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We study how time- and angle-resolved photoemission (tr-ARPES) reveals the dynamics of BCS-type, s-wave
superconducting systems with time-varying order parameters. Approximate methods are discussed, based on
previous approaches to either optical conductivity or quantum dot transport, to enable computationally efficient
prediction of photoemission spectra. One use of such predictions is to enable extraction of the underlying
order parameter dynamics from experimental data, which is topical given the rapidly growing use of tr-ARPES
in studying unconventional superconductivity. The methods considered model the two-time lesser Green’s
functions with an approximated lesser self-energy that describes relaxation by coupling of the system to two
types of baths. The approach primarily used here also takes into consideration the relaxation of the excited states
into equilibrium by explicitly including the level-broadening of the retarded and advanced Green’s functions.
We present equilibrium and nonequilibrium calculations of tr-ARPES spectrum from our model and discuss the
signatures of different types of superconducting dynamics.

DOI: 10.1103/PhysRevB.99.035117

I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES) is
by now well established as a powerful technique to probe
the electronic properties of a wide variety of solids [1]. More
recently, time-resolved ARPES (tr-ARPES) has been devel-
oped as a way to create and measure transient non-equilibrium
states of a material that may not appear in its conventional
phase diagram [2–4]. In these experiments, an intense pulse
“pumps” the system of interest into a nonequilibrium state,
followed by a weak “probe.” The ejected photo-electrons are
then detected with energy and angle resolutions that depend
on the time window of the probe pulse. Tr-ARPES measure-
ments can achieve sufficient combined resolution of energy,
momentum, and time evolution to study high-Tc superconduc-
tors [5–12], in addition to a variety of other materials [13–17].

However, due to the nonequilibrium nature of these exper-
iments, invariance under time translations is broken, with the
consequence that one cannot simply analyze and interpret the
experimental data through the usual, equilibrium formalism.
While general methods that handle nonequilibrium systems,
such as the Baym-Kadanoff-Keldysh nonequilibrium quan-
tum field theory [18–20], exist in principle, applying these
to predict tr-ARPES spectra that incorporate the transient
dynamics of the system as well as the finite duration of the
probe pulse is a nontrivial exercise [21–23].

There have been a number of theoretical studies on dynam-
ics of nonequilibrium superconductors [21–47]. An example
of the state of the art in numerical simulations of tr-ARPES
experiments is Ref. [42], which shows how a sufficiently
strong pump coupling to the electrons of a phonon-driven
d-wave superconductor leads to amplitude (Higgs) mode os-
cillations at twice the mean gap frequency. That work treats
the superconducting gap self-consistently, i.e., changes in

electron distribution induced by the pump modify the super-
conductivity, and as a result is computationally demanding
even for a single pump strength/profile. Here we will not
treat the superconducting gap time evolution self-consistently;
the goal is that by finding efficient means to compute how
different gap evolutions and probe properties would lead
to different tr-ARPES signals, our approach can be used
to interpret tr-ARPES experimental data and learn how the
underlying superconducting gap evolved.

In this respect, our work is more similar to recent theoreti-
cal models of a different problem, namely the time-dependent
optical conductivity in pump-probe experiments on supercon-
ductors. Complementary to work on tr-ARPES, sophisticated
nonequilibrium methods have recently been applied to study
the transient optical conductivity of nonequilibrium super-
conducting systems [48,49]. These works were motivated in
part by the experimental observation that, in several kinds
of superconductors [50], a strong pulse significantly modifies
the reflectivity or transmissivity signal that at equilibrium is a
standard probe of superconductivity. As the interpretation of
these signals in a non-equilibrium context can be subtle [51],
a practical nonequilibrium theoretical approach must be de-
veloped to extract information from experimental data about
the underlying nonequilibrium processes and states, which is
a kind of “inverse problem.” For example, given data, what
is the most likely time dependence of superconductivity to
explain the observed results? How does the effective damping
depend on system parameters?

That task has been underway for some time in optical
conductivity and is here undertaken for tr-ARPES. The main
aspect in which our formalism differs from the previous work
on optical conductivity in superconductors, aside from being
about a different measurement, is in the detailed treatment of
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dissipation or level broadening in the system. The importance
of dissipation or level broadening can be seen from, for ex-
ample, considering an idealized probe that suddenly changes
(“quenches”) the electronic Hamiltonian from a metallic to
a superconducting form. In the absence of dissipation, the
fact that the metallic ground state is not the ground state of
the new Hamiltonian means that some excited states will be
occupied. These states would appear as positive-energy states
in an tr-ARPES measurement that never dissipate, which does
not seem to be what typically happens in reality, where the
tr-ARPES intensity above the Fermi level tends to decay as
time goes [6–11].

