosonic) FQH hierarchy states, this interaction
is built from local electron operators with Majorana fermions
κj and an even integer n + m1 (from local boson operators
with κj = 1 and an even integer m1). In order to see that this
tunneling term produces the correct edge physics, we group
every two successive wires and define the bosonic fields

φ̃1
R,l = nϕ2l + m0θ2l + 2m1θ2l+1,

φ̃2
R,l = nϕ2l+1 + m0θ2l+1,

φ̃1
L,l = nϕ2l − m0θ2l ,

φ̃2
L,l = nϕ2l+1 − m0θ2l+1 − 2m1θ2l , (58)

which satisfy the commutation relations[
∂xφ̃

I
r,l (x), φ̃J

r ′,l′ (x
′)
] = 2iπrKIJ δr,r ′δl,l′δ(x − x ′), (59)

with the K matrix

K = n

(
m0 m1

m1 m0

)
. (60)

The tunneling Hamiltonian (57) is then written as

H1 = g

∫
x

∑
l

[
κn

2lκ
n
2l+2e

i(φ̃1
R,l−φ̃1

L,l+1 )

+ κn
2l+1κ

n
2l+3e

i(φ̃2
R,l−φ̃2

L,l+1 ) + H.c.
]
. (61)

When the coupling constant g flows to the strong-coupling
limit, it opens a bulk gap while there remain two uncoupled
gapless modes at the boundaries. These gapless modes satisfy
the commutation relations (59), which are exactly the same as
those derived from the two-component Chern-Simons theory
[21]

L = − i

4π

∑
I,J

KIJ εμνλα
I
μ∂να

J
λ − i

2π

∑
I

tI εμνλA
ext
μ ∂να

I
λ,

(62)

with the K matrix given in Eq. (60) in the basis of charge vec-
tor t = (n, n). Similarly to the case of the Laughlin states dis-
cussed above, we should add an interwire forward-scattering
interaction

H inter-forward
0 = w

8π

∫
x

∑
l

∑
I=1,2

(
∂xφ̃

I
R,l − ∂xφ̃

I
L,l+1

)2
(63)

(a) Electron (b) Composite fermion

(c) Composite boson (d) Vortex (QE of ν=1/3) 

FIG. 2. Tunneling Hamiltonian for the ν = 2
5 state in terms of

(a) the electrons, (b) composite fermions, (c) composite bosons, and
(d) vortices of the composite bosons. The same notation as in Fig. 1
is used.

to make the coupling constant g relevant. In the following
discussion, this term is assumed to be added to the decoupled-
wire action (19).

The ν = 2
5 state corresponds to the K matrix (60) with

(n,m0,m1) = (1, 3, 2), while the ν = 2
7 state corresponds to

(n,m0,m1) = (1, 3, 4). The above K matrix (60) is given
in the multilayer basis with t = (n, n) as the bosonic fields
(58) carry charge n. On the other hand, the hierarchical
construction naturally gives the Chern-Simons theory in the
hierarchical basis with charge vector t = (1, 0) [21]. The
two bases can be transformed to each other by a GL(2,Z)
transformation with the determinant ±n. In the hierarchical
basis, the K matrix for the ν = 2

5 state is given by

K =
(

3 −1
−1 2

)
, (64)

while the one for the ν = 2
7 state is

K =
(

3 1
1 −2

)
. (65)

The corresponding Chern-Simons theories can be obtained
from the composite boson approach to the coupled-wire
model, as we will demonstrate below.

1. Composite fermion: Jain hierarchy

Let us first consider the ν = 2
5 state, for which interwire

tunneling is given by

H1 = g

∫
x

∑
j

κj κj+2e
i(ϕj +3θj +4θj+1−ϕj+2+3θj+2 ) + H.c., (66)

which is schematically shown in Fig. 2(a). We now attach 4π

flux to electrons using the nonlocal transformation (20) with
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m = 2,

�CF
j = ϕj + 2

∑
j ′ �=j

sgn(j ′ − j )θj ′ , �CF
j = θj . (67)

The kinetic action is then written as

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

CF
j

(
∂τ�

CF
j − 1

2
(Sa0,j−1/2) − Aext

0,j

)

+ v

2π

(
∂x�

CF
j − a1,j − Aext

1,j

)2 + u

2π

(
∂x�

CF
j

)2

+ w

8π

(
∂x�

CF
j + ∂x�

CF
j − ∂x�

CF
j+2 + ∂x�

CF
j+2

)2

+ 1

2

i

2π
a1,j (�a0,j−1/2)

]
, (68)

and the tunneling Hamiltonian (66) is written as

H1 = g

∫
x

∑
j

κj κj+2e
i(�CF

j +�CF
j −�CF

j+2+�CF
j+2 ) + H.c. (69)

We find that the interwire tunneling for the ν = 2
5 state is a

second-neighbor hopping of the composite fermions [see also
Fig. 2(b)]

H1 ∼ −2παg

∫
dx
∑

j

ψCF
R,jψ

CF†
L,j+2 + H.c., (70)

where ψCF is the composite-fermion field defined in Eq. (46).
When g flows to the strong-coupling limit, the tunneling
Hamiltonian H1 leaves two chiral Dirac modes propagating
in the same direction at each boundary and thus gives an IQH
state of the composite fermions with Chern number C = 2.
Thus, the ν = 2

5 state can be understood as the composite
fermions filling the two lowest Landau levels in the coupled
wire model.

The ν = 2
7 state is obtained by the following second-

neighbor tunneling Hamiltonian:

H1 = g

∫
x

∑
j

κj κj+2e
i(ϕj +3θj +8θj+1−ϕj+2+3θj+2 ) + H.c. (71)

Applying the 8π -flux attachment transformation

�CF
j = ϕj + 4

∑
j ′ �=j

sgn(j ′ − j )θj ′ , �CF
j = θj , (72)

we obtain the tunneling Hamiltonian

H1 = g

∫
x

∑
j

κj κj+2e
i(�CF

j −�CF
j −�CF

j+2−�CF
j+2 ) + H.c. (73)

In terms of the composite-fermion fields, we have

H1 = 2παg

∫
dx
∑

j

ψCF
L,jψ

CF†
R,j+2 + H.c., (74)

which, in the strong-coupling limit, opens a bulk gap and
leaves two chiral fermion modes at the boundaries with the
opposite chirality to the ν = 2

5 state, yielding the IQH state
with Chern number C = −2. We conclude that the ν = 2

7 state
is understood as the composite fermions filling two “negative”
Landau levels.

One can readily generalize the construction of the ν =
2
5 state to the Jain hierarchy states at filling fractions ν =
p/[p(q − 1) + 1] with integers p and q [5,6]. These states are
obtained by attaching the 2π (q − 1) flux to electrons (bosons)
for odd (even) q and filling p Landau levels of the composite
fermions. The corresponding interwire tunneling is given by

H1 = g

∫
x

∑
j

κj κj+p exp

{
i

[
ϕj + qθj − ϕj+p + qθj+p

+2(q − 1)
p−1∑
k=1

θj+k

]}
+ H.c., (75)

which involves a pth-neighbor hopping of electrons or
bosons. In this hopping process, a particle feels the magnetic
flux pb that must be canceled by the density fluctuations of
[2(p − 1)(q − 1) + 2q]kF , which is the case at the filling
fraction of our interest. After the 2π (q − 1)-flux attachment
(20), we have

H1 = g

∫
x

∑
j

κj κj+pei(�CF
j +�CF

j −�CF
j+p+�CF

j+p ) + H.c. (76)

The composite fermions see an effective magnetic flux pbCF

that must be canceled by 2kF , resulting in the integer filling
of composite fermion νCF = 2kF /bCF = p. This interaction is
written in terms of the composite-fermion fields (46) as

H1 = 2παg

∫
dx
∑

j

eiπ (q−1)/2ψCF
R,jψ

CF†
L,j+p + H.c., (77)

i.e., a pth-neighbor hopping of composite fermions. This in-
teraction leaves p decoupled chiral composite-fermion modes
at the boundaries, which is consistent with the picture of
p filled Landau levels of the composite fermions. From the
tunneling Hamiltonian in terms of the original bosonic fields
in Eq. (75), we can read off the corresponding K matrix by
examining the commutation relations of the edge states by
grouping p wires. We then find

KIJ = δI,J + (q − 1)CIJ , (78)

where C is the p × p pseudoidentity matrix whose every entry
is one. This K matrix agrees with the one obtained from the
Chern-Simons approach in the multilayer basis [21].

We can similarly obtain the negative Jain hierarchy states
at the filling fractions ν = p/[(q − 1)p − 1] including ν = 2

7
(p = 2 and q = 5). These states are obtained by attaching
2π (q − 1) flux to electrons (bosons) and filling p Landau
levels of the composite fermions in a magnetic field antiparal-
lel to the originally applied one. The corresponding tunneling
Hamiltonian is given by

H1 = g

∫
x

∑
j

κj κj+p exp

{
i

[
ϕj + (q − 2)θj

+2(q − 1)
p−1∑
k=1

θj+k − ϕj+p + (q − 2)θj+p

]}
+ H.c.

(79)
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After the 2π (q − 1)-flux attachment defined in Eq. (20), this
interaction is written as

H1 = g

∫
x

∑
j

κj κj+pei(�CF
j −�CF

j −�CF
j+p−�CF

j+p ) + H.c., (80)

and is given in terms of the composite-fermion fields by

H1 = 2παg

∫
dx
∑

j

eiπ (q−1)/2ψCF
L,jψ

CF†
R,j+p + H.c. (81)

Thus, p chiral fermion modes, with the opposite chirality to
the positive Jain hierarchy states, remain gapless at the bound-
aries and give the Chern number C = −p. The corresponding
K matrix can be read off as

KIJ = −δI,J + (q − 1)CIJ . (82)

2. Composite boson: Haldane-Halperin hierarchy

The ν = 2
5 state is obtained in the Haldane-Halperin hier-

archy construction by exciting quasielectrons on top of the
parent Laughlin ν = 1

3 state and condensing them into the
Laughlin ν = 1

2 state [8,9]. In a field-theoretical description,
this picture is accommodated in the Ginzburg-Landau theory
for the FQH states or in the composite boson formulation via
the 6π -flux attachment [3,4]. Let us emulate the hierarchy
construction of the ν = 2

5 state in the coupled-wire approach.
Applying the 6π -flux attachment transformation defined in
Eq. (20) with m = 3,

�CB
j = ϕj + 3

∑
j ′ �=j

sgn(j ′ − j )θj ′ , �CB
j = θj , (83)

the interwire tunneling (66) is written as [Fig. 2(c)]

H1 = g

∫
x

∑
j

κj−1κj+1e
i(�CB

j−1−2�CB
j −�CB

j+1 ) + H.c., (84)

where we have shifted the wire label as j → j − 1 to simplify
the presentation. The kinetic action (19) with the interwire
forward-scattering interaction (63) is now given by

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

CB
j

(
∂τ�

CB
j − 1

2

(
Sa1

0,j−1/2

)− Aext
0,j

)

+ v

2π

(
∂x�

CB
j − a1

1,j − Aext
1,j

)2 + u

2π

(
∂x�

CB
j

)2

+ w

8π

(
∂x�

CB
j−1 − 2∂x�

CB
j − ∂x�

CB
j+1

)2

+ 1

3

i

2π
a1

1,j

(
�a1

0,j−1/2

)]
, (85)

where we have introduced the Chern-Simons gauge fields
a1

0,j+1/2 and a1
1,j to make the theory local. The tunneling term

(84) would simply result in the condensation of the composite
bosons if the backscattering operator e−i2�CB

j from the middle
wire j were not involved in H1. As explained in Sec. III A,
the 2kF backscattering operator ei2�CB

j = ei2θj creates a pair
of quasiparticle excitations of the Laughlin ν = 1

3 state. The

operator e−i2�CB
j hops a quasielectron with charge −1/q from

the dual wire j − 1
2 to j + 1

2 . Thus, the tunneling term (84)
can be seen to create quasielectrons hopping between adjacent
(dual) wires on top of the condensate of the composite bosons.

We now move to the dual picture in terms of vortices
[11,16–18]. As discussed in Sec. III A 2, vortices repre-
sent pointlike single-quasielectron excitations in this picture,
which sharpens our view of hierarchy states as a condensate
of quasiparticles. Applying the vortex duality transformation
(26), we rewrite the tunneling term (84) in terms of the vortex
fields [Fig. 2(d)]

H1 = g

∫
dx
∑

j

κj−1κj+1

× e−i(�VCB
j−1/2+2�VCB

j−1/2−�VCB
j+1/2+2�VCB

j+1/2 ) + H.c. (86)

The kinetic action (85) becomes

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCB
j+1/2

(
∂τ�

VCB
j+1/2 − 1

2

(
Sα1

0,j

))

+ 9v

2π

(
∂x�

VCB
j+1/2 − α1

1,j+1/2

)2 + v

2π

(
∂x�

VCB
j+1/2

)2

+ u − 9v

8π

(
�∂x�

VCB
j−1/2

)2 − v

2π
∂x�

VCB
j+1/2

(
�Aext

1,j

)
+ w

8π

((
�∂x�

VCB
j−1/2

)− 2
(
S∂x�

VCB
j−1/2

))2

− i
3

2π
α1

1,j+1/2

(
�α1

0,j

)− i

4π

(
SAext

1,j

)(
�α1

0,j

)
+ i

2π
Aext

0,j

(
�α1

1,j−1/2

)+ · · ·
]
, (87)

where we have dropped terms with higher-order derivatives
of the gauge fields that can make only quantitative changes in
the low-energy dynamics. The vortex operators ei�VCB

j+1/2 satisfy
the bosonic statistics [see Eq. (27)] and create a quasielectron
on the dual wire j + 1

2 . In the presence of the composite-
boson condensate, quasielectrons see an effective magnetic
flux bVCB that is produced by the original electrons since
the vortex field �VCB couples to the gauge field α1

μ whose
flux is the original electron density. The composite boson
hopping e−i(�CB

j−1−�CB
j+1 ) gives rise to a density-density interac-

tion between vortices, ei2(�VCB
j−1/2+�VCB

j+1/2 ), with the wave num-
ber 4πρ̄VCB. The effective magnetic flux is canceled when
bVCB = 4πρ̄VCB, giving an effective filling fraction νVCB =
2πρ̄VCB/bVCB = 1

2 for the vortices. Indeed, the interwire tun-
neling (86) has exactly the same form as that for the ν = 1

2
Laughlin state in Eq. (33). Hence, the quasielectrons form the
bosonic Laughlin ν = 1

2 state in the strong-coupling limit of
g. Therefore, the very notion of quasiparticle condensation
in the Haldane-Halperin hierarchy naturally comes out in the
coupled-wire construction.

In order to obtain the effective Chern-Simons theory, we re-
peat what we have done for the Laughlin states in Sec. III A 2.
Thus, we attach 4π flux to the bosonic quasielectrons (vor-
tices)

�
CQ
j+1/2 = �VCB

j+1/2 + 2
∑
j ′ �=j

sgn(j ′ − j )�VCB
j ′+1/2,

�
CQ
j+1/2 = �VCB

j+1/2 (88)
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to define bosonic composite quasiparticle fields �CQ and �CQ.
The tunneling Hamiltonian (86) then becomes

H1 = g

∫
x

∑
j

κj−1κj+1e
−i(�CQ

j−1/2−�
CQ
j+1/2 ) + H.c. (89)

The kinetic action (87) is kept in a local form by introducing
a new Chern-Simons gauge field. The composite quasiparticle

operators κjκj+1e
i�

CQ
j+1/2 also obey the bosonic statistics and

can be condensed. As a final step, we introduce the second
vortex fields �VCQ and �VCQ,

�
VCQ
j =

∑
j ′

sgn(j ′ − j + 1/2)�CQ
j ′+1/2,

�
VCQ
j = 1

2

(
�

CQ
j+1/2 − �

CQ
j−1/2

)
, (90)

which represent pointlike quasiparticle excitations of the
daughter ν = 1

2 state. In the strong-coupling limit the tunnel-
ing term (89) pins the �VCQ field and turns the system into
a Mott insulator of these vortices. Finally, the kinetic action
(87) is written as

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCQ
j

(
∂τ�

VCQ
j − 1

2

(
Sα2

0,j−1/2

))

+ 18v

π

(
∂x�

VCQ
j − α2

1,j

)2 + w − 9v

2π

(
∂x�

VCQ
j

)2

− 9v

2π
∂x�

VCQ
j

(
�α1

1,j−1/2

)− i
3

2π
α1

1,j+1/2

(
�α1

0,j

)
− i

2

2π
α2

1,j

(
�α2

0,j−1/2

)− i

4π

(
Sα1

1,j−1/2

)(
�α2

0,j−1/2

)
+ i

4π

(
Sα1

0,j

)(
�α2

1,j

)− i

4π

(
SAext

1,j

)(
�α1

0,j

)
+ i

2π
Aext

0,j

(
�α1

1,j−1/2

)+ · · ·
]
, (91)

where we have dropped higher derivative terms for brevity.
The gauge fields α1

μ and α2
μ constitute a discrete version of

the Chern-Simons action (62) in the hierarchical basis with
the K matrix (64) via a redefinition of the fields �

VCQ
j →

−�
VCQ
j , �

VCQ
j → −�

VCQ
j , and α2

μ → −α2
μ, appropriately

reflecting the sign of the quasielectron current of the parent
ν = 1

3 state. The full kinetic action for the first-level hierarchy
state is given in Appendix A.

