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Motivated by previous efforts in detecting topological orders from the ground state(s) wave function, we
introduce a new quantum information tool, coined the information convex, to capture the bulk and boundary
topological excitations of a 2D topological order. Defined as a set of reduced density matrices that minimizes the
energy in a subsystem, the information convex encodes not only the bulk anyons but also the gapped boundaries
of 2D topological orders. Using untwisted gapped boundaries of non-Abelian quantum doubles as an example,
we show how the information convex reveals and characterizes deconfined bulk and boundary topological
excitations, and the condensation rule relating them. Interference experiments in cold atoms provide potential
measurements for the invariant structure of information convex.
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I. INTRODUCTION

Topological orders [1,2] represent a large class of gapped
quantum phases characterized by long-range entanglement
[3,4]. Unlike symmetry breaking orders, they support topo-
logical excitations (anyons) created by (deformable) string
operators, which obey fractional braiding statistics [5]. Topo-
logical orders have locally indistinguishable states robust
to decoherence [6], making them excellent candidates for
quantum computation [7,8]. Enormous theoretical progress
has been made in understanding 2D topological orders from
topological quantum field theories [2,9-11], exactly solved
models [7,12—14], and tensor category theory [12,15].

Given a topologically ordered system, one important ques-
tion is how to detect its topological properties? It has been
shown that using the ground state(s), one can compute many
invariants that characterize the topological order, such as the
topological entanglement entropy (TEE) [10,16] and modular
matrices [4,17,18]. In reality, however, any experimental mea-
surement is performed at a finite temperature, which probes a
thermal density matrix rather than the ground state(s). Can one
instead extract the topological order from the density matrix?

Moreover, although many theoretical efforts study topo-
logical orders on a closed manifold such as the torus, most
experiments are performed on systems with open boundaries.
2D nonchiral topological orders may have gapped boundaries,
where one bulk phase can have more than one boundary
types [19-27]. How to extract this rich structure of boundary
excitations in a topologically ordered system?

In this work, we develop a quantum informational tool,
the information convex % (S2), to characterize the topologi-
cal excitations in the bulk and on the gapped boundary of
a 2D topological order. Most conveniently defined for any
frustration-free local Hamiltonian [28], X(£2) is the (convex)
set of reduced density matrices on a region €2, obtained from
states which minimize all terms overlapping with region 2 in
the Hamiltonian. See Sec. III for detailed properties of infor-
mation convex, in which a more general information convex
3(2, ) is introduced for Q C ', Intuitively, X(€2, Q') is
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the set of reduced density matrices on €2 obtained from states
minimizing the energy on '.

The element oq = trg|p){p| of the information convex
Y (2) can be obtained from states |¢) with no excitations
within Q, where  is the complement of 2. The information
convex can be obtained numerically by performing imaginary
time evolution in region €2, or experimentally by cooling down
the subsystem 2 below the finite energy gap.

First, for a 2D topological order on a closed manifold, we
show that the information convex X(f2) naturally captures
previously known topological invariant characterizations like
TEE [10,16] and the minimal entangled (ground) states [17].
To study bulk properties, we choose the subsystem 2 away
from the boundary of the system, as illustrated by @, and
Q2 in Fig. 2. The annulus 2; in Fig. 2 leads to extremal
points Eq. (1) labeled by different bulk anyon types (or bulk
superselection sectors).

Moreover, for a 2D nonchiral topological order with open
boundaries, the information convex X(£2) allows us to reveal
the structure of boundary topological excitations, which are
generally different from the bulk anyons [21,22,25]. For this
purpose, we choose the subsystem 2 containing a part of
the open boundary, illustrated by w,, €2,, and 23 in Fig. 2.
For example, choosing strip €2, as the subsystem leads to
information convex X(£2;), whose extremal points correspond
to distinct boundary topological excitations (or boundary
superselection sectors).

While bulk anyons (red dots in Fig. 1) of a 2D topological
order can be created by deformable strings within the bulk
(grey lines in Fig. 1), with open boundaries there are also
deformable strings that cannot detach from the boundary
(green lines in Fig. 1). Some of these nondetachable strings
are attached to the bulk anyons, some are attached to boundary
topological excitations (purple dots in Fig. 1). We discuss how
the topological invariants of X(£2) capture boundary superse-
lection sectors {o}, their corresponding quantum dimensions
{dy}, and the condensing process from a bulk anyon a to
boundary excitations Y «. We also discuss an interesting
peculiarity of certain non-Abelian topological orders with
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FIG. 1. A system on a disk D2, which has a single gapped
boundary. Also shown are examples of string operators and the
topological excitations they create. The grey strings are in the bulk
and they could be deformed topologically. The green strings are
deformable but could not detach from the boundary. Excitations
inside the bulk are shown in red and excitations along the boundary
are shown in purple.

condensation multiplicity greater than 1. In this case, the
information convex X(£23) has an infinite number of extremal
points forming a manifold whose structure reveals the nontriv-
ial condensation multiplicity.

This paper is organized as follows. In Sec. II, we intro-
duce our main results using a simple example, decoupling
the physics of information convex from the calculation from
which the results are obtained. In Sec. III, we gives a rigor-
ous definition of information convex X(€2) and (2, Q') in
the context of frustration-free local Hamiltonian and explore
some basic properties. In Sec. IV, we provide a detailed study
of information convex in the quantum double model with a
gapped boundary, including the calculations and a few theo-
rems. In Sec. V, we provide a few more results for quantum
double models with a specific boundary type (K = {1}).

II. THE MAIN RESULTS

While our results follow from a concrete (but involved)
calculation in the quantum double models, the main physical
results are quite compact and accessible without the relative
heavy details. Therefore we choose to convey the physical
messages in this section focusing on a simple example. This
section also serves as a map pointing to the more detailed
calculations and theorems in later sections.

A. The models

To demonstrate our main results, we perform explicit cal-
culations on the quantum double models (with a finite group
G) with an untwisted boundary labeled by a subgroup K € G
[7,13,20]. We focus on a simple example G = S3, K = {1},
where most of the nontrivial intuitions can be seen (see
Secs. IV and V for details and generalizations). For simplicity,
we put the model on a disk D? with a single open boundary.

&

FIG. 2. Subsystem choices: (left) to study the bulk and (middle
and right) to study the gapped boundaries.

The Hilbert space is defined on a lattice within the disk, and
there is a unique ground state [1).

Sy ={l,r,r2 s, sr,sr’} withrd = s> = 1, sr = r2s is the
simplest non-Abelian finite group. The G = S3 quantum dou-
ble has 8 bulk anyon types (bulk superselection sectors)
labeled by a pair a = (c, R) with quantum dimension d,,.
Here, c is a conjugacy class of G and R is an irreducible
representation of the centralizer group. We list only useful
information for later discussions, while more details can be
found in Refs. [7,13,29] and Appendix B. Note that for
the S5 quantum double model, each bulk anyon is its own
antiparticle.

Conjugacy

class ¢ cp = {1} ¢ = {r,r?} ¢y = {s, s, sr?}
a 1 A Jv J* J J K K?
d, 1 1 2 2 2 2 3 3

B. Characterizing bulk anyons

Y (2) always contains the reduced density matrix aslz =

trg|¥) (Y| of the “global” ground state |¢). For a topolog-
ically trivial subsystem o (e.g., w; and w, in Fig. 2, we
have X(w) = {cral)}). In other words, states locally minimizing
the energy of subsystem w are indistinguishable from the
global ground state on the subsystem. Though simple, X(w)
determines the possible types of deformable strings in Fig. 1
and that the string operators can be unitary (see Sec. IV C for
details).

On the other hand, the information convex of a bulk
annulus €2, has a richer structure:

a0, = ) Padl, } 6))

where a labels bulk superselection sectors (bulk anyon types),
with a = 1 for the vacuum sector. {p,| Y ., pa = 1} is a prob-
ability distribution. Clearly, ¥(£2;) is a convex set and o, are
its extremal points.

Under continuous deformations of €2; and the Hamil-
tonian, 3(€2;) exhibits the following topological invariant
structure:

X(Q) = {Uszl

S(c8,) = S(og,) +Indz, )
08, -Uél =0 for a#b; 3)
tlr[os‘;1 'Gs%,] . i @

tr[asl21 "75121] S ar
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(a) (b) (c)

FIG. 3. (a) A 2D projection of 7D convex set X(£2;) which has
eight extremal points. (b) Preparing an extremal point o, € %(€2:)
by a bulk process. (c) Divide €2, into A, B, C.

where S(o) = —tr(o Ino) is the von Neumann entropy. One
can further show the extremal point o, = trg, [¢“)(¢“| can be
obtained from an excited state |¢?) with an anyon pair (a, a)
created by a bulk string shown in Fig. 3(b). When €, is a
noncontractible annulus on a torus 72, each extremal point
can be obtained from the corresponding minimal entangled
state on torus [17]. In the example of S3 quantum double, there
are eight extremal points (eight anyons), leading to a seven-
dimensional information convex X(£21).

C. TEE as a saturated lower bound

The information convex X(£2;) naturally encodes the TEE
as a saturated lower bound. Let 6¢, be the element located at
the “center” of X(£21), written as

2

d
Go =) o T4 ®)

a

It has the maximally entanglement entropy among all density
matrices in X(€2;). Then, let us take the partition 2; = ABC
as is shown in Fig. 3(c) and define TEE Siop0 = (Sap + Spc —
Sp — Sapc)|st in accordance with Levin and Wen [16]. Then
one could derive a lower bound Sipo = S(6g,) — S (0512]) by
noticing the following two facts. (1) The form of S;,p, above
is the conditional mutual information. It is an important
theorem (the strong subadditivity condition) that conditional
mutual information is always nonnegative, i.e., (Sap + Sgc —
Sg — Sapc)ls = 0 for any density matrix o. (2) All den-
sity matrices in X(£2;) have the same reduced density ma-
trix on AB, BC, and B because X(w;) contains a single
element.

Furthermore, it is known that under general assumptions
in [30], 6, saturates the strong subadditivity condition. This
allows us to reformulate the celebrated TEE as a saturated
lower bound:

Stopo = 5(691) - S(O’glzl) =In Dz, (6)

where D =,/Y" d? is the total quantum dimension. See
Sec. IVD for more details of the derivation and further
discussions.

ocr

2

FIG. 4. (a) A 2D projection of 5D convex set X(£2,) for S3
quantum double, which has six extremal points. X(€2;)pux S 2(£2;)
is a 2D convex set with three extremal points. (b) A boundary process
that prepares an extremal point o5 € %(£2). (¢) A bulk process
that prepares an extremal point of 2(£2;)pux. (d) A pair of bulk
non-Abelian anyons (a, a) created by a boundary process. (e) A
(a, «) pair created by a boundary process.

D. Characterizing boundary topological excitations

The topological excitations on the gapped boundary can be
extracted by choosing subsystem €2, in Fig. 2:

2(82) = {092 oq, = Zpaagz } @)
$(0g,) = S(og,) +Indj, ®)

o4, -0h =0 for a#p; ©)
tr[crg2 .ogz] _ i (10)

tr[agl22 ~05122] - d?

where {p,} is a probability distribution. The structure of
3(€2;) is very similar to that of X(€2), except that the «, 8
label the boundary superselection sectors instead of the bulk
ones. The name comes from the fact that every extremal point
0g, can be obtained from an excited state with a unitary string
operator acting along the boundary, which creates a pair of
boundary topological excitations (¢, @) as shown in Fig. 4(b).
For a K = {1} boundary of G quantum double, « € G
labels the “flux” type and d, = 1,Va € G. For G = S,

For a general quantum double model with an untwisted
K C G boundary, we use the information convex to identify
deconfined topological excitations along the boundary, in
contrast to the confined boundary excitations discussed in
Ref. [27]. However, our calculations show that they share the
same algebraic structure as in Ref. [27].
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We use X(€2;) to demonstrate the relation between bulk
anyons and boundary topological excitations, focusing on
non-Abelian topological orders. For quantum double with
Abelian group G and any untwisted K € G boundary, all
extremal points of X(£2;) can be obtained by creating a bulk
anyon pair (a, a) with a bulk string crossing €2, see Fig. 4(c).
On the other hand, for a non-Abelian G with a K = {1}
boundary, bulk excitations in Fig. 4(c) can only explore a
(convex) subset X(22)pux & X(€22) of the information con-
vex X(£2,).

For G = S§3, K = {1} case, we find

2(Q2)buk = {00, |00, = piog, + Pe,0g, + Pe,0g, ). (11)

where {pi, p.,, P} is a probability distribution, and
o8, = 3(08, +05,). 05, = 5(08, + o8, +o3). (12)

The bulk anyon pair (a, a) associated with extremal points
of X(2)puik is a € {1, A, J*} for aglzz, ael{J*, J, J*} for
oG and a € (K*, K by for og,- In this case, while bound-
ary topological excitations can lead to all extremal points
in X(£2,), only one extremal point Géz can be obtained by
anyons connected by a bulk string.

What are the relation and distinction between bulk and
boundary topological excitations? First of all, each boundary
topological excitation as in Fig. 4(b) can be deformed into the
bulk as in Fig. 4(d) by local unitary operators, although the
string may not completely detach from the boundary. How-
ever, such a bulk pair (a, a) connected by a boundary string
in Fig. 4(d) should not be identified with a pair connected by
a pure bulk string in Fig. 4(c), since they may correspond to
different elements in the information convex.

In G = 3, K = {1} quantum double, a boundary excita-
tion pair (o« = r, & = r?) in Fig. 4(b) can be deformed into a
bulk pair (@ = J*, a = J¥) connected by a boundary string in
Fig. 4(d), and they both lead to the extremal point 0, = 0§,
in Fig. 4(a). In contrast, a pair of bulk anyons (J*, J*) in
Fig. 4(c) only gives rise to 05’2 in Fig. 4(a).

Secondly, each bulk anyon a in Fig. 4(c), when “moved”
to the boundary in Fig. 4(e) by local unitary operators, is
generally deformed into a superposition )« of boundary
topological excitations. This process is governed by certain
condensation rules @ — Y & [20,21,27], which manifests in
the information convex.

