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Spin texture and spin current in excitonic phases of the two-band Hubbard model
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Using the mean-field approximation, we study the k-space spin textures and local spin currents emerged in
the spin-triplet excitonic insulator states of the two-band Hubbard model defined on the square and triangular
lattices. We assume a noninteracting band structure with a direct band gap and introduce s-, p-, d-, and f -type
cross-hopping integrals, i.e., the hopping of electrons between different orbitals on adjacent sites with four
different symmetries. First, we calculate the ground-state phase diagrams in the parameter space of the band
filling and interaction strengths, whereby we present the filling dependence of the amplitude and phase of the
excitonic order parameters. Then, we demonstrate that the spin textures (or asymmetric band structures) are
emerged in the Fermi surfaces by the excitonic symmetry breaking when particular phases of the order parameter
are stabilized. Moreover, in the case of the p-type cross-hopping integrals, we find that the local spin current can
be induced spontaneously in the system, which does not contradict the Bloch theorem for the absence of the
global spin current. The proofs of the absence of the global spin current and the possible presence of the local
spin currents are given on the basis of the Bloch theorem and symmetry arguments.
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I. INTRODUCTION

The excitonic phase, which is sometimes referred to as
the excitonic insulator phase, is the state where valence-band
holes and conduction-band electrons in small band-gap semi-
conductors or small band-overlap semimetals form pairs (or
excitons) due to weakly screened Coulomb interactions, and
a macroscopic number of the pairs condense into a quantum
state acquiring the phase coherence. Although the excitonic
phase was predicted to occur more than half a century ago
as a spontaneous hybridization between the valence and con-
duction bands and has attracted much attention because a
theoretical framework similar to that of BCS superconductors
can be applied [1–7], the lack of candidate materials delayed
our understandings of this phase until recently. However, the
progress in this research field has been made rapidly in recent
years owing to the discovery of some candidate materials. The
spin-singlet excitonic phase has been suggested to emerge in
some transition-metal chalcogenides such as 1T -TiSe2 [8–13]
and Ta2NiSe5 [14–21], and the spin-triplet excitonic phase
has also been suggested to emerge in some cobalt oxide
materials located in the crossover regime between the high-
spin and low-spin states [22–31]. Since these materials are
transition-metal compounds, the relevant properties should be
considered within the framework of the physics of strong
electron correlations using the Hubbard-like lattice models
[32–42].

In a series of such studies, Kuneš and Geffroy [43] dis-
cussed the effects of cross-hopping integrals on the excitonic
states in the two-band Hubbard model, where the cross hop-
ping is defined as the hopping of electrons between different
orbitals on the adjacent sites. The hopping integral between

different orbitals on the same site vanishes exactly because
of the orthogonality of the orbitals, but the cross-hopping
integrals between the adjacent sites can have a finite value
[44]. Since the hybridization between the orthogonal orbitals
occurs spontaneously due to interorbital Coulomb interactions
in the excitonic phase, one may naturally expect that the
hybridization caused by the cross-hopping integrals should
affect the excitonic phase significantly. Kuneš and Geffroy,
in particular, showed that the k-space spin texture, similar
to the one derived from the Rashba-Dresselhaus spin-orbit
coupling, can appear in the spin-triplet excitonic phases even
in centrosymmetric lattices without any intrinsic spin-orbit
coupling.

Kuneš and Geffroy [43] also argued that the spontaneous
spin currents can appear if the order parameters of the spin-
triplet excitonic phase are imaginary. Using different models
with certain cross-hopping integrals, Volkov et al. [45,46]
discussed the relationship between the excitonic phase and
imaginary order parameters and showed that the spin current
of the orbital off-diagonal components can remain finite, but
the total spin current including both the orbital diagonal and
off-diagonal components vanishes exactly. Thus, they con-
cluded that the global spin currents can never appear sponta-
neously in the equilibrium excitonic phase. Geffroy et al. [47]
also pointed out the absence of the global spin current. This
result is consistent with the Bloch theorem [48,49] that claims
that the global spin current does not appear spontaneously in
the ground state. The existence of the spontaneous global spin
current is thus unlikely to occur in the excitonic phases of
strongly correlated electron systems.

In this paper, motivated by the above developments in the
field, we study the excitonic phases of the two-band Hubbard
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models with cross-hopping integrals within the mean-field
approximation. We assume the square and triangular lattices
in two dimensions and examine the cross-hopping integrals
of four types, i.e., s, p, d, and f types. We thus calculate
the ground-state phase diagram of the models and clarify the
behaviors of the excitonic order parameters, Fermi surfaces,
band dispersions, and spin currents. In particular, we discuss
the relationship between the global spin currents and excitonic
phase with imaginary order parameters. We thereby find that
the spin textures are emerged in the Fermi surfaces by the
excitonic symmetry breaking when particular phases of the
order parameter are stabilized and that the local spin current
can be induced in the system with the p-type cross-hopping
integral. The proofs of the absence of the global spin current
and the possible presence of the local spin currents are also
given on the basis of the Bloch theorem and symmetry ar-
guments. We thus present a comprehensive understanding of
the spin textures and spin currents in the spin-triplet excitonic
phases of the two-band Hubbard model.

The rest of this paper is organized as follows. In Sec. II,
we introduce the two-band Hubbard model with the cross
hopping integrals and derive the self-consistent equations for
obtaining the ground state of the model in the mean-field
approximation. In Sec. III, we present the calculated results
for the phase diagram of the system, k-space spin texture,
features of the order parameters, and the local and global spin
currents of the system. We summarize our results in Sec. IV.
Appendices are provided to show the proofs of the absence of
the global spin currents and the possible presence of the local
spin currents in the excitonic phases of the model.

II. MODEL AND METHOD

A. Model

We consider the two-band Hubbard model defined on the
two-dimensional lattices. The Hamiltonian is written as

Ĥ = Ĥt + Ĥint, (1)

Ĥt =
∑
j,τ,σ

(tcĉ
†
j+τ,σ ĉj,σ + tf f̂

†
j+τ,σ f̂j,σ + H.c.)

+
∑
j,τ,σ

(V1,τ ĉ
†
j+τ,σ f̂j,σ + V2,τ f

†
j+τ,σ ĉj,σ + H.c.)