The ν = 2
7 state can be understood in a way parallel to the

ν = 2
5 state. The corresponding tunneling Hamiltonian (71)

is written in terms of the composite bosons via the 6π -flux
attachment transformation (83) as

H1 = g

∫
x

∑
j

κj−1κj+1e
i(�CB

j−1+2�CB
j −�CB

j+1 ) + H.c. (92)

Compared with Eq. (84) for the ν = 2
5 state, this tunneling

Hamiltonian can be seen to excite quasiholes, instead of
quasielectrons, on top of the composite boson condensate, as
the operator ei2�CB

j hops a quasihole from the dual wire j − 1
2

to j + 1
2 . In the vortex picture, the tunneling Hamiltonian

+6π flux

Vortex

+4π flux

Vortex

+4π flux

Vortex

FIG. 3. Tunneling Hamiltonian for a second-level hierarchy state
at ν = 3

7 . Successive applications of the flux attachment and vortex
duality transformations finally yield the Hamiltonian describing the
Mott insulator of vortices. The resulting K matrix is also given
above.

becomes

H1 = g

∫
dx
∑

j

κj−1κj+1

× ei(�VCB
j−1/2−2�VCB

j−1/2−�VCB
j+1/2−2�VCB

j+1/2 ) + H.c. (93)

This leads to the Laughlin ν = 1
2 state of quasiholes. Hence,

the vortices are condensed by attaching −4π flux. The sub-
sequent vortex duality transformation yields a kinetic action
similar to Eq. (91) but with the Chern-Simons term associated
with the K matrix (65) in the hierarchy basis.

The construction is easily generalized to the hierarchy
states at the filling fractions [8,9]

ν = 1

q − 1

2p1 − 1

2p2 − · · ·

, (94)

where q is an odd (even) integer for fermions (bosons), and
p1, p2, . . . are arbitrary integers. The corresponding K matrix
in the hierarchy basis is given by [21]

K =

⎛
⎜⎜⎜⎜⎝

q −sgn(p1) 0
−sgn(p1) 2p1 −sgn(p2) 0

0 −sgn(p2) 2p2
. . .

0
. . .

. . .

⎞
⎟⎟⎟⎟⎠. (95)

The tunneling Hamiltonian for the hierarchy state with this
K matrix is obtained by reverse engineering of the above
procedure in such a way that quasiparticles of the parent
ν = 1/q state are condensed into the daughter ν = 1/2p1

state, quasiparticles of the daughter ν = 1/2p1 state are con-
densed into the granddaughter ν = 1/2p2 state, and so on. An
example of the ν = 3

7 state is illustrated in Fig. 3. We then find
the tunneling Hamiltonian for the first-level hierarchy states

H1 = g

∫
τ,x

∑
j

f ({κj }) exp i[p1ϕj + qp1θj

+ 2(qp1 − 1)θj+1 − p1ϕj+2 + qp1θj+2] + H.c., (96)
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and for the second-level hierarchy states

H1 = g

∫
τ,x

∑
j

f ({κj }) exp i[p1p2ϕj + qp1p2θj

+ (p1p2 − 1)ϕj+1 + (3qp1p2 − q − 2p2)θj+1

− (p1p2 − 1)ϕj+2 + (3qp1p2 − q − 2p2)θj+2

− p1p2ϕj+3 + qp1p2θj+3] + H.c., (97)

where the product of Klein factors f ({κj }) should be appro-
priately chosen, depending on how the interaction is micro-
scopically built out of fermion operators. Note that the tun-
neling Hamiltonian (96) coincides with the one that Teo and
Kane proposed for the first-level hierarchy states [27], which
is given in Eq. (57) and identified with Eq. (96) by choosing
(n,m0,m1) = (p1, qp1, qp1 − 1). The general higher-level
hierarchy states require complicated coupled-wire Hamilto-
nians with multiparticle hopping processes. However, for the
special case p1 = p2 = · · · = 1, the tunneling Hamiltonian
reduces to that for the positive Jain hierarchy states in Eq. (75),
which involves only a single-particle hopping process. Indeed,
as illustrated for the ν = 2

5 and 2
7 states, the coupled-wire

construction yields the same Hamiltonian for both Jain and
Haldane-Halperin hierarchy states where their filling fractions
match.

C. Particle-hole conjugate

We can also obtain the coupled-wire models for the PH
conjugates of fermionic FQH states realized at filling fraction
1 − ν [48]. Following the strategy in Refs. [39,43], we first
attach 2π flux to electrons for converting them to composite
bosons and then apply the vortex duality to the composite
bosons. In this case, the vortex action (32) has the level-1
Chern-Simons term with the opposite sign to that for the
composite bosons (24). Hence, each vortex is attached to −2π

flux and converted to a fermion. In this way, we obtain the
bosonic fields for holes,

ϕhole
j+1/2 = �VCB

j+1/2 +
∑
j ′ �=j

sgn(j ′ − j )�VCB
j ′+1/2,

θhole
j+1/2 = �VCB

j+1/2, (98)

through the flux attachment to the vortex fields (26) using the
transformation (20) with m = 1. Let us call these fields as the
hole fields.

Integrating out αμ in Eq. (32) yields the theory of holes.
The vortex action (32) is then written as

S0 =
∫

τ,x

∑
j

[
i

π
∂xθ

hole
j+1/2

(
∂τϕ

hole
j+1/2 + 1

2

(
SAext

0,j

))

+ v

2π

(
∂xϕ

hole
j+1/2 + 1

2

(
SAext

1,j

)− i

2v

(
�Aext

0,j

))2

+ v

2π

(
∂xθ

hole
j+1/2

)2 − v

2π
∂xθ

hole
j+1/2

(
�Aext

1,j

)
+ u − v

8π

((
�∂xϕ

hole
j−1/2

)+ (
S∂xθ

hole
j−1/2

))2

+ i

4π

(
SAext

1,j

)(
�Aext

0,j

)+ · · ·
]
, (99)

where we have omitted higher derivative terms of the elec-
tromagnetic field Aext

μ . The derivation of the full action is
given in Appendix B 1. Since this is the theory of holes, the
corresponding bosonic fields carry electric charge with the
opposite sign to electrons. There is also a discrete analog of
the Chern-Simons term (i/4π )εμνλA

ext
μ ∂νA

ext
λ producing the

Hall response of the filled lowest Landau level. The action is
free from any fluctuating gauge field and should be identified
with the original electron action (19).

The hole fields defined in Eq. (98) are related to the original
bosonic fields by

ϕhole
j+1/2 = − 1

2 (ϕj + θj + ϕj+1 − θj+1),

θhole
j+1/2 = − 1

2 (ϕj + θj − ϕj+1 + θj+1). (100)

This is a local redefinition of the original bosonic fields and
similar to the relation between a composite fermion and a
fermionized vortex, each of which is obtained by attaching
±2π flux to a boson or a vortex, respectively [38]. From
Eqs. (12) and (100), the electron operators are written as

ψR,j = κj√
2πα

e−i(ϕhole
j+1/2+θhole

j+1/2 ),

ψL,j = κj√
2πα

e−i(ϕhole
j−1/2−θhole

j−1/2 ). (101)

The hole fields (100) can be used to systematically generate
coupled-wire Hamiltonians for the PH conjugates of various
FQH states in the lowest Landau level. We define the PH con-
jugate transformation by the combination of the replacement

ϕj → −ϕhole
j+1/2, θj → θhole

j+1/2, (102a)

and complex conjugation

i → −i. (102b)

The electron operators on the j th wire (12) are transformed
by the PH transformation as

ψL,j → ψ
†
R,j , ψR,j → ψ

†
L,j+1. (103)

Equation (102) defines the coupled-wire version of the PH
transformation. This transformation is essentially equivalent
to the PH transformation defined for a Dirac theory in
Refs. [38,49], as we will discuss in Sec. IV B in more detail.
The PH conjugation with “shifted wires” is also anticipated in
Ref. [30].

As a sanity check, let us apply the PH transformation (102)
to the filled lowest Landau level of electrons, i.e., the ν = 1
IQH state. Its tunneling Hamiltonian may be given by

H1 ∼ g

∫
dx
∑

j

ei(ϕj +θj −ϕj+1+θj+1 ) + H.c., (104)

which leaves a single chiral fermion at the boundaries in
the strong-coupling limit. Here, we have dropped the Klein
factors, which will be appropriately supplemented after the
PH transformation. We apply Eq. (102) to replace the bosonic
fields by the hole fields

H1 ∼ g

∫
dx
∑

j

ei(ϕhole
j−1/2−θhole

j−1/2−ϕhole
j+1/2−θhole

j+1/2 ) + H.c. (105)
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PH

=

Electron Hole

Electron
ν=1 edge

ν=1 edge

Laughlin at PH conjugate at

FIG. 4. PH transformation to the Laughlin ν = 1/q̃ = 1/(2p̃ +
1) state. The PH conjugate of the Laughlin state involves p̃ electron
hopping and obviously leaves the chiral edge states corresponding to
the ν = 1 IQH state.

Using Eq. (100), we obtain the Hamiltonian in terms of the
original bosonic fields

H1 ∼ g

∫
dx
∑

j

ei2θj + H.c. (106)

This is a backscattering operator with the wave number 2kF

and leads to a trivial band insulator, which may be thought
of as an empty state of electrons with kF = 0. Thus, the
PH transformation interchanges the filled and empty Landau
levels as desired.

As a next example, we apply the PH transformation (102)
to the ν = 1/q̃ Laughlin state of electrons, where q̃ is an
odd integer. This is illustrated in Fig. 4. Applying the PH
transformation to Eq. (33) yields

H1 ∼ g

∫
dx
∑

j

ei(ϕhole
j−1/2−q̃θhole

j−1/2−ϕhole
j+1/2−q̃θhole

j+1/2 ) + H.c. (107)

Setting q̃ = 2p̃ + 1, we find the tunneling Hamiltonian in
terms of the original bosonic fields

H1 ∼ g

∫
dx
∑

j

κ
p̃

j−1κ
p̃

j+1

× ei[p̃ϕj−1+p̃θj−1+2(p̃+1)θj −p̃ϕj+1+p̃θj+1] + H.c. (108)

This interaction is allowed at filling fraction

ν = 2p̃

2p̃ + 1
= 1 − 1

q̃
. (109)

When q̃ = 3, the tunneling Hamiltonian in Eq. (108) agrees
with the one proposed in Ref. [26] for the ν = 2

3 FQH state
that has counterpropagating edge modes. This Hamiltonian
corresponds to the tunneling Hamiltonian (96) for the first-
level hierarchy state with q = 1 and p1 = −p̃, in which hole
excitations with charge +1 are condensed into the Laughlin
ν = 1/2p̃ state. In the basis of charge vector t = (1,−1) for
the Chern-Simons theory (62), the corresponding K matrix

takes a diagonal form

K =
(

1 0
0 −q̃

)
. (110)

Thus, this state can be viewed as the stacking of the ν = 1 IQH
state of electrons and the ν = 1/q̃ Laughlin state of holes and
precisely interpreted as the PH conjugate of the Laughlin state
at ν = 1 − 1/q̃.

Another application is that the PH transformation (102)
interchanges the coupled-wire Hamiltonian for the positive
Jain state at ν = p/(2p + 1) in Eq. (75) with that for the
negative Jain state at ν = (p + 1)/[2(p + 1) − 1] in Eq. (79).
In the following sections, we apply this transformation to the
coupled-wire Hamiltonians for the CFL and the Moore-Read
Pfaffian state.

D. FQH sates in higher Landau levels

Pursuing the above idea of defining the hole fields, we
can also discuss bosonic fields for electrons in the (n + 1)th
Landau level in the presence of n filled Landau levels (n ∈ N).
First, let us define the bosonic fields for electrons added on top
of the filled lowest Landau level

ϕ
(n=1)
j+1/2 = 1

2 (ϕj + θj + ϕj+1 − θj+1),

θ
(n=1)
j+1/2 = 1

2 (ϕj + θj − ϕj+1 + θj+1), (111)

which are just a redefinition of the hole fields (100) such that
they carry charge −1. We then recursively define the bosonic
fields for electrons on top of n + 1 filled Landau levels

ϕ
(n+1)
j+ n+1

2
= 1

2

(
ϕ

(n)
j+n/2 + θ

(n)
j+n/2 + ϕ

(n)
j+n/2+1 − θ

(n)
j+n/2+1

)
,

θ
(n+1)
j+ n+1

2
= 1

2

(
ϕ

(n)
j+n/2 + θ

(n)
j+n/2 − ϕ

(n)
j+n/2+1 + θ

(n)
j+n/2+1

)
. (112)

This transformation is designed in such a way that an empty
state plus n filled Landau levels corresponds to the ν = n IQH
state of electrons

H1 ∼ g

∫
x

∑
j

ei2θ
(n)
j+n/2 + H.c.

= g

∫
x

∑
j

ei(ϕj +θj −ϕj+n+θj+n ) + H.c. (113)

Accordingly, the kinetic action (19) written in terms of ϕ
(n)
j

and θ
(n)
j produces a discrete analog of the Chern-Simons term

(in/4π )εμνλA
ext
μ ∂νA

ext
λ .

The coupled-wire Hamiltonian for FQH states in the (n +
1)th Landau level is obtained by writing the corresponding
Hamiltonian for the desired FQH state in terms of the bosonic
fields ϕ

(n+1)
j+ 1

2 (n+1)
and θ

(n+1)
j+ 1

2 (n+1)
in Eq. (112). For example, the

ν = 1 + 1
3 state will be given by the tunneling Hamiltonian

H1 ∼ g

∫
dx
∑

j

ei(ϕ(n=1)
j−1/2+3θ

(n=1)
j−1/2−ϕ

(n=1)
j+1/2+3θ

(n=1)
j+1/2 ) + H.c., (114)

which is written, in terms of the original bosonic fields, as

H1 ∼ g

∫
x

∑
j

ei(2ϕj +2θj +2θj+1−2ϕj+2+2θj+2 ) + H.c. (115)
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Next, we consider the ν = 4
11 state, which is an enigmatic state

observed in experiments [50] whose physical interpretation
remains unsettled [51]. This filling fraction actually admits
the first-level Haldane-Halperin hierarchy state with q = 3
and p1 = 2, whose coupled-wire Hamiltonian is given by [see
Eq. (96)]

H1 = g

∫
x

∑
j

ei(2ϕj +6θj +10θj+1−2ϕj+2+6θj+2 ) + H.c., (116)

which can be written, in terms of the composite fermions
defined through the 4π -flux attachment (67), as

H1 = g

∫
x

∑
j

ei(2�CF
j +2�CF

j +2�CF
j+1−2�CF

j+2+2�CF
j+2 ) + H.c. (117)

This takes the same form as Eq. (114) and thus may be seen
as the composite fermions forming the ν = 1 + 1

3 state as
proposed in Refs. [52,53].

IV. COMPOSITE FERMI LIQUID

In this section we construct the coupled-wire Hamiltonian
for the CFL [23]. This is a compressible liquid state of
electrons at filling fraction ν = 1/M with M even, where the
composite fermions see a zero magnetic field on average and
thus may form a Fermi liquid [23,54]. We begin with the
coupled-wire construction for general M and then specialize
our attention to the filling fraction ν = 1

2 where electrons in
the lowest Landau level are expected to have the PH symmetry
in the limit of large Landau level spacing. The issue of the PH
symmetry for the CFL at ν = 1

2 has been discussed [39,48,55–
57] and recently reexamined by replacing the nonrelativistic
CFL with a Dirac theory [40,49,58–67]. We show that our
coupled-wire Hamiltonian for the CFL at ν = 1

2 is invariant
under the PH transformation proposed in Sec. III C, although
the PH symmetry for coupled wires involves a translation and
therefore is not a symmetry that is realized in an original
microscopic Hamiltonian. We also discuss the CFL of two-
component bosons at ν = 1

2 + 1
2 [49,60,68,69].

