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Simulation of exciton condensate-mediated quantum transport in a double-monolayer
transition metal dichalcogenide system
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We have developed and employed a quantum transport simulation method to study the transport properties in
the presence of a spatially indirect exciton condensate between energy-gapped two-dimensional semiconductors,
with contact to each end of each layer. This system differs from previous works on bilayer exciton transport prop-
erties in the consideration of the energy gap as well as the associated massive (parabolic band structure) electrons
and holes. We observe transport properties in the presence of the condensate including the elimination of current
counterflow—otherwise phenomenologically analogous to near-perfect Coulomb drag—absent overlap of the
conduction and valence bands of opposite layers, as well as substantially greater critical interlayer current for a
given assumed bare interlayer coupling.
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I. INTRODUCTION

The condensation of spatially indirect excitons (bound
electron-hole pairs) [1] between partially filled Landau lev-
els in opposite layers in III-V double-quantum-well systems
[2,3] and, more recently, in a bilayer graphene system [4]
under high magnetic fields and low temperatures has been
shown experimentally to give rise to novel and interesting
transport properties, such as near-perfect interlayer current
counterflow (a Coulomb-drag-like current) and ultra-low-
voltage interlayer negative differential resistance (NDR). It
has been predicted that the interaction between conduction-
band (CB) electrons and valence-band (VB) holes in two-
dimensional (2D) semiconductor systems such as graphene
with a potential for closer proximity of the two layers and
in a lower dielectric-constant environment, might allow for
such condensates absent the need for the large magnetic
fields required to produce the Landau levels, and perhaps at
more elevated temperatures [5,6], although only recently has
experimental evidence suggesting such excitonic states been
found in a bilayer graphene channel-transition metal dichalco-
genide (TMD) barrier-bilayer graphene channel system [7],
and at still very low temperatures. Beyond the science, it
also has been shown that such transport properties could have
engineering applications for novel ultra-low-power logic and
memory applications [8–10]. More recently, following mate-
rial advances, use of 2D monolayer TMDs with their massive
electrons and holes as the channel material has been predicted
to be a better host for such indirect exciton condensates
[11–13]. However, the effects of the band gap, as well as of
the generally slower carriers, on the transport properties of
such systems have not been explored well. These transport
properties could have implications both for design of exper-
iments toward observation of exciton condensates in such
energy-gapped systems, and for any engineering applications.

In this work, we seek to extend the study of the trans-
port physics and properties in the presence of an exciton

condensate from the graphene-based system to gapped 2D
semiconductor-based systems via multiband quantum trans-
port simulations. Among our findings is that when the en-
ergy bands of the two channel layers no longer overlap,
even in the continuing presence of an exciton condensate,
not only is the enhanced elastic interlayer tunneling elimi-
nated, but the Coulomb-drag-like current between layers is
eliminated.

The remainder of this paper is organized as follows. In
Sec. II, we overview our method for simulating the quantum
transport in the presence of an exciton condensate in such
systems. This method is a combination and extension of the
methods we developed in our previous works in Refs. [14–16].
Note that this simulation method is not intended to pre-
dict accurately the conditions under which such an exciton
condensate can exist, a substantially more challenging and
still imperfect science [11–13], but only to predict the basic
transport properties in the presence of such a condensate.
The 300 K temperature used for all transport simulations in
this work is an optimistic by-product of considering only
the exchange interaction that drives the condensate formation
and associated transport physics of interest here, and not the
additional physics that limits actual temperature of condensate
formation. In Sec. III, we use this method to study a specific
model which captures the key features of interest of the near-
band-edge states of TMD monolayers and demonstrate the
transport properties in these systems. In Sec. IV, we present a
brief summary and conclusions from our study.

II. SIMULATION SYSTEM AND METHOD

The basic system of interest is shown schematically in
Fig. 1(a). Two 2D semiconductor monolayers are separated
by a tunnel barrier of thickness d within an effective dielec-
tric environment of dielectric constant κ . The electrostatic
potentials in these two monolayers are controlled by two
external gates, VTG and VBG, which (along with perhaps work
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FIG. 1. (a) Schematic structure of the simulation system in this
study. (b) Numbering of the atomic unit cells along the transport
direction. Interlayer coupling only exists in the region between the
n = 2 and n = N − 1 cells. The wave functions are solved for only
unit cells 1 through N ; other atomic cells are represented by the
absorbing and injecting boundary conditions.

function engineering in any practice) would provide control
over the energy band alignments and carrier concentrations
of the top and bottom 2D monolayers. In this work, for
specificity, the top and bottom layers are always gated to be
n-type (electron-type) and p-type (hole-type), respectively,
with roughly equal electron and hole concentrations. Top
and bottom transport channels (for transport along the x̂
direction in Fig. 1) of length L are formed in the two mono-
layers between independent semi-infinite leads, top-left (TL)
and top-right (TR), and bottom-left (BL) and bottom-right
(BR), respectively. These electrical leads are connected to
different voltage sources, VTL and VTR, and VBL and VBR,
respectively.

In prior works, members of our research group and col-
leagues introduced simulation tools for simulating quantum
transport in graphene-channel based systems in the presence
of an exciton condensate [14]. We also have performed quan-
tum transport simulations for a structurally similar TMD-
based system, absent a condensate [16], and modeled equi-
librium condensate properties in bilayer TMDs [15]. For this
work, we have combined elements of these prior studies to
allow modeling of transport in the presence of a condensate
in a model TMD system, as described in the remainder of this
section.