+ D

2

∑
j,σ

(
n̂c

j,σ − n̂
f

j,σ

) − μ
∑
j,σ

(
n̂c

j,σ + n̂
f

j,σ

)
, (2)

Ĥint =
∑

j

(
Ucn̂

c
j,↑n̂c

j,↓ + Uf n̂
f

j,↑n̂
f

j,↓
) + U ′ ∑

j,σ,σ ′
n̂c

j,σ n̂
f

j,σ ′ ,

(3)

where ĉ
†
j,σ (f̂ †

j,σ ) and ĉj,σ (f̂j,σ ) are the creation and an-
nihilation operators of an electron on the conduction (c)
orbital [valence (f ) orbital] at site j with spin σ . We define
the number operators n̂c

j,σ = ĉ
†
j,σ ĉj,σ and n̂

f

j,σ = f̂
†
j,σ f̂j,σ .

In Ĥt , D is the on-site energy splitting, μ is the chemical
potential, tc and tf are the hopping integrals between the
same orbitals on the nearest-neighbor sites, and V1,τ and V2,τ

are the hopping integrals between the different orbitals on

FIG. 1. Schematic representations of (a) the s-, (b) p-, (c) d-,
and (d) f -type cross-hopping integrals defined on either the square
or triangular lattice. The blue bonds indicate V1,τ = V2,τ = V and the
purple bonds indicate V1,τ = −V2,τ = V . In (e), the direct hoppings
(tc and tf ) and cross hoppings (V1 and V2) are illustrated. The
primitive translation vectors are ax = (1, 0) and ay = (0, 1) in (c),
and aα = (0, 1), aβ = (

√
3/2, −1/2), and aγ = (−√

3/2, −1/2)
in (d).

the nearest-neighbor sites. V1,τ and V2,τ are referred to as
the cross-hopping integrals. Note that j + τ indicates the
nearest-neighbor site of j , where j runs over all sites in
the system and τ denotes the primitive translation vector aτ

illustrated in Fig. 1(c) for the square lattice and Fig. 1(d) for
the triangular lattice. In Ĥint, Uc and Uf are the intraorbital
Coulombic repulsive interactions, and U ′ is the interorbital
Coulombic repulsive interaction. This model is illustrated in
Fig. 1, where aτ is the vector from site j to site j + τ (or
the primitive translation vector). The Fourier transformation
of Eq. (2) reads

Ĥt =
∑
k,σ

(ĉ†k,σ f̂
†
k,σ )

(
εc(k) γ (k)

γ ∗(k) εf (k)

)(
ĉk,σ

f̂k,σ

)
, (4)

where the matrix elements are

εc(k) = 2tc
∑

τ

cos kτ + D

2
− μ, (5)

εf (k) = 2tf
∑

τ

cos kτ − D

2
− μ, (6)

γ (k) = 2
∑

τ

(Vτ cos kτ + iV ′
τ sin kτ ), (7)
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with Vτ = (V1,τ + V2,τ )/2, V ′
τ = (V1,τ − V2,τ )/2, and kτ =

k · aτ . We assume the hopping integrals as −tc = tf = t = 1
(direct gap) and set D = 6 and Uc = Uf = U throughout the
paper.

We consider four types of the cross-hopping integrals,
i.e., s, p, d, and f types, where s, p, and d types are for
the square lattice and f type is for the triangular lattice. The
signs of V1,τ and V2,τ for each type are shown in Fig. 1. We
set V1,τ = V2,τ = V1,−τ = V2,−τ for the s and d types and
V1,τ = −V2,τ = −V1,−τ = V2,−τ for the p and f types, where
−τ denotes the primitive translation vector in the opposite
direction, −aτ . Thus, we rewrite Eq. (7) as

γ (k) = 2(Vx cos kx + Vy cos ky ) (8)

for s type,

γ (k) = 2i(V ′
x sin kx + V ′

y sin ky ) (9)

for p type,

γ (k) = 2(Vx cos kx − Vy cos ky ) (10)

for d type, and

γ (k) = 2i
∑

τ=α,β,γ

V ′
τ sin kτ (11)

with kγ = −kα − kβ for f type. Hereafter, we assume Vτ =
V ′

τ = V = 0.1t . Note that the space inversion of the s- and
d-type cross-hopping integrals has even parity, while that of
the p- and f -type ones has odd parity. Also, when there
are no cross-hopping integrals, the ground state of our two-
band model at half filling is a band insulator for U ′,D � U ,
while it is a Mott insulator for U ′,D � U , and the excitonic
insulator state appears in the intermediate region [44,50,51].

B. Mean-field theory

We use the mean-field theory to obtain the ground state of
the model. The excitonic order parameter is given by

�q = 1

L2

∑
j,σ,σ ′

e−iq·rj 〈ĉ†j,σ Tσ,σ ′ (l)f̂j,σ ′ 〉

= 1

L2

∑
k,σ,σ ′

〈ĉ†k+q,σ Tσ,σ ′ (l)f̂k,σ ′ 〉, (12)

where T (l) = l0I + l · σ with l = (l0, l ) and l = (l1, l2, l3),
satisfying l2

0 + l · l = 1 for real numbers lr (r = 0, 1, 2, 3).
L2 is the number of lattice sites in the system. In this paper,
we assume the spin-triplet excitonic order of the spin direction
along the z axis: i.e., T (l) = σz. Note that the energy of
the spin-singlet excitonic order (l0 �= 0 and l = 0) and that
of the spin-triplet excitonic order (l0 = 0 and l �= 0) are the
same in the present model. However, we implicitly assume
the presence of the exchange interactions like Hund’s rule
coupling, which stabilizes the spin-triplet excitonic order [38].
We do not consider the spin-singlet excitonic order, which
may be stabilized in the presence of strong electron-phonon
couplings [39].

If we restrict ourselves to the case q = 0 (direct gap), the
excitonic ordering changes the matrix γ (k) as

γ (k) → γ ′
σ (k) = γ (k) − U ′

2
σ�∗

0. (13)

The symmetry of the excitonic order depends on the phases
of the hybridization term γ (k) and order parameter �0. The
mean-field Hamiltonian of the two-band Hubbard model may
then read

ĤMF =
∑
k,σ

(ĉ†k,σ f̂
†
k,σ )

(
ε′
c(k) γ ′

σ (k)

γ ′
σ

∗(k) ε′
f (k)

)(
ĉk,σ

f̂k,σ

)
+ 2L2ε0,

(14)
with

ε′
c(k) = 2gc(k) + D

2
− n

4
(U − 2U ′) − μ0, (15)

ε′
f (k) = 2gf (k) − D

2
+ n

4
(U − 2U ′) − μ0, (16)

γ ′
σ (k) = 2h(k) − U ′

2
σ
∣∣�t

0

∣∣e−iφ, (17)

ε0 = −
(

N

4

)2

(U + 2U ′) −
(

n

4

)2

(U − 2U ′) + U ′

4

∣∣�t
0

∣∣2
,

(18)

where we define gc(f )(k) = tc(f )
∑

τ cos kτ , h(k) =∑
τ (Vτ cos kτ + iV ′

τ sin kτ ), and μ0 = μ − N
4 (U + 2U ′).