A. General construction at ν = 1/M

The composite fermions obtained through the 2πM-flux
attachment to fermions (bosons) with an even (odd) integer
M realize the Jain sequence ν = p/(pM + 1) when they
fill p Landau levels. The tunneling Hamiltonian for the Jain
sequence proposed in Sec. III B 1 involves pth-neighbor hop-
ping of particles. In the limit p → ∞ where the filling fraction
approaches ν = 1/M , the tunneling Hamiltonian becomes
long ranged. Instead, we propose a simpler nearest-neighbor
tunneling Hamiltonian1

H1 =
∫

x

∑
j

[
gRκjκj+1e

i[ϕj +(M+1)θj −ϕj+1+(M−1)θj+1]

+ gLκjκj+1e
i[ϕj +(M−1)θj −ϕj+1+(M+1)θj+1] + H.c.

]
,

(118)

1The same tunneling Hamiltonian for M = 2 is considered in
Ref. [105] for a two-leg fermionic ladder at ν = 1

2 .

(a) Original particle (b) Composite fermion

FIG. 5. Tunneling Hamiltonian for the CFL at ν = 1/M in terms
of (a) the original particles and (b) composite fermions.

where we assign κj to be a Majorana fermion for even
M while κj = 1 for odd M . This tunneling Hamiltonian is
schematically shown in Fig. 5. The operators in the tunneling
Hamiltonian are chiral operators with a nonzero conformal
spin and cannot open a gap even in the strong-coupling limit
of gR/L. Thus, the resulting state is expected to be gapless.
Indeed, applying the 2πM-flux attachment transformation
(20) with m = M , we obtain

H1 =
∫

x

∑
j

[
gRκjκj+1e

i(�CF
j +�CF

j −�CF
j+1−�CF

j+1 )

+ gLκjκj+1e
i(�CF

j −�CF
j −�CF

j+1+�CF
j+1 ) + H.c.

]
, (119)

which can be written in terms of the composite-fermion fields
(46) as

H1 = 2παeiπM/2
∫

x

∑
j

[
gRψCF

R,jψ
CF†
R,j+1

+ gLψCF
L,jψ

CF†
L,j+1 + H.c.

]
. (120)

This Hamiltonian gives a simple nearest-neighbor hopping
of the composite fermions within the same branch. With the
kinetic action given in Eq. (47),

S0 =
∫

τ,x

∑
j

[∑
r=±

ψ
CF†
r,j

(
∂τ − i

2
(Sa0,j−1/2) − iAext

0,j

)
ψCF

r,j

−
∑
r=±

rivψ
CF†
r,j

(
∂x − a1,j − Aext

1,j

)
ψCF

r,j

+ i

2πM
a1,j (�a0,j−1/2) + · · ·

]
, (121)

the coupled-wire model may be seen as a discrete version of
the Chern-Simons CFL theory proposed by Halperin, Lee,
and Read [23] in the a2 = Aext

2 = 0 gauge. Similarly to the
hierarchy states discussed so far, there is a caveat that the
tunneling term (120), consisting of bilinears of the composite-
fermion fields, are not relevant in the RG sense in the limit of
decoupled wires. Hence, the ellipsis in Eq. (121) is understood
to contain some interwire forward-scattering interactions of
original particles that make the coupling constants gR/L

relevant.
Applying a mean-field approximation to the gauge field

aμ = 〈aμ〉 and neglecting forward-scattering interactions, we
can examine the band structure of the composite fermions.
We here set 〈aμ〉 = 0 as a nonvanishing average merely shifts
the origin of momentum space. The mean-field Hamiltonian
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FIG. 6. The Fermi surface of the composite fermion from
Eq. (123). For gR = gL = 0, the composite fermion has linear disper-
sions at kx = ±kF while a flat dispersion along ky . Nonzero gR = gL

develop an open Fermi surface with the shape of cosine.

is given by

HMF =
∫

dkx

2π

∑
ky

[
ψ

CF†
R,kHR (k)ψCF

R,k + ψ
CF†
L,k HL(k)ψCF

L,k

]
(122)

with

HR (k) = v(kx − kF ) − g̃R cos(ky − πM/2),

HL(k) = −v(kx + kF ) − g̃L cos(ky − πM/2), (123)

where g̃R/L = 4παgR/L and the chemical potential for the
composite fermions is set to be at zero energy. The composite
fermion’s Fermi surface is schematically shown in Fig. 6.
The interaction gR/L cannot exceed an energy cutoff � ∼ v/α

below which the linearized approximation for the dispersion
in individual quantum wires is justified. This imposes a re-
striction that one can only obtain the CFL with an open Fermi
surface from the coupled-wire construction. The dispersion of
the composite fermions can be quadratic in the y direction
while it remains linear in the x direction.

B. Fermion at ν = 1
2

We here focus on the CFL at ν = 1
2 . In the limit of

vanishing Landau level mixing, a half-filled Landau level
at ν = 1

2 possesses an exact PH symmetry. However, the
Halperin-Lee-Read theory for the CFL at ν = 1

2 [23] is not
explicitly PH symmetric, and the PH conjugate of the CFL,
called the anti-CFL or the composite hole liquid, has also
been discussed [39,40]. Furthermore, it has been argued that
the CFL can have an emergent PH symmetry at low energies
[67,70].

We have defined the PH transformation for coupled-wire
models in Eq. (102). We note that the PH transformation does
not represent a microscopic symmetry; in other words, there
is no way to regularize the transformation (102) in a purely
2D lattice system with short-range interactions. A simple
way to see this is to examine how the PH transformation
acts on the electron operators. Equation (103) tells us that
a left-moving fermion ψL,j is transformed to ψ

†
R,j in the

same wire, while a right-moving fermion ψR,j is transformed
to ψ

†
L,j+1 in a neighboring wire. Such a PH transformation

4π flux attachment -4π flux attachment

Composite hole

Electron Hole

Composite fermion

FIG. 7. Tunneling Hamiltonian for the CFL at ν = 1
2 . After 4π -

flux attachment to electrons, the Hamiltonian is written in terms of
composite fermions. Starting from the hole picture, we can also write
the Hamiltonian in terms of composite holes by attaching −4π flux
to the holes.

cannot be implemented for a local fermionic operator ψj ∼
eikF xψR,j + e−ikF xψL,j . Nevertheless, the PH transformation
(102) can be used to derive the PH conjugates of FQH states
with proper topological properties as discussed in Sec. III C. It
is thus interesting to examine how the PH transformation acts
on our coupled-wire model for the CFL at ν = 1

2 .
Our coupled-wire model for the CFL at ν = 1

2 has the
kinetic action

S0 =
∫

τ,x

∑
j

{
i

π
∂xθj

(
∂τϕj − Aext

0,j

)+ v

2π

(
∂xϕj − Aext

1,j

)2

+ u

2π
(∂xθj )2 + ũ − v

8π
[(�∂xϕj ) − (S∂xθj )]2

}
, (124)

and tunneling Hamiltonian

H1 =
∫

x

∑
j

[
gRκjκj+1e

i(ϕj +3θj −ϕj+1+θj+1 )

+ gLκjκj+1e
i(ϕj +θj −ϕj+1+3θj+1 ) + H.c.

]
, (125)

which is depicted in Fig. 7. Here, we have added the interwire
forward-scattering term with the coupling ũ − v as a tuning
parameter for the kinetic action. For simplicity, we have
omitted other forward-scattering interactions that would be
required to make the tunneling terms relevant in the RG sense,
and we here concentrate on the above simple form of the
kinetic action. We then rewrite this theory in terms of the hole
fields defined in Eq. (100). The kinetic action (124) becomes

S0 =
∫

τ,x

∑
j

[
i

π
∂xθ

hole
j+1/2

(
∂τϕ

hole
j+1/2 + 1

2

(
SAext

0,j

))

+ v

2π

(
∂xϕ

hole
j+1/2 + 1

2

(
SAext

1,j

))2

+ ũ

2π

(
∂xθ

hole
j+1/2

)2

+ u − v

8π

((
�∂xϕ

hole
j−1/2

)+ (
S∂xθ

hole
j−1/2

))2

+ i

4π

(
SAext

1,j

)(
�Aext

0,j

)+ · · ·
]
, (126)
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where we have omitted higher-order derivative terms contain-
ing Aext

μ . The tunneling Hamiltonian (125) is now rewritten
as

H1 =
∫

x

∑
j

[
gRκjκj+1e

i(ϕhole
j−1/2−θhole

j−1/2−ϕhole
j+1/2−3θhole

j+1/2 )

+ gLκjκj+1e
i(ϕhole

j−1/2−3θhole
j−1/2−ϕhole

j+1/2−θhole
j+1/2 ) + H.c.

]
. (127)

We thus find that the CFL action defined by Eqs. (124) and
(125) is symmetric under the PH transformation (102) when
u = ũ and gR = gL and the Klein factors are appropriately
assigned. In deriving the CFL action in terms of the hole
fields in Eqs. (126) and (127), we have employed the 2π -flux
attachment to electrons and the vortex duality transformation
so that we can identify the vortices attached by −2π flux with
holes, as argued in Sec. III C. In this intermediate step, we
obtain the CFL action in terms of the composite bosons and
its vortices. Actually, these bosonic formulations of the CFL
action turn out to be self-dual and give another hallmark of
the PH symmetry in the fermionic theory [38]. The detailed
discussion is provided in Appendix B 1.

We can thus write the CFL action in terms of either the
composite fermions with M = 2 discussed above,

�CF
j = ϕj + 2

∑
j ′ �=j

sgn(j ′ − j )θj ′ , �CF
j = θj , (128)

or the composite holes, which can be obtained by attaching
the −4π flux to the hole fields,

�CH
j+1/2 = ϕhole

j+1/2 − 2
∑
j ′ �=j

sgn(j ′ − j )θhole
j ′+1/2,

�CH
j+1/2 = θhole

j+1/2. (129)

The chiral bosonic fields corresponding to the composite
fermions and the composite holes are related to each other
in a local manner:

�CH
j+1/2 + �CH

j+1/2 = �CF
j+1 + �CF

j+1,

�CH
j+1/2 − �CH

j+1/2 = �CF
j − �CF

j . (130)

As a result, the open Fermi surface of the composite holes has
the same shape as that of the composite fermions discussed
above. However, the physical origins of the Chern-Simons
gauge fields are different between two formulations, as they
have Chern-Simons terms with opposite signs. We conclude
that, within the coupled-wire approach, the CFL and the
composite hole liquid belong to the same phase when the
PH symmetry in the sense of Eq. (103) exists, since both
theories can be obtained from the same microscopic Hamilto-
nian. However, in the presence of boundaries, the CFL action
violates the PH symmetry, and there may be chiral fermion
edge modes from a filled Landau level for the composite hole
liquid as seen from Fig. 7.

We now make a comparison between our model and the
coupled-wire model with a single Dirac cone at ν = 1

2 dis-
cussed in Refs. [38,49]. In fact, the PH transformation (103)
is essentially the same as what is defined in Refs. [38,49],
and the flux attachment transformation (20) with m = 2 is
essentially the duality transformation defined in Refs. [38,49].
The apparent distinction just stems from where the fermionic

fields ψR/L are defined; in our model, each wire has both
a right-going fermion mode and a left-going fermion mode,
while the chiral fermion modes are defined separately on
neighboring wires in an alternating manner in Refs. [38,49].
When a gauge field is introduced on each wire to make the the-
ory local after the flux attachment or duality transformation,
a Chern-Simons term remains in our model while it does not
in the model in Refs. [38,49]. In the latter model where each
wire has only a chiral fermion mode, the simplest Hamiltonian
with fermion hoppings between neighboring wires yields a
single Dirac cone. Such a system is not regularized on a
lattice but it gives an effective description of the surface of
a certain topological crystalline insulator or the Son’s theory
[58] for the half-filled Landau level [38,49]. On the other
hand, we have restricted ourselves to considering coupled-
wire models that can be realized in a strictly 2D lattice system
such that each wire must consist of right- and left-going
fermions. This naturally led to the CFL with an open Fermi
surface at ν = 1

2 under the assumption of the uniform flux
configuration.

At this stage, it is not clear what one can say from our
coupled-wire analysis of the CFL about the PH symmetry in
the actual half-filled Landau level. As mentioned above, our
PH transformation is implemented in a nonlocal way involv-
ing a “half” translation of wires. Therefore, even after taking
the continuum limit with respect to discrete wire variables,
our model does not necessarily describe the same physics
as in the Landau level where the PH symmetry acts locally
in Landau level variables (while it still acts nonlocally in
microscopic variables). A similar subtlety has been pointed
out in a coupled-wire model for the surface topological order
of interacting 3D topological superconductors, where the 32-
fold classification has been obtained for the antiferromagnetic
time-reversal symmetry while the classification is known to
be 16-fold for the usual time-reversal symmetry [34]. Another
issue is the shape of the Fermi surface. In our approach,
we can only deal with an open Fermi surface with a linear
dispersion in one direction and a quadratic dispersion in the
other direction, which is topologically different from a closed
Fermi surface.

C. Two-component boson at ν = 1
2 + 1

2

In analogy with fermions where the PH conjugate is taken
with respect to a filled Landau level (IQH state), we may also
define the PH conjugate for bosons, which is now taken with
respect to a bosonic IQH state [71] whose smallest filling
is ν = 2. One can then expect to apply a similar argument
for the PH symmetry to bosons at ν = 1. Although the PH
symmetry is not an exact symmetry for bosons in the Landau
level, there can be an emergent PH symmetry at ν = 1 in the
long-wavelength limit as it is expected in the Read’s theory
for the lowest Landau level [72] and has been discussed
recently in Refs. [60,63,68]. The case for two-component
bosons at ν = 1

2 + 1
2 is of particular interest since a two-flavor

Dirac theory, which is a natural extension of the Son’s Dirac
theory for fermions at ν = 1

2 [58], becomes a good candidate
for an incompressible state that manifests a PH symmetry
[49,60,68]. We here discuss a coupled-wire model of the CFL
for bosons at ν = 1

2 + 1
2 with a kind of PH symmetry that
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cannot be realized in a 2D lattice system, in a similar spirit
to fermions at ν = 1

2 discussed above.
We consider two species of bosonic fields ϕσ

j (x) and θσ
j (x),

which are labeled by up or down spin σ =↑,↓. The CFL at
ν = 1

2 + 1
2 may be described by the action with the kinetic

terms

S0 =
∫

τ,x

∑
j

∑
σ=↑,↓

[
i

π
∂xθ

σ
j

(
∂τϕ

σ
j − Aσ

0,j

)

+ v

2π

(
∂xϕ

σ
j − Aσ

1,j

)2 + u

2π

(
∂xθ

σ
j

)2

+ u − v

8π

((
�∂xϕ

σ
j

)− (
S∂xθ

−σ
j

))2
]
, (131)

and the tunneling terms

H1 = g

∫
x

∑
j

∑
σ=↑,↓

[
ei(ϕσ

j +2θσ
j +θ−σ

j −ϕσ
j+1+θ−σ

j+1 )

+ ei(ϕσ
j +θ−σ

j −ϕσ
j+1+2θσ

j+1+θ−σ
j+1 ) + H.c.

]
, (132)

where −σ stands for ↓ (↑) for σ =↑ (↓) and we have coupled
the bosonic fields with external gauge fields Aσ

μ for each
species. We have assumed that the action is symmetric under
the exchange of two species, while a more general form of
the action is considered in Appendix B 2, where the detailed
derivation of the hole theory is provided. We here simply
state the strategy of the derivation and consequences. This
action can be regarded as the CFL with two open Fermi
surfaces, each of which carries different spins, coupled to
a single Chern-Simons gauge field by applying the 2π -flux
attachment to both species of bosons. The hole description of
this CFL action is obtained by applying the mutual 2π -flux
attachment and the subsequent vortex duality to each species
of mutual composite bosons. The resulting vortex theory has
a mutual Chern-Simons term with the opposite sign to that
for the mutual composite bosons. Integrating out the mutual
Chern-Simons gauge fields in the vortex theory yields the
desired hole theory. The kinetic action (131) is then written
as

S0 =
∫

τ,x

∑
j,σ

[
i

π
∂xθ

hole,σ
j+1/2

(
∂τϕ

hole,σ
j+1/2 + 1

2

(
SAσ

0,j

))

+ v

2π

(
∂xϕ

hole,σ
j+1/2 + 1

2

(
SAσ

1,j

))2

+ u

2π

(
∂xθ

hole,σ
j+1/2

)2

+ u − v

8π

((
�∂xϕ

hole,σ
j−1/2

)+ (
S∂xθ

hole,σ
j−1/2

))2

+ i

4π

(
SAσ

1,j

)(
�A−σ

0,j

)+ · · ·
]
, (133)

where we have dropped higher-order derivative terms involv-
ing the external gauge fields. The tunneling Hamiltonian (132)
reads as

H1 = g

∫
x

∑
j,σ

[
ei(ϕhole,σ

j−1/2−2θ
hole,σ
j−1/2−θ

hole,−σ
j−1/2 −ϕ

hole,σ
j+1/2−θ

hole,−σ
j+1/2 )

+ ei(ϕhole,σ
j−1/2−θ

hole,−σ
j−1/2 −ϕ

hole,σ
j+1/2−2θ

hole,σ
j+1/2−θ

hole,−σ
j+1/2 ) + H.c.