The wave function of a single-electron state in the system,
|ψ〉, is projected into a set of tight-binding basis orbitals, |nα〉,
where the index n labels the bilayer unit cells, and the index
α labels the orbitals. Assuming there are M basis orbitals in
each bilayer unit cell, the projection coefficients within unit
cell n—the tight-binding wave function—can be written as
an M by 1 column vector which comprises both top (T) and
bottom (B) components depending on the layer in which the

basis orbital is centered,

�n =
[
�nT

�nB

]
. (1)

The M by M Hamiltonian matrices, Hnn′ , have the form
(as in Refs. [15,16])

Hnn′ =
[

H(bare)
nT;n′T + H(ES)

nT;n′T H(bare)
nT;n′B + H(Fock)

nT;n′B

H(bare)
nB;n′T + H(Fock)

nB;n′T H(bare)
nB;n′B + H(ES)

nB;n′B

]
, (2)

where the superscripts “bare,” “ES,” and “Fock” denote the
bare tight-binding transfer integrals, the electrostatic potential
energies, and the Fock exchange interactions, respectively.
These components are set as follows: the bare tight-binding
transfer matrix, H(bare), can be, depending on the basis orbitals
being used, the empirical hopping energies between atomic
orbitals, or the extracted hopping parameters between maxi-
mally localized Wannier functions [17] based on density func-
tional theory (DFT) calculations; the top (bottom) intralayer
electrostatic term, H(ES), is simply set by

H(ES)
nT(B);n′T(B) = −qϕnT(B)δnn′I, (3)

where q is the unit charge, ϕnT(B) is the average electrostatic
potential of the top (bottom) layer within unit cell n, δnn′ is
the Kronecker delta function, and I is the unit matrix; and the
interlayer Fock exchange interaction, H(Fock), is calculated by
the elementwise multiplication (Hadamard product, indicated
by “◦”) of the Coulomb matrix V and the density matrix ρ,
i.e.,

H(Fock)
nT;n′B = H(Fock)†

n′B;nT = −VnT;n′B ◦ ρnT;n′B. (4)

Here, each element of VnT;n′B represents the Coulomb interac-
tion between an electron centered at rnTα in the top layer and
another electron centered at rn′Bα′ in the bottom layer, i.e.,

[VnT;n′B]αα′ = q2/(4πκε0|rnTα − rn′Bα′ |), (5)

where ε0 is the vacuum permittivity, and the density matrix
ρnT;n′B is calculated as

ρnT;n′B =
∑

β

f (β )�nT(β )�†
n′B(β ), (6)

where β labels an electron state, and f (β ) is the occupation
probability of the state, which, in this work, is described by the
Fermi-Dirac distribution of the lead of injection with Fermi
levels (chemical potentials) EF,l determined by the supply
voltages as EF,l = −qVl for each l = TL, TR, BL, and BR.
In this way, the change in any individual tight-binding wave
function, �n′ (β ′), or its occupation probability, f (β ′), affects
all wave functions, �n(β ), self-consistently.

We assume that the system is wide and translationally in-
variant in the direction normal to the transport direction, such
that a wave vector ky can be used to calculate the variation of
�n among unit cells along this transverse direction ŷ for each
unit cell slice along the transport direction x̂, using the Bloch’s
theorem. We label the unit cells in one slice along the transport
direction as shown in Fig. 1(b), where the n = 1 and n = N

cells are the boundary cells of the simulation region, and apply
the similar method as in Ref. [16] to set up a transport equation
in the channel to solve for the electron states described by an
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N · M by 1 vector � with N components �n(n = 1, . . . , N )
defined by Eq. (1) for each considered energy E and wave
vector ky ,

(EI − H − �)� = S, (7)

where again, N is the number of unit cells along the transport
direction in the simulation region, and M is the number
of orbitals in each unit cell; H is the N · M by N · M

Hamiltonian matrix, with Hnn′ (n, n′ = 1, . . . , N ) defined by
Eq. (2) as its blocks; and the source vector S and self-
energy matrix � describe the boundary conditions. The source
and self-energy components, Sn and �nn′ , are all zeros
except for �11 = H10T−, S1 = H10(I − T−T+)�+

0 , �NN =
HN (N+1)T+, and SN = HN (N+1)(I − T+T−)�−

N+1. Here, �+
0

(�−
N+1) is the extension into the boundary of the simulation

region at n = 0 (n = N + 1) of an incident eigenstate of
the left (right) top or bottom lead. (Wave functions resulting
from injection from top or bottom leads, as well as left and
right leads, are calculated separately.) T+ (T−) is used to
calculate the response of the n = 1 (n = N ) boundary cell
with this injection by �+

1 = T+�+
0 (�−

N = T−�−
N+1). �+

0 ,
�−

N+1, and T± are similarly constructed using the solutions of
the quadratic eigenvalue equation for the lead Bloch functions
with the same energy E in Eq. (7), characterized by the
unit-cell-to-unit-cell phase shift λ and the intra-unit-cell tight-
binding wave function represented by the M by 1 vector �,

(H10 + λH00 + λ2H01)� = λE�, (8)

as in Ref. [16]. Equation (7) is solved for every state β

spanning over energy E, wave vector ky , injection lead l, and
injection band i. The solutions are then fed back to update
the density matrix ρ in Eq. (6), which leads to a new set of
solutions to Eq. (7). These two steps are iterated until conver-
gence is achieved. The steady-state current that flows between
any two unit cells in the system then is calculated from

In→n′ = −2q

h̄

∑
β

f (β ) Im[�†
n′ (β )Hn′n�n(β )]. (9)