The number of electrons per unit cell is given by
N = 1

L2

∑
k,σ (〈n̂f

k,σ 〉 + 〈n̂c
k,σ 〉), where N = 2 is for the

half-filled band, and the difference between the numbers of c

and f electrons is given by n = 1
L2

∑
k,σ (〈n̂f

k,σ 〉 − 〈n̂c
k,σ 〉).

We define the q = 0 spin-triplet excitonic order parameter
as

�t
0 = ∣∣�t

0

∣∣eiφ = 1

L2

∑
k,σ

σ 〈ĉ†k,σ f̂k,σ 〉, (19)

where φ is the phase of the complex order parameter and σ =
±1. The mean-field Hamiltonian can be diagonalized by the
Bogoliubov transformation

(
α̂k,σ,+
α̂k,σ,−

)
=

(
uk,σ eiθk,σ vk,σ

e−iθk,σ vk,σ −uk,σ

)(
ĉk,σ

f̂k,σ

)
, (20)

where we take uk,σ and vk,σ to be real, and vk,σ is multiplied
by the phase factor eiθk,σ . This assumption does not lose
generality because the relative phase of uk,σ and vk,σ is
fixed in the Bogoliubov transformation. Since the Bogoliubov
transformation is unitary, the identity |uk,σ |2 + |vk,σ |2 = 1 is
satisfied. Thus, we obtain the diagonalized mean-field Hamil-
tonian as

ĤMF =
∑
k,σ

(E+
k,σ α̂

†
k,σ,+α̂k,σ,+ + E−

k,σ α̂
†
k,σ,−α̂k,σ,−)+2L2ε0,

(21)
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with the quasiparticle band dispersions

E±
k,σ = ηk ±

√
ξ 2

k + |γ ′
σ (k)|2, (22)

ηk = 1
2 (ε′

c(k) + ε′
f (k)), (23)

ξk = 1
2 (ε′

c(k) − ε′
f (k)). (24)

The transformation coefficients and complex phase factor are
given by

u2
k,σ = 1

2

⎛
⎝1 + ξk√

ξ 2
k + |γ ′

σ (k)|2

⎞
⎠, (25)

v2
k,σ = 1

2

⎛
⎝1 − ξk√

ξ 2
k + |γ ′

σ (k)|2

⎞
⎠, (26)

eiθk,σ = γ ′
σ (k)

|γ ′
σ (k)| . (27)

Thus, the self-consistent equations are given by

N = 1

L2

∑
k,σ

[f (E+
k,σ ) + f (E−

k,σ )], (28)

n = 1

L2

∑
k,σ

(
u2

k,σ − v2
k,σ

)
[f (E+

k,σ ) − f (E−
k,σ )], (29)

�t
0 = 1

L2

∑
k,σ

σuk,σ vk,σ e−iθk,σ [f (E+
k,σ ) − f (E−

k,σ )], (30)

where we define the Fermi distribution function f (E±
k,σ ) =

〈α̂†
k,σ,±α̂k,σ,±〉 = 1/(1 + eβE±

k,σ ) using the reciprocal temper-
ature β. We carry out the following calculations at zero
temperature.

III. RESULTS AND DISCUSSION

A. Order parameter and k-space spin textures

Let us first discuss the excitonic order parameter focusing
on its phase, which can cause the k-space spin textures. When
the cross hopping is introduced, the phase of the excitonic
order parameter is fixed to a certain value that depends on both
types of the cross hopping and electron filling N [43]. The
calculated results for the phase diagram are summarized in
Fig. 2; the results in the parameter space of (N,U ′) at U = 9
are shown in Figs. 2(a)–2(d) and the results in the parameter
space of (N,U ) at U ′ = 5 are shown in Figs. 2(e)–2(h). The
calculated results for the amplitude |�t

0| and phase φ of the
order parameter are also shown in Figs. 2(i)–2(l) at U = 9.5
and U ′ = 5 as a function of N . In the normal phase where
the order parameter is zero, the system is a band insulator at
half filling (N = 2) and a metal at N < 2. As the number
of electrons decreases from N = 2, the required U for the
excitonic phase transition increases. In the excitonic phase, the
phase of the order parameter strongly depends on the types of
the cross hopping and N . When the cross hopping is present,
the k-space spin texture can emerge, where the splitting of the
up-spin and down-spin bands occurs in the excitonic phase as
is illustrated in Fig. 3 and Fig. 4. In the following, we discuss

the k-space spin texture in the even-parity (s- and d-type) and
odd-parity (p- and f -type) cross-hopping cases separately.

For the s- and d-type cross-hopping integrals (even-parity
case), we find that the phase is fixed to φ = π/2 at N = 2,
which decreases with decreasing N monotonically to zero. A
finite value of the magnetization emerges, whose sign is oppo-
site to the direction of the excitonic order parameter, in agree-
ment with the preceding study [43]. We define the magneti-
zation of each orbital ( = c, f ) as m

0 = 1
2L2

∑
k,σ σ 〈n̂

k,σ 〉,
which is calculated in the mean-field approximation ε′

(k) →
ε′
(k) − Uσm

0 and ε0 → ε0 + U/2[(mc
0)2 + (mf

0 )2]. In the
case of s-type cross hopping, there occurs the mixing between
the orbital diagonal component of the order parameters (or
magnetization) and the orbital off-diagonal component of the
order parameter (or excitonic order), so that the excitonic
order is accompanied necessarily by the magnetization. From
Eqs. (17) and (22), we find that the quasiparticle band splits at
φ �= π/2 since h(k) is real.

The calculated k-space spin textures (or spin-dependent
Fermi surfaces) are shown in Figs. 3(a) and 3(c) for the s- and
d-type even-parity cross-hopping integrals, respectively, and
the corresponding quasiparticle band dispersions are shown
in Figs. 4(a), 4(b), and 4(e). The time-reversal symmetry
breaking by the excitonic ordering leads to E±

k,σ = E±
−k,σ and

E±
k,σ �= E±

−k,−σ , whereby the degeneracy of the up-spin and
down-spin bands is lifted along the ω direction. In the case
of the s-type cross-hopping integral, the excitonic order splits
the up-spin and down-spin bands along the ω direction in
the entire k space, resulting in the net spin polarization. In the
d-type cross-hopping integral, the excitonic order splits the
spin bands as well, but due to the k-dependent spin occupation
of the bands (or spin texture), the net spin polarization van-
ishes. Such a difference caused by the cross-hopping integrals
affects the self-consistent equations, thereby giving rise to
a qualitative difference in the orders of the excitonic phase
transitions [see Figs. 2(i) and 2(k)].