]
. (134)

In the kinetic action, we find that the bosonic fields for each
species carry the opposite charge compared with the original

bosons, and there exists a discrete analog of the mutual Chern-
Simons term (i/2π )εμνλA

↑
μ∂νA

↓
λ in the Aσ

2 = 0 gauge, which
produces the Hall response of the bosonic IQH state [71]. As
there is no dynamical gauge fields in Eqs. (133) and (134),
this action must be related to the original action by a local
transformation of the bosonic fields, which is given by

ϕ
hole,σ
j+1/2 = − 1

2

(
ϕσ

j + θ−σ
j + ϕσ

j+1 − θ−σ
j+1

)
,

θ
hole,σ
j+1/2 = − 1

2

(
ϕ−σ

j + θσ
j − ϕ−σ

j+1 + θσ
j+1

)
. (135)

We then find that the CFL action is symmetric under the
transformation

ϕσ
j → −ϕ

hole,σ
j+1/2, θσ

j → θ
hole,σ
j+1/2 , (136)

with complex conjugation. This transformation may be re-
garded as a coupled-wire version of the antiunitary PH
transformation for two-component bosons in the follow-
ing way. Let us introduce new bosonic fields by φσ

j =
ϕσ

j + θ−σ
j and φ̃σ

j = ϕσ
j − θ−σ

j , which satisfy the commu-

tation relations [∂xφ
↑
j (x), φ↓

j ′ (x ′)] = −[∂xφ̃
↑
j (x), φ̃↓

j ′ (x ′)] =
2iπδj,j ′δ(x − x ′) while the other commutators vanish. These
bosonic fields actually correspond to gapless edge modes of
the bosonic IQH state at ν = 1 + 1, and φσ

j and φ̃σ
j have

the opposite chirality to each other (see also Ref. [73]). If
we define bosonic operators by bσ,j = eiφσ

j and b̃σ,j = eiφ̃σ
j ,

the transformation (136) acts on these bosonic operators as
bσ,j → b̃

†
σ,j+1 and b̃σ,j → b

†
σ,j . Thus it can be seen as a PH

transformation [49]. However, due to a reason similar to the
one for the PH transformation in the fermionic case, such a
transformation cannot be properly defined in purely 2D lattice
systems.

When the numbers of each species of bosons are not
separately conserved, i.e., for the case of single-component
bosons, the above derivation of PH conjugate states through
the mutual 2π -flux attachment and vortex duality is not
appropriate. Nevertheless, we may still define a PH trans-
formation by looking at the bosonic fields corresponding
to edge modes of the bosonic IQH state. For example, for
the single-component case, the bosonic IQH state in fact
belongs to the same universality class as the bosonic negative
Jain hierarchy state at ν = 2, whose tunneling Hamiltonian
is given in Eq. (79) with p = 2 and q = 2. Its edge states
are given by φ1

l = ϕ2l + 2θ2l+1, φ2
l = ϕ2l+1, φ̃1

l = ϕ2l , and
φ̃2

l = ϕ2l+1 − 2θ2l . We then define the PH transformation by
φI

l → φ̃I
l+1 and φ̃I

l → φI
l with complex conjugation. The CFL

Hamiltonian with a single Fermi surface [Eq. (118) with
M = 1] does not have the PH symmetry in this sense, but
one can see, by extending the construction of the CFL in
Sec. IV A, that a Hamiltonian with two Fermi surfaces does.
This transformation can also be used to obtain the PH con-
jugates of several other bosonic FQH states. When the above
PH transformation is applied to the tunneling Hamiltonian for
the bosonic Laughlin ν = 1

2 state in Eq. (33), the transformed
Hamiltonian turns out to describe the same topological order
as a negative Jain state at ν = 3

2 . This PH transformation
may be used to obtain the bosonic anti-Pfaffian state from
the coupled-wire Hamiltonian for the Pfaffian state discussed
below.
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V. PFAFFIAN STATES

As discussed in the previous section, the composite
fermions obtained via the 2πM-flux attachment at filling
fraction ν = 1/M see a vanishing magnetic field on average.
Aside from forming a Fermi liquid, the composite fermions
have another option of forming a superconducting state. Read
and Green [24] have argued that a spinless chiral p-wave su-
perconductor of the composite fermions with orbital angular
momentum � = −1 is the Moore-Read Pfaffian state, which
is known to harbor non-Abelian anyons as its quasiparticles
[25]. In this section, we first confirm that the coupled-wire
model proposed by Teo and Kane [27] for the Pfaffian state is
indeed consistent with this picture in terms of the composite
fermions. We note that more phenomenological coupled-wire
models for pairing states have been recently proposed in
Ref. [30]. We then apply the idea of hierarchy construction in
Sec. III B 2 to the Pfaffian state to obtain coupled-wire models
for the so-called Bonderson-Slingerland hierarchy [41]. We
also construct a coupled-wire model for the anti-Pfaffian state
at ν = 1

2 , which is the PH conjugate of the Pfaffian state
[42,43], and discuss a possible way to obtain other pairing
states of the composite fermions.

A. Pfaffian state

We first review the construction of the Moore-Read Pfaf-
fian states from coupled wires by Teo and Kane [27]. We
consider fermions at ν = 1/M for an even integer M (bosons
for an odd integer M). In this case, we have to start with
an array of wires equally spaced in a spatially modulated
magnetic field or of wires unequally spaced in a uniform mag-
netic field as schematically shown in Fig. 8(a). The tunneling
Hamiltonian is given by

H1 =
∫

x

∑
l

{
1∑

a=0

1∑
b=0

tabκ2l+aκ2l+b+2

× exp

[
i

(
ϕ2l+a +

3∑
c=0

�c
ab(M )θ2l+c − ϕ2l+b+2

)]

+ tuκ2lκ2l+1e
i[ϕ2l+(M−1)θ2l−ϕ2l+1+(M−1)θ2l+1]

+ tve
i(2θ2l−2θ2l+1 ) + H.c.

}
, (137)

where �ab(M ) are integer vectors given by

⎛
⎜⎝

�00

�11

�01

�10

⎞
⎟⎠ =

⎛
⎜⎝

M + 1 2(M − 1) M + 1 0
0 M + 1 2(M − 1) M + 1

M + 1 2(M − 1) 2(M − 1) M + 1
0 M + 1 M + 1 0

⎞
⎟⎠.

(138)

Here, we have assumed that the coupling constants tab, tu,
and tv are complex numbers. This Hamiltonian is pictorially
given in Fig. 8(b). Again, the Klein factors κj are chosen to be
Majorana fermions obeying {κj , κj ′ } = δjj ′ for the fermionic

(a)

(b) Original particle

(c) Composite fermion

FIG. 8. Tunneling Hamiltonian for the Pfaffian state at ν = 1/M .
(a) Quantum wires are placed in a magnetic field of the average flux
b = 2MkF with modulation δb = 2kF . The Hamiltonian is given in
terms of the bosonic fields corresponding to (a) the original particles
and (b) composite fermions. In the latter case, two adjacent wires
can be decomposed into a bosonic charge mode �c

l (solid line) and
neutral chiral Majorana modes ξ

1,2
p,l (dashed arrow).

case while κj = 1 for the bosonic case. As reviewed in
Appendix C 1, when the coupling constants are fine tuned,
Teo and Kane showed that this tunneling Hamiltonian leaves
a chiral bosonic field carrying charge and a neutral Majorana
fermion field propagating in the same direction at the bound-
aries [27]. They also argued that the bare 2kF backscattering
operator ei2θj creates a pair of quasiparticles with charge
±1/2M and its neutral sector corresponds to spin fields of
the Ising CFT, while the spin field does not admit an explicit
bosonic (vertex) representation due to its non-Abelian nature.
The M = 0 case corresponds to the chiral p-wave supercon-
ductor in which a single chiral Majorana fermion mode is left
at the boundary while there exist bulk collective excitations
(Goldstone modes) from the condensate of charge-2 bosons
[27].

We now perform the 2πM-flux attachment transforma-
tion given in Eq. (20) with m = M to find the tunneling
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Hamiltonian in terms of the composite fermions:

H1 =
∫

x

∑
l

[∑
a,b

tabκ2l+aκ2l+b+2

× exp i

(
�CF

2l+a +
3∑

c=0

�c
ab(0)�CF

2l+c − �CF
2l+b+2

)

+ tuκ2lκ2l+1e
i(�CF

2l −�CF
2l −�CF

2l+1−�CF
2l+1 )

+ tve
i(2�CF

2l −2�CF
2l+1 ) + H.c.

]
, (139)

which is depicted in Fig. 8(c). Here, the vectors �ab(0) are
those given in Eq. (138) with M = 0. The interaction thus
takes the same form as the original interaction (137) with
M = 0. Hence, this tunneling Hamiltonian should be inter-
preted as a chiral p-wave superconductor of the composite
fermions. Following the prescription of Ref. [27], we define
the charge and neutral bosonic fields by grouping two neigh-
boring wires

�c
l = 1

2

(
�CF

2l + �CF
2l + �CF

2l+1 − �CF
2l+1

)
,

�c
l = �CF

2l + �CF
2l+1,

φn
R,l = 1

2

(
�CF

2l + �CF
2l − �CF

2l+1 − 3�CF
2l+1

)
,

φn
L,l = 1

2

(
�CF

2l − 3�CF
2l − �CF

2l+1 + �CF
2l+1

)
, (140)

which satisfy the commutation relations[
�c

l (x),�c
l′ (x

′)
] = −iπM sgn(l − l′),[

�c
l (x),�c

l′ (x
′)
] = iπδl,l′�(x − x ′),[

φn
r,l (x), φn

r ′,l′ (x
′)
] = iπδl,l′ [rδr,r ′ sgn(x − x ′) − εr,r ′ ],

[
�c

l (x), φn
r ′,l′ (x

′)
] = − iπ

2
(M − 1)δl,l′ , (141)

while the other commutators vanish. Here, we have used the
notation εR,L = −εL,R = 1 and εR,R = εL,L = 0. We here
defined the charged bosonic fields labeled by c to be nonchiral,
whereas the neutral bosonic fields labeled by n to be chiral.
The tunneling Hamiltonian (139) is then written as

H1 =
∫

x

∑
l

[
t00κ2lκ2l+2e

i(�c
l −�c

l+1+φn
R,l−φn

L,l+1 )

+ t11κ2l+1κ2l+3e
i(�c

l −�c
l+1−φn

R,l+φn
L,l+1 )

+ t01κ2lκ2l+3e
i(�c

l −�c
l+1+φn

R,l+φn
L,l+1 )

+ t10κ2l+1κ2l+2e
i(�c

l −�c
l+1−φn

R,l−φn
L,l+1 )

+ tuκ2lκ2l+1e
i(φn

R,l+φn
L,l ) + tve

i(φn
R,l−φn

L,l ) + H.c.
]
. (142)

When forward-scattering interactions are appropriately incor-
porated and tuned in such a way that the operators eiφn

r,l have
conformal weight 1

2 , we can define neutral Dirac fermion
operators by

ψn
r,l (x) = ηl√

2πα
eiφn

r,l (x). (143)

These operators are ensured to satisfy fermionic anticommu-
tation relations by the commutation relation (141) and the

Klein factor ηl . Specifically, the Klein factors are chosen to
be ηl = κ2l for even M while they are defined to be new
Majorana operators obeying {ηl, ηl′ } = 2δl,l′ for odd M . As
different treatments for the Klein factor are required for the
bosonic and fermionic cases, we need to treat them sepa-
rately. We consider the fermionic (even M) case below. The
detailed discussion including the bosonic case can be found
in Appendix C 2. After appropriately scaling the coupling
constants, we find the tunneling Hamiltonian (142) in terms
of the neutral Dirac fermion fields (143):

H1 =
∫

x

∑
l

[
ei(�c

l −�c
l+1 )
(
g00ψ

n
R,lψ

n†
L,l+1 + g11ψ

n†
R,lψ

n
L,l+1

+ g01ψ
n
R,lψ

n
L,l+1 + g10ψ

n†
R,lψ

n†
L,l+1

)
− iguψ

n
R,lψ

n
L,l + igvψ

n
R,lψ

n†
L,l + H.c.

]
, (144)

where g’s are taken to be real (gab = |tab|, gu = |tu|, and
gv = |tv|).

We first consider the case where only the coupling con-
stants g00 and g11 are nonvanishing. In this case, the numbers
of the composite fermions in two layers, consisting of wires
labeled by even (2l) or odd (2l + 1) integers, are separately
conserved, as seen from Fig. 8(b). When g00 and g11 flow
to the strong-coupling limit, we obtain the Halperin (M +
1,M + 1,M − 1) state [74], e.g., the 331 state for the case
of ν = 1

2 . This can be checked by examining the K matrix for
the edge states in terms of the original bosonic fields, which
is given by Eq. (60) with (n,m0,m1) = (1,M + 1,M − 1).
It can also be shown that this state is a generalized hierarchy
state obtained from the Laughlin ν = 1/(M + 1) state by con-
densing charge-[2/(M + 1)] quasielectrons into the Laughlin
ν = 1

4 state in the way discussed in Sec. III B 2. In the tun-
neling Hamiltonian (144), the neutral Dirac fermions will be
gapped in the bulk while leaving an unpaired gapless Dirac
fermion mode at the boundary. Once the neutral fermions are
gapped in the bulk, a charge-2 boson tunneling ei(2�c

l −2�c
l+1 )

will be generated and induce condensation of the charge-2
Cooper pairs of the composite fermions as in superconductors.
However, concomitant Goldstone modes are Higgsed by the
Chern-Simons gauge field and the bulk is entirely gapped
while a gapless chiral charge mode is left at the edge. As there
is a chiral neutral Dirac fermion at the edge (in addition to
the charge mode), this may be interpreted as the weak-pairing
phase of a chiral triplet p-wave superconductor of the com-
posite fermion if we regard the layer degrees of freedom as
spin [24,75,76]. The coupling gv gives an interaction between
the two layers of composite fermions and induces a local mass
term for the neutral Dirac fermions. The system will undergo
a transition by increasing gv to a phase in which the neutral
fermions are gapped out without leaving any gapless edge
mode. This can be understood as the strong-pairing phase
of composite fermions [24] and corresponds to the Laughlin
ν = 1/4M state of tightly bound charge-2 bosons.

The interlayer tunneling terms g01, g10, and gu in Eq. (144)
violate the particle-number conservation of the neutral
fermions and induces pairing terms. In this case, it is more
natural to split the neutral Dirac (complex) fermions (143) into
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two Majorana (real) fermions

ψn
r,l (x) = 1√

2

[
ξ 1
r,l (x) + iξ 2

r,l (x)
]
, (145)

each of which is associated with the Ising CFT. As argued
in Ref. [24], the interlayer tunneling terms give rise to an
intermediate phase between the weak- and strong-pairing
Abelian phases. In this intermediate phase, only a single chiral
Majorana mode survives at the edge, implying a spinless
chiral p-wave pairing. Thus, there will be a transition from
the Halperin (M + 1,M + 1,M − 1) state corresponding to
the � = −2 pairing to the Moore-Read state corresponding to
the � = −1 pairing by tuning the onsite term gv . In particular,
when the coupling constants are fine tuned such that gab ≡
g/4, we can further rewrite the tunneling Hamiltonian (144)
in terms of the Majorana fermions (145):

H1 =
∫

x

∑
l

[
g cos

(
�c

l − �c
l+1

)
ξ 1
R,lξ

1
L,l+1

+ gv − gu

2
iξ 1

R,lξ
1
L,l + gv + gu

2
iξ 2

R,lξ
2
L,l

]
. (146)

For the bosonic case, we need to multiply the first term
by ηlηl+1 (see Appendix C 2). Let us assume gu = gv for
simplicity. The tunneling Hamiltonian (146) opens a gap
in the ξ 2

r,l Majorana fermions in the neutral sector within
each l. By contrast, the other Majorana fermions ξ 1

r,l are
gapped by forming pairs between neighboring l’s through
the g term, leaving an unpaired gapless chiral Majorana
mode at each boundary. This is schematically depicted in
Fig. 8(c). Again, once these neutral Majorana fermions are
gapped in the bulk and integrated out, a charge-2 condensate
of the bosonic modes is induced, whose Goldstone mode is
Higgsed (gapped) by Chern-Simons gauge fields. Therefore,
we conclude that the tunneling Hamiltonian (146) produces
a spinless chiral p-wave superconductor of the composite
fermions with Majorana Chern number CM = 1 or orbital
angular momentum � = −1, which is indeed the non-Abelian
Pfaffian state as discussed in Ref. [24]. The chiral central
charge of this state is given by c = 1 + 1

2 = 3
2 , where 1 comes

from the bosonic charge mode and 1
2 is from the neutral

Majorana mode. It is also argued in Ref. [30] that, when
gu and gv flow to the strong-coupling limit, the tunneling
Hamiltonian can also give rise to an anisotropic quantum Hall
state aside from the strong-pairing Abelian phase, depending
on the signs of the coupling constants.