The approach described by Eqs. (1)–(9) above can be used
to simulate similar bilayer systems using arbitrary basis func-
tions and hopping potentials. However, to study the essential
quantum transport physics, in this paper we consider only
a simplified multiband model as follows. For both layers,
we use the 2D lattice structure of a MoS2 monolayer with
lattice constant a = 3.16 Å and assume two orbitals centered
at the Mo atoms in each primitive unit cell. To limit unit cell
sizes as matter of practicality, we assume rotational alignment
between the top and bottom MoS2 layers, such as has been
achieved in analogous graphene systems [18,19]. However,
we note that condensate formation is not dependent on rota-
tional alignment [20], and that rotational misalignment could
indeed be useful to limit the bare interlayer coupling while
still maximizing the proximity of the 2D semiconductors to
maximize the electrostatic and, thus, exchange interaction.
We consider only the hopping parameters between the nearest
unit cells and the on-site potentials in the same unit cells
for the intralayer bare hopping matrices, H(bare)

nT;n′T and H(bare)
nB;n′B,

in Eq. (2) [see Fig. 2(a)]. These hopping parameters are

FIG. 2. (a) 2D lattice structure of a MoS2 monolayer used in this
study. Dashed lines show the unit cells. We only consider the hopping
parameters between the Mo atom-centered orbitals up to the nearest
unit cells. (b) Comparison between the band structure calculated
using the hopping parameters in this work and those extracted from
the density functional theory (DFT) calculations.

adjusted to match the CB and VB edge effective masses of
a MoS2 monolayer. We use a CB edge (electron) effective
mass of m∗

e = 0.5m0 and a VB edge (minus hole) effective
mass of −m∗

h = −0.6m0 to fit these parameters, where m0

is the free-space electron rest mass. This method is able to
capture the band-edge states of the MoS2 monolayer as shown
by the band structure comparison between this model and
that from DFT calculations in Fig. 2(b). Note that this model
does not address the significant VB spin-splitting observed in
TMDs. Albeit more accurate models are available (e.g., the
model in Ref. [15]), this simplified model is sufficient for
the qualitative study of the essential physics of the quantum
transport phenomena in this system with fewer computational
resources and faster convergence. Moreover, the interlayer
bare-hopping matrices, H(bare)

nT;n′B, are critical to determine, e.g.,
the critical interlayer current [14,21], analogous to the critical
current of a Josephson junction. For the qualitative purposes
of this work, we take the effective interlayer bare-hopping to
be of the simple form,

H(bare)
nT;n′B = H(bare)

n′B;nT = tIδnn′ , (10)

where the coupling constant t between like top and bottom
layer orbitals within the same unit cell only represents bare in-
terlayer coupling which would vary with interlayer dielectric
material, dielectric thickness, and even rotational alignment of
the dielectric with the MoS2 layers [22].

III. SIMULATION RESULTS

To focus on the essential transport properties in the sys-
tem, in this work we study the current flows in response
to various voltages. For specificity, we use fixed parame-
ters including a channel length of L = 10 nm, an effective
position-independent dielectric constant of κ = 2.2, a tunnel
barrier thickness of d = 1 nm, and a temperature T = 300 K
throughout this paper, which remains sufficient for estab-
lishing an exciton condensate within the simplified model
of this work. We consider three limiting biasing conditions.
In Sec. III A, we consider the equilibrium condition under
which the four leads are all grounded, i.e., VTL = VBL =
VTR = VBR = 0; in Sec. III B, we address the “current coun-
terflow” (phenomenologically, Coulomb-drag-like) intralayer
biasing condition under which the bottom leads are biased
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FIG. 3. Local density of states (LDOS) at the center of the
channel when the system is in equilibrium, with and without the
Fock exchange interaction. The tCB and bVB in the leads are just
touching, corresponding to a carrier concentration of n = p ≈ 7 ×
1012 cm−2. The interlayer bare coupling energy is t = 0.5 meV.
There is a 500 meV energy gap when the Fock exchange interaction
is present.

with a voltage difference Vb, and the top leads are grounded,
such that VBL = −VBR = Vb/2 and VTL = VTR = 0; and in
Sec. III C, we discuss an “interlayer” biasing condition under
which the two left leads are biased with an interlayer voltage
difference Vl, and the right leads are grounded, such that
VTL = −VBL = Vl/2 and VTR = VBR = 0. In addition to these
lead biasing conditions, there are two distinct gating scenarios
of how the top (electron) layer CB (tCB) and the bottom (hole)
layer VB (bVB) edges are aligned in the leads, and would be
aligned throughout the simulation region in the absence of the
condensate: in one there is an energy gap between the tCB
and bVB, and the other the tCB and bVB overlap in energy. In
Sec. III A through Sec. III C, for conceptual clarity, we vary
the electrostatic potentials in the channel—and, thus, the band
edges in the absence of condensate formation—independent
of the applied lead voltages (which in practice would re-
quire substantial counteradjustments to gate voltages for each
variation of lead voltage). In Sec. III D, we will consider
self-consistent variations in the electrostatic potential in the
channel with lead voltages due to nonzero (and substantial)
channel quantum capacitances [23].

A. Equilibrium

In our previous study looking at the equilibrium bulk
(translational invariance of the potential among unit cells in
both in-plane directions of the 2D monolayers) exciton con-
densate properties [15], we observed a condensate-induced
energy gap of hundreds of meV, which was roughly inde-
pendent of the nominal alignment of the energy bands of
the top and bottom layers absent the condensate, and which
corresponded to the exciton binding energy, as long as the
nominal (condensate free) band edges are not separated by
more than this binding energy. In the system of this study,
with the condensate localized between the leads, condensate
formation is recognized in the local density of states (LDOS)
away from the open simulation region boundaries, as shown in
the center of the simulation region in Fig. 3. The induced in-
terlayer energy gap in the LDOS remains roughly unchanged

no matter how the nominal tCB and bVB are initially aligned,
as long as they are not separated by more than this condensate
induced gap.