Specifically in G = S3, K = {1} case, Eq. (12) of the
information convex X(£2;,) corresponds to the anyon conden-
sation rules of K = {1} boundary of G = S5 quantum double,
summarized below:

c c = {1} ¢ = {s, s, sr?}

a 1 A J¥ J* JY J* K¢ K?

a1l 1 21 r 2 r 2 r r* s sr sr? s sr sr

Here, each of the bulk anyons {J*, J¥, J%, K%, K"} be-
comes a superposition of boundary topological excitations,
once moved to the boundary as in Fig. 4(e) by a local
unitary operator. For instance, consider a bulk anyon pair

FIG. 5. (a) A 3D projection of 5D convex set X(£23), which
has extremal points on a sphere S plus two isolated points. (b) A
boundary process that prepares an extremal point of X(£23) where
a=1,A,J". (c) Braiding an («, @) pair along the boundary corre-
sponds to a unitary operation W («) supported on the yellow loop.

(a = J*,a = J¥) in Fig. 4(c). Local unitaries can deform the
bulk string and move anyon a = J* to the boundary as in
Fig. 4(e). However, this bulk anyon ¢ = J* cannot turn into
a single boundary superselection sector by any local unitary:
instead, it “condenses into” a superposition of boundary topo-
logical excitations J* — r + r2, in accordance with Eq. (12).

E. Anyon condensation to the boundary

Previously, X(£2,) already demonstrates the anyon conden-
sation on the gapped boundary [21,22,27,31]. Here we discuss
a unique consequence of boundary anyon condensation rules
of non-Abelian topological orders, where the information
convex X(€23) for subsystem 23 (see Fig. 5) can have an
infinite number of extremal points.

Consider annulus €23 covering the boundary in Fig. 5, for
K = {1} gapped boundary of G = S3 quantum double, the
information convex 3(£23) has the following extremal points:
(rslz2 s 0{2‘3 ,and aé:' (0, ¢), where (6, ¢) parametrize a sphere S 2
as shown in Fig. 5(a),

X(Q23)= {693 o, = p1o4, + pacd,

+ f dode p(0, ¢) o, (6, ¢>)}, (13)

with nonnegative p|, pa, p(0,¢) satisfying p; + pa +
[ déde¢ p(6, ¢) = 1. Moreover, %(€23) has the following
structure:

S(0d,) = S(og,) +1ndy, (14)

S(0d, (0.9)) = S(0g,) +1nd,u; (15)

0%, - b, = 0g, 04, (6,¢) =04 -0, (6, ¢) =0; (16)
tr[aé3 -033] _ i; (17)

tr[aé23 'Uslz3] T dy

tlog, 0.9) 03, @".¢0] _ 1 1+id o
tr[aglz3'6f123] |

T dp 2
where the unit vector 7 = (sin 6 cos ¢, sin 6 sin ¢, cos 0), and
similarly for 4’ in terms of (6’, ¢’).
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We notice that braiding a (¢, &) pair around the boundary
before annihilation, implemented by a unitary operator W («)
supported on the closed loop in Fig. 5(c), do not change
the energy density anywhere. Therefore this operation gen-
erates a (structure preserving) bijective map oq, € X(23) —
W(ot)ogZ3W(()z)T € ¥(23). Explicitly, each W(«) keeps the

extremal points o, and o fixed but rotates on the sphere

of aé: (0, ¢). The set of rotations are generated by W (r):
0,¢) > (0,¢+27/3) and W(s): (0,¢) — (r — 0, —¢),
and they realize the S5 group action on sphere S°.

While Ués is obtained from the ground state, the extremal
point o (or o (6, ¢)) is prepared by an excited state
with a single anyon A (or J%) in the bulk, created by a
string attached to the boundary as in Fig. 5(b). The (0, ¢)
dependence for aé:y comes from the condensation multiplicity
2 in J¥ — 2-1. The two ways to condense J¥ into the
boundary lead to a two-dimensional protected Hilbert space,
which result in a set of reduced density matrices {USJ; ©, o)}
parametrized by (0, ¢) € S2. Such condensation multiplicity
and infinite extremal points are unique to non-Abelian topo-
logical orders. Though O’é: with different (60, ¢) share the
same entanglement entropy and entanglement spectrum [32],
their “interference pattern” in Eq. (18) leaves a clear signature
for the infinite extremal points O’SJ; ®, o).

F. Potential measurements of information convex structure

It is an interesting question whether the structure of the
information convex could be observed experimentally. One
challenge is the creation of anyons and another is the mea-
surement of properties directly related to density matrices.
Recently, cold atom experiments seem to have made progress
in both directions. Anyons are claimed to be created in a
minimal toric code Hamiltonian [33] and the corresponding
braiding properties are studied. The recent interference ex-
periments [34,35] allow people to measure tr[ag(zl) . og)] for
any . In the interference experiment, two identical copies
of a cold atom system are created. Then, the authors prepare
the two copies of the system in pure state |¢") and |¢®),
respectively. The quantum state of the two copies of the
system |@1) and |¢®) can be either the same or different
and

) (2)

=gl (eV], o5’ =tgle®) 9Pl (19)

The interference of these two copies of the system allows
people to measure tr[aél) - og(zz)]. It seems possible to observe
the structure of information convex in this type of cold atom
experiment.

One could cool down the system except for several isolated
points such that €2, a subsystem being cooled down, contains
no excitations. Then the information convex gives prediction
for the measurement result of tr[ag) . crg)] for topological
orders. For example, (1) first, in the simplest situation, both
| and |¢@) are in the ground state. Then, the interference
experiment measures tr[og, - o5] for all subsystems Q. It is
always a positive number, which may be used to normalize
the rest of the results.

(2) Suppose on the state |¢") a pair of bulk anyons
(a, @) is created and the state |¢®) is the ground state. Here,

a
0q

a # 1. Then, according to Eq. (3), we get 0 on any annulus
surrounding the anyon a, since tr[crgl21 05,1 =0. A similar
result holds for any annulus surrounding the anyon a.

(3) Suppose on the state @) a pair of boundary topo-
logical excitations (a, @) is created and the state |¢®)) is the
ground state. Here, o # 1. Then, according to Eq. (9), we get
0 on any subsystem of €2, topology surrounding the boundary
topological excitation «, since trfoy, - 04 ]1=0. A similar
result holds for any subsystem of €2, topology surrounding
the boundary topological excitation &.

(4) Suppose on the state [¢!) a bulk anyon J* discussed
above is created with a condensation channel labeled by
(0, ¢), and on the state |¢®) a bulk anyon J" discussed above
is created with a condensation channel labeled by (6', ¢').
Note that we do not require the two anyons be created at the
same location. Then, according to Eq. (18), for each subsys-
tem of 23 topology, we get an interference result depending
on the condensation channel, i.e.,

w[od 0, ¢) - 0l @, ¢")] ~ Tn (20)

(5) For a system with multiple gapped boundaries (or
closed manifold like a torus) which typically give rise to
multiple ground states, we could observe signatures even
without excitations.

On the other hand, no features listed above are expected
for any short-range entangled phase without topological exci-
tations.

For real experiments, a challenge is to prepare relatively
large identical copies of the system. Another challenge is
to make accurate interference measurement in large systems.
Typically, the number of measurements to make a prediction
for tr[as(zl) . 05(22)] with a given precision grows very fast as
system size grows. Therefore it would be a difficult experi-
ment. A good news is that a single interference simultaneously
measure tr[ag(zl) ~O'S(22)] for a lot of different subsystems €2.
Therefore it should be possible to obtain a good accuracy of
information convex structure with a much fewer number of
measurements than what is required to measure the second
Renyi entropy for a single subsystem 2. We hope this type
of experimental detection of the information convex structure
will be possible in the future.

III. THE INFORMATION CONVEX

We provide a definition of information convex X(2, Q')
and X(2) for frustration-free local Hamiltonians and discuss
some basic properties. Generalizations beyond frustration-
free local Hamiltonians are briefly discussed.

A. Frustration-free local Hamiltonians

We use the following definition of frustration-free local
Hamiltonians in the context of lattice models. This definition
of frustration-free local Hamiltonian is similar to the defini-
tion in Ref. [28].

Definition II1.1 (Frustration-free local Hamiltonians). A
frustration-free local Hamiltonian is a Hamiltonian written as
H =}, h;, which satisfies the following: (1) each h; is a
Hermitian operator acting on links within a local region of
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FIG. 6. An illustration of subsystem €2 and . Here, Q2 C Q.

finite size R. To simplify our notations below, we will assume
the minimal eigenvalue of each k; to be 0. (2) h; Py = 0, Vi,
where Py is the projector onto the subspace of ground states
of H. In other words, every h; obtains its minimal eigenvalue
0 on a ground state |v), i.e., h;|{) = 0, Vi.

Let Hg be the Hamiltonian of subsystem €2/, i.e., keeping
terms of H, which are supported on the subsystem '. One
can easily check that the ground state |¢) minimizes the
Hamiltonian Hg, i.e., Hy ® lg|¥) = 0. Here, Q' is the
complement of €'.

B. The information convex for frustration-free
local Hamiltonians

Let us define the information convex for a general
frustration-free local Hamiltonian satisfying definition III.1
and study a few basic properties. Note that frustration-free lo-
cal Hamiltonians include commuting projector Hamiltonians
as a subset. Therefore the definition applies to many exactly
solved models of topological orders in 2D and 3D, exactly
solved SET models, and models related to these exactly solved
models by a finite depth quantum circuit.

Definition I11.2 (The information convex). For a frustra-
tion-free local Hamiltonian, define the information convex
3(2, ') to be the set of reduced density matrices on sub-
system €2 obtained from reduced density matrices on a larger
subsystem ' (see Fig. 6, Q € Q' C S, S is the whole sys-
tem), which minimize the Hamiltonian Hg, i.e.,

2(Q, Q) ={oglog = triong) Pos

where tr[Hg po]=0}. 21

For the set to be interesting, we require 2 to contain all terms
in H, which overlap with Q2. We use a simpler notation X(£2)
when we choose the minimal €'

The definition of X(£2, ') may be motivated by the con-
sideration that while the set of general reduced density matri-
ces on 2 has a complicated structure due to the large number
of possible excitations, the set of reduced density matrices that
minimize the energy around €2 should have a much simpler
structure. Another motivation is that, as we will see, for the

quantum double model (which is a zero correlation length
commuting projector model) of topological orders, (€2, Q)
and X(2) are small dimensional but nontrivial convex sets
depending on subsystem topologies. Homotopically increase
@’ would not change the set (€2, ). Its structure contains
important information about the phase. On the other hand,
there are frustration-free Hamiltonian models with nonzero
correlation length. For these models, the dimension of X(£2)
may be sensitive to the boundary length and we do not expect
¥(2) to be stable under an increase of €’. Nevertheless,
if the correlation length is finite, we expect (2, Q') to
(approximately) have a low dimension and simple structure
when ' is bigger than Q by a few correlation lengths. In this
case, it seems better to consider (2, ') instead of X(2).

In the present paper, we do not have to worry about this
issue since the calculation is done in a zero correlation length
commuting projector model. Nevertheless, some useful prop-
erties can be proved with the assumption of frustration-free
and we will consider this general class of Hamiltonians in the
next section.

C. Some general properties

This section contains a few general properties of the infor-
mation convex X(£2, ). Most importantly, it is shown that
2(2, ') is always a compact convex set. This allows us to
borrow tools from convex analysis and explore the structure
of the convex set X(£2, Q) in this new context. The concept
extremal points is introduced. Additional discussions con-
cern some general properties of X(£2, Q') under a change of
Qor Q.

Theorem II1.1. X(£2, Q') is a convex set.

Here, the set (€2, ') being a convex set means the con-

dition that for any two reduced density matrices ag(;), 05(22) €

2(2, Q') and arbitrary p € [0, 1], we always have po*g) +
(1—p)d e 2(Q, Q).
Proof. For 05(21)’ 0;22) € X(2, '), by definition, there exist

,og,) and ,og,) such that

) M @) @)
Oq =UenPe’, O = Maonlgy >

oy Ho'] = t[pS Ho'] = 0. (22)

Therefore ppg,) + (1 — p)pg,) with p € [0, 1] is also a den-
sity matrix that minimizes the Hamiltonian Hg and
PUS(;) +1 - P)Ug(qz) = tr[g/\m[p,og,) +(1 - P)ng)]
= poy’ + (1 — ploy € 2(Q, Q).
(23)

|

Theorem II1.2. %(2, Q') is a compact subset of R". Here,
N is a finite number, which could depend on the choice of 2
and .

Proof. The set of all reduced density matrices on €2 is a
compact (closed and bounded) subset of RM’. Here, M =
dim H(2) is the dimension of the Hilbert space on subsys-
tem 2. M is finite for a lattice model with € containing a
finite number of links (or sites) and each link (or site) has
a corresponding finite-dimensional Hilbert space. X(£2, ')
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is a subset of the set of all reduced density matrices on 2
and therefore it is a bounded subset of RM’. Furthermore,
(R, ') is closed. Therefore X(€2, ') is a compact subset
of R" with finite N. [ |

Remark 1. Theorems III.1 and II1.2 show that (2, ) is
a compact convex subset of RY for some finite N. This applies
to all the convex sets we will discuss in this paper. We will call
them convex sets for short and it is understood that they are
compact convex subsets of RY for some finite N.

Definition I11.3 (Extremal point). An extremal point of
2(R, Q') is areduced density matrix o € (€2, ') such that
if og = pay’ + (1 — p)oy with 03, 0 € £(Q, ) and
p € (0, 1), then os(zl) = 05(22) = 0q.

In other words, an extremal point is a point (reduced
density matrix) in (€2, ), which could not be prepared by
other points in X(£2, ') with a probability distribution.

Proposition I11.3. (2, Q') is uniquely determined by
the set of extremal points. Furthermore, if X(2, Q') is n-
dimensional, then any point in (€2, ) can be written as a
convex combination of at most n + 1 extremal points.

Here, convex combination is a combination with a prob-
ability distribution { pi};’ill. In other words, for any og €
(L2, ') it is possible to find a (sub)set of extremal points

{oL}i*! and a probability distribution {p;}" such that o =

S pioh

Proof. First, notice that (€2, ') is a compact convex
subset of RY for some finite N, i.e., the result of theorems I1I.1
and II1.2. Then, use the Minkowski-Caratheodory theorem,
which says that, for X, a compact convex subset of dimension
n (n is finite and ¥ is a subset of R" for some finite N), any
point in ¥ can be written as a convex combination of at most
n + 1 extremal points. |

Proposition I11.4. Every extremal point of (€2, €) has a
purification in €. In other words, there exists a pure state
|@)o such that o = trigng)l@)o o (@], if 0g is an extremal
point of (2, ).