From the commutation relations (141), the vertex oper-
ators of the charged bosonic fields ei�c

l (ηle
i�c

l ) for even
(odd) M obey bosonic statistics. One may then apply the
vortex duality transformation (26) to the charged bosonic
fields �c

l and obtain the effective Chern-Simons theory for
the charge sector −(iM/4π )εμνλαμ∂ναλ. This is nothing but
the Chern-Simons theory for the ν = 1/M Laughlin state.
The corresponding electron operator of the Laughlin state is
bosonic (fermionic) for even (odd) M and combined with
the Majorana fermion ξ 1 to form the electron operator of the
Pfaffian state with fermionic (bosonic) statistics. With quasi-
particles of the Laughlin ν = 1/M state and the Majorana
fermion ξ 1, one can also generate the spectrum of Abelian

quasiparticles for the ν = 1/M Pfaffian state. Chern-Simons
theories of this sense also appear in the following discussion
of the Bonderson-Slingerland hierarchy.

B. Bonderson-Slingerland hierarchy

The idea of the Haldane-Halperin hierarchy for Abelian
FQH states can also be generalized to a family of non-Abelian
states [41,77]. We here employ the hierarchy construction
built on the Pfaffian state proposed by Bonderson and Slinger-
land [41]. Their idea is to excite bound pairs of fundamental
quasiparticles, which have only a single fusion channel and
thus are Abelian quasiparticles, and to condense them into
Laughlin states as in the standard hierarchy construction. The
neutral sector of fundamental quasiparticles of the Pfaffian
state, the spin field σ with conformal weight 1

16 in the Ising
CFT, has two fusion channels σ × σ = 1 + ξ , where 1 and
ξ represent the trivial and Majorana fields with conformal
weight 0 and 1

2 in the Ising CFT, respectively. Depending on
the energetics of microscopic models, one of the channels will
be chosen and result in new incompressible states at different
filling fractions. As discussed above and also in Appendix C 2,
the spin field σ cannot be expressed in terms of the bosonic
fields, but their bound pair can. The most natural choice of
quasiparticle operators that create such a bound pair and can
be easily built on coupled wires is the 4kF backscattering
operator ei(2θ2l+2θ2l+1 ). In terms of the chiral charged bosonic
fields defined in Eq. (C1), this backscattering operator is
written as ei(φ̃c

R,l−φ̃c
L,l )/M . It does not involve the neutral fields

and is thus identified with a creation operator of the bound pair
of quasiparticles in the trivial fusion channel 1 with charge
±1/M . In the following, we construct hierarchy states of
the Pfaffian state obtained by condensing such charge ±1/M

quasiparticles.
We first consider the first-level Bonderson-Slingerland hi-

erarchy states at ν = 2/(2M − 1) obtained by condensing
bound quasielectron pairs on top of the ν = 1/M Pfaffian
state. Similarly to the construction of the Haldane-Halperin
hierarchy states in Sec. III B 2, we consider the coupled-wire
Hamiltonian involving tunnelings between second-neighbor
l’s:

H ′
1 =

∫
x

∑
l

{
1∑

a=0

1∑
b=0

tabκ2l+aκ2l+b+4

× exp

[
i

(
ϕ2l+a +

5∑
c=0

�c
ab(M )θ2l+c − ϕ2l+b+4

)]

+ tuκ2lκ2l+1e
i[ϕ2l+(M−1)θ2l−ϕ2l+1+(M−1)θ2l+1]

+ tve
i(2θ2l−2θ2l+1 ) + H.c.

}
. (147)

Here, �ab(M ) are integer vectors⎛
⎜⎝

�00

�11

�01

�10

⎞
⎟⎠ =

⎛
⎜⎝

M + 1 2(M − 1) ∗ ∗ M + 1 0
0 M + 1 ∗ ∗ 2(M − 1) M + 1

M + 1 2(M − 1) ∗ ∗ 2(M − 1) M + 1
0 M + 1 ∗ ∗ M + 1 0

⎞
⎟⎠,

(148)
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where ∗ = 2(M − 1). This tunneling Hamiltonian is pictori-
ally given in Fig. 9(a). The Bonderson-Slingerland hierarchy
state is modified from its parent Pfaffian state only in the
bosonic (charge) part of electron and quasiparticle operators
while the neutral part remains unchanged. In order to see this,
we successively perform the flux attachment and vortex dual-
ity transformations such that the charge part of the tunneling
Hamiltonian becomes a simple boson hopping Hamiltonian to
induce Bose condensation as we have done for the Haldane-
Halperin hierarchy states in Sec. III B 2. To this end, we
perform the 2πM-flux attachment (20) to write the tunneling
Hamiltonian (147) in terms of the composite fermions

H ′
1 =

∫
x

∑
l

{
1∑

a=0

1∑
b=0

tabκ2l+aκ2l+b+4

× exp

[
i

(
�CF

2l+a +
5∑

c=0

�c
ab(0)�CF

2l+c − �CF
2l+b+4

)]

+ tuκ2lκ2l+1e
i(�CF

2l −�CF
2l −�CF

2l+1−�CF
2l+1 )

+ tve
i(2�CF

2l −2�CF
2l+1 ) + H.c.

}
. (149)

Using the charge and neutral bosonic fields in Eq. (140), this
Hamiltonian can be written as

H ′
1 =

∫
x

∑
l

[
t00κ2lκ2l+4e

i(�c
l −2�c

l+1−�c
l+2+φn

R,l−φn
L,l+2 )

+ t11κ2l+1κ2l+5e
i(�c

l −2�c
l+1−�c

l+2−φn
R,l+φn

L,l+2 )

+ t01κ2lκ2l+5e
i(�c

l −2�c
l+1−�c

l+2+φn
R,l+φn

L,l+2 )

+ t10κ2l+1κ2l+4e
i(�c

l −2�c
l+1−�v

l+2−φn
R,l−φL,l+2 )

+ tuκ2lκ2l+1e
i(φn

R,l+φn
L,l ) + tve

i(φn
R,l−φn

L,l ) + H.c.
]
. (150)

Similarly to the Pfaffian state, when forward-scattering
interactions and the coupling constants are appropriately
tuned, we will end up with the Hamiltonian

H ′
1 =

∫
x

∑
l

[
g cos

(
�c

l − 2�c
l+1 − �c

l+2

)
ξ 1
R,lξ

1
L,l+2

+ gv − gu

2
iξ 1

R,lξ
1
L,l + gv + gu

2
iξ 2

R,lξ
2
L,l

]
. (151)

The neutral Majorana fermions ξ 2
r,l are gapped within each l.

If gv = gu and g flows to the strong-coupling limit, there will
be two unpaired Majorana fermion modes ξ 1

r,l at the boundary.
However, this is not a desired property, and we consider a
modified tunneling Hamiltonian

H1 =
∫

x

∑
l

[
g cos

(
�c

l − 2�c
l+1 − �c

l+2

)
× ξ 1

R,lξ
1
L,l+1ξ

1
R,l+1ξ

1
L,l+2 + iguξ

2
R,lξ

2
L,l

]
, (152)

which neither changes the filling fraction nor excites other
quasiparticles. This tunneling Hamiltonian will pair up the
Majorana fermions ξ 1

r,l from neighboring l’s to open a bulk
gap in the neutral sector, leaving a single unpaired Majorana
fermion mode at the boundary.

(a) Original particle

(b) Composite fermion

FIG. 9. Tunneling Hamiltonian for the Bonderson-Slingerland
hierarchy state at ν = 2/(2M − 1) in terms of (a) the original
particles and (b) composite fermions. The same notation as in Fig. 8
is used.

Looking at the charge part, the tunneling term involves
e−i2�c

l , which is nothing but the 4kF backscattering operator
e−i(2θ2l+2θ2l+1 ) in the original particles and thus hops a bound
pair of quasielectrons with charge −1/M from the dual
wire l − 1

2 to l + 1
2 . Thus, it excites the quasiparticles with

charge −1/M on top of the charge-1 boson condensate. This
situation is similar to the ν = 2/(2M − 1) hierarchy state
obtained from the parent ν = 1/M Laughlin state. Applying
the vortex duality transformation to the charge part, one can
see that those quasiparticles are condensed into the Laughlin
ν = 1

2 state. At the final stage, the charge part of the kinetic
action will produce a Chern-Simons term with the K matrix
in the hierarchy basis

K =
(

M −1
−1 2

)
. (153)

This K matrix for M = 2 is used to describe the (charge)
bosonic part of the operator content for the ν = 2

3
Bonderson-Slingerland hierarchy state [41]. The Abelian
quasiparticles corresponding to this K matrix with integer
quasiparticle charges are combined with 1 or ξ to generate
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Abelian quasiparticles of the Bonderson-Slingerland
hierarchy, while non-Abelian quasiparticles are obtained
by combining σ and the quasiparticles corresponding to the
same K matrix with half-integer quasiparticle charges.

There are also other Bonderson-Slinegerland hierarchy
states obtained by exciting bound pairs of quasiholes with
charge 1/M and condensing them into the Laughlin ν = 1

2
state. These states are realized at filling fraction ν = 2/(2M +
1). The corresponding tunneling Hamiltonian is given by
Eq. (147) with setting ∗ = 2(M + 1) in the integer vectors
(148). Following the above argument, we find the tunneling
Hamiltonian

H1 =
∫

x

∑
l

[
g cos

(
�c

l + 2�c
l+1 − �c

l+2

)
× ξ 1

R,lξ
1
L,l+1ξ

1
R,l+1ξ

1
L,l+2 + iguξ

2
R,lξ

2
L,l

]
, (154)

which excites quasiparticles with charge 1/M on top of the
charge-1 condensate. In analogy to the ν = 2/(2M + 1) hier-
archy state on top of the Laughlin ν = 1/M state, the charge
part admits the Chern-Simons theory with the K matrix

K =
(

M 1
1 −2

)
. (155)

This K matrix again describes the bosonic part of operator
content for the corresponding Bonderson-Slingerland hierar-
chy state, which has been analyzed for ν = 2

5 in Ref. [41].
Higher-level hierarchy states can also be obtained by taking

the above first-level states as parent states in a straightforward
manner. On the other hand, it is at the moment unclear how
to construct coupled-wire models for the hierarchy states
obtained by condensation of the ±1/M quasiparticles in the
ξ channel. The Bonderson-Slingerland hierarchy on top of
the Zk Read-Rezayi states at ν = k/[k(M − 1) + 2] [78,79]
can also be constructed by taking the corresponding coupled-
wire model proposed by Teo and Kane [27]. In particular,
k-quasiparticle bound states with charge ±1/M in the trivial
fusion channel for the neutral sector are excited by the 2kkF

backscattering operators ei2(θkl+θkl+1+···+θkl+k−1 ) and condensed
into the Laughlin ν = 1

2 state to yield hierarchy states modi-
fied only in the charge sector.

There is also another proposal of hierarchy states from the
Pfaffian state, known as the Levin-Halperin hierarchy states
[80]. In fact, the observed quantum Hal plateau at ν = 2 + 6

13
[81], which is unlikely to be a Jain hierarchy state, may be
explained by the PH conjugate of the ν = 7

13 Levin-Halperin
state obtained from a quasielectron condensation on the Pfaf-
fian state, in view of a strong evidence that the plateau at ν =
2 + 1

2 is in a Pfaffian state [82]. Although it is interesting to
ask how the energetics of quasiparticle excitations above the
Pfaffian state leads to the Levin-Halperin hierarchy state in the
coupled-wire approach, this state turned out to be Abelian and
is actually obtained as a hierarchy state from the Halperin 331
state. The coupled-wire construction of the Haldane-Halperin
hierarchy states given in Sec. III B 2 appears to be able to
account for this hierarchy state as well, but so far we could
not obtain a physical coupled-wire Hamiltonian by a naive
application, and a further extension will be required.

C. Anti-Pfaffian state

In the previous sections, we have applied the PH transfor-
mation defined in Sec. III C to several Abelian FQH states and
the CFL at ν = 1

2 . In this section we apply it to the Pfaffian
state at ν = 1

2 to obtain its PH conjugate called the anti-
Pfaffian state [42,43]. We consider the tunneling Hamiltonian
(137) for M = 2 and apply the PH transformation (102).
Rewriting the PH conjugated tunneling Hamiltonian in terms
of the original bosonic fields by using Eq. (100), we obtain the
tunneling Hamiltonian for the anti-Pfaffian state

H1 =
∫

x

∑
l

{
1∑

a=0

1∑
b=0

tab exp

[
i

4∑
c=0

(
γ c

abϕ2l+c + �c
abθ2l+c

)]

+ tue
i2θ2l+1 + tve

i(ϕ2l+θ2l−2ϕ2l+1+ϕ2l+2−θ2l+2 ) + H.c.

}

(156)

with the integer vectors

⎛
⎜⎜⎜⎝

γ 00

γ 11

γ 01

γ 10

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 −1 1 −1 0

0 1 −1 1 −1

1 −1 0 1 −1

0 1 0 −1 0

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝

�00

�11

�01

�10

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 3 3 1 0

0 1 3 3 1

1 3 2 3 1

0 1 4 1 0

⎞
⎟⎟⎟⎠. (157)

Here, we have omitted Klein factors for simplicity of discus-
sion, but we suppose that they can be supplemented properly
by considering how the interaction is microscopically built
from electrons. The tunneling Hamiltonian is pictorially given
in Fig. 10(a). Although this tunneling Hamiltonian for the
anti-Pfaffian state does not resemble the tunneling Hamil-
tonian for the Pfaffian state in Eq. (137), both tunneling
Hamiltonians can have exactly the same scaling dimensions,
when the kinetic action is appropriately tuned to have the PH
symmetry, and have the form of Eq. (124) with u = ũ. Thus,
the Pfaffian and anti-Pfaffian states are degenerate and either
is chosen when the PH symmetry is broken.

By construction, the anti-Pfaffian state is understood as the
spinless chiral p-wave superconductor of the composite holes,
which have been defined in Eq. (129) in our coupled-wire
language, with orbital angular momentum � = 1 or Majorana
Chern number CM = −1 [39]. We now explain how the anti-
Pfaffian state can be understood as a chiral superconductor
of composite fermions with � = 3 or CM = −3 [39], by
examining its edge structure in our coupled-wire model (156).
We note that the first two terms in Eq. (156) with t00 and t11

give rise to the anti-331 state [83] in their strong-coupling
limit, which corresponds to the composite-fermion pairing
with � = 4 or CM = −4.
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(a) Original particle

(b) Composite fermion

FIG. 10. Tunneling Hamiltonian for the anti-Pfaffian state at ν =
1
2 in terms of (a) the original particles and (b) composite fermions. A
similar notation to Fig. 8 is used.

In terms of composite fermions, the tunneling Hamiltonian
(156) is written as [see also Fig. 10(b)]

H1 ∼
∫

x

∑
l

{
1∑

a=0

1∑
b=0

tab exp

[
i

4∑
c=0

(
γ c

ab�
CF
2l+c + �̃c

ab�
CF
2l+c

)]

+ tue
i2�CF

2l+1 + tve
i(�CF

2l −�CF
2l −2�CF

2l+1+�CF
2l+2+�CF

2l+2 ) + H.c.