B. Intralayer biasing

With our simulation parameters, when the gates are biased
such that there is an energy gap between the tCB and bVB in
the leads, this gap prohibits elastic carrier transfer from one
layer to the other independent of condensate formation. For
example, with the ideal gate control of the band alignments
currently considered, when the carrier concentrations are
gated to 5 × 1012 cm−2 in both layers, there is a 30 meV gap
between the tCB and bVB in the leads. Moreover, current flow
between the leads along the layers in the channel is blocked
by the condensate-induced energy gap in the LDOS, beyond a
small current associated with the tails of the thermal distribu-
tion, at least when the condensate-induced gap in the LDOS
in the channel is larger than the condensate-free gap between
the tCB and bVB, as illustrated schematically and shown via
simulations in Fig. 4. Thus a reduction, if not elimination, of
intralayer current flow becomes one candidate experimental
signature of condensate formation in such gapped bilayer
systems, even if perhaps at much lower temperatures and
smaller energy gaps.

When the gate voltages cause the tCB and bVB to overlap,
however, with bias voltages applied to the bottom leads we
observe equal magnitude steady-state currents flowing into the
BL lead and out the BR lead with the same 10 mV bias voltage
applied, despite the continuing existence of the condensate-
induced band gap in the LDOS in the channel. Moreover, in
the top layer, currents of almost same magnitude flow, but
in the opposite channel direction, into the TR lead and out
TL lead, although these two leads are grounded, as seen in
Fig. 5(a). However, at the energies of the injected/extracted
carriers to/from the leads, this current counterflow is actually
composed of interlayer currents flowing in opposite directions
between the lead pairs at the opposite ends of the channels,
BL to TL lead and TR to BR lead, respectively, but much
larger than would be produced by the bare-coupling-induced
tunneling alone. These interlayer currents are mediated by
coupling via the self-consistent nonlocal Fock exchange inter-
action within the many-body exciton condensate to a mutually
excited counterclockwise current loop along and between the
layers below the condensate-induced energy gap, as illustrated
in Fig. 6(c) with current subdivided above and below a cutoff
energy Eco chosen well below the Fermi levels, but above the
bottom of this gap. Thus the condensate leads to a near perfect
Coulomb-drag-like behavior at the leads within, but only
within where the nominal tCB and bVB overlap, as shown
in Fig. 7. This near-perfect Coulomb-drag-like behavior is
another signature of exciton condensate formation, as already
observed in experimental III-V systems [2,3] and illustrated in
our prior simulation of graphene systems [14], but in, and only
in, this region of interlayer band overlap with these gapped
semiconductors.

C. Interlayer biasing

As noted in Sec. III B above and shown in Fig. 4, con-
densate or not, no current can flow between the layers even
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FIG. 4. (a) Illustration of the band alignment when the tCB and
bVB do not overlap, which prevents intralayer and interlayer current
flow under intralayer (or interlayer) biasing. (b) Intralayer currents
in top and bottom layers normalized to the corresponding values
without the Fock exchange interaction, as functions of the overlap
between tCB and bVB under intralayer biasing with Vb = 10 mV.
The interlayer bare coupling energy is t = 0.5 meV, the positive
direction of the current is from left to right, and a negative overlap
means the two bands do not overlap. (c) Same curves as in (b), except
that the system is under interlayer biasing with Vl = 10 mV. In both
(b) and (c), as tCB and bVB are brought close to each other, exciton
condensate formation begins to expand band gap in the channel and,
thus, blocks the intralayer current as long as tCB and bVB do not
overlap. No intralayer current can exist in this nonoverlapped-bands
scenario.

with interlayer bias voltage applied when the tCB and bVB
do not overlap. When there is such overlap in the presence
of an exciton condensate, however, we observe an enhanced
interlayer tunneling current as compared to the case without
the exciton condensate if we apply a small interlayer voltage
to the end leads as shown in Fig. 5(b). By analyzing the current
components from electrons with energy below and above the
cutoff energy Eco in Fig. 6(d) as done for intralayer biasing,
we find here, as for the graphene system before [14], that the
enhanced current flow near the Fermi level is restricted to near
the left leads and is associated with a counterflowing current

FIG. 5. Current distribution along the channel under (a) in-
tralayer biasing with bias voltage Vb = 10 mV, and (b) interlayer
biasing with bias voltage Vl = 10 mV. The positive sign for the intra-
and interlayer current means the direction from left to right and from
bottom to top, respectively. However, under the intralayer biasing,
the total interlayer current is negligible thus it’s not shown. The tCB
and bVB have an overlap of 15 meV. The interlayer bare coupling
energy is t = 0.5 meV.

near the left leads that flows below the condensate-induced
gap (below Eco), which, in turn, is then balanced by more
current flow below Eco along and in the opposite direction
between the layers. Negligible current flows out of the right
leads, so that they could be floating; they are not necessary to
this process. These behaviors are schematically explained by
Fig. 6(b).