In the following, we discuss a few properties of X(£2, Q')
when one tries to change 2 or .

Theorem IIL5. One obtains a convex subset of (2, Q)
when one replaces €’ by a larger subsystem ", i.e.,

TR Q)C IR, Q) for Q Q. (24)

Corollary II11.5.1. Let |¢) be a ground state of the
frustration-free local Hamiltonian H. Then, the correspond-
ing reduced density matrix of, = trg|y) (Y| satisfies ol €
(R, Q).

Theorem IIL.6. The mapping I': Z(Q, Q') - X(w, Q)
defined by I'[oq] = tri\»10¢ is surjective and it preserves the
convex structure. Here, w C Q.

Proof. The mapping I' is surjective. This follows from
trigne) = te\w o). The following is about the convex

structure. Let Jg), ag) € X(R, ), and p € [0, 1]. From the

'The Minkowski-Caratheodory theorem together with its gen-
eralization to infinite dimension, i.e., the Krein-Milman theo-
rem can be found in the following link: http://math.caltech.edu/
Simon_Chp8.pdf.

linearity of the trjg\,) operation, we have

Flpog’ + (1 = pog’] = pTog’]+ (1 = prlog’]
(25)

This result shows (by definition) that the mapping I" preserves
the convex structure. |

Theorem III.6 gives constraints to the number of extremal
points.

Corollary I111.6.1. If the number of extremal points of
(R, ') is a finite number Ng, then the number of extremal
points of X(w, Q') is a finite number N,, satisfying N, < Ngq.
Furthermore, an extremal point of X(w, ) must be the image
of some extremal point of X(€2, Q') under the mapping I.
Here, v C Q.

Proof. This result follows from the fact that the image of
a nonextremal point of (€2, ') cannot be an extremal point
of Z(w, ) unless it is also the image of an extremal point of
(R, ). ]

Remark 2. Constraints for the case with an infinite number
of extremal points may also be deduced from theorem III.6.

D. Beyond frustration-free local Hamiltonians

In this section, we briefly discuss what we expect for
generalizations of information convex to models beyond
frustration-free local Hamiltonians and hope that more rigor-
ous results will be available in the future.

Let us first consider a frustration-free local Hamiltonian H
with Hg having a finite energy gap A (between the ground
states and the 1st excited state) and consider a generalization
of X(2, Q') into X(2, Q'|¢). Here, 0 < € < A,

2(2, Q'le) ={oq(e) | oale) = trigng) Po

where tr[Hq po] € [0, €]}. (26)
It is straightforward to show that X(€2, Q'|¢) is a convex set.
Comparing with Eq. (21), if € > 0, then pg can have small
mixture of excited states. Due to the large number of excited
states, the convex set X(£2, Q'|¢) with € > 0 will be of a large
dimension even if X(2, Q') is a small dimensional convex
set. Nevertheless, X(2, Q'|¢) stretches out in the directions
of excited states by a “distance” suppressed by €/A. Here, the
distance could be measured by the minimal deviation of the
fidelity (between ogq(€) € L(R2, Q'|¢) and oq € X(2, Q')
from 1:

l(oq(e)) = [1 — F(oq(€), 0Q)Imin, With
oa(e) € 2(Q, V)e) and oq € T(Q, Q).
27

Here fidelity is defined as F(p, o) = (tr\/p%ap%)z. One can
show that

l(og(e))gi for Vog(e) € (2, Qe). (28)

For 0 < € < A, we could still approximately treat the convex
set X(2, '|¢) as small dimensional with the same structures
as (2, Q).
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k = k

f
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e’ v

FIG. 7. A square lattice with a boundary, generalization to other lattices is straightforward. Labels are as follows: bulk link e, boundary
link ¢’, bulk vertex v, boundary vertex v’, and face f. Note that in our model, ¢’, v’ only lie in the 1D boundary lattice shown in thicker line.

Now let us consider the case beyond frustration-free local
Hamiltonians. We focus on the case that local perturbations
are added to a gapped frustration-free local Hamiltonian (with
energy gap A), the case discussed in Refs. [28,36]. Note that
we do need to generalize X(2, Q') into X(2, Q'|€) with some
0 < € < A in order to get meaningful structures. Consider a
model with topological order and the system is defined on a
torus S = T2 with length L and a correlation length £ < L.
For the unperturbed model, the ground state degeneracy is
exact and X(S, §) is a convex set with (an infinite number
of) extremal points in one to one correspondence with the
(pure) ground states. However, local perturbations will split
the ground-state energies by the order A exp(—L/&); for
a more rigorous bound of the energy splitting see [28,36].
Therefore, in order to construct a convex set with similar
structure as the X(S, S) of the unperturbed model, X(S, S)
is no longer a good choice. Since it does not keep all the low
energy states, it corresponds to the degenerate ground states
of the unperturbed model. We need to choose X(S, S|e) with
€ ~ Aexp(—L/§) for the perturbed theory.

More generally, we expect the X(€2, Q') for the unper-
turbed model, with Q' thicker than € by length L’ > & to be
generalized into (2, Q'|¢) with € ~ Aexp(—L'/&). Since
exp(—L’/&) < 1, the convex set X(2, Q'|€) is approximately
small dimensional and it should have very similar structure to
the X(€2, ') in the unperturbed model.

IV. G QUANTUM DOUBLE WITH K € G BOUNDARY

A. The Hamiltonian of G quantum double
with K € G boundary

A quantum double model on an orientable 2D lattice
without boundary is defined for any finite group G [7,13]. Let
us consider a square lattice shown in Fig. 7—generalization to
other lattices is straightforward. On a lattice with a boundary,
a gapped boundary can be defined for each subgroup K € G
[20,27]. In addition to the subgroup K, the boundary can
depend on a 2-cocycle of K [20]. In the current work, we
focus on the untwisted boundaries, i.e., those with trivial
2-cocycles.

The total Hilbert space is a tensor product of the Hilbert
space on each link. The Hilbert space for each bulk link
(labeled by e) is |G| dimensional: H, = span{|g).|g € G },
where {|g).|g € G} is an orthonormal basis. The Hilbert

space for each boundary link (labeled by ¢’, thicker links in
Fig. 7) is | K| dimensional: ‘H, = span{ |k). | k € K }, where
{1k)e | k € K} is an orthonormal basis. We denote a vertex
in the bulk (bulk vertex) as v and a vertex on the boundary
(boundary vertex) as v’, and denote a face as f. A bulk site
s = (v, f) is a pair containing a face f and an adjacent bulk
vertex v, a boundary site s' = (v, f) is a pair containing a
face f, and an adjacent boundary vertex v’. Our Hamiltonian
for G quantum double with a K € G boundary is

H=Y (1-4)+> (-Bp+Y (1-4K). 9
v f v

Constants are added into the Hamiltonian simply to keep the
minimal eigenvalue to be zero. Here,

1
A, = ﬁZAg; By=Bl; AS=—> AL (30)
geG

Each operator A§, B!, A%, B/ with g, h € G and k € K acts
on a few links around a vertex or a face. They are defined in
Fig. 8.

One can easily check that all terms in the Hamiltonian
commute, and that A,, By, Al’f, are projectors (sodo 1 — A,,
1— By, 1—AK) ie, A2 =4, B]% = By, (AK)? = AK A
state |1) is a ground state if and only if it satisfies

Auly) = Bly) = AJlY) =), Vo, v, (3D

For a system with D? topology (i.e., cover a disk D? with
lattice), it can be shown that there is a unique ground state |y)
that can be written as (up to normalization)

vy =[T4-TTAas 1, 0. (32)

Here, 1 represents the identity of group G (or K). This
ground state is an equal weight superposition of all “zero flux”
configurations. Let us define the reduced density matrix on
subsystem 2 calculated from the unique ground state |i) as
ol,ie., 0b = trgy)(¥|, where € is the complement of Q. It
will appear many times in later sections.

Remark 3. Our Hilbert space and Hamiltonian is closely
related to the ones in previous works [20,27], but there are
differences. Our Hilbert space is “smaller” than in Refs. [20]
and [27]. It is the effective Hilbert space when certain terms
in the Hamiltonian [20,27] are not excited. Our Hamiltonian
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FIG. 8. The diagram shows the definitions of the operators A%, BAf’, A’;,, and B_f’/ withg,h € Gandk € K.

is the effective Hamiltonian of the models in [20,27] when
no excitations of the types discussed above are present. The
excitations that could be created in our model also appear in
the models in [20,27], but some of the excitations that could be
created in Refs. [20] or [27] may not be created in our model.
Especially, the confined excitations inside a boundary [27] do
not exist in our model. On the other hand, as will be described
below, our model allows a set of deconfined topological
excitations to carry boundary superselection sectors « and
quantum dimension d,. The set of (¢, d,) is coincident with
what has been discussed in Ref. [27] for confined boundary
excitations. See Eq. (58) and Secs. IVC, IVF, and IV H for
more details.

B. The calculation of the information convex
for G quantum double with K € G boundary

The G quantum double with K € G boundary is a model
with commuting projector Hamiltonian (29), and on a ground
state, each projector obtains its minimal eigenvalue 0. There-
fore it is an example of frustration-free local Hamiltonian.
The information convex X(£2, Q') is a convex set uniquely
determined by the set of extremal points, see Theorem III.3.
Therefore our task here is to find the set of extremal points.

Consider a reduced density matrix pg that minimizes the
Hamiltonian Hg. Let us write pg in its diagonal form, po =
Do Ml o (| with o] B)o = 8u.p:

tr(Ho po) =0 < Hola)g =0 Va. (33)

In other words, each |o) g is a ground state of Hgy. According
to proposition I11.4, to find the extremal points of X(€2, '),
it is enough to consider the set of reduced density matrices
oo = triongylo) o o (o]

Let us take the minimal €', i.e., consider X(2). In this
case, Hy'|a)g = 0 is equivalent to the following conditions:
(@) Byla)o = |a)q for f € 9R2; (b) Byla)o = |a)o for f €
Q; (c) Aj|o)ey = o) and Aﬁ,la)g/ = |a)g for v,v € Q
and g € G, k € K; and (d) Af|a)o = |a)o and A];,|oe)gr =
la)q for v, v € 9Q and g € G, k € K. Here, we say f € Q
if By is supported on 2; we say f € 92 if By has support
overlap with Q but is not supported on 2; we say v, v’ € Q if
Af and A¥, are supported on Q; we say v, v’ € 32 if Af and
A’;/ have support overlap with €2 but not supported on 2.

Then, one can show it is possible to write |a)g in the
following Schmidt basis:

e = 3 o a4y ® {1} Mg
{h1}.A

= oo = Y phnl{ri}ia)g {Ri}:Al- (34)
AN

Here, I =1, ..., M labels the number of disconnected pieces
of Q2 N 32 ( is the complement of ). {h!} is a set of link
values hé eG2witha=1,...N,; labeling the links along
the Ith piece and h{hj - - - hj, = h'. Each h is obtained from
a product of group elements on one or more links connecting
v, v € 9L, and it is important to notice that those vertices
v, v’ € Q do not count even if they are near 2. The same
set of i} appears in |{hl}; 1)q and |{h!}; A)onq, this is due to
condition (a).
Conditions (b) and (c) are equivalent to the following:

By|{hairlg = Aul{ha}: 2l = Av[{ha}in)g
= [{nl}:1), Vfiv.v eq. 35)

This requires [{h!};1)q be an equal weight superposition of
all configurations with “zero flux,” which could be related
by a product of Af and A’,j, operators, v, v' € Q. Note that
A or A’,j/ with v, v € Q does not mix different {hé} sectors.
Here, “zero flux” stands for the condition that a configuration
has eigenvalue By =1 for Vf € Q. It may happen that two
“zero-flux” configurations could not be related by a product
of A% and A’;, operations, and the index X labels exactly
those additional degrees of freedom. Note that the number of
additional degrees of freedom A depends on {h!} in general.
Finally, the operators AS, A,’j, with v, v/ € 9 mix different
{h ;} sectors. Condition (d) gives constraint for the probability
distribution { p{*h,}}. Each of the A$, A*, operators with v, v’ €
d€2 is a unitary “operator that could be written as products of
unitary operators on each link. Define A§ (), Aﬁ, (L2) to be the
“truncation” of the operators AS, Afj, (with v, v/ € 9Q2) onto
in the fashion that Uy (2) = Ug for Uy = Ug ® Ugnq. Let

20r h! € K for the case involving boundary links in the /th piece.
This will not happen in this paper.
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@
&

FIG. 9. An illustration of topologically distinct subsystem types:
wy, 1, w2, 2, and 3. The G quantum double model lives on a disk
D? with a single gapped K C G boundary. Note that the relation to
the boundary is considered as part of the topological data.

us define a group of operators A(£2) as following:

A(Q) = {A(g» k)| A(g. k)

= [] [as0@]- [] [A @)

veEIR VeI
with g(v) € G, k(v) € K}

Now, we can write down the constraint on o caused by (d):
A(g, k)oqA(g, K = ogq VA(g, k) e A(R)
& Aﬁ(Q)agAf(Q) = Aﬁ,(Q)aQAﬁ,(Q) Vv, v €99,
g€G, keKk. (36)

Next, let us go to some examples. First, recall the subsys-
tem choices w;, 1, wy, 2, Q3 discussed in the paper, see
Fig. 9. We will see below that the structures of the information
convex of these choices of subsystem all have simple physical
meaning.

Our strategy for solving a information convex X(£2) is to
apply the method developed above, i.e., follow Eqs. (34)—(36).
In practice we find that the problem is reduced to a problem
for some minimal diagram, a simplified lattice with less links
and a corresponding Hilbert space #*(€2). The problem is to
solve X*(€2), a suitably defined set of density matrices on
H*(€2), which satisfies a set of requirements very similar to
Eqgs. (34)—(36).

¥(2) and X*(2) have identical convex structures, i.e.,
there is a naturally defined bijective mapping m : ¥(2) —
¥ *(€2), which preserves the convex structure (maps a line
segment to a line segment). The number of extremal points
does not change under this mapping. Furthermore, there are
physical properties (properties of the density matrices) of
2(£2), which are invariant under continuous deformations of
Q, e.g., the entanglement entropy difference between two ex-
tremal points (in the case with more than one extremal point).
We call these properties topological invariant structures (or
structures for short) of the information convex X(£2). X*(2)
captures all the topological invariant structures of X(£2).