On the other hand, for the p- and f -type cross-hopping
integrals (odd-parity case), we find that the phase is fixed
to φ = 0 at N = 2, increases continuously with decreasing
N , and reaches a constant value π/2 at N < 1.96 for the
p type and at N < 1.98 for the f type. We also find that
the excitonic order parameter continuously decreases with
decreasing N . Since h(k) is pure imaginary, the degeneracy of
the up-spin and down-spin bands is lifted along the k direction
(rather than the ω direction) when φ �= 0. The k-space spin
textures are shown in Figs. 3(b) and 3(d) for the p- and f -type
cross-hopping integrals, respectively, and the corresponding
quasiparticle band dispersions are shown in Figs. 4(c), 4(d),
and 4(f). The inversion symmetry breaking by the excitonic
ordering leads to E±

k,σ �= E±
−k,σ and E±

k,σ = E±
−k,−σ , whereby

the splitting of the up-spin and down-spin bands emerges. The
splitting characteristic of the inversion symmetry breaking is
clearly visible in the X′-�-X line of the Brillouin zone [see
Figs. 4(c) and 4(d)] as well as in the K-�-K′ line of the
Brillouin zone [see Fig. 4(f)].

B. Spin currents

Next, let us discuss the local and global spin currents in the
excitonic phases of our model. The global spin current may be
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FIG. 2. Calculated phase diagrams of our model in the parameter space of (N,U ′) at U = 9 (upper panels) and (N,U ) at U ′ = 5 (middle
panels), where N is the number of electrons per site. The cross-hopping integrals of (a),(e) s, (b),(f) p, (c),(g) d , and (d),(h) f type are
assumed. Circles, diamonds, and triangles in the phase diagrams represent the excitonic phases with the phase φ = 0, 0 < φ < π/2, and
φ = π/2, respectively, and squares represent the normal phase. In the lower panels (i)–(l), we show the calculated amplitude |�t

0| (red) and
phase φ (blue) of the excitonic order parameter at U = 9.5 and U ′ = 5 as a function of N , where we assume the cross-hopping parameters
of (i) s, (j) p, (k) d , and (l) f type. The solid and dotted lines at the phase boundaries represent the second- and first-order phase transitions,
respectively.

defined as

Ĵ
s

tot = 1

L2

∑
k,σ

σ

2
(ĉ†k,σ f̂

†
k,σ )∇k

(
ε′
c(k) γ ′

σ (k)

γ ′
σ

∗(k) ε′
f (k)

)(
ĉk,σ

f̂k,σ

)
(31)

with ∇k = ∑
τ aτ

∂
∂kτ

, which may be separated into the orbital diagonal component

Ĵ
s

cc +Ĵ
s

ff = − 1

L2

∑
τ,k,σ

σ tc sin kτ ĉ
†
k,σ ĉk,σ aτ − 1

L2

∑
τ,k,σ

σ tf sin kτ f̂
†
k,σ f̂k,σ aτ (32)

and orbital off-diagonal component

Ĵ
s

cf +Ĵ
s

f c = 1

L2

∑
τ,k,σ

σ (−Vτ sin kτ + iV ′
τ cos kτ )ĉ†k,σ f̂k,σ aτ + 1

L2

∑
τ,k,σ

σ (−Vτ sin kτ − iV ′
τ cos kτ )f̂ †

k,σ ĉk,σ aτ . (33)

Let us consider the diagonal component first. The expecta-
tion value of the diagonal component is given by

〈Ĵ
s

cc〉 + 〈Ĵ
s

ff 〉 = − t

L2

occ.∑
τ,k,σ

σ
ξk sin kτ√

ξ 2
k + |γ ′

σ (k)|2
aτ , (34)

where occ. means the summation over the k points at which
the quasiparticle band E−

k,σ is occupied. In the even-parity
case, we have ξk = ξ−k and |γ ′

σ (k)|2 = |γ ′
σ (−k)|2, which lead

to 〈Ĵ
s

cc〉 + 〈Ĵ
s

ff 〉 = 0 since the integrand of Eq. (34) becomes
an odd function with respect to k. Therefore, the diagonal
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FIG. 3. Calculated k-space spin textures for the (a) s-, (b) p-,
(c) d-, and (f) f -type cross-hopping integrals, where the up-spin (red)
and down-spin (blue) Fermi surfaces are drawn. We assume N =
1.94 in (a), (b), and (c), and N = 1.98 in (d). We find φ = 0 in (a)
and (c) and φ = π/2 in (b) and (d). We set D = 6, U = 9.5, and
U ′ = 5. The areas enclosed by the dotted lines in Figs. 4(g) and 4(h)
(see below) are shown.

component of the spin current never appears in the even-parity
case. On the other hand, in the odd-parity case with φ �= 0
excitonic phases, we have |γ ′

σ (k)|2 �= |γ ′
σ (−k)|2, which leads

to 〈 Ĵ
s

cc〉 + 〈 Ĵ
s

ff 〉 �= 0. The diagonal component of the spin
current calculated for the model with the p-type cross hopping
is shown in Fig. 5, where the phase of the order parameter
varies continuously from zero to π/2 with decreasing N

[see Fig. 2(j)]. When φ = 0, we have |γ ′
σ (k)|2 = |γ ′

σ (−k)|2,
which leads to 〈Ĵ

s

cc〉 + 〈Ĵ
s

ff 〉 = 0. However, when φ > 0, the
diagonal component acquires a finite value, which is caused
by the spin-dependent band splitting as shown in Fig. 3(b).
The value of the diagonal component increases until the phase
reaches π/2, but it decreases by further decreasing N and
vanishes when the excitonic order disappears.

Let us next consider the off-diagonal component of the spin
current. Vτ and V ′

τ in Eq. (33) depend on the types of the cross
hopping: In the even-parity case, we have Vτ �= 0 and V ′

τ = 0,
and in the odd-parity case, we have Vτ = 0 and V ′

τ �= 0. In
the following, we consider the cases with the s- and p-type
cross-hopping integrals.