However, also as in the simulated graphene system [14]
and the experimental III-V systems [21], the amount of inter-
layer current that can flow in this way is limited. In principle,
this current can be reached at very low voltages depending
on the interlayer bare coupling, leading to a very low voltage
NDR, even at voltages below kBT (where kB is the Boltzmann
constant) in principle, which could have novel applications
in memory and unconventional logic [8–10]. As derived in
Ref. [14], the interlayer current mediated by the condensate
between a pair of orbitals, one of which resides in the top layer
and the other resides in the bottom layer, is

I = −2q

h̄
t |ρ| sin[arg(ρ)], (11)

where t is the interlayer bare coupling energy and ρ is
the density matrix element between the two orbitals. With
the tCB and bVB overlap fixed, the absolute value of ρ is
largely independent on the small bias voltages. However, the
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FIG. 6. Illustration of the band alignment and current flow under (a) intralayer biasing, and (b) interlayer biasing, both when the tCB and
bVB overlap with each other, and visualization of the total current, as well as its components across the top and bottom layers for (c) intralayer
biasing, and (d) interlayer biasing, from carriers with energy below and above a cutoff energy Eco ≈ −100 meV relative to the zero bias
Fermi level (but above the bottom of the condensate-induced band gap), obtained with the same parameters as used in Fig. 5. The horizontal
component of each arrow represents the magnitude and direction of the intralayer current, and the vertical component represents the interlayer
current. However, the scales of the magnitude of the two components are not directly comparable since intra- and interlayer currents have
different units.

argument (phase) of ρ, which is the collective “pseudospin
phase” of all interlayer pairs of orbitals, shifts toward the
direction that increases | sin[arg(ρ)]| as the bias voltages
increase. If a voltage larger than that induces a critical current
of IC = 2qt |ρ|/h̄ is applied, the steady-state current collapses

FIG. 7. The intralayer current, under intralayer biasing, of both
layers measured at the left leads, normalized to the value without
the Fock exchange interaction, and the apparent “Coulomb-drag”
coefficient which is defined as the ratio of the current (seemingly)
flowing in the passive (top) layer to that in the active (bottom)
layer, both as functions of the overlap between tCB and bVB. A
negative overlap means the two bands do not overlap. A Coulomb-
drag-like current can be seen only when the two bands overlap. The
intralayer bias voltage in the bottom layer is fixed at Vb = 10 mV.
The interlayer bare coupling energy is t = 0.5 meV.

because | sin[arg(ρ)]| cannot exceed unity and Eq. (11) cannot
be satisfied. In our steady-state simulations, we cannot follow
the interlayer current with the applied voltage beyond the
point at which IC is reached, and it becomes increasing diffi-
cult to converge the iterative calculations as IC is approached.
However, by analyzing the pseudospin phase arg(ρ) between
any interlayer pair of orbitals in the channel along with the
current value I flowing from TL to BL, the maximum current
from TL to BL which drives the system into the critical condi-
tion can be estimated as IC = I/ sin[arg(ρ)]. IC calculated in
this way as a function of the interlayer bare coupling energy
is shown in Fig. 8(a).

The interlayer I -V characteristics of such TMD material-
based system also can behave qualitatively differently from
those of the graphene-based systems, as shown in Fig. 8(b).
Because of the finite overlap of the tCB and bVB, if the Fermi
level difference between TL and BL leads exceeds the band
overlap before the critical current is reached, the interlayer
current saturates rather than collapses. Moreover, by gating
this overlap, the system can act much like a conventional
tunneling field-effect transistor [24], except with near-unity
transmission probability in the presence of a condensate. The
dependence of the interlayer current on this overlap is shown
in Fig. 9.

Similar to above, this enhanced interlayer current with
overlap of the tCB and bVB is yet another signature of exciton
condensate formation, as also already observed in experimen-
tal III-V systems [21] and illustrated in our prior simulation of
the graphene system [14], although with qualitative different
dependencies on interlayer voltage possibly.
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FIG. 8. (a) Estimated critical current IC that could flow from TL to BL as a function of the interlayer bare coupling energy t under interlayer
bias, based on extrapolation from low bias interlayer condensate phase. With a fixed energy overlap between tCB and bVB—here, 10, 15, or
20 meV, IC has an essentially linear dependence on t . However, the absolute value of the density matrix element, |ρ|, increases slightly as the
band overlap increases, thus IC also increases as implied by Eq. (11). (b) The I -V characteristics of the current flowing from TL to BL as a
function of the bias voltage Vl with different overlaps between tCB and bVB for a larger interlayer bare coupling t = 0.5 meV. (t does not
affect the shape of the I -V curves if IC is not reached.) In the latter figure, the current begins to saturate as the Fermi level separation exceeds
the overlap of the tCB and bVB by a few kBT (∼26 meV at the considered temperature T = 300 K). The associated critical voltages VC,
labeled in (a), is estimated from a linear interpolation between two neighboring data points in (b), which produces the same IC in (a). If IC is
larger than the saturation current, the critical voltage cannot be reached.

D. Lead bias control over the band alignment

So far, the electrostatic potentials in the channel simply
have been specified. To simulate the I -V characteristics of
the system more realistically, we now consider how these
potentials are controlled by the gate as well as bias voltages.
Rigorously, these potentials must be solved self-consistently
as functions of position in the channel using the Poisson’s
equation in addition to the iterations of Eqs. (6) and (7) in
Sec. II. However, this treatment will add another layer of
self-consistent calculations and blur the qualitative focus of
this study. Here we assume that the potentials are uniform
across the channel, i.e., ϕn,T = ϕT and ϕn,B = ϕB for every
unit cell n, and are determined by the capacitive relations,

q(pT − nT) = CTG�ϕTG + CI(ϕT − ϕB), (12a)

q(pB − nB) = CBG�ϕBG + CI(ϕB − ϕT), (12b)

where CTG (CBG) is the top (bottom) gate dielectric ca-
pacitance, CI = κε0/d is the capacitance of the interlayer

FIG. 9. The current from TL to BL as a function of the overlap
between tCB and bVB under a fixed interlayer bias voltage Vl =
10 mV. The interlayer bare coupling energy is t = 0.5 meV. A
negative overlap means the two bands do not overlap. The elastic
current necessarily vanishes if the two bands do not overlap.