1. The calculation of X.(w;)

For subsystem w1, i.e., a disk in the bulk, dw; N I = dw;
contains one piece. Therefore M = 1. Let us relabel h} — h,
and Ny — n. It is well known that ¥(w;) contains a single
element, i.e., the reduced density matrix calculated from the

ground state |),
(o)) = {o, } L=t W)Wl (37)

with o

This result is consistent with the fact that topological orders
have locally indistinguishable ground states. The reduced
density matrix o, can be found in a number of references,
for example, Refs. [32,37]. Simple as it is, this result is a
powerful statement for the study of local perturbations (known
as the TQO-2 condition) [36]. Also, it strongly constrains the
possible form of operators that create excitations on a ground
state once combined with the HIW theorem, see Sec. IV C.
Let us briefly recall that 6} can be written as

! 1

le |G|nfl

D b o ({hall. (38)
{ha}

Here, the sum of {4,} is the shorthand notation for the sum
of different {h;, - - , h,}, and |{h,}),, is a unique state fixed
by two requirements: (1) the set of values on dw; are {h,},
a=1,---,n with h, € G; (2) the requirement in Eq. (35),
ie., Bfl{ha}>w1 = Ayl{ha}w, = H{ha})e, Tor Vf, v € @;. The
second requirement implies i1k, - - - h, = 1, and ends up with
|G|"~! choices for {h,}. Also, it guarantees |{h,}),, to be an
equal weight superposition of all zero-flux configurations with
fixed {h,} at dw;.

Using the fact that ({r}I{/4}) = 3,
the following properties:

h}.{h,}» ONE can derive

Ul 'O'] = ! Ul
) wr T |G|n—1 o’

S(os) = (n—1n|G|,

1
tI'[O’Ci] ~Uul)]] = W

(39
Here, S (Uul)l) is the von Neumann entropy. Note that these
results depends on n, the number of link values around dw; .

On the other hand, as is mentioned above, there are prop-
erties invariant under topological deformations of w;. Such as
the number of extremal points and the entanglement entropy
difference between two extremal points (in the case with more
than one extremal points). We call these properties topological
invariant structures (or structures for short) of an information
convex. Also, note that we need to be careful when talking
about “topological deformations.” The relation to boundaries
must be treated as topological data. w;, w,, and €2, in Fig. 9
are all simply connected in the usual sense, but here they are
treated as topologically distinct due to their different relation
to the boundary.

The information convex X(w;) may also be calculated
following Egs. (34)—(36). We find that the problem is reduced
to a problem for some minimal diagram that realizes the same
topological invariant structures as X(w)). One may solve the
problem for the minimal diagram first and then go back to the
original problem.

Consider the minimal diagram in Fig. 10. Define
the corresponding Hilbert space H*(w;) = span{|h)|h €
G}, where {|h)} with h € G is an orthonormal basis.
Define X*(w;) as the set of density matrices o, on
H*(w;) satisfying the following requirements. (1) o, =
Y nec Prlh)(h|; here, {p;} is a probability distribution. (2)
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h, h

FIG. 10. An illustration of the subsystem w; and the correspond-
ing minimal diagram.

Bo, =o,; here, Blh) = &1 ,lh). (3) A‘falef =o,, for
Vg € G; here, A|h) = |ghg).

Then, it is easy to verify that
) = {oil}. oal =111 (40)

It has the same structures as X(w;). There is a naturally
defined mapping 7 : £(w;) - X*(w;), such that n(aal)l) =
aw*ll. Intuitively, what the mapping 7w does is to map a state
{ha})w, Into a configuration eigenstate |h) € H*(w;) with
h =hihy---h,. Trivial as the minimal diagram for w; is,
similar constructions will be very useful in the more involved
examples below.

2. The calculation of X(%2,)

For 2, topology, i.e., an annulus in the bulk, M = 2, let
us relabel h! — h, with a =1,...,n and h} — H, with
b=1,....Nandh=h,---h,, H= H;--- Hy. As is dis-
cussed above, the calculation of X(£2;) can be done following
Egs. (34)—(36), but a simpler way is to consider a minimal
diagram, see Fig. 11.

Define H*(2;) = span{|h, H,t)|h, H,t € G} to be
the Hilbert space for the minimal diagram. Here,
{|h, H,t)|h, H,t € G} is an orthonormal basis. Define
T*() to be the set of density matrices oy on
’H*(Ql) satisfying the following requirements: (1)

=D hHeG 2 P hH [{h, H}; MY {({h, H}; |, where
{ p (. H) } is a probability distribution and [{h, H}; 1) =

ZteG cx(t)|h, H,t) with complex coefficients c¢;(¢)
satisfying Y, laa(®)>=1. (2) B 05, =05, Where
Blh, H,t) = 8y ,mzlh, H,t). (3) Ag(TQIAg Ag(TQIAg

o5, for Vg e G, where Af|h, H,1)=
AS\h, H. 1) =

|ghg, H, gt) and
|h,gHg,18).

FIG. 11. Anillustration of the subsystem €2, and the correspond-
ing minimal diagram.

From these requirements, on can verify

THQ) = {04 |04, = Z P, R)UQ( S S
(c,R)
¢ € (G, Re(EQ@). (41

Here, {p«,r)} is a probability distribution and therefore

S*(Q;) is a convex set. 09(‘ Ry

3 ZD(c R)(u, v))((c, R)u, v)|, (42)

is an extremal point,

*(c, R)
Q

|C|2 Nk

and the state |(c, R)(u, v)) is defined as (note the similarity of
the following result with the results in Appendix A 2)

Cp n _
(e, R, v)) = AP AL /IETIZ)I T/ (0)lre, res 1)
teE(c)
"R il 5
> ‘/“E(C)| T7 (Olci.co pitpr)  (43)
teE(c)

= ((c, R)(u, v)|(c’, R)(@W', v"))
- 86,0’8R,R’6u,u’8v,v’- (44)

Here, (1) c € (G).j,i.e.,c ={gr. gl g € G} and r, is arepre-
sentative of c. (2) E(c) is the centralizer group of ¢, defined as
E(c)={geGlgr.=r.g}. 3) R € (E(c)); and ng is the
dimension of R. I'y is the unitary ng X ng matrix associated
with R, with components I'}/ B ry " is the complex conju-
gate of F{{/. 4) P(c)={ pi}l.czll is a set of representatives
of G/E(c). ¢ = {¢)), with ¢; = pirepi. (5) u = (i, j), v =
@@, jHywithi,i’=1,...,|c|and j, j/ =1, ..., ng. For more
explanations of the notation, see Appendix A 1.

Now, introduce the label a = (¢, R) forc € (G).; and R €
(E(c))ir, which will be identified as the label of bulk supers-
electon sector (bulk anyon type). d, = |c| - ng is the quantum
dimension for bulk anyons in quantum double models. One
can easily check Y, d?> =|G|*> = D* with D= /), d? =
|G|. Here, D is the total quantum dimension. We have the
following results about ¥*(€2;):

*a *b 80 b

oyl 05 = P oy = S(ag‘z‘l’) = lndaz,
a
*b] _ Sab 45
tr[aQl O'Q]] = _d2 . (45)

Knowing the similarities between X(€2;) and X*(£2;), we
conclude that the set %(£2;) has extremal points og , with
a=(c, R):

2(Q) = {og,|og,

= paoh,
a
{p.} is a probability distribution. 46)

The extremal points of X(€2;) have the following properties:

b 8a,b a

a
g, - O, = — O,
Q Q) 2 n+N-=2 21’
d? |G|

1

S(0g,) =Ind; + (n+ N —2)In |G|,

b ] . 8a,b

tr[agl Yol = |G|ntN-2 47
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FIG. 12. An illustration of the subsystem w, and the correspond-
ing minimal diagram.

We will use @ = 1 as a shorthand notation for ¢ being the
conjugacy class containing the identity element 1 € G, i.e.,
¢ = {1} with the one-dimensional identity representation R =
Id. One could verify, (7512] is the reduced density matrix
calculated from the ground state |y/), i.e., crslzI = tr, [¥){(¥],
and that d; = 1.

The following structures of X (€2;) are invariant under
topological deformations of €2;:

S(og,) = S(oq,) +Indg,

a9, -aél =0=tr[og, -Uél] for a#b,
tr[ag‘él .051] _ i 48)

tr[crglZl 'O'él] dz

3. The calculation of X(w;)

A subsystem with w; topology attaches to the boundary at
one piece, see Fig. 9. 0w, N 0@, has a single piece, M = 1.
Relabel h! — h, witha =1, ..., n.

Again, in order to find X(w,), we consider a correspond-
ing minimal diagram in Fig. 12. Define the Hilbert space
for the minimal diagram to be H*(w;) = span{|h,t)|h €
G,t € K}, where {|h,t)lh € G,t € K} is an orthonormal
basis. Define X*(w;) to be the set of density matrices

*

o, on H*(w,) satisfying the following requirements. (1)

0k =Y pec 2ox Prl{h}: 1) ({h}; 1], where {p}} is a probabil-
ity distribution and [{h};A) = ),y ci(t)|h, t) with complex
coefficients ¢, () satisfying Y, lca(1)]* = 1. (2) Bo} =
0%, where Blh, t) = 8, |h, 7). 3) Ako AN, = Akox A =
o, for Vk € K; here, A%|h,t) = |kh,tk) and A% |h, k)
|hk, kt).

Then, it is easy to verify that

@) = {0} with a*1=%2|k,12><k,12|. (49)

(25}
keK

with the following properties of the extremal point:

1 O,*l
K|

*1 xl

w2 [05)

$(o2) = m K]

tr[a*1 -U*l] _ ! (50)

wy wr | T |K|‘

From the similarity of £*(w;) and ¥(w;,), one can show that
¥(wy) contains a single element, i.e., the reduced density

H

4 t, 3 1t 2

FIG. 13. Anillustration of the subsystem €2, and the correspond-
ing minimal diagram.

matrix calculated from the ground state |¢/),

S(w2) = {o,,}, 0, =, [¥)(¥1, b

with the following properties:

1
1 1 _ 1
TN

S(o,,) = —1DIn|G|+In|K]|,

1
= — 52
K] |G]"! 62

4. The calculation of X(R;)

Now consider a subsystem with €2, topology, see Fig. 9.
It attaches to the boundary at two pieces. 92, N dQ, contain
two pieces, M = 2. Relabel h}l — h,witha=1,...,nand
h: — H,withb=1,...,N.

Again, to calculate X(€2;), we consider a minimal
diagram in Fig. 13. Define the Hilbert space for the minimal
diagram H*(2;) = span{|h, H,t;,)|h, H € G, 1,1, € K}.
Define X*(2;) to be the set of density matrices og,
on H*(€2;) satisfying the following requirements: (1)
05, = Ynmec 2o Phm U HE: A (b, HY; AL where
{ p{kh’ m) 1s a probability distribution and the state
[{h, H}; \) = Ztl,tzeK ¢ (t1, )|h, H, t1, 1) with complex
coefficients c; (¢, t,) satisfying ZtmeK lea(tr, > = 1. (2)
Bag*22 = 65‘22, where Blh, H, 11, t2) = Spyms|h, H, 11, 12).
(3) Alos A} =Abol AL = ALol AL = ALol AL =08 .
for Vk € K; here,

AN \n, H 1) = |kh, H, kt, 1),
A\ H o, ) = |h kH, 1k, 1),
AS\h, H o1y, ) = |hk, H, 1, k),
Ak, H ot ) = (b, HE 1, k).

From these requirements, on can verify:

T,R
E*(Qz) = 0'52 0'52 = Z p(T'R)O';;(Z ) y
(T,R)

T € K\G/K, Re(K'),. (53)
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Here, {p(r.r)} is a probability distribution and O';ng'R)

extremal point,

1
Ugir,m__zz Z (T, R)(u, v)(ks, ks))

= >
IT| R u,v ks,ksek

X (T, R)(u, v)(ks, ka)] (54)

is an

with

(T, R)(u, v)(ks, k4))

— AT A9 pks qke [ TR a2
= AYATAVAY [ PRNACY
HekK't

X |rp, rr, by, Frirr) (55)

Jm s
= [— Iy (@)
|K"| R

x |girrks, girrks, gitigi, kaFriirrks) — (56)
with k3, k4 € K. One can verify that
((T, R)(u, v)(ks, k)|(T", R")(u', v")(k3, ky))
= 07,7 OR. R Suw Sv,v Oks k;, Oy k- (57)
Here, (1) T € K\G/K is a double coset, ie., T =
{kirrky | ki, k» € K}. rr € G is a representative of T.
(2) K'" = K (rrK7r is a subgroup of K, and it depends

on the choice of rr in general. (3) R € (K'");, and ng
is the dimension of R. 'y is the unitary ng X ng matrix

associated with R, with components F{ej . I_‘g is the complex

conjugate of F;é”. 4 Q0={q}, i=1,...,]0]| is a set of
representatives of K/K'7. |Q| = |K|/|K'"| = |T|/|K]|. s; =
qirrqi- O)u=3=, j),v=(=,j)ywithi,i’ =1,---,|Q| and
J»j'=1,---, ng. For more explanations of the notation, see

Appendix A 1.

Now let us introduce label o = (T, R) for T € K\G/K
and R € (K'7);,, which will be identified with the label of
boundary superselection sector and the corresponding quan-
tum dimension:

IT|-ng K| ng
|K] |K"7]
One can easily check that ), d? = /Y, d? = |G| = D. We
note that the quantum dimension d, has been discovered

algebraically in Ref. [27] in a different physical context. One
could verify the following properties of X*(£2,):

dy =

, a=(T,R). (58)

*f — 8‘1-5 O,*a
g KPR

og, O,
S(og¥) =Ind; +21n|K],
1)
*a *B1 _ o,
tr[O'QZ . O'QZ] = W (59)

One can obtain X(£2;) from its similarity to X*(£2;):

2(92) = 092|092 = Zpa 057_ ’
o

{ps} is a probability distribution. (60)

The extremal points have the following properties:

S,
a B _ o, B o
00108 = KR G20

S(08,) =Ind; +2In|K|+ (n+ N —2)In|G|, (61)

1)
o B _ a,p
tr[aﬂz : Uﬂz] a2 |K|2 . |G|n+N—2' (62)

Let us use the notation @ = 1 for T = K and R = Id, the one
dimensional identity representation of K'” (in fact K'” = K
for T = K). o, is the reduced density matrix calculated from

the ground state |¢), i.e., aglzz = trg, |¥) (Y| and the quantum
dimension d; = 1.