For the s-type cross-hopping integral, we have the off-
diagonal component of the spin current as

〈
Ĵ

s

cf

〉 + 〈
Ĵ

s

f c

〉 = V

L2

occ.∑
τ,k,σ

σ
Re[γ ′

σ (k)] sin kτ√
ξ 2

k + |γ ′
σ (k)|2

aτ . (35)

Since γ ′
σ (k) = γ ′

σ (−k) in any φ, the inversion symmetry
remains in the excitonic phase. Therefore, the integrand of
Eq. (35) is an odd function with respect to k, so that 〈 Ĵ

s

cf 〉 +

FIG. 4. Calculated quasiparticle band dispersions in the spin-
triplet excitonic phases of our model. Their energies ω are plotted
in the Brillouin zone. The up-spin (red) and down-spin (blue) bands
are illustrated. We assume N = 1.94 for the s-, p-, and d-type
cross-hopping integrals and N = 1.98 for the f -type cross-hopping
integrals. We find φ = 0 for the s and d type, and φ = π/2 for the
p and f type. We set D = 6, U = 9.5, and U ′ = 5. In (g) and (f),
we show the Brillouin zones and the paths along which the band
dispersions are drawn.

〈 Ĵ
s

f c〉 = 0. The same discussion also applies to the case with
the d-type cross-hopping integral.

For the p-type cross-hopping integral, we have the off-
diagonal component as

〈
Ĵ

s

cf

〉 + 〈
Ĵ

s

f c

〉 = − V

L2

occ.∑
τ,k,σ

σ
Im[γ ′

σ (k)] cos kτ√
ξ 2

k + |γ ′
σ (k)|2

aτ . (36)
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FIG. 5. (a) Calculated local and global spin currents as a func-
tion of the electron filling N , where we assume the p-type cross-
hopping integral. We set D = 6, U = 9.5, and U ′ = 5. We also
show schematic representations of the local spin currents in (b) and
(c), where the diagonal and off-diagonal components are indicated,
respectively.

Since |γ ′
σ (k)|2 = |γ ′

σ (−k)|2 and Im[γ ′
σ (k)] = 2V

∑
τ sin kτ

at φ = 0, the integrand of Eq. (36) becomes an odd function
with respect to k, which leads to 〈Ĵ s

cf 〉 + 〈Ĵ s

f c〉 = 0. However,
the inequality γ ′

σ (k) �= γ ′
σ (−k) at φ = π/2 breaks the inver-

sion symmetry, which leads to 〈Ĵ
s

cf 〉 + 〈Ĵ
s

f c〉 �= 0. We obtain
the same result whenever φ �= 0.

The calculated off-diagonal component of the spin current
for the p-type cross-hopping integrals is shown in Fig. 5. One
might think that this result contradicts the Bloch theorem that
the current necessarily vanishes without external fields in the
bulk systems. However, we find in Fig. 5 that the sum of the
diagonal and off-diagonal components exactly vanishes as

〈
Ĵ

s

tot

〉 = 〈
Ĵ

s

cc

〉 + 〈
Ĵ

s

ff

〉 + 〈
Ĵ

s

cf

〉 + 〈
Ĵ

s

f c

〉 = 0, (37)

which is consistent with the Bloch theorem. Thus, the global
spin current always vanishes, in agreement with the identity at
zero temperature [46,52]

〈
Ĵ

s

tot

〉 = 1

L2

occ.∑
k,σ

σ∇kE
−
k,σ = 0. (38)

We should emphasis again that the global spin current
never appears even if the cross-hopping integrals are added
and the carriers are introduced. The same discussion can also
be applied to the case of the f -type cross-hopping integrals.
However, we note that the relation 〈 Ĵ

s

′ 〉 = 0 necessarily
holds since we have

∑
τ aτ = 0 in the triangular lattice, which

results in the vanishing local spin currents. As discussed in the
study of superconductivity [48,49] and also in a recent paper
by Geffroy et al. [47], the ground state containing a finite
global current cannot be allowed in the equilibrium system.
In our mean-field calculation, we actually find that there is
no global spin current but there can be a finite local spin
current. As shown here, the origin of the local spin current
is the inversion-symmetry breaking in the excitonic phase.
We again stress that the Bloch theorem does not prohibit the
presence of the local spin currents. The detailed discussions
on the absence of the global spin current and the presence of
the local spin currents are found in Appendices A and B.

IV. SUMMARY

We studied the k-space spin textures and spin currents
in the spin-triplet excitonic phase of the two-band Hubbard
model defined on the square and triangular lattices by the
mean-field approximation. We assumed the noninteracting
band structure with a direct band gap and introduced the s-,
p-, d-, and f -type cross-hopping integrals. We thus found
that, depending on the types of the cross hopping, interaction
strength, and electron filling, the phase of the excitonic order
parameter is fixed to be imaginary, whereby the k-space spin
texture and local spin current can emerge.

The even-parity cross-hopping integrals of the s and d type
lift the spin degeneracy of the band dispersions by the break-
ing of the time-reversal symmetry, which leads to the k-space
spin texture, whereas the local spin current exactly vanishes
because the space-inversion symmetry remains in this system.
On the other hand, the odd-parity cross-hopping integrals of
the p and f type lift the spin degeneracy of the band structures
by the breaking of the space-inversion symmetry, which leads
to the k-space spin texture as well. Moreover, in the case
of the p-type cross-hopping integral, the local spin currents
of the diagonal and off-diagonal components remain finite
when the excitonic order parameter has the imaginary value.
The global spin current always vanishes, which is consistent
with the Bloch theorem.

The experimental observation of the k-space spin textures
and local spin currents may, therefore, be very useful for
verification of the presence of the spin-triplet excitonic orders.
We hope that our results will encourage experimental confir-
mations of the excitonic phases in real materials.
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APPENDIX A: ABSENCE OF THE GLOBAL
SPIN CURRENT

Here, we discuss the absence of the global spin current in
spin-triplet excitonic insulator states from the viewpoint of the
Bloch theorem. First, we introduce the spin current from the
continuity equation in the d-dimensional lattice containing Ld

sites and define the global and local (or partial) spin currents.
Next, we derive the Bloch theorem for the global spin current
and examine its correspondence with the results of our mean-
field calculations.