}

(158)

with the integer vectors γ ab defined in Eq. (157) and⎛
⎜⎜⎝

�̃00

�̃11

�̃01

�̃10

⎞
⎟⎟⎠ =

⎛
⎜⎝

−1 1 1 −1 0
0 −1 1 1 −1

−1 1 2 1 −1
0 −1 0 −1 0

⎞
⎟⎠. (159)

We introduce chiral neutral bosonic fields

φn
R,l = 1

2

(
�CF

2l − �CF
2l − 2�CF

2l+1 − 2�CF
2l+1 + �CF

2l+2 + �CF
2l+2

)
,

φn
L,l = 1

2

(
�CF

2l − �CF
2l − 2�CF

2l+1 + 2�CF
2l+1 + �CF

2l+2 + �CF
2l+2

)
,

(160)

which are actually the PH conjugate of the neutral fields
defined for the Pfaffian state in Eq. (140) in the sense of the PH
transformation (102). They satisfy the commutation relations[

φn
r,l (x), φn

r ′,l′ (x
′)
] = iπrδr,r ′δl,l′ sgn(x − x ′)

+ iπ

4
δl,l′+1 − iπ

4
δl,l′−1. (161)

We may then define neutral fermion operators by Eq. (143)
with an appropriate assignment of the Klein factors. When
the coupling constants are fine tuned, we end up with the
tunneling Hamiltonian

H1 ∼
∫

x

∑
l

{
g cos

[
1

2

(
�CF

2l − �CF
2l + 2�CF

2l+2

− �CF
2l+4 − �CF

2l+4

)]
ξ 1
L,lξ

1
R,l+1

+ gv − gu

2
iξ 1

L,lξ
1
R,l + gv + gu

2
iξ 2

L,lξ
2
R,l

}
, (162)

where we have used the Majorana fermion fields (145). Let
us make a further assumption that gv = gu. The Majorana
fermions ξ 2

r,l are gapped within each l. The other Majorana
fermions ξ 1

r,l are gapped in the bulk by pairing left- and
right-moving modes from adjacent l’s while a single gapless
chiral mode remains unpaired at each boundary as in the case
of the Pfaffian state. However, its chirality is opposite to
that of the Pfaffian state and thus the Majorana fermions
ξ 1
r,l contribute to Majorana Chern number −1 in the present

case. When the massive Majorana fermions are integrated out,
we will have a residual tunneling term consisting of even
composite-fermion wires

cos
(
�CF

2l − �CF
2l + 2�CF

2l+2 − �CF
2l+4 − �CF

2l+4

)
. (163)

This tunneling term produces the Halperin (1, 1,−1) state,
which is a state analogous to the integer quantum Hall ferro-
magnet or the Halperin (1,1,1) state [84,85]. The latter state
hosts a chiral charged fermion edge mode responsible for the
Hall conductance σxy = 1 and a gapless (pseudo)Goldstone
mode associated with spontaneous breaking of U(1) sym-
metry related to the conservation of the charge difference
between two layers or species. By contrast, the Halperin
(1, 1,−1) state of our interest hosts a neutral chiral Dirac
fermion mode at the boundary and a gapless Goldstone mode
from a charge-2 condensate in the bulk, which is to be Higgsed
by the Chern-Simons gauge field. From these observations,
we deduce that the tunneling Hamiltonian (156) leads to
a completely gapped bulk spectrum with one neutral Dirac
mode and one neutral Majorana mode propagating in the same
direction at the boundary. Therefore, we conclude that the
anti-Pfaffian state is interpreted as a chiral superconductor of
the composite fermions with � = 3 or CM = −3.

Similarly, one can also consider the PH conjugates of the
Bonderson-Slinegrland hierarchy states at ν = 1

3 or 3
5 [41],

whose electron counterparts at ν = 2
3 or 2

5 are both obtained
from the ν = 1

2 Pfaffian state and constructed in the previous
section. One may also generalize the construction to the
anti-Read-Rezayi states at ν = 2/(2 + k) [86], which are the
PH conjugates of the Zk Read-Rezayi states at ν = k/(k + 2)
[78].

D. Other composite-fermion pairings

We can construct a variety of Abelian and non-Abelian
states at ν = 1/M , which will be understood as different pat-
terns of pairing of composite fermions. In particular, the chiral
p-wave pairing state of composite fermions with angular
momentum � = 1 or Majorana Chern number CM = −1 is a
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(a) Charge-2e Laughlin based PH Pfaffian

(b) Halperin 113 based PH Pfaffian

FIG. 11. Tunneling Hamiltonians for the � = 1 paired state of the
composite fermions at ν = 1

2 , which has the same topological order
as the PH-Pfaffian state but with the explicitly broken PH symmetry.
When only the coupling constants t00 and t11 are relevant, the models
describe (a) the Laughlin ν = 1

8 state of charge-2 bosons or (b) the
Halperin 113 state.

quite an intriguing state at ν = 1
2 because of the following rea-

sons. First, the topological order of the corresponding Pfaffian
state is consistent with the PH symmetry expected in the half-
filled Landau level [39]. Such a PH-symmetric Pfaffian state
is called PH-Pfaffian state. Second, the state has chiral central
charge 1

2 , which is consistent with a recent measurement of
thermal Hall conductance at ν = 5

2 [82]. Interestingly, Son has
proposed that the s-wave pairing of Dirac composite fermions
with an explicit PH symmetry gives rise to a non-Abelian
state with the same PH-symmetric topological order [58].
There are also many other theoretical attempts to explain the
experimentally observed phenomena at ν = 5

2 [87–92].
It is thus tempting to consider a possible coupled-wire

model for the PH-Pfaffian state, and here we propose two
models that realize the � = 1 pairing of composite fermions
as shown in Fig. 11. These two models do not have a manifest
PH symmetry and are related to each other by the PH trans-
formation (102). The analysis similar to those in the previous
subsections suggests that these models have the PH-Pfaffian
state, in their phase diagram, next to the Abelian phases
such as the Laughlin ν = 1

8 state of tightly bound charge-2
electrons and the Halperin 113 state, which correspond to the
� = 0 and 2 pairing, respectively. We note that Refs. [32,49]
have proposed a coupled-wire model for the T -Pfaffian state
on a 2D surface of an interacting 3D topological insulator,
which can also be used to construct the PH-Pfaffian state
through the duality transformation while explicitly preserving
the PH symmetry in a nononsite fashion. In this approach, the
PH-Pfaffian state is interpreted as the s-wave pairing of the
Dirac composite fermions [58], while we have here proposed

coupled-wire models for the PH-Pfaffian state that is rather
interpreted as the � = 1 pairing of the composite fermions and
manifestly breaks the PH symmetry in the Hamiltonian level
(see also Ref. [30] for a more phenomenological construc-
tion). We also note that the coupled-wire model in Fig. 11(b)
can be seen as a model of the bosonic Moore-Read state in
a negative magnetic flux after applying 6π -flux attachment
transformation. The corresponding wave function has been
proposed in Ref. [93] and studied as a possible candidate for a
PH-Pfaffian state that may appear in the lowest Landau level
[94–96].

In Ref. [24], Read and Green have also discussed the
spin-singlet chiral d-wave pairing of composite fermions. The
corresponding Abelian state at ν = 1

2 will be a generalized hi-
erarchy state obtained by condensing charge- 2

5 quasielectrons
into the Laughlin ν = 1

4 state on top of the ν = 2
5 hierarchy

state. Thus, its coupled-wire Hamiltonian can be constructed
in the way discussed in Sec. III B 2. As it is a composite-
fermion pairing state with � = −4, there can be a neighboring
non-Abelian state corresponding to the � = −3 pairing, which
is expected to be the Blok-Wen U(1) × SU(2)2 state [97],
if a single Majorana fermion is gapped out in a trivial way
by appropriately modulating interactions for the generalized
hierarchy state. It is therefore interesting to seek the coupled-
wire Hamiltonians for Abelian and non-Abelian states that
realize the composite-fermion pairings with different angular
momenta, whose quasiparticle statistics or topological order
in the neutral sector follows the Kitaev’s 16-fold way [98].
We do not pursue this direction further in this paper and leave
detailed analysis for a separate paper.

VI. CONCLUSION AND OUTLOOKS

In this paper we have shown, with the help of explicit
nonlocal transformations of the flux attachment and vortex
duality, that the coupled-wire construction admits physical
interpretations of various quantum Hall states in terms of
composite fermions or composite bosons on the ground of
microscopic Hamiltonians. Abelian hierarchy states are con-
structed as either IQH states of composite fermions (the
Jain sequence) or condensates of quasiparticle excitations
(the Haldane-Halperin sequence). We also constructed the
coupled-wire models for the CFL with an open Fermi surface;
the constructed CFL Hamiltonian at ν = 1

2 is symmetric under
the particular PH transformation that does not have a lattice
analog. Various pairing states of composite fermions, includ-
ing the Pfaffian and anti-Pfaffian states, were also discussed.

While some of the coupled-wire models discussed in this
paper have been constructed previously, what we have ac-
tually accomplished in this paper is to develop a system-
atic approach to generating suitable coupled-wire Hamil-
tonians for various FQH states including hierarchy states,
paired composite-fermion states, and their PH conjugates. The
coupled-wire construction gives us an alternative way to gain
physical pictures of these FQH states, being complementary
to other standard approaches such as trial wave functions and
the effective Chern-Simons theory. Moreover, the coupled-
wire construction has an advantage in its controllability of
strong interactions in microscopic models, which is not easily
achieved in the other approaches.
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There are several quantum Hall states whose trial wave
functions are written in terms of conformal blocks of nonuni-
tary or irrational CFT, such as the Haldane-Rezayi [99],
Haffnian [100,101], or Gaffnian states [102]. It has been antic-
ipated that such quantum Hall states are in fact compressible
due to violation of the bulk-boundary correspondence and cor-
respond to a phase transition point between certain FQH states
[103]. However, it is not clear how the structure of nonunitary
or irrational CFTs appears in a microscopic Hamiltonian.
In this regard it is an interesting open problem to construct
coupled-wire Hamiltonians for those exotic quantum Hall
states. If those states are indeed located at a phase transition
and if we can identify the FQH states next to the phase
transition, then we can perhaps construct a microscopic model
for the interface between the two FQH states, and coupling
those interfaces would eventually lead to a bulk theory of the
desired quantum Hall transition.

Another question that one can naturally raise is whether
the coupled-wire construction can incorporate coupling with
geometry. In particular, when a FQH state has rotational
symmetry as in a quantum Hall droplet on a sphere, the
so-called shift coming from orbital spin becomes an important
diagnosis for quantum Hall states [104]. Although it is not
obvious how the shift is encoded in the coupled-wire models,
it is likely that FQH states with different shifts have different
realizations of coupled-wire Hamiltonian. For example, the
PH conjugate of the Laughlin ν = 1

3 state and the Halperin

112 state are both realized at the same filling fraction ν = 2
3

and have the same quasiparticle statistics but have different
shifts [21]. The tunneling Hamiltonian for the PH conjugate of
the ν = 1

3 Laughlin state is given in Ref. [26] or in Eq. (108),
but for the Halperin 112 state it is more natural to consider the
tunneling Hamiltonian of the form

H1 ∼ g

∫
x

∑
l

[
ei(ϕ2l+θ2l+2θ2l+1−ϕ2l+2+θ2l+2+2θ2l+3 )

+ ei(ϕ2l+1+θ2l+1+2θ2l−ϕ2l+3+θ2l+3+2θ2l+2 ) + H.c.
]
, (164)

which is symmetric under exchanging even (2l) and odd
(2l + 1) layers. As these tunneling Hamiltonians lead to mi-
croscopically different forms of electron operators, it may
result in different shifts. Application of this line of argument
is left for future work.
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APPENDIX A: VORTEX DUALITY TO COMPOSITE BOSON

In this Appendix, we provide the detailed derivation of the vortex theory (32) from the composite-boson theory. Here, we
further add an interwire forward-scattering interaction to Eq. (19) and start with the action in terms of the original bosonic fields

S0 =
∫

τ,x

∑
j

[
i

π
∂xθj

(
∂τϕj − Aext

0,j

)+ v

2π

(
∂xϕj − Aext

1,j

)2 + u

2π
(∂xθj )2 + w

8π
(∂xϕj + m∂xθj − ∂xϕj+1 + m∂xθj+1)2

]
. (A1)

As discussed in Sec. III A, the additional forward-scattering term has an important effect to stabilize the Laughlin ν = 1/m state.
After the 2πm-flux attachment transformation (20), we obtain the composite boson action

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

CB
j

(
∂τ�

CB
j − 1

2
(Sa0,j−1/2) − Aext

0,j

)
+ v

2π

(
∂x�

CB
j − a1,j − Aext

1,j

)2 + u

2π

(
∂x�

CB
j

)2

+ w

8π

(
�∂x�

CB
j

)2 + i

2πm
a1,j (�a0,j−1/2)

]
. (A2)

Integrating out the Lagrange multiplier a0 yields the constraint (22). Assuming that the action is subject to this constraint, we
can rewrite the action in terms of �CB

j , �CB
j , and a1,j as

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

CB
j

(
∂τ�

CB
j − Aext

0,j

)+ v

8π

(
S∂x�

CB
j

)2 + v + w

8π

(
�∂x�

CB
j

)2 + u

2π

(
∂x�

CB
j

)2

− v

π
∂x�

CB
j

(
a1,j + Aext

1,j

)+ v

2π

(
a1,j + Aext

1,j

)2
]
. (A3)

Substituting Eqs. (28) and (31), we find the action in terms of �VCB
j+1/2, �VCB

j+1/2, and α1,j+1/2:

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCB
j+1/2

(
∂τ�

VCB
j+1/2 + 2iv

(
�−1,T Aext

1,j

))+ m2v

8π

(
S∂x�

VCB
j−1/2

)2 + u − m2v

8π

(
�∂x�

VCB
j−1/2

)2

+ v + w

2π

(
∂x�

VCB
j+1/2

)2 − m2v

π
∂x�

VCB
j+1/2

(
α1,j+1/2 + i

2m2v

(
�Aext

0,j

)− 1

2m

(
SAext

1,j

))+ m2v

2π
(α1,j+1/2)2 + v

2π

(
Aext

1,j

)2
]
,

(A4)
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where we have defined �−1 as the inverse of lattice derivative �. In the matrix notation, Sjj ′ = δj+1,j ′ + δjj ′ , �jj ′ = δj+1,j ′ −
δjj ′ , and 2�−1

jj ′ = sgn(j − j ′ − 1/2). We note that this action is subject to the constraint (29). We can impose the constraint (29)
via a Lagrange multiplier α0,j by adding the term

Sα constraint
0 =

∫
τ,x

∑
j

⎡
⎣−i

m

2π

⎛
⎝α1,j+1/2 + 1

m

∑
j ′ �=j

sgn(j ′ − j )∂x�
VCB
j ′+1/2

⎞
⎠(α0,j+1 − α0,j )

⎤
⎦, (A5)

which splits into the temporal component of the minimal coupling between the vortex and αμ and the level-m Chern-Simons
term in the α2 = 0 gauge. We subsequently shift the gauge field as

α0,j → α0,j − iv
(
�−1SAext

1,j

)
, α1,j+1/2 → α1,j+1/2 − i

2m2v

(
�Aext

0,j

)+ 1

2m

(
SAext

1,j

)
, (A6)

to cancel the minimal coupling between the vortex and the electromagnetic field. We finally obtain

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCB
j+1/2

(
∂τ�

VCB
j+1/2 − 1

2
(Sα0,j )

)
+ m2v

2π

(
∂x�

VCB
j+1/2 − α1,j+1/2

)2 + v + w

2π

(
∂x�

VCB
j+1/2

)2

+ u − m2v

8π

(
�∂x�

VCB
j−1/2

)2 − v

2π
∂x�

VCB
j+1/2

(
�Aext

1,j

)− i
m

2π
α1,j+1/2(�α0,j ) − i

4π

(
SAext

1,j

)
(�α0,j )

+ i

2π
Aext

0,j (�α1,j−1/2) − 1

4πmv
(�α0,j )

(
�Aext

0,j

)− 1

8πm2v

(
�Aext

0,j

)2 + v

8π

(
�Aext

1,j

)2
]
. (A7)

Now, the vortices are decoupled from the electromagnetic field Aext
μ , apart from the doping by the magnetic field (�Aext

1,j ).
Instead, the vortices couple to the Chern-Simons gauge field αμ. The external electromagnetic field couples to the 2π flux of αμ

through a discrete analog of a mutual Chern-Simons coupling (−i/2π )εμνλA
ext
μ ∂ναλ in the Aext

2 = α2 = 0 gauge. Higher-order
derivatives like (�Aext

μ,j )2 will only matter to the short-distance physics. Omitting them yields the vortex action (32).
In Sec. III B 2, we consider the first-level hierarchy states at filling fraction ν = 1/(q + 1/2p) with p integer. Setting m = q

in the above, we further attach 4πp flux to the vortices and define the bosonic fields corresponding to composite quasiparticles:

�
CQ
j+1/2 = �VCB

j+1/2 + 2p
∑
j ′ �=j

sgn(j ′ − j )�VCB
j ′+1/2, �

CQ
j+1/2 = �VCB

j+1/2. (A8)

We then apply the vortex duality

�
VCQ
j =

∑
j ′

sgn(j ′ − j + 1/2)�CQ
j ′+1/2, �

VCQ
j = 1

2

(
�

CQ
j+1/2 − �

CQ
j−1/2

)
. (A9)

As we consider the tunneling Hamiltonian (96) with p1 = p, we replace the interwire forward-scattering interaction in Eq. (A1)
by

H inter-forward
0 = w

8π

∫
τ,x

∑
j

[p∂xϕj−1 + qp∂xθj−1 + 2(qp − 1)∂xθj − p∂xϕj+1 + qp∂xθj+1]2. (A10)

Just repeating the above procedure and introducing a new gauge field βμ, the final vortex action is given by

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCQ
j

(
∂τ�

VCQ
j − 1

2
(Sβ0,j−1/2)

)
+ 2q2p2v

π

(
∂x�

VCQ
j − β1,j

)2 + q2v + w

2π

(
∂x�

VCQ
j

)2

+ v(1 − 4q2p2)

8π

(
�∂x�

VCQ
j

)2 + u − q2v

8π

(
p∂x�

VCQ
j−1 + 2∂x�

VCQ
j − p∂x�

VCQ
j+1

)2 − q2v

2π
∂x�

VCQ
j (�α1,j−1/2)

+ v

4π
∂x�

VCQ
j

(
�T �Aext

1,j

)− i
q

2π
α1,j+1/2(�α0,j ) − i

2p

2π
β1,j (�β0,j−1/2) − i

4π
(Sα1,j−1/2)(�β0,j−1/2)

+ i

4π
(Sα0,j )(�β1,j ) − i

4π

(
SAext

1,j

)
(�α0,j ) + i

2π
Aext

0,j (�α1,j−1/2) − 1

4πqv
(�α0,j )

(
�Aext

0,j

)− 1

32πq2p2v
(�α0,j )2

+ q2v

8π
(�α1,j−1/2)2 + 1

128πq2p2v
(�T �α0,j )2 + 1

32πq2p2v
(�T Sα0,j )(�β0,j−1/2) − 1

8πq2v

(
�Aext

0,j

)2 + v

8π

(
�Aext

1,j

)2
]
.

(A11)

This yields the action (91) for q = 3 and p = 1 by replacing αμ → α1
μ and βμ → α2

μ.
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APPENDIX B: DERIVATION OF THE HOLE THEORY

1. Fermion at ν = 1
2

We now turn our attention to the special case of m = 1 in the vortex action (A7), which is considered in Secs. III C and IV B
to have the hole description. In this case, we first attach the 2π flux to an electron to convert it into a composite boson and then
apply the vortex duality to the composite boson. We thus focus on the action

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCB
j+1/2

(
∂τ�

VCB
j+1/2 − 1

2
(Sα0,j )

)
+ v

2π

(
∂x�

VCB
j+1/2 − α1,j+1/2

)2 + v + w

2π

(
∂x�

VCB
j+1/2

)2

+ u − v

8π

(
�∂x�

VCB
j−1/2

)2 − i

2π
α1,j+1/2(�α0,j ) − v

2π
∂x�

VCB
j+1/2

(
�Aext

1,j

)− i

4π

(
SAext

1,j

)
(�α0,j )

+ i

2π
Aext

0,j (�α1,j−1/2) − 1

4πv
(�α0,j )

(
�Aext

0,j

)− 1

8πv

(
�Aext

0,j

)2 + v

8π

(
�Aext

1,j

)2
]
. (B1)

In this case, the vortices are attached to the −2π flux thorough the level-1 Chern-Simons term and hence converted to a fermion.
This fermion is indeed interpreted as a hole in our coupled-wire model. To see this, we shift the gauge field as

α0,j → α0,j − Aext
0,j , (B2)

α1,j+1/2 → α1,j+1/2 − 1
2

(
SAext

1,j

)
. (B3)

Then, the action (B1) becomes

S0 =
∫

τ,x

∑
j

[
i

π
∂x�

VCB
j+1/2

(
∂τ�

VCB
j+1/2 − 1

2
(Sα0,j ) + 1

2

(
SAext

0,j

))+ v

2π

(
∂x�

VCB
j+1/2 − α1,j+1/2 + 1

2

(
SAext

1,j

))2

+ v + w

2π

(
∂x�

VCB
j+1/2

)2 + u − v

8π

(
�∂x�

VCB
j−1/2

)2 − i

2π
α1,j+1/2(�α0,j ) + i

4π

(
SAext

1,j

)(
�Aext

0,j

)
− v

2π
∂x�

VCB
j+1/2

(
�Aext

1,j

)+ 1

8πv

(
�Aext

0,j

)2 + v

8π

(
�Aext

1,j

)2 − 1

4πv
(�α0,j )

(
�Aext

0,j

)]
. (B4)

Now, the vortex couples to the electromagnetic field Aext
μ with the opposite charge to the electron. There is also the Chern-Simons

term of the electromagnetic field (i/4π )εμνλA
ext
μ ∂νA

ext
λ , which corresponds to the Hall response +e2/h from the filled lowest

Landau level. Integrating out αμ leads us to naturally define the bosonic fields given in Eq. (98). In terms of those bosonic fields,
the action (B4) is written as

S0 =
∫

τ,x

∑
j

[
i

π
∂xθ

hole
j+1/2

(
∂τϕ

hole
j+1/2 + 1

2

(
SAext

0,j

)+ iv

2

(
�Aext

1,j

))+ v

2π

(
∂xϕ

hole
j+1/2 + 1

2

(
SAext

1,j

)− i

2v

(
�Aext

0,j

))2

+ v + w

2π

(
∂xθ

hole
j+1/2

)2 + u − v

8π

(
∂xϕ

hole
j−1/2 − ∂xθ

hole
j−1/2 − ∂xϕ

hole
j+1/2 − ∂xθ

hole
j+1/2

)2

+ i

4π

(
SAext

1,j

)(
�Aext

0,j

)+ 1

8πv

(
�Aext

0,j

)2 + v

8π

(
�Aext

1,j

)2
]
. (B5)

As there is no dynamical gauge field in this action, the bosonic fields ϕhole
j+1/2 and θhole

j+1/2 must be local in terms of the original
bosonic fields ϕj and θj . Indeed, we find

ϕhole
j+1/2 = − 1

2 (ϕj + θj + ϕj+1 − θj+1), θhole
j+1/2 = − 1

2 (ϕj + θj − ϕj+1 + θj+1). (B6)

By using this, we can directly obtain Eq. (B5) from the action for electrons (A1). One may notice that apart from a coupling
with the electromagnetic field, the action (B5) maintains the same form after the replacement (ϕj , θj ) → (−ϕhole

j+1/2, θ
hole
j+1/2)

with complex conjugation in Eq. (A1) for m = 1 when w = u − v. Thus, the action is symmetric under the PH transformation,
although this PH symmetry may never be realized as a true microscopic symmetry, as discussed in the main text.

This PH symmetry is equivalent to the self-duality between the composite boson action (A2) for m = 1 and the vortex action
(B1) under (�CB

j ,�CB
j , aμ) ↔ (�VCB

j+1/2,−�VCB
j+1/2, αμ) with complex conjugation, which has been found in Ref. [38]. The tun-

neling Hamiltonian for the CFL at ν = 1
2 , which is given in Eq. (125), is written in terms of the composite boson and the vortex as

H1 =
∫

x

∑
j

[
gRκjκj+1e

i(�CB
j +2�CB

j −�CB
j+1 ) + gLκjκj+1e

i(�CB
j −�CB

j+1+2�CB
j+1 ) + H.c.

]

=
∫

x

∑
j

[
gRκjκj+1e

i(�VCB
j−1/2−�VCB

j+1/2−2�VCB
j+1/2 ) + gLκj−1κj e

i(�VCB
j−1/2−2�VCB

j−1/2−�VCB
j+1/2 ) + H.c.

]
. (B7)

This also satisfies the above self-dual property when gR = gL and the Klein factor is appropriately chosen.
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2. Two-component boson at ν = 1
2 + 1

2

We here provide the derivation of the hole theory for the CFL of two-component bosons at ν = 1
2 + 1

2 , which is focused on in
Sec. IV C. We introduce two species of bosonic fields ϕσ

j (x) and θσ
j (x) labeled by σ = ↑,↓. We then assume that these bosonic

fields satisfy the commutation relations

[θ↑
j (x), ϕ↑

j ′ (x ′)] = iπδj,j ′�(x − x ′), [θ↓
j (x), ϕ↓

j ′ (x ′)] = iπδj,j ′ (�(x − x ′) − 1), (B8)

while the other commutators vanish. The CFL at ν = 1
2 + 1

2 may be described by the following action:

S0 =
∫

τ,x

∑
j,σ

[
i

π
∂xθ

σ
j

(
∂τϕ

σ
j − Aσ

0,j

)+ vσ

2π

(
∂xϕ

σ
j − Aσ

1,j

)2 + uσ

2π

(
∂xθ

σ
j

)2 + ũσ − vσ

8π

((
�∂xϕ

σ
j

)− (
S∂xθ

−σ
j

))2
]
, (B9)

H1 =
∫

x

∑
j,σ

[
gσ

Rei(ϕσ
j +2θσ

j +θ−σ
j −ϕσ

j+1+θ−σ
j+1 ) + gσ

Lei(ϕσ
j +θ−σ

j −ϕσ
j+1+2θσ

j+1+θ−σ
j+1 ) + H.c.

]
, (B10)

where the symbol −σ stands for ↓ (↑) for σ = ↑ (↓). We have separately coupled each species of the bosonic fields to the
external gauge fields A↑

μ and A↓
μ and worked on the A

↑
2 = A

↓
2 = 0 gauge. Setting vσ ≡ v, uσ = ũσ ≡ u, and gσ

R = gσ
L ≡ g,

we find the action given by Eqs. (131) and (132). The tunneling terms involving eiϕ
↑
j ±iθ

↓
j or eiϕ

↓
j ±iθ

↑
j look unusual for bosonic

systems at first sight, but such tunnelings are indeed possible when the boson numbers of two species are separately conserved
and can be realized as certain correlated hoppings in the lattice systems [73].

We first show that the action describes a CFL with two Fermi surfaces by the 2π -flux attachment to both species of boson.
To see this, we introduce the bosonic fields corresponding to the composite fermions,

�
CF,σ
j = ϕσ +

∑
j ′ �=j

sgn(j ′ − j )
(
θσ
j ′ + θ−σ

j ′
)
, �

CF,σ
j = θσ

j , (B11)

which satisfy the commutation relations[
�

CF,↑
j (x),�CF,↑

j ′ (x ′)
] = −iπ sgn(j − j ′),

[
�

CF,↑
j (x),�CF,↑

j ′ (x ′)
] = iπδj,j ′�(x − x ′),[

�
CF,↓
j (x),�CF,↓

j ′ (x ′)
] = iπ sgn(j − j ′),

[
�

CF,↓
j (x),�CF,↓

j ′ (x ′)
] = iπδj,j ′ (�(x − x ′) − 1), (B12)

while the other commutators vanish. This transformation makes the kinetic terms nonlocal while it preserves the tunneling terms
in a local form. The nonlocality of the kinetic terms is cured by introducing an auxiliary field a1,j with the constraint

a1,j =
∑
j ′ �=j

sgn(j ′ − j )
(
∂x�

CF,↑
j ′ + ∂x�

CF,↓
j ′

)
. (B13)

We implement this constraint by a Lagrange multiplier a0,j+1/2 as we have routinely done. We then find

S0 =
∫

τ,x

∑
j,σ

[
i

π
∂x�

CF,σ
j

(
∂τ�

CF,σ
j − 1

2
(Sa0,j−1/2) − Aσ

0,j

)
+ vσ

2π

(
∂x�

CF,σ
j − a1,j − Aσ

1,j

)2 + uσ

2π

(
∂x�

CF,σ
j

)2

+ ũσ − vσ

8π

((
�∂x�

CF,σ
j

)+ (
S∂x�

CF,σ
j

))2 + i

2π
a1,j (�a0,j−1/2)

]
, (B14)

H1 =
∫

τ,x

∑
j,σ

[
gσ

Rei(�CF,σ
j +�

CF,σ
j −�

CF,σ
j+1 −�

CF,σ
j+1 ) + gσ

Lei(�CF,σ
j −�

CF,σ
j −�

CF,σ
j+1 +�

CF,σ
j+1 ) + H.c.

]
. (B15)

From the commutation relations (B12), we can regard that the operators ei�
CF,σ
j ±i�

CF,σ
j are fermionic operators anticommuting

between the same species. While these operators commute between different species, we can multiply the Klein factors κσ

obeying {κσ , κσ ′ } = 2δσ,σ ′ for each species to define fully anticommuting fermionic operators ψ
CF,σ
R/L,j ∝ κσ ei�

CF,σ
j ±i�

CF,σ
j . Such

Klein factors do not appear explicitly in the action since the fermionic operators for each species always appear in a bilinear
form due to the separate charge conservation. Thus, we find that the action describes the CFL with two Fermi surfaces of the
composite fermions, each of which carries different spins.

We then wish to obtain the hole description of the action given by Eqs. (B9) and (B10). To proceed, we first apply the mutual
2π -flux attachment to the bosonic action [71]. We hence define new bosonic fields corresponding to the mutual composite bosons

�
CB,σ
j = ϕσ

j +
∑
j ′ �=j

sgn(j ′ − j )θ−σ
j ′ , �

CB,σ
j = θσ

j , (B16)

which satisfy the commutation relations[
�

CB,↑
j (x),�CB,↑

j ′ (x ′)
] = iπδj,j ′�(x − x ′),

[
�

CB,↓
j (x),�CB,↓

j ′ (x ′)
] = iπδj,j ′ [�(x − x ′) − 1], (B17)
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while the other commutators vanish. We now introduce Lagrange multipliers bσ
0,j+1/2 in order to implement the constraints

bσ
1,j =

∑
j ′ �=j

sgn(j ′ − j )∂x�
CB,−σ
j ′ . (B18)

We then find the action in terms of the mutual composite bosons

S0 =
∫

τ,x

∑
j,σ

[
i

π
∂x�

CB,σ
j

(
∂τ�

CB,σ
j − 1

2

(
Sbσ

0,j−1/2

)− Aσ
0,j

)
+ vσ

2π

(
∂x�

CB,σ
j − bσ

1,j − Aσ
1,j

)2 + uσ

2π

(
∂x�

CB,σ
j

)2

+ ũσ − vσ

8π

(
�∂x�

CB,σ
j

)2 + i

2π
bσ

1,j

(
�b−σ

0,j−1/2

)]
, (B19)

H1 =
∫

x

∑
j,σ

[
gσ

Rei(�CB,σ
j +2�

CB,σ
j −�

CB,σ
j+1 ) + gσ

Lei(�CB,σ
j −�

CB,σ
j+1 +2�

CB,σ
j+1 ) + H.c.