The information convex X(£2;) has the following topolog-
ical invariant structures:

S(og,) = S(og,) +Ind;,
a # B,

o B _
0g, 0q, =0 for

tr[Gf?z . 0'{2(2] — i (63)
tr[aQz ~O'Qz] d?

C. Topological excitations, unitary string operators
and superselection sectors

Perhaps, the most well-known examples of topological
excitations are anyons in 2D topological orders on a system
without boundaries. They could not be created by local uni-
tary operators supported around the excitations but could be
created (usually need to create more than one) by unitary
operators supported on a deformable string. Different excita-
tions that could be related by a local unitary operation (acting
around the excitations) are in the same superselection sector.
Superselection sector is the label of anyon type (let us denote
the vacuum superselection sector as a = 1).

In this section, we discuss a way to establish possible
deformable unitary string operator types for 2D topological
orders with a gapped boundary (for both excitations inside the
bulk and excitations along the boundary). The method makes
use of the structure of ¥ (w;), X(w;) and the HIW theorem.
Then, we give a definition of bulk superselection sectors and
boundary superselection sectors using the results of X(£2)
and X(€2;) and discuss what type of unitary string operators
could realize topological excitations of each bulk/boundary
superselection sector.

1. Deformable unitary string operators from the HJW theorem

For Abelian models, it is usually straightforward to con-
struct the unitary operators creating (a, a) for each anyon type
a. The unitary operators have stringlike support and the strings
are deformable. For non-Abelian models, like a non-Abelian
quantum double model, the proof of the existence of such uni-
tary operators is less well-known but conceptually important
[38]. Things that make the story complicated for non-Abelian
models are (1) the ribbon operators (see Secs. IV E and IV F)
though deformable are not unitary in general; (2) the support
of the unitary operators can be slightly “fatter” than the ribbon
operators.
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.wl .w1 .w1
s? s? 52

FIG. 14. A system on a sphere S°. Excitations are in the red area,

which is a subset of the yellow region @,. Using the HIW theorem,

one can show there must be a unitary operator supported on @,
which creates the excitations.

Here, we provide a proof of the existence of the unitary
string operators for both quantum double model on a sphere
$? and quantum double model on D? with a single boundary
making use of the result of X(w;) and X(w»,) in Sec. IV B 1,
Sec. IV B 3, and the HIW theorem. The proof is quite general
and it is generalizable to systems on other manifold topolo-
gies. Given the suitable structure of information convex, the
proof can be generalized to other topological orders in 2D and
topological orders in higher dimensions.

First, let us review the HIW theorem [39]. Consider the
Hilbert space of system A B, which can be written as a tensor
product of Hilbert spaces of subsystems A and B, i.e., Hap =
Has ® Hp. For V), |¢) € Hap, the HIW theorem implies
(which could be verified easily using Schmidt decomposition)

tral@) (@l = traly) (Y| & @) = Ua ® lpl¥). (64)

Here, U, is a unitary operator acting on H,4 and 1p is the
identity operator acting on H .

Now let us consider a system defined on a sphere S2. We
have S(w;) = {o,, = trs,[¥)(¥|}. Here, |) is the unique
ground state on S? and w, is any simply connected subsystem
in the bulk (need to look at a scale bigger than a few lattice
spacings for “topology” to make sense). Consider a few exam-
ples of excitations in the red areas of Fig. 14, and let us call
the corresponding excited state |¢). Since only the topology
of w; matters, we may choose w,; as large as possible, but it
does not overlap with the excitations. From the HIW theorem,

tra, |9) (@] € Z(w1) = tra, @) (@] = tra, Y ) (V]
= @) = Us, ® 1y |¥). (65)

In other words, there exists a unitary operator supported on
the yellow region @; which could create the excitations (when
acting on the ground state). Since w; can be topologically
deformed, the yellow region and therefore the support of the
string operators can be topologically deformed also. Explic-
itly, a single excitation on S can always be created using a
local unitary operator acting around the excitation. Therefore
it carries the trivial superselection sector. The method we used
is an alternative way to prove a statement in [13]. Be aware
that, on torus T2, it is possible (for non-Abelian models)
to have a single excitation carry a nontrivial superselection
sector [13]. This result is also suggested by our method. A
pair of excitations separated by an arbitrary distance on S? can
be created using a unitary operator supported on a deformable
string connecting the pair. The thickness of the string does not
grow with the distance between the excitations, and for the

DZ D2 DZ
D? D?

FIG. 15. A system on a disk D?. Excitations are in the red area,
which is a subset of the yellow region @, (or @, N &, for the last
diagram). Using the HJIW theorem, one can show there must be
a unitary operator supported on the yellow region @, (or @, N @)
which creates the excitations.

DZ

exactly solved quantum double model, it is just a few lattice
spacings. Three excitations on S? can always be created by a
unitary operator supported on a deformable treelike string.

Now let us consider a system on a disk D?. The results
are illustrated in Fig. 15. The proof is quite similar to that
discussed above, the only difference is that we now need
the result X(w,) = {aal)2 = trg, |¥) (¥|}. Here, w, is a simply
connected subsystem attached to the boundary at one piece,
see Fig. 9 and Sec. IV B 3. |¢) now represents the unique
ground state on D?. (For the last diagram, X(w, U @) =
{ULLUEW = re,na,|¥) (Y]} is needed, where @, has the same
topology as w;.)

A new feature is that now a generic excited state with
localized excitations need to be created using a process that
involves the boundary, i.e., |¢) # Upuk|¥) in general. Here,
Uik 1s a unitary operator supported on a bulk subsystem.

Explicitly, a single excitation away from the boundary of
D? can be created by a unitary operator supported on a string
attached to the boundary. The string could be deformed, and
the string can end at anywhere on the boundary. Unlike a
single excitation on S?, this single excitation on D? may carry
a nontrivial bulk superselection sector. On the other hand, a
single excitation located along the boundary can always be
created by a local unitary operator acting around the excita-
tion and therefore it carries a trivial boundary superselection
sector. A pair of excitations away from the boundary of
D? could be created by a unitary operator supported on a
stringlike region attached to the boundary. Note that there
is no guarantee that the pair of excitations could be created
by a unitary operator supported on a bulk string. Indeed, for
some non-Abelian models, there can be an excited state |p)
with a bulk anyon pair (a, a) located away from the boundary,
but |¢) # Upukl|¥), see Sec. VE for more details. A pair of
excitations around the boundary could be created by a unitary
operator supported on a string along the boundary. The middle
part of the string can be deformed into the bulk.
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D2

FIG. 16. An illustration of subsystems used in the proof,
Q; C Q, Q, € Q) and the red areas are excitations.

2. Unitary string operators, which create excitations
of all possible superselection sectors

We have identified possible string types that connect point-
like excitations. Here, we discuss what type of string operators
could guarantee the excitations to have all possible superse-
lection sectors. One way is to do the explicit calculation using
ribbon operators, see Secs. IV E and IV F. Here, we discuss an
alternative way which is applicable to models whose ribbon
operators are hard (if not impossible) to be written down.

Theorem IV.1. For a quantum double on S and an annulus
subsystem €21, every extremal point of X(£2;) can be written
as trg, |@){(p|. Here, |@) is an excited state with a pair of
pointlike excitations, created by a unitary operator supported
on a deformable bulk string crossing €2;.

Proof. We have shown that an excited state with a pair of
excitations could be written as |¢) = U|y). Here, |¢) is the
unique ground state on S and U is supported on a deformable
string. Also, one can always make a “thicker” annulus ) on
§? which covers the entire S? except for two localized regions,
see Fig. 16. Then, one can show that (1) X(£2;, Q) = Z(Q)
using the explicit reduced density matrix in Sec. IV B 2 and
tracing out some suitable subsystems. (2) Each extremal point
of (€2, ©2}) has purification on the system. This can be
deduced from proposition I11.4.

Therefore there exists an excited state |¢“) with a pair of
pointlike excitations in Q/l, which could be created using a
unitary string operator and it prepares an extremal point o, €
T(Q21),ie., 05 = trg, o) (.

This also gives a natural way to define the superselection
sector of pointlike excitations, i.e., by looking at what reduced
density matrix of X(£2;) it prepares. If it prepares an extremal
point o, , then the excitation circled by the annulus is in the
a superselection sector. If it prepares a nonextremal point,
then it carries a superposition (or mixture) of superselection
sectors.

Theorem IV.2. For a quantum double on D? and a sub-
system £2,, every extremal point of X(£2;) can be written as
tre, @) (@|. Here, |@) is an excited state with a pair of pointlike
excitations along the boundary, created by a unitary operator
supported on a string along the boundary crossing €2,. The
middle part of the string can be deformed into the bulk.

Proof. We have shown that an excited state with a pair
of excitations along the boundary could be written as |p) =
U|y). Here, |v) is the unique ground state on D?, and U is

supported on a string along the boundary, the middle part of
which could be deformed into the bulk. Also, one can always
make a “thicker” annulus €} on D2, which covers the entire
D? except for two localized regions along the boundary, see
Fig. 16. Then, one can show that (1) (€2, Q5) = X(2»)
using the explicit reduced density matrix in Sec. IV B 4 and
tracing out some suitable subsystems. (2) Each extremal point
of (2, ©25) has purification on the system. This can be
deduced from proposition II1.4.

Therefore there exists an excited state |¢*) with a pair of
pointlike excitations in Q’z, which could be created using a
unitary string operator along the boundary and it prepares an
extremal point ogz € X(2), 1.e., ogz = trg, l*){¢*]. |

Similar to the bulk case, one could define a boundary
superselection sector of the excitations using the element of
2(€2,) they prepare.

Theorem IV.3. For a quantum double on D? and a bulk
annulus €2, every extremal point of 3(£2;) can be written as
tre, |@) (@|. Here, |@) is an excited state with a pair of pointlike
excitations in the bulk, created by a unitary operator supported
on a bulk string crossing €2;.

Proof. First, note the fact that the ground state of S? or D?
has the same reduced density matrix on a disklike subsystem
in the bulk. In other words, a disk in the bulk could not
tell whether it lives on S or D?. One can choose a disklike
subsystem containing the annulus €2 and apply a bulk string
operator inside the disklike subsystem, then, use theorem I'V.1
to finish the proof. |

D. Topological entanglement entropy from topological invariant
structures of information convex

Topological entanglement entropy (TEE) [10,16] is an
important topological invariant characterization of the ground
state. In the middle steps of our derivation of ¥(w ), one could
see the topological contribution explicitly, e.g., the —In |G|
in Eq. (39) for the bulk.> However, in the final step, when
we keep only topological invariant structures of X(w), the
important constant is lost.

Nevertheless, we show that TEE can be recovered as a
lower bound (which appears to be saturated), given the topo-
logical invariant structures of X(w;) and X(£2;). In fact, the
lower bound always saturates given a few simple assumptions
[30]. In this sense, TEE is retained in the topological invariant
structures of information convex.

Below is the derivation of the lower bound. First, recall
some properties of X(£2;):

(1) = {oq, |(TQ] = Z Da 051} with

S(c8,) = S(og,) +1nd;,
04 -og =0 for a#b. (66)

3The —1In |G| + In | K| in Eq. (52) may also be regarded as a topo-
logical contribution for a system attached to a boundary, but in order
to extract this contribution using a linear combination canceling out
local contributions of entanglement entropy, one needs more than one
boundary type.
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Y,

>

FIG. 17. Divide 2, into A, B, C.

From these properties, one could calculate the entanglement
entropy for any ogq, € ¥(€2;) and find the element &g, €
3 (2;) with the maximal entanglement entropy:

S(Z Da Usazl) = Z(Pa S(O—Sazl) — Da lnpa)

a

d2
= S(aslz]) + Zpa In (p—“)

. d?
< S(o4,)+InD* “="iffp, = o
(67)
d2
= 6o, =) 5“2 o8, (68)

a

Here, D = / Za da2 is the total quantum dimension. It is obvi-
ous that S(6q,) — § (05121) = InD? is a topological invariance.
Similar constructions apply to other subsystem topologies.
Now, let us divide €2; into subsystems A, B, C shown
in Fig. 17 and take the Levin-Wen definition of topological
entanglement entropy [16] (an overall minus sign is added):

Stopo = (Sa + Spc — Sp — Sapc)ler = I(A: C|B)ls1.
(69)

Here, 0! = |/)(y| is the ground-state density matrix and
I(A:C|B)= Sap + Sgc — Sgp — Sapc is the conditional
mutual information. According to the strong subadditivity
I(A: C|B) = 0 is true in general. Also, all reduced density
matrices in X(€2;) have the same reduced density matrix on
AB, BC [for a proof, use the structure of ¥(w;), and that AB
and BC are of the same topology type as w]. Therefore

B = [(A:CIB)ly

~ _ 1
{O'AB =0Oup
0pc = Opc

I(A: C|B)|5 + S(6q,) — S(04,)
I(A:C|B)|s +InD?
> InD?
= Siopo = InD* =

" iffI(A : C|B)|s = O.
(70

Comparing with the knowledge of TEE, the lower bound
appears to be saturated and therefore /(A : C|B)|s = 0. This

result may be regarded as a generalization of our previous
lower bound [40] into the non-Abelian case. We are aware
that the reduced density matrix with maximal entanglement
entropy 6, € X(£2;) has zero conditional mutual information
if the simple assumptions (I) and (IT) in Ref. [30] are satisfied.
The assumptions are indeed satisfied for the ground states of
exactly solved models for topological orders. On the other
hand, given arbitrary papc, it is in general not possible [41]
to find a o4 ¢ such that (1) oap = pag, (2) 0gc = ppc, and
(3)I(A:C|B)ls =0.
To summarize,

Stopo = 5(591) - S(O'glzl) =1nD>. (71)

This is true for exactly solved models satisfying (I) and (II)
assumptions in Ref. [30]. There are evidences and beliefs that
Stopo 18 robust under generic local perturbations (which could
be treated as finite depth quantum circuits), although very
special examples like the Bravyi’s counterexample [42] could
change Siopo. It might be interesting to study the stability of
S (ogz]) -8 (Uflll ), S(Gq,)— S (Gslz,) and their generalizations.