Just as in the theories of pump-probe optical conductivity
cited above, adding some form of dissipation is needed if
the system is to return to equilibrium eventually. Coupling
the system to a “bath” of additional electronic states as in
studies of optical conductivity will lead to relaxational time-
dependence, but if the bath is finite (as needed for compu-
tational purposes) then eventually there will be oscillatory
behavior rather than a return of the system to equilibrium.
Studying longer times requires larger baths to avoid such
oscillations. To prevent nondissipating positive-energy states
and/or oscillations, which could exist in tr-ARPES experi-
ments in principle but do not seem to be observed, we adapt
a method previously used to incorporate relaxation in the
theory of nonequilibrium phenomena in quantum dots [52].
This approach could be viewed as an approximation to a ther-
modynamically large bath whose treatment is computationally
not feasible. We comment in closing on some other possible
uses and advantages of this approach.

The specific case treated here is the calculation of the
tr-ARPES signal of a BCS s-wave superconducting system
with a specified nonequilibrium superconducting order pa-
rameter �(t ). We use the mean-field (Bogoliubov-de Gennes)
approximation to the superconducting system, together with
the Keldysh formalism, to tackle the problem. As the approach
is also feasible for general momentum and time dependence
of the order parameter, it could be easily generalized to
superconducting systems other than s-wave. The formalism
is computationally efficient enough to be used for the inverse
problem, i.e., given an experimental tr-ARPES profile for one
or more probe windows, one could compare it to different
possible profiles or momentum dependences of the supercon-
ducting order parameter.

The rest of the paper is organized as follows. In Sec. II,
we review the theory of the tr-ARPES signal, as well as
the Keldysh formalism that applies to such calculations. In
Sec. II C, we present two approximations to the two-time
lesser Green’s function, which is the key building block of
the tr-ARPES signal, and discuss the assumptions of each
approximation. In Sec. III, we show several tr-ARPES cal-
culations with different temporal profiles of BCS order pa-
rameters. Finally, we summarize and discuss future directions
in Sec. IV.

II. TR-ARPES SIGNAL FROM KELDYSH FORMALISM

In this section, we review the Keldysh formalism applied to
the Bogoliubov-de Gennes (BdG) description of a supercon-
ductor and the theory of tr-ARPES signals. Then we explain

how the lesser Green’s function, which is crucial in simulating
tr-ARPES signals, is calculated.

A. Keldysh formalism in Bogoliubov-de Gennes (BdG) equation

We first introduce Nambu-spinor notation [53–55]:

�k = (ck,↑, ck,↓, c
†
−k,↓,−c

†
−k,↑)T , (1)

where c
†
k,σ creates an electron of momentum k and spin σ .

The superscript T denotes transposition. One can then write
Green’s functions in Eq. (1) basis as follows [19,56,57]:

GR
αβ (t, t ′) = −iθ (t − t ′) 〈{�α (t ),�†

β (t ′)}〉 ,

GA
αβ (t, t ′) = iθ (t ′ − t ) 〈{�α (t ),�†

β (t ′)}〉 ,

GK
αβ (t, t ′) = −i 〈[�α (t ),�†

β (t ′)]〉 ,

G<
αβ (t, t ′) = i 〈�†

α (t ′)�β (t )〉 , (2)

where R, A, K , and < stand for retarded, advanced, Keldysh,
and lesser, and 〈· · ·〉 is taken with respect to the ground state
of the system at zero temperature. The Green’s functions are
matrices acting on the Nambu spinor basis that are labeled by
the indices α, β.

It is straightforward to obtain GR/A when the system is
described by a Hamiltonian, H, made of fermion bilinears, as
is the case we focus on in this paper. When the Hamiltonian
H is given by

H(t ) = �†H (t )�, (3)

where H (t ) is the Hamiltonian matrix, GR/A are computed by
solving the differential equation [48,56],

GR (t, t ) = −i

i∂tG
R (t, t ′) = H (t )GR (t, t ′) t > t ′ (4)

GA(t, t ′) = [GR (t ′, t )]†.

Obtaining GK/< requires solving the Keldysh equation [18]
as we explain in the following.

B. TR-ARPES signal from lesser Green’s function

Once the lesser Green’s function G< is obtained, the tr-
ARPES signal can be calculated from [21]

I (k, ω, t ) ∝ Im
∫ t

t0

dt1

∫ t

t0

dt2G
<
k (t1, t2)s(t1)s(t2)eiω(t1−t2 ),

(5)

where s(t ) is the temporal profile of the probe pulse, the
integration limits, t0 and t , are controlled by s(t ) as the probe
pulse has finite width. And we have

G<
k,σσ ′ (t1, t2) = i 〈c†k,σ (t2)ck,σ ′ (t1)〉 , (6)

which is the normal component of the G< defined in Eqs. (2)
with spin indices σ, σ ′.

In our calculations for tr-ARPES signals that we show later,
we consider systems with spin SU(2) symmetry. In this case,
the BdG Hamiltonian [53] is decoupled to two identical 2 ×
2 Hamiltonians spanned by (ck,↑, c

†
−k↓) and (ck,↓,−c

†
−k↑),
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respectively. By focusing on the first one, we can suppress
the spin indices in Eq. (6).

C. Lesser Green’s function

Now we explain how the lesser Green’s function is com-
puted in our framework. We calculate G< by using Keldysh
equation in time domain [58]

G<(t, t ′) =
∫

dt1

∫
dt2G

R (t, t1)�<(t1, t2)GA(t2, t
′), (7)

where all indices but time are suppressed. Here �< is the
lesser self-energy that effectively determines occupation of
electrons in energy eigenstates. Since GR/A are calculated
from Eq. (4), one needs to specify the form of the lesser
self-energy �<.