dielectric, �ϕTG (�ϕBG) is the potential drop across the top
(bottom) gate dielectric, and nT (nB) and pT (pB) are the
nominal electron and hole concentrations in the top (bottom)
layer without the Fock exchange interaction. Here, we have
assumed that the channels are undoped. The electron and hole
concentrations of the top channel can be calculated as

nT =
∑

l=TL,TR

∫ +∞

EC,T(ϕT )
dE fl (E)gT(E, ϕT)/2, (13a)

pT =
∑

l=TL,TR

∫ EV,T(ϕT )

−∞
dE hl (E)gT(E, ϕT)/2, (13b)

where fl (E) = 1/[1 + e(E−EF,l )/kBT ] and hl (E) = 1 − fl (E),
respectively, are the Fermi distribution functions of an elec-
tron and a hole state in lead l with Fermi level EF,l controlled
by its bias voltage; EC,T(ϕT) and EV,T(ϕT) are the CB and
VB edges, respectively, of the top layer under potential ϕT;
and gT(E, ϕT) is the density of states of the top layer under
potential ϕT calculated using the band structure of the top
layer. The “1/2” factor at the end is because only half of
the incident lead states contribute to the carrier concentrations
in the channel. By replacing all subscripted top (“T”) values
with bottom (“B”) values and summing over the bottom
leads, we similarly are able to calculate the electron and hole
concentrations in the bottom layer (nB and pB).

The potential drops across the gate dielectrics, �ϕTG and
�ϕBG, are linked to the gate voltages through various material
parameters using the band diagram as in Ref. [24] by

q�ϕTG = WTG − qVTG − χT − EC,T(ϕT), (14a)

q�ϕBG = WBG − qVBG − χB − EC,B(ϕB), (14b)

where WTG (WBG) is the work function of the top (bottom)
gate and χT (χB) is the effective electron affinity of the top
(bottom) channel.

With Eqs. (13) and (14), ϕT and ϕB can be obtained using
Eqs. (12) and then used in the iterations of Eqs. (6) and (7)
in Sec. II. This method is equivalent to adding four effective
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FIG. 10. (a) The dependence of drag coefficient (as defined in Fig. 7) on bias voltage obtained using the electrostatic model in Sec. III D
under intralayer biasing with fixed gate voltage VTG = −VBG = 3.6 V. (b) TL-to-BL current under interlayer biasing with fixed gate voltage
VTG = −VBG = 3.2 V using the same model. In both figures, the interlayer bare coupling energy is t = 0.5 meV. The corresponding overlap
between tCB and bVB also is shown in the same plots (a negative overlap means the two bands do not overlap).

quantum capacitors between each lead and the channel [23].
In this work for specificity, we use work functions WTG =
WBG = 5.1 eV (e.g., gold) and electron affinities χT = χB =
4.2 eV (monolayer MoS2). The top and bottom gate dielectric
capacitances, CTG and CBG, respectively, are taken to be
the same as that of the interlayer tunnel barrier, i.e., CTG =
CBG = CI = 1.9 μF/cm2. (As shown above, condensate for-
mation greatly enhances the interlayer coupling. Moreover, in-
dependent of the condensate formation, recent work suggests
that by rotating the interlayer dielectric, tunneling currents can
be varied significantly [22]. Thus it is reasonable to consider
using the same barrier material for the gate and tunnel di-
electrics.) Using this model and the above parameters, a gate
voltage of VTG = −VBG ≈ 3.4 V brings the tCB edge to just
touch the bVB edge when all the four leads are grounded.
However, we note that the gate voltages are varied by only
±200 mV for subsequent simulations, thus this voltage is
still more than is required to achieve the potentially useful
behaviors observed in these simulations.

With the gate voltages fixed, the bias voltages under the
interlayer and the intralayer biasing conditions have different
effects on ϕT and ϕB, and consequently the tCB and bVB
alignment, which further distinguishes the I -V characteristics
for these two biasing conditions. Under the intralayer biasing
condition, a positive voltage applied to the BL lead tends
to pull the bVB downward with the Fermi level as a result
of the quantum capacitance CQ,BL in the channel (which is
substantially larger than that in the graphene-based system),
while a negative voltage applied to the BR lead tends to pull
it upward. However, the former effect is more pronounced
because it’s toward the direction that CQ,BL, itself, increases.
Therefore as the intralayer bias voltage increases, the band
overlap shrinks, which further reduces or even eliminates the
Coulomb-drag-like current [see Fig. 10(a)]. This behavior is
symmetric with respect to positive and negative intralayer
voltages. Under interlayer biasing, a positive bias voltage
applied to the TL lead tends to pull the tCB downward and
the negative voltage applied to the BL lead tends to bring
the bVB upward. Therefore, the overlap between the two
bands increases with an increasing positive interlayer bias,
and decreases with an increasingly negative interlayer bias.
This interlayer bias control alters the I -V characteristics of
Fig. 8(b) in two ways, as shown in Fig. 10(b); it introduces a
shift of the threshold voltage associated with aligning the tCB

edge and bottom bVB edge, which can be negative or positive
depending on the interlayer bias; and it changes the shape of
I -V curve by varying the tCB and bVB overlap in addition to
the Fermi level difference.

IV. SUMMARY AND CONCLUSIONS

In conclusion and summary, we have studied the current
flow in a TMD monolayer-based four-lead bilayer system
in the presence of the spatially indirect exciton condensate
using a quantum transport simulator. The exciton condensate
is induced by the nonlocal interlayer Fock exchange inter-
action, which is calculated self-consistently along with the
multiband quantum transport equation. These simulations are
not intended to predict accurately the conditions under which
such an exciton condensate can exist, but only to predict the
transport properties in the presence of such a condensate.
These reported behaviors may aid in the interpretation of
experimental efforts to observe exciton condensates in such
systems, as well as for potential device applications.