E. Bulk ribbon operators

Let us review bulk ribbon operators and the bulk topologi-
cal excitations (bulk anyons) it creates. The review is brief and
focusing on properties useful in our calculations. For more
details, we refer to Refs. [7,13,20].

A bulk ribbon operator Fsh ¢ is defined for an open ribbon
& in the bulk (bulk ribbon) and &, g € G. See Fig. 18 for

a bulk ribbon connecting bulk sites sy and s;. Let |gog £y =
Fg €14 (not normalized). One can show |(pg "¢} has eigenval-
uesBy=1,A, =1, Af, = 1 for all f, v that are not contained

in 5o, s; and for all v’. In other words, th ¢ (when acting on
a ground state or a state locally minimizing energy) could
create excitations only on sy and s;. It is known that £ can
be topologically deformed, in the sense that two ribbons &
and &’, both connecting sy and s, have corresponding ribbon

operators Fsh ¢ and Féh,'g , which are different operators, but

FE) = Fptl).
The bulk ribbon operators have basic properties

he\t _ hg h.g -h'.g hh',g
(F)' = Ff, FFf =68, ,F" % (12)
For & = &,&,, we have the “gluing relation:”

hg _ 1 -Ihllg
Fif = Z Fl RIS, (73)
leG

Change of basis: {F;"g} — {FE(C’RWW)}:

FLORWD = N T ) FP (74)
t€E(c)

Here, (1) c € (G).j, ie,, c={gr.glg € G} and r. is a
representative of c¢. (2) E(c) is the centralizer group of c,
definedas E(c)={ge G|gr.=r.g}.(3) R € (E(c));r and
ng is the dimension of R. I'y is the unitary ng X ng matrix
associated with R, with components Fj'ej . f‘{ej ' is the complex
conjugate of F{ej/. @) P(c) = {pi}l,czl1 is a set of representa-
tives of G/E(c). ¢ = {e; )}, with ¢; = pirepi. (5)u = (G, j),
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X1 %) X3 X4
|
F hg O Sl =
3
V1 Y2 V3
V1 V2 V3
hk —
I ¢ So. 51
X1 0 X3 X4

X1 X2 X3 X4
“So S
6g,x1x2x3x4 ) ’
Xihxiyr  XpXihxixoy,  X3XpXihxixpx3ys

X1hx1yr XX hxix,y,  X3XaX hxix,x3ys3

o) ’ "
K, X1X2X3X4 s/ ) 51

X1 X2 X3 Xy

FIG. 18. Bulk ribbon operators and boundary ribbon operators. (a) F;’g ,h, g € G isabulk ribbon operator. £ is a bulk ribbon consisting of

bulk links and xy, x, x3, X4, y1, 2, y3 € G. (b) I ;’ ‘k, h € G and k € K is a boundary ribbon operator. ¢ is a boundary ribbon (for K boundary)
consisting of both boundary links with x;, x,, x3, x4 € K and bulk links with y;, y,, y3 € G.

v=_(', j)withi,i’=1,...,|cland j, j/ =1,...,ng. For
more explanations of the notation, see Appendix A 1.
Note that we picked a normalization such that the “gluing

relation” in this basis looks simple:

(¢, R)(u,v) (e, R)(u,w) g-(c, R)(w, v)
R = Y R o9
w
where w = (i”, j”). For a (open) bulk ribbon &,
1
hg 1
tr(F.%0;) = —
( 3 4&.) |G| lh
N tr(FE(c,R)(u,v)]L Fé(c’,R’)(u’,u’)O_gl)
1
= ac,c/SR,R’8u.u/8v,v’ (76)
lc| - ng

Here, %1

ribbon &. 051 is proportional to the identity unless there are
A$ or B supported on &, Eq. (76) is true for both cases. This
formula will be useful in the calculation of the reduced density
matrix.

For non-Abelian G, the ribbon operators
not unitary in general, but there are corresponding unitary
operators. In addition to the theorems in Sec. IV C, explicit
ribbon calculations can be done. From Eq. (76), using the
explicit wave function of the ground state ) and the HIW
theorem, one can show

Vel -ng FEEPUDy) = U@E)|y).

Here, U(£) is a unitary operator supported on a stringlike
region within a few lattice spacings to £. Note that the support
of U (&) can be slightly fatter than &. This result is independent
from whether the system has boundaries or not, the only
requirement is that £ can be contained in a disklike subsystem
in the bulk.

is the ground-state reduced density matrix on the

FE("’R)("‘”) are

| (¢,R)(u, v)) (77)

F. Boundary ribbon operators

Let us consider a new type of ribbon operator ;’ * with
h € G, k € K defined for open ribbon ¢ that lies along the

boundary (boundary ribbon), see Fig. 18 for a boundary rib-
bon connecting boundary sites s and s{. Very similar to bulk
ribbon operators, / {h K can create excitations only at 54 and 7
(when acting on a ground state or a state locally minimizing

energy).
The boundary ribbon operators have the basic properties

(I =1k R = s M (18)
The “gluing relation” can be written as
{1{2 Z Ih lIlhl Tk (79)

leK

Let us consider a linear combination: {Ih’k} — {I;(T'R)(”’")},

I(T R)(u, U) Z FJJ (t)]r' q/tq/ (80)
teK'T
Here, (1) T € K\G/K 1is a double coset, ie., T =

{kirrky | ki, ky € K}. rr € G is a representative of T. (2)
K™ = K (rrKFr is a subgroup of K, and it depends on
the choice of r7 in general. (3) R € (K'");, and ng is the
dimension of R. I' is the unitary ng X ng matrix associated

with R, with components F{{ B f’g is the complex conjugate

of T/,

@ O0={q:}, i=1,...,|0| is a set of representa-
tives of K/K'. |Q| =I|K|/|IK""|=IT|/IK|. si =qirrq;.
Gyu=0(@,j)v=_(=,j)withi,i'=1,...,|Q|and j, j' =
1,...,ng. For more explanations of the notation, see Ap-

pendix A 1.

Note that, for a set of chosen 7, the set {I;(T’R)(”’v)} may
contain a smaller number of elements than {/ Ch ’k}. We need to
be careful to say it is a change of basis. For K = {1}, itis a
change of basis.

Remark 4. Our boundary ribbon operators I;T‘R)(”’") are
fundamentally different from the Y "R operators con-
sidered in Ref. [27]. The operator I\7®“") is defined for
a ribbon ¢ that lies along the boundary, while the operator
y {T-R)v) s defined for ribbon p inside the boundary. Unlike
the model in Ref. [27], our model does not have Hilbert
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&2

FIG. 19. The whole system is a disk D?, and it is divided into subsystems A, Q;, B. The bulk ribbon & connects bulk sites s, and s;. 5o is
in A and s, is in C. The ribbon £ = £,£,&; with & € A, & C Qy,and & C B.

space for the interior of a boundary. Therefore the excitations
created by Y éT'R)(”'”) operator are not defined in our model.

On the other hand, the excitation created by I((T’R)(”'v) can
be defined not only in our model but also in the models
of Refs. [20,27]. The excitations created by I {(T’R)("’") are
deconfined topological excitations (parallel to the topological
excitations created by F.“®“") in the bulk). The middle part
of the boundary ribbon ¢ can be deformed into the bulk. The
excitations created by ¥ ("% are confined, and the energy
cost is proportional to the length of the ribbon p. The ribbon
operator YR cannot be deformed.
One could verify that

tr(I;”kal) =

] b
kM
rr
(T, R)w,0)t (T, R ') _1 K|
tr(/ 1 o) = 5 8k m S S .
({' ¢ {) nR|K| T,T'"OR,R'Ou,u'Ov,v

(81)

Here, a; is the ground-state reduced density matrix on ¢. o}
is generally not proportional to the identity unless K = {1}
since for K # {1}, and for a ¢ not too short, it must contain
some A* with k # 1.

It turns out that the nice “gluing relation” parallel to
Eq. (75) only appears for boundary ribbon operators with one
additional constraint of 7" and ry, i.e., if there is a choice of
rr € T such that rrm = mry for Vm € K'”. When choosing
this 77, using Egs. (79) and (80), one derives

(T R)(u,v) (T,R)(u,w) y(T,R)(w,v)
§1 & Z 1 I
if rem=mrr VYme K'T, (82)
where w = (i”, j”). This condition [and therefore Eq. (82)]
holds for a large class of boundaries including (1) K = {1}

boundary for a general G quantum double and (2) K = G
boundary for a general G quantum double.

The operators I ;(T’R) @) are not unitary in general, but there
exist corresponding unitary operators:

ng - |K|

(T R)(u,v)
e ) =

UON).

(T,R)(u, U)) (83)

o,

Here, U(¢) is a unitary operator supported on a stringlike
region within a few lattice spacings to ¢. Note that the support
of U(¢) can be slightly fatter than ¢. This result has been
proved (up to normalization) in Sec. IV C 1, and it can be

shown by explicit calculation using Eq. (81), the explicit wave
function of the ground state |y) and the HIW theorem. This
calculation also determines the overall normalization.

G. Bulk ribbon operators and the extremal points of X (£2;)

Let us consider the €2; subsystem discussed earlier in
Sec. IV B. We show (with explicit calculation) that a pair of
topological excitations (here are bulk anyons) (a, @) created
by a bulk process prepare the extremal point o € X(£2)).
This construction confirms that the extremal points of 2(£2)
are in one to one correspondence with bulk superselection
sectors (bulk anyon types). Also, see theorem IV.3, for a
powerful but less explicit way.

Consider the process and bulk ribbon shown in Fig. 19,
the bulk ribbon & = &,&,&3 connects bulk sites sy and s; that
are separated by €2;. Define the excited state (normalized)
oy = el - ng FE0“Y ). From our knowledge

about bulk ribbon operators, |<p(c RN hag excitations only

at the two ends of &, i.e., 5 and s1. Since sg and s; are away
from Q, it is clear that trg, |<p(c G v))(<p§C’R)(”’")| € T(Q)).

Now let us calculate trg, |<p(‘ R)v) )((péC’R)(”’”)L From the
“gluing relation” (75), one obtams

Z FS(IC,R)(u,wl)FE(OC,R)(wl,u;z)F;;,R)(U)Z,v). (84)

wy,wz

(c.R)(u,v) __
§16283

Let us write the ground state |y) as

= Y WHhahallha). {Hp))e, [{Hb}) 5.

ha,Hp

(85)

Here, {h,} witha = 1,...,n is a set of link configurations,
h, € G. Similarly, {Hp} with b=1,..., N is a set of link
configurations, H, € G. The state |{h,}) 4 is the unique equal
weight superposition of all zero flux configurations deter-
mined by a set of {h,} on d A. The zero flux requirement tells
us that hihy---h, = 1. Similarly, the states |{h,}, {Hp})q,
and |{H,})p are the unique equal weight superposition of
all zero flux configurations with fixed link values &, and H)

satisfying h1hy ---h, = HiH,--- Hy = 1.
Then, one can calculate oq,(c,R) =
Igo(c R, "))(¢§C’R)(”’")| and find (up to normalization)

UQI(C, R) — Z F;;-R)(wl,wz)o.slzlFé(:'qR)(WIYWZ)T‘

wi, Wy

(86)
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Here, aglzl = trg, [¥){¥] is the reduced density matrix of the
ground state. To get the result above, we have used the fact
that

Al{ha | LT e Rwmi )

Y (FE(IC,RXu,w]>TF§<]c,R)<u,wl>051])
= ), 0w, —1 . 87)
ng - |c

Here, 051] is the reduced density matrix of the ground state
on &. 8, j is short for [], 8, 7 . There is a similar equation
as Eq. (87) when replacing |{h,}) 4 by |{Hp})p and replacing
& by &;. One could verify that the reduced density matrix
og,(c, R) in Eq. (86) is identical to the extremal point og, ,
with @ = (¢, R). In other words, every extremal point of
(€2;) can be obtained by an anyon process in the bulk shown
in Fig. 19.

This further shows that £(2) = Z(2, Q)), as long as ]
contains so and s;. Using Egs. (75) and (76), the ground-state
wave function and the HIW theorem one can show that each
of the anyons a, a at the endpoints sy, s; can be moved by
local unitary operators acting around sy and s, respectively.

H. Boundary ribbon operators and the extremal points of X(£2,)

Now consider the €2, subsystem discussed in Sec. IV B.
As is shown in theorem IV.2, it is possible to create a pair
of excitations along the boundary by a unitary string operator
along the boundary and the excitations could carry any bound-
ary superselection sector. On the other hand, it is nice to have
explicit constructions. In practice, we find that explicit con-
structions are challenging beyond models with the additional
requirement: for every T € K\G/K, there exists ry € T such
that rrm = mrr for Vm € K'7, the same requirement for the
“gluing relation” (82) to apply. The following constructions
are restricted to models satisfying this requirement.

We show that a pair of topological excitations (o, &) cre-
ated by a process involve the boundary prepare the extremal
point 05‘3‘22 € X(2,), with o = (T, R). This construction con-
firms the fact that the extremal points of 3 (£2;) have the same
label as the boundary superselection sector.

The discussion here is very similar to that in Sec. IV G, and
therefore will be brief. We have the “gluing relation:”

(T, R)(u,v) _ (T, R)(w,wy) p(T,R)(w1,w2) y(T,R)(w2,v)
15152{3 - Z ICl 1{2 153 - (88)

wi, w2

Define a state (normalized) with excitations created by a
boundary ribbon operator and the corresponding reduced den-
sity matrix:

(T.R)w,v)\ __ [IR" |K| (T,R)(u,v)
|z )Z‘IWQ V),

00,(T, R) = trg, | 0 “) o 0] (89)

One can show (up to normalization) that

UQZ(T, R) — Z IézT,R)(wl,wz)o_slzzI;T,R)(wl,wz)f’

wi, w2

o, = tro, W) (V. (90)

From this expression, one can show og, (T, R) is identical to
the extremal point o, € X(£22), with @ = (T, R). Therefore
a = (T, R) labels both the boundary superselection sector
and the extremal points of X(€2;). This further shows that
T(Qs) = T(Qy, ) as long as ) contains s) and s{. Using
Egs. (81) and (82), the ground-state wave function and the
HIJW theorem, one can show that the positions of boundary
topological excitations («, @) at s, and s; can be changed by
local unitary operators acting around s;, and s, respectively.