In our framework, we consider the system is coupled to the
heat bath with large bandwidth. In this case, we can explicitly
write �< as [52]

�<(t1, t2) = iγ

∫
dω

2π
f (ω)e−iω(t1−t2 )

= −γ /2π

t1 − t2 + i0+ , (8)

by integrating out the heat bath, where γ is the level broaden-
ing of GR/A. This form of self-energy introduces a dissipation
effect to the system (with the timescale of ∼1/γ ) as well as
the level broadening of the energy eigenstates (∼γ ).

Thus we calculate lesser Green’s functions via

G<
k (t, t ′) = −γ

2π

∫
dt1

∫
dt2

GR
k (t, t1)GA

k (t2, t ′)
t1 − t2 + i0+

× e−γ (t−t1+t ′−t2 )/2, (9)

where e−γ (··· )/2 is the explicit form of level broadenings
of GR/A. In the equilibrium systems, Eq. (8) combined
with Eq. (7) reproduces the correct form of G<(ω) (see
Appendix A for detailed derivations) after Fourier transfor-
mation.

We note that Ref. [48] used another approximation to
calculate G<:

G<
k (t1, t2) = iGR

k (t1, t0)n0,kG
A
k (t0, t2), (10)

where n0,k = 〈�†
k�k〉 at the initial time t0. In the case of

metals, this method gives the correct forms of lesser Green’s
function, and hence, tr-ARPES spectrum in the equilibrium. It
also gives the correct answer for equilibrium superconductors,
if we use n0,k that is diagonal in the energy eigenstates of
BdG Hamiltonian. However, one major difference between
these two formalisms is that a dissipation effect is directly
incorporated in Eq. (8), while Eq. (10) gives pure unitary
dynamics of time-dependent system (dissipation results from
the perspective of one part of the system, which is indeed the
microscopic origin of real dissipation).

For example, if we consider a quench problem where a
system evolves with

H (t ) = θ (−t )Hmetal + θ (t )HBCS, (11)

FIG. 1. Nonequilibrium tr-ARPES calculation of constant su-
perconducting gap with a quench, described by Eq. (11) with a
BCS superconducting gap � = 0.01. The lesser Green’s function is
calculated using Eq. (10) with εk = k, tp = 500, t0 = 0, t = 1000,

σ = 400. The black curve shows ω(k) = ±√
k2 + �2.

there emerges a quenched peak at positive energy, which is
shown in Fig. 1 (see Appendix B for details). With Eq. (10),
the weight in the positive tr-ARPES peak does not decay due
to the absence of dissipation. This coincides with the case
of γ → 0 in our formalism (see Appendix B for detailed
derivations). To incorporate dissipation effects with Eq. (10),
one needs to explicitly couple the system to an external
bath that dissipates the extra energy [48]. This is physically
valid and has the advantage of allowing different microscopic
dissipation mechanisms. However, it is computationally ad-
vantageous to incorporate dissipation in �<, so that one does
not need to solve time evolution of both the system and the
heat bath.

The approach using Eqs. (7) and (8) is used in other areas
of nonequilibrium physics and facilitates numerical calcula-
tions, especially if the number of bath degrees of freedom
is large. As previously mentioned, simulating a heat bath
explicitly may lead to unphysical oscillation of expectation
values that depends on the system size of the heat bath.

Finally, Eq. (10) is not applicable to interacting systems
that involve, for example, four-fermion terms. This can be
understood from the absence of dissipation since quasiparti-
cles in interacting systems generally have a finite lifetime. In
the formalism using Eqs. (7) and (8), however, extension to
interacting systems is straightforward if one uses GR/A and
�< for the interacting systems in Eq. (7), and incorporates
the effect of heat bath by introducing a level broadening to
GR/A and the corresponding self-energy of G<.

III. TR-ARPES SIGNAL: CALCULATION

In this section, we show calculations of tr-ARPES signals
of systems with different temporal profiles of superconducting
order parameter. We start the section by introducing the sys-
tem that we are considering, both the Hamiltonian of the sys-
tem as well as the profile of our probe pulse. Then, we provide
calculations of: metal, equilibrium BCS, and nonequilibrium
BCS systems.
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A. Model of 1D superconductor

We consider a BCS-type, s-wave superconducting system
with time-varing order parameter:

H =
∑
k,σ

εkc
†
k,σ ck,σ + �(t )

∑
k

c
†
k,↑c−k,↓ + H.c., (12)

where �(t ) is the postpump time-dependent superconducting
gap, which is an input to the theory, and is set to be real-valued
for now.

We do not consider how �(t ) varies due to the time
dependence of the pump fields. For εk , we consider a linear
dispersion near fermi surface, i.e., εk = k.