1. Global and local spin currents

The current operators may be derived from the continuity
conditions of the Hamiltonian as [53]

∂

∂t
Ŝz

j = i
[
Ĥ, Ŝz

j

] = −
∑

τ

(
Ĵ z

(j,τ ) − Ĵ z
(j,−τ )

)
, (A1)
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where Ĵ z
(j,τ ) denotes the operator of the spin current flowing

out from site j to j + τ and Ŝz
j = 1/2

∑
σ σ (n̂c

jσ + n̂
f

jσ ). We
note that this argument is justified if and only if the system
has the axial spin rotational symmetry about the z axis, Rz,
and the expectation value of the z component of the total
spin operator is conserved. Thus, we assume in the following
discussions that the system has the symmetry Rz. The spin
current operators Ĵ z

(j,τ ) may then be divided into the orbital
diagonal and orbital off-diagonal components as

Ĵ z
(j,τ ),cc = −itc/2

∑
σ

σ (ĉ†j+τ,σ ĉj,σ − H.c.), (A2)

Ĵ z
(j,τ ),ff = −itf /2

∑
σ

σ (f̂ †
j+τ,σ f̂j,σ − H.c.), (A3)

Ĵ z
(j,τ ),cf = −iV1,τ /2

∑
σ

σ (ĉ†j+τ,σ f̂j,σ − H.c.), (A4)

Ĵ z
(j,τ ),f c = −iV2,τ /2

∑
σ

σ (f̂ †
j+τ,σ ĉj,σ − H.c.). (A5)

Then, the global spin current flowing in the direction τ may
be defined as

LdĴ z
τ =

∑
j

Ĵ z
(j,τ ) = 1

2

∑
kσ

σ (ĉ†k,σ f̂
†
k,σ )

∂H(k)

∂kτ

(
ĉk,σ

f̂k,σ

)

(A6)

with

H(k) =
(

εc(k) γ (k)

γ ∗(k) εf (k)

)
, (A7)

where the τ denotes the vector from site j to site j + τ . Note
that the interaction terms of the Hamiltonian Eq. (3) do not
contribute to the spin current operators.

Similarly, the partial spin current may be defined as

LdĴ z
τ,ll′ =

∑
j

Ĵ z
(j,τ ),ll′ , (A8)

where l and l′ (= c, f ) denote the orbitals. We also define
the difference between the orbital diagonal and orbital off-
diagonal spin currents as

Ĵ ′z
τ = Ĵ z

τ,cc + Ĵ z
τ,ff − Ĵ z

τ,cf − Ĵ z
τ,f c

= 1

2Ld

∑
kσ

σ (ĉ†k,σ f̂
†
k,σ )τz

∂H(k)

∂kτ

τz

(
ĉk,σ

f̂k,σ

)
, (A9)

where τ z denotes the z component of the Pauli matrix. We
may then obtain the orbital diagonal and orbital off-diagonal
spin currents as Ĵ (+)

τ = Ĵ z
τ + Ĵ ′z

τ and Ĵ (−)
τ = Ĵ z

τ − Ĵ ′z
τ , respec-

tively.
Here, we note that the orbital-decomposed partial spin

currents may be termed as the local spin currents if the orbitals
are located in different spatial positions, as is assumed in
the main text. The global (or total) spin current may then be
defined as a sum of the local (or partial) spin currents. We also
note that the global spin current if it exists may obviously be
observed experimentally but the local spin currents should in
principle be observed experimentally as well, which can lead
to an experimental proof of the existence of the spin-triplet

excitonic insulator state. In the Appendices A and B, we use
the term “partial” spin current rather than “local” spin current.

2. The Bloch theorem

Now, let us prove the Bloch theorem for our system, which
states that the persistent spin current does not exist in thermal
equilibrium without any external fields. The proof is carried
out in the following two steps [49]. First, we introduce the
excited state generated by an infinitesimal twisting of the spin-
dependent Peierls phase in the hopping parameters. Secondly,
using the inequality originated from the passivity (defined
below) of thermal equilibrium states, we show on the basis
of the dimensional analysis that a contradiction is lead if we
assume the existence of the global spin current. In this proof,
we assume that the system is under the periodic boundary
condition in all the orthogonal directions.

First, we introduce the spin-dependent Peierls phase using
the twist operator defined as

Û (ϕ) = exp

⎛
⎝iϕ ·

∑
l,j,σ

σ n̂l
j,σ rj

⎞
⎠, (A10)

where ϕ denotes a vector in the reciprocal lattice space,
which satisfies Lϕ · ai = 0 and its amplitude characterizes the
intensity of the flux penetrating a one-dimensional ring. Thus,
the vector ϕ can be written as

ϕ = 1

L

∑
j

mj bj = O(L−1), mj ∈ Z, (A11)

where ai · bj = 2πδij . Here, we assume the integers mj ∈ Z
are sufficiently smaller than L, so that the vector ϕ has the
order of L−1. Using this twist operator, the fermion creation
and annihilation operators with momentum k are transformed
into the other fermion operators with momentum k − σϕ as

Û †(ϕ)ĉk,σ Û (ϕ) = ĉk−σϕ,σ , (A12)

Û †(ϕ)ĉ†k,σ Û (ϕ) = ĉ
†
k−σϕ,σ , (A13)

Û †(ϕ)f̂k,σ Û (ϕ) = f̂k−σϕ,σ , (A14)

Û †(ϕ)f̂ †
k,σ Û (ϕ) = f̂

†
k−σϕ,σ , (A15)

where we note that the shifted momentum k − σϕ is in the
Brillouin zone. Because thermal equilibrium states are passive
(or energetically stable) for any local unitary transformation
[49,54], we can introduce the following inequality:

ω0(Û †(ϕ)[Ĥ, Û (ϕ)]) � 0, (A16)

where ω0(· · · ) is defined as the expectation value with respect
to the infinite thermodynamical equilibrium state. In particu-
lar, if the N -fermion system has a unique ground state |�(N )

0 〉
at zero temperature, ω0(· · · ) may be rewritten as

ω0(· · · ) = lim
L→∞

〈
�

(N )
0

∣∣ · · · ∣∣�(N )
0

〉
, (A17)

where we take the infinite volume limit L → ∞ so that the
density ρ = N/Ld converges to a finite positive constant.