V. G QUANTUM DOUBLE WITH K = {1} BOUNDARY

The K = {1} boundary (K = {1} is the subgroup of G that
contains only the identity element) is particularly simple, but
it already has many nontrivial features. We take the opportu-
nity to discuss K = {1} in some details, and also discuss some
additional things like 2(€22 )puk, 2(£23), etc.

A. Boundary superselection sectors for a K = {1} boundary

For a K = {1} boundary, each double coset 7" contains
justone group element 7 = {g}, g € G,sorr = g. K'" = {1}
and there is a unique irreducible representation of K'7, i.e.,
the one-dimensional identity representation Id. (T, R) —
({g}, I1d), and the label i, j can only take one possible value
i, j = 1. Therefore we will drop the i, j indices.

The boundary superselection sectors o = (T, R) =
({g}, Id) are in one to one correspondence with the group
elements. Because of this, we will use the simplified notation
a € G. The quantum dimension of each boundary topological
excitation is d, = 1 for Va € G.

B. The information convex X(2,) for a K = {1} boundary

Here, we repeat some calculation and result of Sec. IV B 4
in the simple example K = {1}. Start with the minimal di-
agram. For a K = {1} boundary, the Hilbert space for the
minimal diagram is H*(€2,) = span{|h, H)|h, H € G}. Here
{|h, H)|h, H € G} is an orthonormal basis. The set £*(£2,) is
the set of density matrices o, on H*(£2,) satisfying the fol-
lowing requirements. (1) 08 = ") yeg Punmlh, H)(h, H|,
where {p(, m} is a probability distribution. (2) Bog = og ,
where B\h, H) = &, ul|h, H).

From these requirements, it is straightforward to write
down a general density matrix Gs*zz € X*(2):

o5, =Y pulh.h)(h. hl,
heG

{pn} is a probability distribution. on

From this expression, it is obvious that each extremal point of
¥ *(2,) is labeled by a group element:
with o € G. 92)

og, = la, a){a, of

The quantum dimensions d, = 1 for Yo € G. The following
properties of the extremal points can be easily checked:

US’;‘;‘ -oé’f = 0up oé‘: = S(as’;‘;‘) =0, tr[ag‘;‘ ~a;;f] = 848
(93)
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Now go back to X(£2). It has extremal points o fora € G
with 7 (0g,) = o, and the following properties:

o b __dap 4

0q, 0q, = |G|n+N—2UQz’
S(og,) = (n+ N —2)In|G]|,

5
B o.B
wlog, -00,] = 5iv 04)

From the properties of the extremal points, one verifies the
following topological invariant structures of X(£2;):

S(ng) = S(Gslzz)» or 'ng =0 for o #8,

tr[og, - 08 | = tr[o, - 04, ] 95)

C. Boundary strings and the extremal points of X(£2,)

For a K = {1} boundary, the boundary operators in the
basis {I;""} with h € G and k € K now become {I{"'}, with
a € G. The Hilbert space on each boundary link ¢’ is one
dimensional, and therefore any state in the total Hilbert space
has a direct product on all boundary links ¢’. We could neglect
the boundary links and get an effective theory with a “rough
boundary.” We will not do so in order to keep it similar to
K # {1} cases.

The basis {II(T’R)("’")} now becomes {/;'} witha € G since
for K = {1} we could neglect the u, v labels and that R = Id.
One could verify the following change of basis {1} — {/ ;’ o1 }:

IP=1"", Vaeg. (96)

Therefore each 1/ is a product of local unitary operators each
acting on a bulk link e € ¢. It is easy to verify the following
properties:

() =1, 11l =1, w(If1]) = s (D),

ID(

_ gaga
(ICz_ICI

agB _ joB
Ao Il =1 o7
Define [¢;) = I7|¢). The middle part of the operator I can
be deformed into the bulk. For K = {1}, the excitation type
a € G has a simple interpretation as “flux” type, see Fig. 20.

One may also consider the “fusion” of two fluxes @ and .

d

FIG. 20. Along the K = {1} boundary, a («, &) pair is created by
a unitary operator I which acts nontrivially on the green links. In
this case, the « € G labels the flux type of a single face, abc = «.
The link configurations a,b,c € Gandd =1 € K.

The “fusion” result depends on the ordering: one obtains a
flux of if @ was on the right of 8 and one obtains a flux S« if
o was on the left of 8. o # Ba unless «, B commute, even
though d, = 1 for Yo € G. This process is more intricate than
the fusion of two Abelian anyons in the bulk.

Let us reconsider the process in Fig. 21. Let { = ¢18:¢3,
then one can show that [/") prepares an extremal point o5, €
E( Qg):

trgz|q)?)<q)?| = Igoézlg = ng with
n(ogz) = |, a)(o, of. (98)

Therefore the boundary operators {7} could prepare all the
extremal points of X(£2;). In this case, it is straightforward
to verify that excitations («, @) at s and s| can be moved by
unitary operators acting around s;, and s}, respectively, since
I itself is a product of local unitary operators each acting on
a link.

D. Bulk processes and X(£2;)puix

Let us consider what element of X(£2;) could be produced
by a bulk process. Define X(£2;)puix to be a subset of X(£25),
which could be explored by bulk processes. Explicitly,

(Q)buk = {00, € 2(Q)|og, = tr o, [ @out) (@ouik | }
with  |@pui) = Upuik [Vr). 99)

Here, Upyk is a unitary operator supported on a bulk subsys-
tem (a subsystem away from the boundary). For the quantum
double model, it is enough to have Uk = Ug, ® lg,. Here,
Q3 is an annulus covering a few layers of lattice around the
boundary, see Fig. 25.

For a K = {1} boundary, consider a process involving
ribbon operators in the bulk, where bulk anyon pairs (a, a)
are separated by €2,, see Fig. 22. According to the discussion
in Sec. IVE, it is a unitary process in the bulk. Calculations
using a similar method as the one in Sec. IV G show that

.!R s .’R s
o) = Vg lel B p)

(péc,R)(u,v))((péc,R)(u,v) | —

lel

1

el =

Ci
Q"

(100)

=4 trQ2

Recall, ¢; € cis a group element in conjugacy class ¢ and agz
is an extremal point of X(£2,).

Observe that for a bulk process creating a (a, a) pair, with
a = (¢, R), if |c| > 1, it does not prepare an extremal point
of X(£2,). On the other hand, it can be shown (see Sec. V F)
that the bulk processes, which create (a, @) pairs, do prepare
all the extremal points of X (€2, )puk. Therefore X (€27 )puik 1S

2(€22)bu = {092|092 = ch 052} with
c

c|
c 1 Ci
0§, = m;ogz, (101)

where {p.} is a probability distribution and ¢ € (G),;. In other
words, for a K = {1} boundary, (1) when G is Abelian, we
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G &

so, ‘ | | S1

€

FIG. 21. The whole system is a disk D? and it is divided into subsystems A, €, B. The bulk ribbon ¢ connects bulk sites s;, and s/. s; is
in A and s} isin C. The ribbon { = §;,¢3 with &y € A, ¢ € 4, and &3 € B.

always have X(£22)puk = 2(£22) and (2) when G is non-
Abelian, we always have Z(22)pux © Z(£22).

Therefore, for non-Abelian models, the boundary supers-
election sectors could not be identified as a subset of bulk
superselection sectors and they need to be treated as funda-
mental.

E. Some other boundary processes

In this section, we discuss a few more unitary processes
which involve the boundary, see Figs. 23 and 24.

The unitary process in Fig. 23(a) creates a (a, «) pair with
a= (¢, R) [so that a = (¢, R)] and o = ¢;. Here, ¢ is the
conjugacy class containing 7, and R is the complex conjugate
of R and R € (E(¢));, [note that E(c) = E(&)].

It is possible to write down an explicit ribbon operator
F;f"R)(”‘v) that realizes this process. Here, the ribbon &’ con-
nects a bulk site so and a boundary site s/, see Fig. 23(c). The
corresponding excited state (normalized) is

loe ) = Vel - ng BSOS ) = @Ol (102)

Here, u = (i, j) and v = (i’, j'), where i,i’ =1, ..., |c| and
J,j'=1,...,ng. Itis straightforward to check that
trg, (pg,l?)(u,u))((pg,k)(u,v)| =05, with a=cy. (103)

It prepares an extremal point of X(£2;). The result depends
only on the flux type o = ¢;.

One may interpret this diagram as condensing a bulk
anyon a = (c, R) into a boundary topological excitation: o €
c, e, a —> ng Ziil -.¢; for a = (¢, R). The condensation
multiplicity equals ng and it matches the possible values of

B
$1
&2 O 2
o I
.,/""';0 A

FIG. 22. A bulk unitary process creating a (a, @) pair which can
be explicitly constructed using a bulk ribbon operator.

j’ (unlike the case for a bulk site, different j' could not be
changed by a local unitary process for s; being a boundary
site).*

The ribbon &’ is not a bulk ribbon since we require a
bulk ribbon to be away from the boundary. However, it is not
difficult to do an extension & — &’ at the level of the ribbon
operator, in the same manner as extending a bulk ribbon into a
longer bulk ribbon £ — £. However, one important difference
one should be aware is seen Figs. 23(b) and 23(c).

As is already discussed in Sec. IV G, the extension in
Fig. 23(b), which corresponds to a move of a bulk anyon a
from s, to §;, can be done by a local unitary operation around
S1-

FLERD gy = U (s FER ). (104)

§

Now consider the extension § — &', i.e., go from the state
FLERD 1y o FE R 1y For || = 1, we have

FPU ) = Ung ® 1g, FOR“ 1y for o > 1.
(105)

This result follows from Egs. (100) and (103) and the
HIJW theorem. For the case |c| =1, ng = 1 explicit con-
struction shows F;f’R)(“’”/)W/) = U(sl)FE(C’R)(L"v)W/). On the
other hand, even for the simple case, ¢ = {1}, ng > 1,
i.e., it is condensed into the vacuum o =1, Eq. (105)
holds only for Usp # U, ® Up. Therefore FE(,‘"R)("’v/)h/f) +#

UHFE " ).
For |c| > 1,

FERUO 1) £ Unp @ 1o, OO y)
= FED ) £ U)FS ). (106)

This result follows from Eqgs. (100) and (103) and the HIW
theorem. For |c| > 1, ng = 1, one can use U(sy) to push the
bulk anyon a = (c, R) into an equal weight superpositon of
boundary topological excitations with « =¢;, i = 1,...,|c|.
Only after a measurement of boundary topological excitation
type can we obtain a state with fixed «. For |c| > 1, ng > 1,
one need to use Uup ® lg, instead of U(s;), to push a =
(c, R) into an equal weight superpositon of boundary topo-
logical excitations with o =¢;, i =1, ..., |c|. Here, Usp #
Uy ® Up.

4These condensation multiplicity can be seen from () of some
suitable €.
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S0/

U(s1)

(a) (b)

(c)

FIG. 23. (a) A unitary string operator creating a (@, o) pair. (b) Extending a bulk ribbon in the bulk & — £ can be done by a local unitary
operator U (s;) acting around s;. (c) Extending a bulk ribbon to the boundary § — &’ may not be achievable using a local unitary operator

U (sy) around s;.

In comparison, the following can always be done by local
unitary operations. (1) Creating a (@, o) pair separated by a
small distance. Here, a = (¢, R) and o = ¢; are fixed. Then
one may also move a away from « step by step using a
sequence of local unitary operations. The support of the local
unitary operators in the sequence may overlap with each other.

(2) Start from an excited state with a (a, @) pair, where
a = (c,R) and o = ¢, see Fig. 23(a). Push a towards the
boundary, and then condense a into a boundary topological
excitation. In this case, a will condense into @ instead of a
superposition.

Another intriguing process is to have a pair of bulk anyons
(a, a) created using a string attached to the boundary (which
could not be deformed into the bulk completely), see Fig. 24.
This could not happen for a quantum double model with
Abelian G. On the other hand, this type of boundary process
exists for all quantum double models with non-Abelian G and
K = {1} boundary.

One can write down explicit ribbon operators with support
in Fig. 24(b) for this unitary process:

(a,a)\ _ (e, R)(uy,v1) ya gp(c,R)(u2,v2)
|0/c) = lel-nr Fyg I Fy 2

=UGELE)IY). (107)

Here, up = (il,jl), v = (l{,]l/), Uy = (iz,jz), and Uy =
(i3, J), with the requirement ¢; = ¢;, = a. U(§¢,) is a
unitary operator supported on a stringlike region within a few

So,/ NS1

31 &

(b)

FIG. 24. (a) A pair of bulk anyons (a, a) with a = (¢, R) and
|c| > 1 created by a unitary string operator attaches to the boundary.
(b) An explicit ribbon operator could be constructed that realize this
process.

lattice spacings to &¢&,. Explicit calculations show

(a,a)

e, |0 el | = o8, (108)

For lc| > 1, lp2) # Unalyy) since of, ¢ S(Q)oux for
o = ¢;; with || > 1 and therefore the string could not be
deformed into the bulk.® Furthermore, it can be shown that
this process is related to the process in Figs. 21 and 23 by

unitary operations in A and B, i.e.,

‘Pg&g) =UsQUp® IQZ’QIJ?) =U,®13® 192‘§0§’R)Z:))9>.)

Therefore it is possible to pull the pair (o, @) into the bulk
using a local unitary process around o and & to get a state
with an (a, a) pair.

F. A new subsystem £23: Infinite extremal points of X(£23)
from condensation multiplicity

Now consider a subsystem of 23 topology, see Fig. 25. It is
an annulus with one edge identified with the boundary (recall
that the relation to the boundary is part of the topological
data). A natural motivation of considering €23 is that excita-
tions in the bulk may be created by a string operator attached
to the boundary, see Fig. 26(a). If so, it leaves footprints on
Q3. We will also see that the structure of X(£23) is closely
related to condensing of bulk anyons into the vacuum (¢ = 1)
of the K = {1} boundary and there is an infinite number of
extremal points for non-Abelian G.

3The type of process in Fig. 24, which could not be deformed into
the bulk completely actually beyond the |c| > 1 case.