Note that if the pump field is still on during the probe
measurement, one needs to write the lesser Green’s function
into its gauge-invariant form [23]:

G<
k (t1, t2) → G<

k̃
(t1, t2), (13)

by shifting the momentum k via

k̃ → k + 1

t1 − t2

∫ (t1−t2 )/2

−(t1−t2 )/2
dt ′Apump

(
t1 + t2

2
+ t ′

)
. (14)

We rewrite the Hamiltonian Eq. (12) into Nambu-spinor
basis:

H =
∑

k

�
†
kHk (t )�k, (15)

where Hk (t ) takes the form of

Hk (t ) =
(

εk �(t )

�(t ) −εk

)
. (16)

Here we consider 2 × 2 BdG Hamiltonian spanned by the
two-component spinor �k = (ck,↑, c

†
−k,↓)T , by assuming spin

SU(2) symmetry.
We thus can solve G

R/A

k from

GR
k (t, t ) = −i,

i∂tG
R
k (t, t ′) = Hk (t )GR

k (t, t ′) t > t ′, (17)

GA
k (t, t ′) = [

GR
k (t ′, t )

]†
.

We note two things regarding Eqs. (17). First, the above
equations are applicable to the systems that are decoupled in
k-space, where the retarded and advanced Green’s functions
can be solved in each momentum separately. Second, the gap
function can be regarded as an anomalous self-energy. In the
BCS Hamiltonian that we employ, one assumes an energy-
independent order parameter (i.e., a δ function in the time
domain), which gives Eqs. (17). In strong coupling regime, on
the other hand, the retardation of electron-phonon interaction
can be modeled by two-time self-energy, where one needs to
solve GR with the full time dependence of its self-energy.

At the same time, we consider a simple, gaussian probe
pulse:

s(t ) = 1√
2πσ 2

e−((t−tp)/σ )2
, (18)

where tp is where the probe pulse centers, and σ tunes the
width of the probe pulse.

FIG. 2. Equilibrium tr-ARPES calculations of metal, with εk =
k, γ = 0.0001, tp = 500, t = 1000, σ = 200 (left panel), σ = 400
(right panel). The black curve shows ω(k) = εk .

B. Equilibrium superconducting system

In this subsection, we demonstrate numerically that tr-
ARPES signals in the equilibrium systems are reproduced by
our formalism.

We first present calculations of tr-ARPES signal of metals,
i.e., � = 0 in Eq. (12), from Eq. (5), with both GR/A and G<

calculated numerically via Eqs. (17) and (9).
Figure 2 shows two calculations of tr-ARPES signal of a

metal, with numerical solutions to both GR/A from Eqs. (17)
and G< from Eq. (9). The only difference between the two
panels is the width of the probe pulse, σ , which determines
the energy resolution of the signals, the same as what was
mentioned in Ref. [35]. The trend that as σ increases, the
width of the tr-ARPES signal decreases, also indicates that
as σ → ∞, one may expect [21]

I (k, ω, t ) ∝ A(k, ω)f (ω), (19)

where f (ω) is the Fermi-Dirac distribution at the modeling
temperature, in our case, 0K .

Next, we show tr-ARPES signal of a superconductor.
Figure 3 shows two calculations of tr-ARPES signal of

equilibrium BCS superconducting systems with different or-
der parameters. Similar to the metal calculations, the tr-
ARPES signal shown here follows A(k, ω)f (ω) as expected,
up to a broadening of the energy resolution due to finite width
of the probe pulse.

C. Nonequilibrium superconducting systems

Last but not least, we present nonequilibrium predictions
of tr-ARPES signals with different �(t ) profiles as input
parameter. We fix the energy resolution by fixing width of the

FIG. 3. Equilibrium tr-ARPES calculations of a BCS supercon-
ducting system at equilibrium, with � = 0.005 (left panel) and
� = 0.01 (right panel), εk = k, γ = 0.0001, tp = 500, t = 1000,

σ = 400. The black curve shows ω(k) = −√
ε2
k + �2.
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FIG. 4. Schematic plot of various gap profiles considered in this
work.

probe pulse, σ = 0.02 × 2/γ ; we vary tp to probe the system
at different times.

We consider the following nonequilibrium gap profiles:
(i) constant order parameter with a quench

�(t ) = �θ (t ), (20)

(ii) quenched order parameter with decay

�(t ) = �θ (t )e−t/T , (21)

(iii) Gaussian order parameter

�(t ) = (
�e−( t−td

T
)2 − �0

)
[θ (t ) − θ (t − 2td )], (22)

where �0 is chosen such that �(t ) = 0 when t = 0 and
t = 2td .

A schematic plot of various �(t )’s are shown in Fig. 4.
Note that we always turn on nonequilibrium �(t ) at t = 0
and always consider a system initially at metallic state, i.e.,
�(t < 0) ≡ 0.