035119-8



SPIN TEXTURE AND SPIN CURRENT IN EXCITONIC … PHYSICAL REVIEW B 99, 035119 (2019)

Using the twist operator, we then obtain

Û †(ϕ)[Ĥ, Û (ϕ)] = 2ϕ ·
∑
kσ

σ

2
(ĉ†k,σ f̂

†
k,σ )∇kH(k)

(
ĉk,σ

f̂k,σ

)

+O(Ld−2), (A18)

where the first term of the right-hand side corresponds to the
global spin current defined in Eq. (A6). If the system has a
nonzero bulk spin current, this term is of the order of Ld−1.
Thus, we find

1

Ld
ω0(Û †(ϕ)[Ĥ, Û (ϕ)])

= 4π

L

∑
τ

mτω0
(
Ĵ z

τ

) + O(L−2) � 0, (A19)

where we note that the vector ϕ is arbitrary, so that we can
take any values of mτ . Now, if we assume the presence of the
positive global spin current, i.e., ω(Ĵ z

τ ) > 0, then choosing
all mτ to be negative, we obtain

∑
τ mτω0(Ĵτ ) < 0, which

contradicts the passivity condition Eq. (A16). Therefore, we
find that the global spin current does not exist. In other words,
the axial spin rotational symmetry about the z axis is not
broken in the ground state of the system. We also note that
the above argument cannot be applied to the case of the
surface currents. If the system has only the surface currents,
the leading order of Eq. (A19) becomes L−2. Therefore, the
Bloch theorem does not prohibit the existence of the surface
currents. Similarly, the bulk spin current is robust against
surface defects because of the same reasons. As discussed
in Appendix B, such a dimensional analysis can also be
applied to the proof of the existence of the partial spin cur-
rents, which are not prohibited by the Bloch-like theorem in
general.

3. Absence of the global spin current in the
mean-field approximation

Here, we discuss the validity of the Bloch theorem in the
straightforward mean-field calculation. In general, the Bloch
theorem is applicable to any interacting electron systems with
the axial spin rotational symmetry and therefore should be
valid in the mean-field approximation as well. Using the
Hellmann-Feynman theorem [55], we obtain

〈
Ĵ

s

tot

〉 = 1

Ld

∑
τ,k,σ

σ

(
∂E+

k,σ

∂kτ

f (E+
k,σ ) + ∂E−

k,σ

∂kτ

f (E−
k,σ )

)
aτ

= 1

Ld

∑
k,σ,ν=±

σ
(∇kE

ν
k,σ

)
f

(
Eν

k,σ

)
, (A20)

where ν denotes the band index. Using the density of states
defined as

Dν,σ (E)dE = Ld

(2π )d

[∫
Eν

k,σ =E

dl∣∣∇kE
ν
k,σ

∣∣
]
dE, (A21)

where dl is the surface element in k space satisfying Eν
k,σ =

E, we can rewrite Eq. (A20) as

〈
Ĵ

s

tot

〉 = 1

Ld

∑
σ,ν

σ

∫
Dν,σ

(
Eν

σ

)(∇kE
ν
k,σ

)
f

(
Eν

σ

)
dEν

σ

= 1

(2π )d
∑
σ,ν

σ

∫
dEν

σf
(
Eν

σ

) ∫
ndl = 0 (A22)

with n = ∇kE
ν
k,σ /|∇kE

ν
k,σ |. The integral over the closed

constant-energy surface vanishes
∫

ndl = 0, resulting in the
vanishing global spin current.

APPENDIX B: EXISTENCE OF THE PARTIAL
SPIN CURRENT

Here, we discuss the existence of the partial spin cur-
rent in spin-triplet excitonic insulator states. First, we make
the Bloch-like argument for the partial spin current [de-
fined in Eq. (A9)] as an application of the method given in
Appendix A. Next, we make the argument based on the
discrete lattice symmetries.

1. Argument based on the Bloch-like theorem

Introducing the operator defined as

Ŵ = exp

⎧⎨
⎩i

π

2

∑
j,σ

(ĉ†j,σ f̂
†
j,σ )τ z

(
ĉj,σ

f̂j,σ

)⎫⎬
⎭, (B1)

we find that the fermion creation and annihilation operators
for the c- and f -band electrons are transformed as

Ŵ †ĉj,σ Ŵ = iĉj,σ , (B2)

Ŵ †ĉ†j,σ Ŵ = −iĉ
†
j,σ , (B3)

Ŵ †f̂j,σ Ŵ = −if̂j,σ , (B4)

Ŵ †f̂ †
j,σ Ŵ = if̂

†
j,σ . (B5)

Thus, using this operator Ŵ and the twist operator defined in
Eq. (A6), we obtain

1

Ld
(Û (ϕ)Ŵ )†[Ĥ, (Û (ϕ)Ŵ )]

= 1

Ld

∑
k,σ

(ĉ†k,σ f̂
†
kσ )τ z[Hσ (k), τ z]

(
ĉk,σ

f̂k,σ

)

+ 2ϕ ·Ĵ ′z + O(L−2), (B6)

where we note that the first and second terms of the right-hand
side are of the orders 1 and L−1, respectively, if we assume
that the bulk partial spin current exists. However, unless the
commutator [Hσ (k), τz] is zero, the straightforward Bloch-
like argument cannot be applied to the present case. In other
words, because the first term is larger than the second one, we
do not obtain the contradiction to the passivity of the thermal
equilibrium states. Thus, in general, the partial spin current
is not prohibited by the Bloch-like argument as long as there
is the interorbital hybridization satisfying [Ŵ , Ĥ] �= 0. In this
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sense, vanishing of the expectation value of the first term is
a sufficient condition to prohibit the partial spin current. It
should be noted that this condition is already broken in sys-
tems with the cross-hopping terms. However, the partial spin
current does not appear in the normal phases, which is due to
the other conditions associated with the lattice symmetries. As
discussed below, the partial spin current emerges as a result of
the “inversion” symmetry breaking in the excitonic phases.

2. Argument based on the discrete lattice symmetries

Now, let us prove the existence of the partial spin current
from the viewpoint of the symmetries that are broken in the
excitonic phases. Our strategy is based on the following two
assumptions: (i) The ground state of our system is unique.
(ii) There is no symmetry operation ĝ that anticommutes
with the current operator Ĵτ . These two assumptions are
naturally applicable to our mean-field solutions obtained as
the stationary points of the free energy. The relevance of these
assumptions may be confirmed as follows: If there is at least
one symmetry operation ĝ that anticommutes with the current
operator {ĝ, Ĵτ } = 0, we obtain

0 = 〈ψ | ĝ−1{Ĵτ , ĝ} |ψ〉 = 2 〈ψ | Ĵτ |ψ〉 , (B7)

where we use the uniqueness of the ground state, i.e., ĝ |�〉 =
eiθ |�〉 except for an arbitrary phase θ . Thus, we find that the

partial spin current is absent as long as the conditions (i) and
(ii) are satisfied.