]
. (B20)

Here, the action has a discrete analog of the mutual Chern-Simons term (i/2π )εμνλb
↑
μ∂νb

↓
λ in the bσ

2 = 0 gauge. We then apply
the vortex duality for each species of the mutual composite bosons. The corresponding transformation is given by

�
VCB,σ
j+1/2 =

∑
j ′

sgn(j ′ − j − 1/2)�CB,−σ
j ′ , �

VCB,σ
j+1/2 = 1

2

(
�

CB,−σ
j+1 − �

CB,−σ
j

)
. (B21)

We remark that the label σ for the vortices is changed from that for the mutual composite bosons. These bosonic fields satisfy
the commutation relations[

�
VCB,↑
j+1/2 (x),�VCB,↑

j ′+1/2(x ′)
] = iπδj,j ′�(x − x ′),

[
�

VCB,↓
j+1/2 (x),�VCB,↓

j ′+1/2(x ′)
] = iπδj,j ′ [�(x − x ′) − 1]. (B22)

The gauge fields βσ
1,j+1/2 coupled to the vortices are subject to the constraints written in terms of the vortex or composite boson

fields

βσ
1,j+1/2 = −

∑
j ′ �=j

sgn(j ′ − j )∂x�
VCB,−σ
j ′+1/2 = 1

2

(
∂x�

CB,σ
j+1 + ∂x�

CB,σ
j

)
. (B23)

The constraints for the mutual Chern-Simons gauge fields bσ
1,j are also written in terms of the vortex fields by

bσ
1,j = 1

2

(
∂x�

VCB,σ
j+1/2 + ∂x�

VCB,σ
j−1/2

)
. (B24)

Substituting these expressions, introducing Lagrange multipliers βσ
0,j to implement the constraint (B23), and subsequently

shifting the gauge fields as

βσ
0,j → βσ

0,j − iv−σ

(
�−1SA−σ

1,j

)
, βσ

1,j+1/2 → βσ
1,j+1/2 − i

2vσ

(
�A−σ

0,j

)+ 1

2

(
SAσ

1,j

)
, (B25)

we obtain the vortex action

S0 =
∫

τ,x

∑
j,σ

[
i

π
∂x�

VCB,σ
j+1/2

(
∂τ�

VCB,σ
j+1/2 − 1

2
(Sβσ

0,j )

)
+ vσ

2π

(
∂x�

VCB,σ
j+1/2 − βσ

1,j+1/2

)2 + ũ−σ

2π

(
∂x�

VCB,σ
j+1/2

)2

+ u−σ − vσ

8π

(
�∂x�

VCB,σ
j−1/2

)2 − v−σ

2π
∂x�

VCB,σ
j+1/2

(
�A−σ

1,j

)− i

2π
βσ

1,j+1/2

(
�β−σ

0,j

)− i

4π

(
SAσ

1,j

)(
�β−σ

0,j

)
+ i

2π
Aσ

0,j

(
�β−σ

1,j−1/2

)− 1

8πv−σ

(
�Aσ

0,j

)2 + vσ

8π

(
�Aσ

1,j

)2 − 1

4πv−σ

(
�βσ

0,j

)(
�Aσ

0,j

)]
, (B26)

H1 =
∫

x

∑
j,σ

[
gσ

Rei(�VCB,−σ
j−1/2 −�

VCB,−σ
j+1/2 −2�

VCB,−σ
j+1/2 ) + gσ

Lei(�VCB,−σ
j−1/2 −2�

VCB,−σ
j−1/2 −�

VCB,−σ
j+1/2 ) + H.c.

]
. (B27)

Now, the vortices are coupled to the gauge fields βσ
μ with a discrete analog of the mutual Chern-Simons term

−(i/2π )εμνλβ
↑
μ∂νβ

↓
λ with the opposite sign to that for the mutual composite bosons. Under the duality transformation

(�CB,σ
j ,�

CB,σ
j , bσ

μ) ↔ (�VCB,σ
j+1/2 ,−�

VCB,σ
j+1/2 , βσ

μ ) with complex conjugation, the theory is self-dual when uσ = ũ−σ and gσ
R =

g−σ
L . There is also another duality transformation involving the interchange of two species ↑↔↓, under which the theory is

self-dual when v↑ = v↓, uσ = ũσ , and gσ
R = gσ

L. For these two self-duality conditions to be satisfied at the same time, we must
have vσ ≡ v, uσ = ũσ ≡ u, and gσ

R = gσ
L ≡ g.
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We finally integrate out the mutual Chern-Simons gauge fields to obtain the hole description of the CFL action. We first shift
the gauge fields as

βσ
0,j → βσ

0,j − Aσ
0,j , βσ

1,j+1/2 → βσ
1,j+1/2 − 1

2

(
SAσ

1,j

)
. (B28)

This makes the vortices couple to the external gauge fields and generates a discrete analog of the mutual Chern-Simons term
(i/2π )εμνλA

↑
μ∂νA

↓
λ , which gives the Hall response of the bosonic IQH state. Integrating out βσ

0 yields the constraints

βσ
1,j+1/2 = −

∑
j ′ �=j

sgn(j ′ − j )∂x�
VCB,−σ
j ′+1/2 + i

2vσ

(
�A−σ

0,j

)
. (B29)

This leads us to define the bosonic fields

ϕ
hole,σ
j+1/2 = �

VCB,σ
j+1/2 +

∑
j ′ �=j

sgn(j ′ − j )�VCB,−σ
j ′+1/2 , θ

hole,σ
j+1/2 = �

VCB,σ
j+1/2 . (B30)

We finally obtain the CFL action in terms of the holes

S0 =
∫

τ,x

∑
j,σ

[
i

π
∂xθ

hole,σ
j+1/2

(
∂τϕ

hole,σ
j+1/2 + 1

2

(
SAσ

0,j

)+ iv−σ

2

(
�A−σ

1,j

))+ vσ

2π

(
∂xϕ

hole,σ
j+1/2 + 1

2

(
SAσ

1,j

)− i

2vσ

(
�A−σ

0,j

))2

+ ũ−σ

2π

(
∂xθ

hole,σ
j+1/2

)2 + u−σ − vσ

8π

((
�∂xϕ

hole,σ
j−1/2

)+ (
S∂xθ

hole,−σ
j−1/2

))2 + i

4π

(
SAσ

1,j

)(
�A−σ

0,j

)
+ 1

8πv−σ

(
�Aσ

0,j

)2 + vσ

8π

(
�Aσ

1,j

)2
]
, (B31)

H1 =
∫

x

∑
j,σ

[
gσ

Rei(ϕhole,−σ
j−1/2 −θ

hole,−σ
j−1/2 −ϕ

hole,−σ
j+1/2 −2θ

hole,σ
j+1/2−θ

hole,−σ
j+1/2 ) + gσ

Lei(ϕhole,−σ
j−1/2 −2θ

hole,σ
j−1/2−θ

hole,−σ
j−1/2 −ϕ

hole,−σ
j+1/2 −θ

hole,−σ
j+1/2 ) + H.c.

]
. (B32)

This hole theory is related to the original action by a local transformation

ϕ
hole,σ
j+1/2 = − 1

2

(
ϕσ

j + θ−σ
j + ϕσ

j+1 − θ−σ
j+1

)
, θ

hole,σ
j+1/2 = − 1

2

(
ϕ−σ

j + θσ
j − ϕ−σ

j+1 + θσ
j+1

)
. (B33)

The PH transformation is now defined by

ϕσ
j → −ϕ

hole,σ
j+1/2, θσ

j → θ
hole,σ
j+1/2 (B34)

with complex conjugation, although this transformation is not well defined in the pure 2D lattice system as in the fermionic
case. The CFL action has the PH symmetry of this sense when uσ = ũ−σ and gσ

R = g−σ
L , which is indeed the self-duality

condition discussed above. This transformation can be conveniently expressed in terms of the bosonic fields φσ
j = ϕσ + θ−σ

j and
φ̃σ

j = ϕσ
j − θ−σ

j . The pairs of the bosonic fields {φσ
j } and {φ̃σ

j } have the opposite chirality to each other and actually describe
counterpropagating edge modes of the bosonic IQH state [73]. In terms of these fields, the PH transformation is given by
φσ

j → φ̃σ
j+1 and φ̃σ

j → φσ
j with complex conjugation. This is equivalent to the antiunitary PH symmetry considered for the

Nf = 2 QED3 in Ref. [49] when {φσ
j } and {φ̃σ

j } are separated by half the lattice spacing.

APPENDIX C: SOME DETAILS ABOUT PFAFFIAN STATES

1. Review of Teo-Kane’s construction

For the paper to be self-contained, we here briefly review the Teo-Kane construction of the Pfaffian state at ν = 1/M [27].
The corresponding tunneling Hamiltonian is given in Eq. (137). By grouping two adjacent wires, Teo and Kane introduced the
chiral bosonic fields corresponding to the charge (c) and neutral (n) sectors:

φ̃c
R,l = 1

2 [ϕ2l + ϕ2l+1 + (M + 1)θ2l + (3M − 1)θ2l+1], φ̃c
L,l = 1

2 [ϕ2l + ϕ2l+1 − (3M − 1)θ2l − (M + 1)θ2l+1],

φ̃n
R,l = 1

2 [ϕ2l − ϕ2l+1 + (M + 1)θ2l + (M − 3)θ2l+1], φ̃n
L,j = 1

2 [ϕ2l − ϕ2l+1 + (M − 3)θ2l + (M + 1)θ2l+1], (C1)

which satisfy the commutation relations[
φ̃c

r,l (x), φ̃c
r ′,l′ (x

′)
] = iπrMδr,r ′δl,l′ sgn(x − x ′) + iπMδl,l′εr,r ′ ,[

φ̃n
r,l (x), φ̃n

r,l′ (x
′)
] = iπrδr,r ′δl,l′ sgn(x − x ′) + iπδl,l′εr,r ′ , (C2)

[
φ̃c

r,l (x), φ̃n
r ′,l′ (x

′)
] = − iπ

2
(M − 1)δl,l′ .
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In terms of these bosonic fields, the tunneling Hamiltonian (137) can be written as

H1 =
∫

x

∑
l

[
t00κ2nκ2n+1e

i(φ̃c
R,l−φ̃c

L,l+1+φ̃n
R,l−φ̃n

L,l+1 ) + t11κ2n+1κ2n+3e
i(φ̃c

R,l−φ̃c
L,l+1−φ̃n

R,l+φ̃n
L,l+1 ) + t01κ2nκ2n+3e

i(φ̃c
R,l−φ̃c

L,l+1+φ̃n
R,l+φ̃n

L,l+1 )

+ t10κ2n+1κ2n+2e
i(φ̃c

R,l−φ̃c
L,l+1−φ̃n

R,l−φ̃n
L,l+1 ) + tuκ2nκ2n+1e

i(φ̃n
R,l+φ̃n

L,l ) + tve
i(φ̃n

R,l−φ̃n
L,l ) + H.c.

]
. (C3)

The commutation relation (C2) suggests that vertex operators of the neutral bosonic fields,

ψ̃n
r,l (x) = ηl√

2πα
eiφ̃n

r,l (x), (C4)

can be regarded as fermionic operators when appropriate forward-scattering interactions are incorporated into the kinetic action
such that these vertex operators have conformal weight 1

2 . In order to make sure that these operators anticommute between
different l’s, we choose the Klein factor to be ηl = κ2l for the fermionic case (even M), while we introduce new Majorana
operators obeying {ηl, ηl′ } = 2δll′ for the bosonic case (odd M). The neutral sector can be split into two Ising CFTs and the
fermionic operator is then written in terms of two Majorana fermions as

ψ̃n
r,l = 1√

2

(
ξ̃ 1
r,l + iξ̃ 2

r,l

)
. (C5)

As we will see below, the Ising CFT associated with ξ̃ 2
r,l is gapped by the interaction within each l. The operator hopping unit

charge between adjacent l’s is given by eiφ̃c
r,l ξ̃ 1

r,l , which is identified with the electron operator of the Pfaffian state. Quasiparticles
are excited in pairs by the bare-electron 2kF backscattering operators

ei2θ2l = ei(φ̃c
R,l−φ̃c

L,l )/2M+i(φ̃n
R,l−φ̃n

L,l )/2, ei2θ2l+1 = ei(φ̃c
R,l−φ̃c

L,l )/2M−i(φ̃n
R,l−φ̃n

L,l )/2. (C6)

From these, one can read off the smallest quasiparticle charge ±1/2M . However, the neutral sector of the quasiparticle operators
still requires integration of the massive Majorana fermion ξ̃ 2

r,l . Indeed, Teo and Kane discussed that the neutral sector can be
identified with the spin field of the Ising CFT. It does not have a bosonic (vertex) representation since it has two fusion channels.
We now wish to express the tunneling Hamiltonian (C3) in terms of the bosonic charge modes and these neutral Majorana modes.
Since we need some care about the Klein factors, we below separately treat the fermionic and bosonic cases.

2. Klein factor

For the bosonic (odd M) case, we have assigned that κj to be just a constant: κj = 1. Introducing the new Klein factors ηl ,
the tunneling Hamiltonian (C3) is written in terms of the fermionic operators (C4) as

H1 = 2πα

∫
x

∑
l

[− ηlηl+1e
i(φ̃c

R,l−φ̃c
L,l+1 )

(
t00e

−iπ (M−1)/2ψ̃n
R,lψ̃

n†
L,l+1 + t01ψ̃

n
R,lψ̃

n
L,l+1 + t10ψ̃

n†
R,lψ̃

n†
L,l+1 + t11e

iπ (M−1)/2ψ̃
n†
R,lψ̃

n
L,l+1

)
+ ituψ̃

n
R,lψ̃

n
L,l − itvψ̃

n
R,lψ̃

n†
L,l + H.c.

]
. (C7)

We now choose the coupling constants to be t00 = −eiπ (M−1)/2g, t11 = −e−iπ (M−1)/2g, t01 = t10 = −g, tu = −gu, and gv =
−gv with g, gu, and gv being real. Then, the tunneling Hamiltonian (C7) takes a simple form in terms of the Majorana fermions
(C5):

H1 = 2πα

∫
x

∑
l

[
4gηlηl+1 cos

(
φ̃c

R,l − φ̃c
L,l+1

)
ξ̃ 1
R,l ξ̃

1
L,l+1 + gv − gu

2
iξ̃ 1

R,l ξ̃
1
L,l + gv + gu

2
iξ̃ 2

R,l ξ̃
2
L,l

]
. (C8)

When gv = gu, the neutral Majorana fermions ξ̃ 2
r,l are gapped within each l, while the residual charge and neutral modes are

paired up between neighboring l’s to open a gap. Thus, the charged boson φ̃c
r,l and the neutral Majorana fermion ξ̃ 1

r,l are left

at the boundaries. The vertex operators of the charged bosonic fields ηle
iφ̃c

r,l carry charge 1 and follow the fermionic statistics.
They are combined with the Majorana fermions ξ̃ 1

r,l to form the electron operator with the bosonic statistics. This observation is
consistent with what is expected for the Pfaffian state.

For the fermionic (even M) case, κj are Majorana operators. In terms of the fermionic fields (C4), the tunneling Hamiltonian
(C3) is written as

H1 = 2πα

∫
x

∑
l

[
ei(φ̃c

R,l−φ̃c
L,l+1 )

(
t00e

−iπ (M−1)/2ψ̃n
R,lψ̃

n†
L.l+1 + t11e

iπ (M−1)/2κ2lκ2l+1κ2l+2κ2l+3ψ̃
n†
R,lψ̃

n
L,l+1

− t01κ2l+2κ2l+3ψ̃
n
R,lψ̃

n
L,l+1 − t10κ2lκ2l+1ψ̃

n†
R,lψ̃

n†
L,l+1

)+ iguκ2lκ2l+1ψ̃
n
R,lψ̃

n
L,l − igvψ̃

n
R,lψ̃

n†
L,l + H.c.

]
. (C9)

In this Hamiltonian, the Klein factors appear only in the bilinear form κ2lκ2l+1. Since they are commuting with each other, we
can simultaneously diagonalize them and replace them by their eigenvalues, say, κ2lκ2l+1 = i. Choosing the coupling constants
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to be t00 = eiπ (M−1)/2g, t11 = eiπ (M−1)/2g, t01 = t10 = ig, tu = igu, and tv = −gv , we find the tunneling Hamiltonian in terms
of the Majorana fermions (C5):

H1 = 2πα

∫
x

∑
l

[
4g cos

(
φ̃c

R,l − φ̃c
L,l+1

)
ξ̃ 1
R,l ξ̃

1
L,l+1 + gv − gu

2
iξ̃ 1

R,l ξ̃
1
L,l + gv + gu

2
iξ̃ 2

R,l ξ̃
2
L,l

]
. (C10)

Now, the vertex operators eiφ̃c
r,l carry charge 1 and follow the bosonic statistics. They are combined with the neutral Majorana

fermions ξ̃ 1
r,l to form the electron operators with the fermionic statistics.

The above treatment of the Klein factors is essentially the same for the composite-fermion formulation of the Pfaffian
state discussed in Sec. V A. With the same choice of the coupling constants and the Klein factors, we can find the tunneling
Hamiltonian for the bosonic case

H1 = 2πα

∫
x

∑
l

[
4gηlηl+1 cos

(
�c

l − �c
l+1

)
ξ 1
R,lξ

1
L,l+1 + gv − gu

2
iξ 1

R,lξ
1
L,l + gv + gu

2
iξ 2

R,lξ
2
L,l

]
, (C11)

while for the fermionic case

H1 = 2πα

∫
x

∑
l

[
4g cos

(
�c

l − �c
l+1

)
ξ 1
R,lξ

1
L,l+1 + gv − gu

2
iξ 1

R,lξ
1
L,l + gv + gu

2
iξ 2

R,lξ
2
L,l

]
. (C12)

By setting g → g/8πα and gu,v → gu,v/2πα, we obtain the tunneling Hamiltonian (144).
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