1. Constant order parameter with a quench

First, we consider the system with a quenched order param-
eter, as described by Eq. (20). This situation can be viewed
as a sudden opening of a superconducting gap at time t = 0,
before which the system is metallic. In this situation, we can
rewrite Hk as

Hk (t ) = [1 − θ (t )]Hk,metal + θ (t )Hk,BCS, (23)

where Hk,metal takes the form of Eq. (16) with �(t ) = 0, while
Hk,BCS with �(t ) = �. The resulting tr-ARPES signal as a
function of time is shown in Fig. 5. We note that the upper
panel of Fig. 5, which shows the tr-ARPES signal at a time
right after the quench, resembles Fig. 1. This indicates that
the relaxation caused by γ has not yet affected the system at
such timescale. However, as time goes, the tr-ARPES signal
at positive energies gets relaxed, and eventually, at time of
∼2/γ , the signal goes to that described by Hk,BCS, as shown
in the lower panel of Fig. 5.

We then examine the occupation, nk , at different k values
shortly after the quench:

nk (t ) = 〈c†k (t )ck (t )〉 = ImG<
k (t, t ). (24)

FIG. 5. Nonequilibrium tr-ARPES calculations with BCS order
parameter featuring constant with a quench, as mentioned in Eq. (20),
with � = 0.01. The calculation is with εk = k and γ = 0.0001. The
width of the probe pulse is σ = 0.02 × 2/γ . The two different tp’s,
short and long time after quench, are indicated in the figures.

nk (t ) is essentially what tr-ARPES measures with a
δ−function probe [57].

When t is small, i.e., right after quench, we should expect
our system being more metallic, namely, all what the quench

FIG. 6. Occupation number, nk (t ), of the quench system Eq. (20)
with � = 0.01. The times when nk peaks, tm’s, are shown in the
caption along with their corresponding k values.

035117-5



XU, MORIMOTO, LANZARA, AND MOORE PHYSICAL REVIEW B 99, 035117 (2019)

FIG. 7. Nonequilibrium tr-ARPES calculations with BCS order
parameters featuring quenched order parameters that decay, as men-
tioned in Eq. (21), with � = 0.01, T = 0.05 × 2/γ (left column)
and 1 × 2/γ (right column). The calculations are with εk = k and
γ = 0.0001. The width of the probe pulse is σ = 0.02 × 2/γ , and
various tp’s are indicated in the figures. The insets of the panels show
gap profiles, �(t ), as functions of time in unit of 2/γ in blue curves,
and the instantaneous gap at tp’s in red dots.

does is projecting the prequench states onto postquench ba-
sis. What we should expect for k > 0 is that nk = 0 right
after the quench, then nk peaks after some timescale that is
defined by 1/Ek . One should also expect limk→0+ nk → 1 at
its peak value, since nk (t ) shows Rabi oscillation around its
equilibrium value, 1/2 when k = 0, in the postquench system.
Figure 6 shows nk (t ) with various k’s and � = 0.01. We find
that the t and k dependence of nk (t ) are as expected, and nk (t )
peaks at time tm = π/(2Ek ), with Ek defined in Eq. (A7).

2. Quenched order parameter with decay

Next we consider the the system with a quenched order
parameter that decays right after the quench, as described by
Eq. (21). We consider two timescales of how fast the order
parameter decays: T  2/γ and T = 2/γ . The resulting tr-
ARPES signal as a function of time is shown in Fig. 7.

FIG. 8. Nonequilibrium tr-ARPES calculations with BCS order
parameters featuring Gaussian order parameters, as mentioned in
Eq. (22), with �(t )max = 0.01, T = 0.05 × 2/γ (left column) and
3 × 2/γ (right column), td = 0.035 × 2/γ (left column) and 0.5 ×
2/γ (right column). The calculations are with εk = k and γ =
0.0001. The width of the probe pulse is σ = 0.02 × 2/γ , and various
tp’s are indicated in the figures. The insets of the panels show gap
profiles, �(t ), as functions of time in unit of 2/γ in blue curves, and
the instantaneous gap at tp’s in red dots.

The left column of Fig. 7 shows tr-ARPES of the order
parameter that decays with timescale T  2/γ , while the
right column, T = 2/γ . Comparing left and right columns,
one sees similar short-time behavior of tr-ARPES signals but
different intermediate- and long-time behaviors. At short-time
(the first panels of both columns), both small and large T

give signals similar to that of a quench, despite that the
signals from small T gives smaller gap than that from large
T . For intermediate times (the second and third panels of
both columns), the tr-ARPES signals of small and large T

show different behaviors: While the large T signals still being
gapped and quenchlike, the small T signals becomes gapless,
and with a nonzero signal at positive (k, ω). Then, at long
time, the tr-ARPES signal of small T seems metallic while
that of large T being BCS-like—corresponding qualitatively
to their instantaneous BCS gaps.
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3. Gaussian order parameter

Finally, we consider the the system with a Gaussian order
parameter, as described by Eq. (22). The resulting tr-ARPES
signal is shown in Fig. 8.