Next, let us examine the symmetries of our two-band
Hubbard model. For simplicity, we consider the symmetries
of the one body part of the Hamiltonian only and treat the
interaction terms within the mean-field approximation. It is,
however, not difficult to extend our argument to the interacting
systems. As discussed in the main text, we have two types
of the cross-hopping integrals, i.e., either with even parity
(s type) or with odd parity (p type), where the latter has a
sign change k → −k for the spatial inversion. The mean-field
Hamiltonian transforms under the time-reversal symmetry op-
eration (T ) or under the space-inversion symmetry operation
(P) as

T H(k)T −1 = H(−k), (B8)

PH(k)P−1 = H(−k), (B9)

where we note that P is a unitary operator satisfying P2 = 1
while T is an antiunitary operator containing the complex
conjugate operation K.1 In our system, there are several
candidates for these symmetry operations, which depend on
both the parity of the cross-hopping term l ∈ {s, p} and
the phase of the excitonic order parameter φ ∈ {0, π

2 }. To
see this explicitly, it is instructive to rewrite our mean-field
Hamiltonian using the Pauli matrices as

HMF(k) = ε′
+(k) I2 ⊗ I2 + ε′

−(k) τ z ⊗ I2 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ+(k) τ x ⊗ I2 + �0 τ x ⊗ σ z, (l, φ) = (s, 0)

γ+(k) τ x ⊗ I2 + �π τ y ⊗ σ z, (l, φ) = (s, π
2 )

γ−(k) τ y ⊗ I2 + �0 τ x ⊗ σ z, (l, φ) = (p, 0)

γ−(k) τ y ⊗ I2 + �π τ y ⊗ σ z, (l, φ) = (p, π
2 )

, (B10)

where

2ε′
±(k) = ε′

c(k) ± ε′
f (k), (B11)

γ+(k) = 2
∑

τ

Vτ cos kτ , (B12)

γ−(k) = 2
∑

τ

Vτ sin kτ , (B13)

2�φ = −U ′∣∣�t
0

∣∣e−iφ, (B14)

and ⊗ denotes the tensor product of two matrices. τα and
σα denote the Pauli matrices for the orbital and spin de-
grees of freedom, respectively. We note that γ−(k) is an odd
function with respect to the inversion k → −k. Then, if we
note the relations {σa, σ b} = {τ a, τ b} = 2δab and {τ y,K} =
{σy,K} = 0, we can easily write down the time-reversal T
and space inversion P symmetries such that Eqs. (B8) and
(B9) are satisfied. In fact, we can choose T = I2 ⊗ σxK and

1Note that we use a general definition Eq. (B8) of the time-reversal
symmetry operation in this Appendix; another definition, which uses
the antiunitary operator that changes the signs of k and spin, does not
satisfy the condition (ii).

P = τ z ⊗ σx for (l, φ) = (p, π
2 ). For other (l, φ), we can also

choose T and P in the same manner.
Then, let us examine whether our mean-field Hamiltonian

has the time-reversal T or space-inversion P symmetry that
satisfies the condition (ii) given above. Using the mean-field
Hamiltonian, the global and partial spin currents in Eqs. (A6)
and (A9) can be rewritten, respectively, as

J z
τ (k) = ∂τ ε

′
+(k) I2 ⊗ σ z + ∂τ ε

′
−(k) τ z ⊗ σ z

+
{
∂τ γ+(k)τ x ⊗ σ z (l = s)

∂τ γ−(k)τ y ⊗ σ z (l = p)
, (B15)

J ′z
τ (k) = ∂τ ε

′
+(k) I2 ⊗ σ z + ∂τ ε

′
−(k) τ z ⊗ σ z

−
{
∂τ γ+(k) τ x ⊗ σ z (l = s)

∂τ γ−(k) τ y ⊗ σ z (l = p)
, (B16)

where we use the following notations:

Ô =
∑

k

ĉ†kO(k)ĉk, (B17)

ĉk = (ĉk,↑ f̂k,↑ ĉk,↓ f̂k,↓)T , (B18)

ĉ†k = (ĉ†k,↑ f̂
†
k,↑ ĉ

†
k,↓ f̂

†
k,↓). (B19)
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TABLE I. The time-reversal and space-inversion symmetries for
the mean-field Hamiltonian with the indexes (l, φ). ω and ωK (‘–’)
denote the system with (without) time-reversal symmetry T = ωK
or space-inversion symmetry P = ω. Here, ω is the unitary matrix
defined as ω = eiφI2⊗σz = cos φ I2 ⊗ I2 + i sin φ I2 ⊗ σ z. Note that
the other time-reversal or space-inversion symmetries, which anti-
commute with the spin current operators, do not exist except for
T = ωK and P = ω.

global partial

T P T P

(l, φ) = (s, 0) ωK ω ωK ω

(l, φ) = (s, π

2 ) – ω – ω

(l, φ) = (p, 0) ωK – ωK –
(l, φ) = (p, π

2 ) – – – –

By a straightforward calculation, we obtain the time-reversal
symmetry T and space-inversion symmetry P that satisfy
the relations T J ′z

τ (k)T −1 = −J ′z
τ (−k) and PJ ′z

τ (k)P−1 =
−J ′z

τ (−k), which correspond to the anticommutation rela-
tion for the partial spin current operator Ĵ ′z

τ , as shown in
Table I.

In particular, if (l, φ) = (p, π/2), we find that there is no
corresponding time-reversal T or space-inversion P symme-
tries in the system. In other words, because the mean-field
Hamiltonian does not satisfy the condition (ii), the global

and partial spin currents are allowed by the symmetries T
and P . However, the global spin current is prohibited by the
Bloch theorem, so that only the partial spin current is allowed.
Moreover, such symmetry breakings in the excitonic phase
may lead to the asymmetry of the band structures, resulting in
the k-space spin textures. In this sense, the partial spin current
is a signature of the absence of the time-reversal T and space-
inversion P symmetries in the system. It should be noted,
however, that we do not deny the possible existence of the
other symmetries that satisfy the conditions (i) and (ii). In fact,
the model with the f -type cross hopping has the threefold ro-
tational symmetry C3. Then, even if both the time-reversal T
and space-inversion P symmetries are broken in the excitonic
phase, the partial spin currents are canceled out due to the C3

symmetry.
Finally, let us make a remark on our derivation of the partial

spin currents. In this appendix, we use two approaches to
prove the existence of the partial spin current. However, we
should note that the arguments given in both of these two
approaches are not the necessary condition, but they are the
sufficient condition for the absence of the partial spin current.
In other words, the existence of the partial spin currents is
allowed only if the system has the cross hopping satisfying
[Ŵ , Ĥ] �= 0 and does not satisfy the conditions (i) and (ii).
Thus, if the system does not have the cross hopping satisfying
[Ŵ , Ĥ] �= 0, the partial spin currents are prohibited by the
Bloch-like argument, irrespective of whether condition (i) and
(ii) are satisfied.
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