With gapped parabolic band structures of the model TMD
monolayers, this system exhibits some of the same properties
exhibited in prior experimental and theoretical works, but also
properties specific to this gapped system. The parabolic bands
and associated massive carriers in the TMD monolayers lead
to larger exciton binding energies than the zero-band-edge-
mass carriers in the graphene system. This result should be
beneficial for forming and maintaining the condensate, and
leads to a larger critical current for a given interlayer bare cou-
pling strength before the current becomes time-dependent (or
fails to reach a steady-state solution in these time-independent
calculations), defining the onset of a potentially strong and
very low voltage NDR, as seen in experimental exciton con-
densates [21] and in a previously simulated graphene-based
system [14]. This increase in critical current, however, could
be either beneficial or detrimental depending on the achiev-
able interlayer bare coupling and desired mode of operation.
Under interlayer biasing, unlike for the graphene based sys-
tem, the interlayer elastic current, perhaps self-evidently, can
be eliminated by removing overlap at the leads between the
charged electron band (tCB) and hole band (bVB), even in
the presence of the condensate. Perhaps less self-evidently,
the near-perfect Coulomb-drag-like counterflow current un-
der intralayer bias also is eliminated by the lack of such
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interlayer band overlap. This latter current actually consists
of interlayer currents flowing between and near the Fermi
levels in opposite directions at opposite ends of the channel,
thus subject to the same requirement for band overlap as the
interlayer-bias-induced current. Moreover, with band overlap,
both the enhanced interlayer current under interlayer bias and
the counterflow current under intralayer bias are supported by
coupling through the condensate to currents flowing below the
condensate-induced gap.

Also, in the TMD-based system, large channel quantum
capacitance (associated with the large density of states) makes
the electrostatic profiles along the channel sensitive to the
terminal bias voltages. Therefore in addition to changing
the Fermi level differences, the bias voltages also change
the alignment of the tCB and bVB, which has additional
effects on the current, including creating nonzero thresholds
for either intralayer or interlayer current flow in terms of the
bias voltages, which is associated with the onset of overlap of
conduction-to-valence band overlap between the TMD layers.

These simulated behaviors offer mechanisms for exper-
imentally identifying such exciton condensates, as well as
novel applications for memory and logic, even if perhaps
limited to growing realm of cryogenic computing in practice
if not simulation. We also note that, although not specifi-
cally addressed here, again in the experimental III-V [3,21]
and simulated graphene-based [14] systems considered previ-

ously, one can move smoothly between these two regimes of
intralayer and interlayer bias, subject to a conserved net total
critical current between the two layers, which offers additional
experimental and device possibilities, perhaps particularly so
given the ability to combine critical current conservation as
seem previously [10,21], with the ability to gate off current
flow as a whole by removing electron-to-hole band overlap in
such a gapped system.

Finally, we note that we only used a simplified two-band
model for the TMD monolayers in this study, which ignores,
e.g., the spin-orbit-coupling near the band edges. However,
it captures many key band features including the parabolic
band structure near the band edges and the existence of the
band gaps, which were not considered in an earlier study [14].
Also this method can be easily generalized to more complex
and realistic material models, subject only to computational
resources.

ACKNOWLEDGMENTS

This work was supported by the Nanoelectronics Research
Initiative (NRI) of the Semiconductor Research Corpora-
tion (SRC) via the South West Academy of Nanoelectronics
(SWAN). Supercomputing resources were provided by the
Texas Advanced Computing Center (TACC).

[1] J. P. Eisenstein and A. H. MacDonald, Nature (London) 432,
691 (2004).

[2] E. Tutuc, M. Shayegan, and D. A. Huse, Phys. Rev. Lett. 93,
036802 (2004).

[3] D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K.
W. West, Nature (London) 488, 481 (2012).

[4] X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim,
Nat. Phys. 13, 746 (2017).

[5] H. Min, R. Bistritzer, J.-J. Su, and A. H. MacDonald, Phys. Rev.
B 78, 121401 (2008).

[6] A. Perali, D. Neilson, and A. R. Hamilton, Phys. Rev. Lett. 110,
146803 (2013).

[7] G. W. Burg, N. Prasad, K. Kim, T. Taniguchi, K. Watanabe, A.
H. MacDonald, L. F. Register, and E. Tutuc, Phy. Rev. Lett. 120,
177702 (2018).

[8] S. K. Banerjee, L. F. Register, E. Tutuc, D. Reddy, and A. H.
MacDonald, IEEE Electron Device Lett. 30, 158 (2009).

[9] D. Reddy, L. F. Register, E. Tutuc, and S. K. Banerjee, IEEE
Trans. Electron Devices 57, 755 (2010).

[10] X. Mou, L. F. Register, A. H. MacDonald, and S. K. Banerjee,
IEEE Trans. Electron Devices 64, 4759 (2017).

[11] F.-C. Wu, F. Xue, and A. H. MacDonald, Phys. Rev. B 92,
165121 (2015).

[12] O. L. Berman and R. Y. Kezerashvili, Phys. Rev. B 93, 245410
(2016).

[13] B. Debnath, Y. Barlas, D. Wickramaratne, M. R. Neupane, and
R. K. Lake, Phys. Rev. B 96, 174504 (2017).

[14] X. Mou, L. F. Register, A. H. MacDonald, and S. K. Banerjee,
Phys. Rev. B 92, 235413 (2015).

[15] X. Wu, X. Mou, L. F. Register, and S. K. Banerjee, in 2015
International Conference on Simulation of Semiconductor Pro-
cesses and Devices (SISPAD) (IEEE, Washington, DC, USA,
2015), p. 124.

[16] X. Wu, X. Mou, L. F. Register, and S. K. Banerjee, in 2016
International Conference on Simulation of Semiconductor Pro-
cesses and Devices (SISPAD) (IEEE, Nuremberg, Germany,
2016), p. 89.