The left column of Fig. 8 shows tr-ARPES signals of
a Gaussian order parameter with T = 0.05 × 2/γ and td =
0.035 × 2/γ , while the right column shows that with T =
3 × 2/γ and td = 0.5 × 2/γ . At first glance, the short- and
intermediate- time behaviors of tr-ARPES signals (first to
third panels of both columns) seem quite different, while the
long-time (last panels of both columns) share similarities.
However, if we compare the tr-ARPES signals to the instan-
taneous order parameters at tp, both columns show tr-ARPES
signals that almost follow the instantaneous order parameters,
except for a slight quenchlike peak near kF for the first panel
of the left column and the second and third panels of the right
column, where the instantaneous order parameters approach
the maximum values. In addition, the quenchlike peak is more
apparent in the left column than the right column, which may
come from that in the left column, the increment of the order
parameter is faster than the right column, causing a more
significant quenchlike peak at low k. Another feature to notice
is that this quenchlike peak only happens near kF , which
is different from an actual quench peak that also extends to
k > kF . This may be related to a slower increment of the
Gaussian order parameter than that of a sudden quench.

IV. DISCUSSION

The importance of equilibrium ARPES measurements of
the electron spectral function to our understanding of uncon-
ventional superconductors is clear. To bring tr-ARPES to a
similar level of scientific impact, it is necessary to be able
to draw conclusions from data about the underlying physics
even though what tr-ARPES measures is considerably more
challenging to interpret. It is already known from pump-
probe studies of optical conductivity and other properties
that superconductors support rich nonequilibrium behavior,
including significant differences between conventional and
unconventional superconductors.

The approach developed here is intended to improve the
practical ability of tr-ARPES to probe the nonequilibrium
fermionic properties of a complex material. It is worth noting
that an implicit assumption we made here is that the pump
pulse only affects the system by changing the BCS super-
conducting gap. However, in actual experiments, the pump
field may modify the electron distribution in other ways,
where one needs to consider a modified postpump initial state
that changes the boundary condition of the lesser Green’s
function. This can be described by explicitly solving the time-
dependent Schrödinger equation with light-matter interaction
[35,39,41–44], although that will be more time-consuming.
An alternative and more efficient way to approximate this is
effectively raising the electron temperature, Te [59], which is
incorporated by increasing the temperature of �<(t, t ′) (see
Appendix C for details).

Some obvious extensions to the theory presented here
are to non-s-wave superconductors and to incorporate some

level of disorder (such as Refs. [46,47,60]), as well as using
self-consistently determined BCS order parameters (such as
Refs. [49,61,62]) as input to our theory. More challenging
extensions would be to approach unconventional supercon-
ductivity more microscopically (e.g., via various proposed
effective interactions or coupling to order parameters such
as nematic or magnetic order) and to compute the super-
conducting properties of such systems self-consistently, as
well as taking other microscopic effect of the pump into
consideration, such as stripe melting [63,64] and possible
phonon squeezing in K3C60 [50].

But already our nonequilibrium calculations begin to show
how various tr-ARPES signals indicate the qualitative dif-
ferences among order parameter profiles. For example, our
calculations show that, a signal at positive (k, ω) indicates
that there may be a non-adiabatic change of BCS order
parameter (e.g., quenched order parameter); while on the other
hand, a time-varying tr-ARPES signal without such peaks
may indicate an adiabatic change of BCS order parameter.
Other possible ways of using these simulated results include
computing and analyzing

∫
dk

∫
ω>0 dω I (k, ω, t ), and modi-

fying s(t ) in Eq. (5) to see how underlying order parameter
dynamics may be revealed by different probe pulses. We hope
that the model developed here will be useful in the extraction
of physics from experimental data, thus indicating constraints
for more microscopic theories of superconductivity.
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APPENDIX A: DERIVATION OF EQUILIBRIUM
G<’S FROM �<

In this section, we present derivation of equilibrium G<

from �< that we proposed in Sec. II C.
To calculate G< from Eq. (9), one first notices that, due to

the causality of GR and GA, the explicit integration limits are

G<
k (t, t ′) = −γ

2π

∫ t

−∞
dt1

∫ t ′

−∞
dt2

GR
k (t, t1)GA

k (t2, t ′)
t1 − t2 + i0+

×e−γ (t−t1+t ′−t2 )/2. (A1)

Then, we do the following change of variables:

T = t1 + t2

2
,

τ = t1 − t2, (A2)
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and thus Eq. (A1) becomes

G<
k (t, t ′) = −γ

2π
e−γ (t+t ′ )/2

∫ t+t ′
2

−∞
dT

∫ ∞

−∞
dτ

GR
k (t, t1)GA

k (t2, t ′)
τ + i0+ eγT , (A3)

where t1 and t2 are functions of T and τ as in Eq. (A2).
Now, let us first plug in GR/A of metal, namely

GR (t, t1) = −iθ (t − t1)e−iεk (t−t1 ), GA(t2, t
′) = iθ (t ′ − t2)eiεk (t ′−t2 ), (A4)

then we get G< of metal from Eq. (A3)

G<
k (t, t ′) = −γ

2π
e−γ (t+t ′ )/2e−iεk (t−t ′ )

∫ t+t ′
2

−∞
eγT dT

∫ ∞

−∞

eiεkτ

τ + i0+ dτ = iθ (−εk )e−iεk (t−t ′ ). (A5)

At zero temperature, we have θ (−εk ) = f (εk ), thus giving us exactly the G< one gets via Eqs. (2).
The G< calculation for BCS superconductor is slightly more complicated, as when one works in Nambu-spinor basis, GR/A

becomes a 2 × 2 matrix:

GR
k (t, t ′) =

(−i
[
u2

ke
−iEk (t−t ′ ) + v2

k e
iEk (t−t ′ )

]
iukvk[eiEk (t−t ′ ) − e−iEk (t−t ′ )]

iukvk[eiEk (t−t ′ ) − e−iEk (t−t ′ )] −i
[
u2

ke
iEk (t−t ′ ) + v2

k e
−iEk (t−t ′ )

]
)

,

GA
k (t, t ′) = [GR (t ′, t )]†,

=
(

i
[
u2

ke
iEk (t ′−t ) + v2

k e
−iEk (t ′−t )

] −iukvk[e−iEk (t ′−t ) − eiEk (t ′−t )]

−iukvk[e−iEk (t ′−t ) − eiEk (t ′−t )] i
[
u2

ke
−iEk (t ′−t ) + v2

k e
iEk (t ′−t )

]
)

, (A6)

with [54]

Ek =
√

ε2
k + �2, u2

k = 1

2

(
1 + εk

Ek

)
, v2

k = 1 − u2
k, (A7)

Plugging these into Eq. (A3), and doing time-rotation as in Eq. (A2), we get

G<
k (t, t ′) = −γ

2π
e−γ (t+t ′ )/2

∫ t+t ′
2

−∞
dT

∫ ∞

−∞
dτ

u2
ke

−iEk (t−t ′−τ ) + v2
k e

iEk (t−t ′−τ )

τ + i0+ eγT

= i
[
u2

kθ (−Ek )e−iEk (t−t ′ ) + v2
k θ (Ek )eiEk (t−t ′ )]

= iv2
k e

iEk (t−t ′ ), (A8)

which is exactly the G< one gets from direct calculation [Eqs. (2)]. Note that the last equality comes from the fact that Ek is
always positive due to its definition in Eq. (A7).

APPENDIX B: THE NONDISSIPATIVE NATURE OF EQ. (10), AND THE γ → 0 LIMIT OF EQ. (9)

To simulate tr-ARPES signal of a quenched system, i.e., Eq. (11), using Eq. (10), one uses GR
k and GA

k of the BCS
superconducting system that is described by HBCS, i.e., Eq. (A6), while taking n0,k to be that of a metal. Therefore, one gets the
quenched lesser Green’s function:

G<
k,quench(t, t ′) = iGR

k,BCS(t, t0)

(
f (εk ) 0

0 1 − f (ε−k )

)
GA

k,BCS(t0, t
′), (B1)

Plugging G
R/A

k,BCS into the above equation and only taking the normal component, one gets

G<
k,quench(t, t ′) = if (εk )

[
u4

ke
−iEk (t−t ′ ) + v4

k e
iEk (t−t ′ ) + u2

kv
2
k e

−iEk (t+t ′−2t0 ) + u2
kv

2
k e

iEk (t+t ′−2t0 )
]

+ i[1 − f (ε−k )]u2
kv

2
k

[
e−iEk (t−t ′ ) + eiEk (t−t ′ ) − e−iEk (t+t ′−2t0 ) − eiEk (t+t ′−2t0 )

]
. (B2)

When computing tr-ARPES signal with Eq. (B2), a positive energy peak shows up due to a nonzero value of u2
kv

2
k . The absence

of dissipation prevents such excitation from relaxing.
One can also obtain Eq. (B1) from Eq. (9) by taking γ → 0 limit. When γ is small and t, t ′ are positive but small, one has∫ t

−∞
dt1

∫ t ′

−∞
dt2 �

∫ t

−T

dt1

∫ t ′

−T

dt2 �
∫ 0

−T

dt1

∫ 0

−T

dt2 �
∫ 0

−∞
dt1

∫ 0

−∞
dt2, (B3)

035117-8



EFFICIENT PREDICTION OF TIME- AND ANGLE- … PHYSICAL REVIEW B 99, 035117 (2019)

where T ∼ 1/γ is the effective timescale caused by level broadening of GR/A. Then one can approximate G< with

G<
k (t, t ′) � −γ

2π

∫ 0

−∞
dt1

∫ 0

−∞
dt2

GR
k (t, t1)GA

k (t2, t ′)
t1 − t2 + i0+ e−γ (t−t1+t ′−t2 )/2. (B4)

Now, GR
k (t, t ′) and GA

k (t, t ′) for the quench problem can be derived analytically by solving the partial differential equation

i∂tG
R
k (t, t ′) = Hk (t )GR

k (t, t ′), (B5)

with

Hk (t ) = θ (−t )Hk,metal + θ (t )Hk,BCS, (B6)

where

Hk,metal =
(

εk 0

0 −εk

)
, Hk,BCS =

(
εk �

� −εk

)
, (B7)

with initial condition GR (t ′, t ′) = −i. Let us write Hk,metal = Hk,m and Hk,BCS = Hk,Sc.
The solution to Eq. (B5) is

GR
k (t, t ′) =

⎧⎪⎨
⎪⎩

U1(t, t ′)(−i) t ′ < t < 0

U2(t, 0)U1(0, t ′)(−i) t ′ < 0 < t

U2(t, t ′)(−i) 0 < t ′ < t,

(B8)

where

U1/2(t, t ′) = T

[
exp

(
− i

∫ t

t ′
Hk,m/Scds

)]
= exp[−iHk,m/Sc(t − t ′)]. (B9)

Then, Eq. (B4) becomes

G<
k (t, t ′) � − γ

2π

∫ 0

−∞
dt1

∫ 0

−∞
dt2

U2(t, 0)U1(0, t1)(−i)iU †
1 (0, t2)U †

2 (t ′, 0)

t1 − t2 + i0+ e−γ (t−t1+t ′−t2 )/2

= −γ

2π
e−γ (t+t ′ )/2U2(t, 0)

∫ 0

−∞
dt1

∫ 0

−∞
dt2

eiHk,m(t1−t2 )eγ (t1+t2 )/2

t1 − t2 + i0+ U
†
2 (t ′, 0)

= ie−γ (t+t ′ )/2U2(t, 0)

(
f (εk ) 0

0 f (−εk )

)
U

†
2 (t ′, 0)

= iGR
k,BCS(t, t0)

(
f (εk ) 0

0 f (−εk )

)
GA

k,BCS(t0, t
′), (B10)

with t0 = 0. The last equality holds when γ → 0 and t, t ′
sufficiently small. Also notice that f (−εk ) = 1 − f (εk ) =
1 − f (ε−k ) for system with time-translational invariance.

Hence we have recovered Eq. (B1), the nondissipating limit
of the lesser Green’s function of a quench BCS system.

APPENDIX C: TR-ARPES SIGNALS WITH THERMAL
ELECTRON DISTRIBUTION

The lesser Green’s function, with raised temperature, can
be calculated using Eq. (7), with

�<(t1, t2, Te ) = iγ

∫
dω

2π
f (ω, Te )e−iω(t1−t2 ), (C1)

where f (ω, Te ) is the Fermi-Dirac distribution at temperature
Te. Here we assume that Te changes much slower than the
timescale set by γ , so that this thermal distribution of bath
electrons can be considered to be static. This assumption can,
in principle, be relaxed by modifying f (ω, Te ).

With this new �<, one can describe G< of electrons whose
temperature is increased by the pump field. Such nonzero
Te smears out I (k, ω, t ) in both k and ω directions. We
demonstrate this effect by presenting I (k, ω, t ) at a different
temperature of three systems: a metallic system (� = 0), see
Fig. 9; a BCS system (� = 0.01), see Fig. 10; and one of the
nonequilibrium systems that we have considered in the main
text [Eq. (20)], see Fig. 11.

By integrating I (k, ω, t ) over k or ω, we calculate two
quantities, Iω(k, t ) and Ik (ω, t ):

Iω(k, t ) =
∫

dωI (k, ω, t ), (C2)

and

Ik (ω, t ) =
∫

dkI (k, ω, t ). (C3)

These two quantities allow us to directly compare tr-ARPES
signals among different temperatures.
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FIG. 9. Equilibrium calculations of metal at nonzero tempera-
ture: kBTe = 50γ . Upper panel: tr-ARPES signal with εk = k, γ =
0.0001, tp = 500, t = 1000, σ = 400. The black curve shows
ω(k) = εk . Lower panels: Iω(k, t ) (left) and Ik (ω, t ) (right) at kBTe =
0 (solid line with dotted data points) and kBTe = 50γ (dashed line
with dotted data points). The vertical dash-dotted lines show where
k (left) or ω (right) is zero.

FIG. 10. Equilibrium calculations of a BCS superconducting
system with � = 0.01 at nonzero temperature: kBTe = 50γ . Upper
panel: tr-ARPES signal with εk = k, γ = 0.0001, tp = 500, t =
1000, σ = 400. The black curve shows ω(k) = −√

ε2
k + �2. Lower

panels: Iω(k, t ) (left) and Ik (ω, t ) (right) at kBTe = 0 (solid line) and
kBTe = 50γ (dashed line). The vertical dash-dotted lines show where
k (left) or ω (right) is zero.

FIG. 11. Nonequilibrium calculations with BCS order parameter
featuring constant with a quench, as mentioned in Eq. (20), with � =
0.01. Upper panel: tr-ARPES signals with εk = k, γ = 0.0001, and
σ = 400 = 0.02 × 2/γ . The two different tp’s, short and long time
after quench, are indicated in the figures. Lower panels: Iω(k, t ) (left)
and Ik (ω, t ) (right) at kBTe = 0 (solid line) and kBTe = 50γ (dash
line), both at short (black line) and long (blue line) time after quench.
The vertical dash-dotted lines show where k (left) or ω (right)
is zero.

Figures 9 and 10 clearly show that, as temperature in-
creases, the lower energy states are less occupied, while
the higher states are more occupied. This happens both in
k and ω. On the other hand, Fig. 11 shows that both a
nonequilibrium (i.e., time-varying) order parameter and a
nonzero Te may change occupation of the energy states.
However, the relaxation introduced by γ eventually causes
relaxation of the excitations from nonequilibrium order
parameter.
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