[17] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[18] B. Fallahazad, K. Lee, S. Kang, J. Xue, S. Larentis, C. Corbet,
K. Kim, H. C. P. Movva, T. Taniguchi, K. Watanabe, L. F.
Register, S. K. Banerjee, and E. Tutuc, Nano Lett. 15, 428
(2014).

[19] K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. P. Movva,
S. Huang, S. Larentis, C. M. Corbet, T. Taniguchi, K. Watanabe,
S. K. Banerjee, B. J. LeRoy, and E. Tutuc, Nano Lett. 16, 1989
(2016).

[20] L. F. Register, X. Mou, D. Reddy, W. Jung, I. Sodemann, D.
Pesin, A. Hassibi, A. H. MacDonald, and S. K. Banerjee, ECS
Trans. 45, 3 (2012).

[21] D. Nandi, T. Khaire, A. D. K. Finck, J. P. Eisenstein, L.
N. Pfeiffer, and K. W. West, Phys. Rev. B 88, 165308
(2013).

[22] A. Valsaraj, L. F. Register, E. Tutuc, and S. K. Banerjee, J. Appl.
Phy. 120, 134310 (2016).

[23] S. Luryi, Appl. Phys. Lett. 52, 501 (1988).
[24] M. Li, D. Esseni, G. Snider, D. Jena, and H. G. Xing, J. Appl.

Phys. 115, 074508 (2014).

035113-9

https://doi.org/10.1038/nature03081
https://doi.org/10.1038/nature03081
https://doi.org/10.1038/nature03081
https://doi.org/10.1038/nature03081
https://doi.org/10.1103/PhysRevLett.93.036802
https://doi.org/10.1103/PhysRevLett.93.036802
https://doi.org/10.1103/PhysRevLett.93.036802
https://doi.org/10.1103/PhysRevLett.93.036802
https://doi.org/10.1038/nature11302
https://doi.org/10.1038/nature11302
https://doi.org/10.1038/nature11302
https://doi.org/10.1038/nature11302
https://doi.org/10.1038/nphys4116
https://doi.org/10.1038/nphys4116
https://doi.org/10.1038/nphys4116
https://doi.org/10.1038/nphys4116
https://doi.org/10.1103/PhysRevB.78.121401
https://doi.org/10.1103/PhysRevB.78.121401
https://doi.org/10.1103/PhysRevB.78.121401
https://doi.org/10.1103/PhysRevB.78.121401
https://doi.org/10.1103/PhysRevLett.110.146803
https://doi.org/10.1103/PhysRevLett.110.146803
https://doi.org/10.1103/PhysRevLett.110.146803
https://doi.org/10.1103/PhysRevLett.110.146803
https://doi.org/10.1103/PhysRevLett.120.177702
https://doi.org/10.1103/PhysRevLett.120.177702
https://doi.org/10.1103/PhysRevLett.120.177702
https://doi.org/10.1103/PhysRevLett.120.177702
https://doi.org/10.1109/LED.2008.2009362
https://doi.org/10.1109/LED.2008.2009362
https://doi.org/10.1109/LED.2008.2009362
https://doi.org/10.1109/LED.2008.2009362
https://doi.org/10.1109/TED.2010.2041280
https://doi.org/10.1109/TED.2010.2041280
https://doi.org/10.1109/TED.2010.2041280
https://doi.org/10.1109/TED.2010.2041280
https://doi.org/10.1109/TED.2017.2751560
https://doi.org/10.1109/TED.2017.2751560
https://doi.org/10.1109/TED.2017.2751560
https://doi.org/10.1109/TED.2017.2751560
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/PhysRevB.93.245410
https://doi.org/10.1103/PhysRevB.93.245410
https://doi.org/10.1103/PhysRevB.93.245410
https://doi.org/10.1103/PhysRevB.93.245410
https://doi.org/10.1103/PhysRevB.96.174504
https://doi.org/10.1103/PhysRevB.96.174504
https://doi.org/10.1103/PhysRevB.96.174504
https://doi.org/10.1103/PhysRevB.96.174504
https://doi.org/10.1103/PhysRevB.92.235413
https://doi.org/10.1103/PhysRevB.92.235413
https://doi.org/10.1103/PhysRevB.92.235413
https://doi.org/10.1103/PhysRevB.92.235413
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1021/nl503756y
https://doi.org/10.1021/nl503756y
https://doi.org/10.1021/nl503756y
https://doi.org/10.1021/nl503756y
https://doi.org/10.1021/acs.nanolett.5b05263
https://doi.org/10.1021/acs.nanolett.5b05263
https://doi.org/10.1021/acs.nanolett.5b05263
https://doi.org/10.1021/acs.nanolett.5b05263
https://doi.org/10.1149/1.3700447
https://doi.org/10.1149/1.3700447
https://doi.org/10.1149/1.3700447
https://doi.org/10.1149/1.3700447
https://doi.org/10.1103/PhysRevB.88.165308
https://doi.org/10.1103/PhysRevB.88.165308
https://doi.org/10.1103/PhysRevB.88.165308
https://doi.org/10.1103/PhysRevB.88.165308
https://doi.org/10.1063/1.4964115
https://doi.org/10.1063/1.4964115
https://doi.org/10.1063/1.4964115
https://doi.org/10.1063/1.4964115
https://doi.org/10.1063/1.99649
https://doi.org/10.1063/1.99649
https://doi.org/10.1063/1.99649
https://doi.org/10.1063/1.99649
https://doi.org/10.1063/1.4866076
https://doi.org/10.1063/1.4866076
https://doi.org/10.1063/1.4866076
https://doi.org/10.1063/1.4866076