FIG. 25. Anillustration of the subsystem €23 and the correspond-
ing minimal diagram.
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(a) (b)

FIG. 26. (a) A unitary string operator attaches to the boundary.
It creates an anyon a in the bulk. (b) The unitary operator W («)
is supported on the yellow loop along the boundary. It represent a
braiding of («, &) pair around the boundary.

Define H*(23) = span{|h, t)|h,t € G} as the Hilbert
space for the minimal diagram in Fig. 25, where {|h, t)|h,t €
G} is an orthonormal basis. Define ¥*(£23) as a set of density
matrices og. on H*(23) satisfying the following require-
ments: (1) o =", >, Py {hY: A) ({h}; Al, where {p}} is
a probability distribution and |{h}; 1) = ), ca(#)|h, t) with
complex coefficients ¢, (¢) satisfying ), P =1. ()
Bog, = og,, where Blh,t) = &1 lh, 1). (3) A‘fa;;sA‘f =04,
for Vg € G, where A{|h,t) = |ghg, gt).

We find that the problem of finding ¥*(£23) maps exactly to
a problem solved in proposition A.3. The result is that ¥*(£23)

has a set of extremal points GgﬁR‘Z):

* 1 & _
oa ) = — Y12 R) . R
R =
Jj=1

g L @it 0
J 8eG

1z(j, R)) =

Here, the complex numbers z ;- satisfy Z?,’;l |z j/|2 =1;Re
(G)ir. The parameter {z;} has equivalence (redundancy)
{zj} ~ {zj€"} and osiR’Z) is really parameterized by points
on the manifold §?'*~1/§!.

) Let us use the notation (z|7) = Z;/"zl erz}/. One can show
that

(z(j, BIZ'(j', R)) = Sr.r8;,j(2l2),

' 1
(R.2) (R.Z) 2
o, og, "] = Srr el

S(oa?) = Inng. (111)
From the similarity between X(€23) and X*(€23) we find that
the extremal points of ¥(£23) have the same parametrization,

ie., ogj’o, with the properties

(R2)  _(R.Z) )
trfog, ™ - og, '] = Srr I(zlz")]%,

ng - |G"—1

S(og™) =Inng +(n —1)In|G|. (112)

The following structures of X(€23) are topological invariants

1d,
(note that oy = trg, [¥/) (| = o "?):

(R,2) (R'",Z)
tr[093 1 0q, ] 1 "2
— T = ke el
tlr[oQS . 093] a

S(eF?) = S(od,) + Ind,. (113)

Here we have used d, = ng fora = ({1}, R).

A string operator attaches to the boundary, which creates
a single anyon a in the bulk which could prepare extremal
points of ¥(£23). This process can be thought of as creating a
pair (a, a) with @ = ({1}, R) and o = 1, a special case of the
string operator in Fig. 23:

{11, R)(u,v)\ _ {1}, R)(u,v)
o) = el ng FE Ry,

ng
(péR,z)u> — Z zj |¢§E1}'R)(u’v:(l’j ))>.
Jj=1

(114)

Calculation shows
R,z R,z R,
N (115)

Let us consider braiding an («, &) pair around the boundary,
assuming there are no other excitations along the boundary.
It corresponds to a unitary operator W(«) acting on a closed
loop along the boundary (a closed string version of 1), see
Fig. 26(b). W(ax)W(B8) = W(aB), W(a)! = W(@). One can
check that

W()ly) =¥) VYaeG.

The braiding W(«) generates a structure preserving bi-
jective mapping W(x): X(23) — X(€23) such that oq, —
W(a)oq,W(&). One can check the mapping on extremal
points:

(116)

ng
W(@)os?W@) = og?  with 2, = D TR @)z,
c=1

(117)

The mapping does not mix different R, and on each manifold
§?x=1 /81 it realize a group action of G.

Furthermore, W («) provides a simple proof of the structure
of 2(£27)puik claimed in Sec. V D. Consider a unitary operator
Upuix supported on a bulk subsystem and |@pux) = Upuik|¥):

W@)ly) =), [W(@), Upu] =0

= W(a)|@ouk) = |@puik)- (118)

Let us assume it prepares an element of X(2), i.e.,
P, = trg, [ouk) (@ouk| € 2(£22) then, by definition, pgq, €
3(22)buik- Any extremal point of X(€2)pyx can be written in
this form since purification exists. From Eq. (118) and with
W (ar) written as a product of unitary operators on £, and Q,
ie, W(a) = W, (o) ® Wg,(a), one derives

pa, = W, (@) po, Wa, @) Va € G. (119)

Writing  po, =), phaéz and noticing that Wy, (x)
032 We, (&) = 052’6‘, one finds p, = p, for h and i’ belonging
to the same conjugacy class. Therefore X(€2;)pyx can only

be a subset of the result claimed in Eq. (101). Finally, due
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to the explicitly constructed extremal points, (€2, )puk iS NO
smaller than what is claimed in Eq. (101), so the result in
Eq. (101) is proved.

VI. SUMMARY

We have introduced the information convex %(£2), a set of
reduced density matrices that minimize energy in subsystem
Q, to capture the topological invariants of a 2D topological
order both in the bulk and on the gapped boundaries. Using
quantum double models and their gapped boundaries as an
example, we show how the information convex reveals and
characterizes (i) bulk anyons (or bulk superselection sectors),
(ii) boundary topological excitations (or boundary superselec-
tion sectors), and (iii) the condensation rules from bulk anyons
to boundary topological excitations. Recent progress in cold
atoms provides a potential measurement for the information
convex structure in interference experiments [34,35]. As a
powerful tool to study topological phases, the information
convex can also be generalized to topological orders in higher
spatial dimensions and fracton orders [43].

Note added in proof. Recently, more evidence has
been collected. It is now clear that information convex
¥(R2) could coherently encode fusion multiplicities N,
leﬁ and condensation multiplicities N for suitably cho-
sen topologies of 2. Here N, is the fusion multiplic-
ity for bulk anyons, ie., a xb=)_N¢ c. N;/ﬂ is the
fusion multiplicities for boundary topological excitations
axp=3, N;'ﬁ y. NZ is the condensation multiplicity sat-
isfying @ = ), N¥ a. Furthermore, the following are shown
in Ref. [44]. (1) This coherent encoding of multiplicities and
strong subadditivity provides a new derivation of the topolog-
ical contributions to the von Neumann entropy, i.e., the Ind,
from bulk anyons and the Ind, from boundary topological
excitations. (2) The result in Eq. (12) is a special case of a
more general result

o
O_a _ Nadao.a
Q E : Q0
2 da 2

(120)

o

where og is the reduced density matrix on €2 from the
quantum state shown in Fig. 4(c).
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APPENDIX A: SOME USEFUL GROUP THEORY

We collect some results useful in the study of quantum
double models in Sec. IV, which could be appreciated at the
level of finite groups.

1. Finite groups and representations: Some basics

We summarize some basic results about finite groups
and representations. Our notation is adapted from
Refs. [13,27,29]. Let G be a finite group. |G| is the number
of group elements in G. We use (G); to denote the set of
irreducible representations of G and use (G).; to denote the
set of conjugacy classes of G. For a group element g € G, we
use g to denote its inverse element.

For a (unitary) representation R of G, we denote its dimen-
sion using ng, and ['g(g) is a ng x ng dimensional unitary
matrix associated with representation R (in a chosen basis)
and Fj{’(g) with j, j’ =1, ..., ng being the components of

the matrix. I—'g "is the complex conjugate of F{{ g
The following results are useful:

Y nq=IaGl, (A1)
Re(G)ir
ab ma'b’ |G| /
E:FR@n},@)zakg%ﬂ%ﬁ;— for R, R € (G);,.
R

geG
(A2)

Letc € (G)., be a conjugacy class, i.e., c = {gr.glg € G},
where r. € G is a representative of c. For a finite group,
the number of conjugate classes ¢ € (G).; equals the number
of irreducible representations R € (G);,. Given a conjugacy
class c and a representative r,. € c, a centralizer group E(c) =
{g € G| gr. =r.g} can be defined. Note that E(c) depends
on the choice of r. in general. Let |c| be the number of
elements in ¢, one can check |c| - |E(¢c)| = |G]|.

Let P(c)={ pi}l.C:l be a set of representatives of
G/E(c). It satisfies (1) p; E(c)( pjE(c) =0 for i # j and

1’11 piE(c) = G. It implies that there is a unique decompo-
sition of a group element g € G as g = p;m, withm € E(c).
2)c= {c,-}l.czll, where ¢; = p;r.p;.

Let K € G be a subgroup of G. Let T € K\G/K be a
double coset, i.e., T = {kirrks|ki, k, € K} = Krp K, where
rr € G is a representative of 7. Given T and rr, one can
define K'* = K () rr K7y, which is a subgroup of K. Note
that K7 depends on the choice of r7 in general.

Let Q = {q,-}l.g‘l be a set of representatives of K/K'".
It satisfies (1) |Q| = |K|/|K'T| = |T|/|K|. Here, |T] is the
number of elements in 7. (2) ¢;K'" (¢q; K" =0 fori # j
and U2, = ¢k = K. (3) qirr K (qjrrK =0 for i # j
and T = U!g', qirr K. It implies that there is a unique decom-
positionof g € T as g = ¢g;rrk withg; € Q and k € K.

2. Invariant operators and invariant density matrices
on the group Hilbert space H¢

Definition A.1 (The group Hilbert space). The group
Hilbert space for a finite group G is defined as
He =span{|g) | g € G }. Here, (glh) =8, with g, h € G.
In other words, {|g), g € G} is an orthonormal basis and the
dimension of H¢ is dim Hg = |G].

Consider the following mappings that take an operator
acting on Hg to another operator acting on Hg. (1) L,
mapping is defined by O — LgOLI,. Here, L, is an unitary
operator such that L,|h) = |gh). (2) Zg mapping is defined
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by O — L,OL}, where L, is an unitary operator such that
f,g|h) = |hg). Here, g is the inverse of g.

Definition A.2 (L g -invariant and L g -invariant operators).
An operator acting on H is said to be (1) Lg-invariant if it
is invariant under L; mapping for Vk € K. Here, K C G is a
subgroup.

(2) Lg-invariant if it is invariant under L, mapping for
Vk € K. Here, K C G is a subgroup.

Our next task is to find the general form of certain invariant
operators. In order to do so, the following basis will be useful.

Proposition A.1. Hg has an orthonormal basis {|a, b; R)},
witha,b=1,...,ngand R € (G);,. Here,

la.biR) = [ TR @)lg)
geG

Proof. First, one checks (a,b;Rla’,b';R') =g r
84.a/6py using Eq. (A2). Then, one chould check that the
dimension of the vector space spanned by {|a, b; R)} is |G|
using Eq. (A1). |

Proposition A.2. The space of Lg-invariant op-
erators acting on Hg is the complex vector space
span{) "% |a,b;R){a,b’;R|} with b,b'=1,...,ng and
R € (G);,. The dimension of the vector space is |G|.

Proof. First, note that the space of all operators act-
ing on Hg is a complex vector space spanned by
{la, b; R){(da’,b’, R'|}. Second, show that the space of
Lg-invariant operators is spanned by {},.; Lxla, b; R)

(@', b, R'|L}}. Then, show that

span{z Lyla,b; R){a', b, R'|L:l }
heG

(A3)

(A4)

nR
= span{z la,b; R)(a,b'; Rl}.

a=1

In this step, Lyla, b; R) = Y "%, T'%(h)|c, b; R) and Eq. (A2)

is used. |
Proposition A.3. The set of L invariant density matrices

is a convex set X (Lg) with extremal points parameterized

by a manifold $?'*~!/S! for each R € (G);.. The mani-

fold $?"#=1/S! is parameterized by complex numbers {z;}

under equivalence {z;} ~ {zp€'’}. Here b=1,--- ,ng and
%1 1z]* = 1. The corresponding density matrix is

1 &
pr(x) = =) lz(a: R)(e(a: R)| - with
a=1

2@ R) =) zpla,b;R), R (G (A5)
b=1

Proposition A.4. The space of Lg-invariant and Le-
invariant operators acting on H¢ is the complex vector space
span{ZZf‘bzl la, b; R){(a, b; R|} with R € (G);,.

Proof. First, notice the result in proposition A.2
that the space of Lg-invariant operators is spanned by
{3°0F la,b;R)(a,b';R|} with b,b'=1,...,ng and R €
(G);r. Second, show that the space of Ls-invariant and Le-
invariant operators is spanned by {3 ,.; > "%, Lyla, b; R)

(@, b'; R|L}}. Finally, show that

span{z L (Z la, b; R){(a,b'; R|)Zh}

heG a=1
ng
= span{ Z la, b;R}(a,b;R|}. (A6)
a,b=1

In this step, Ly|a, b; R) = > "% T4 (h)|a, c; R) and Eq. (A2)
is used. |

Proposition A.5. The set of Lg-invariant and L g-invariant
density matrices is a convex set X (L¢, Lg) with extremal
points

ngr

— D la.biR)a. biR|. R € (G
"R ab=1

PR (A7)

APPENDIX B: THE S; QUANTUM DOUBLE
WITH K = {1} BOUNDARY

In this Appendix, we provide some additional details for
the S3 quantum double with K = {1} boundary, i.e., explain
our notations and point to some references.

S3 is the simplest non-Abelian finite group and the
S3 quantum double model is discussed as examples by
many references. For example, Ref. [20] contains detailed
anyon types, fusion rules and S-matrix of the S3 quantum
double. On the other hand, our notation for bulk anyons
{1, A, Jv, J*, J¥, J*, K%, K"} is similar with Ref. [29]. The
condensation rules for the S3 quantum double with K = {1}
boundary is discussed [27] in a different physical context. The
following is some details of our notation.

1. Bulk superselection sectors

Given that the bulk superselection sectors (or bulk anyon
types) are labeled by a = (¢, R) with ¢ € (G).; and R €
(E(c))ir, the eight superselection sectors for the S3 quantum
double model {1, A, J*, J*, J”Y, J¢, K¢, Kb} can be worked
out. Here, S; ={1,r,r2,s,sr,sr?} with r* =s>=1 and
sr = r2s. See the following table for more details.

¢ € (83)¢ c; = {1} ¢ = {r,r?} ¢ = {s, sr, sr?}
e 1 r §

E(c) S3 Zs={l,r,r% Z, = {1, s}
P(c) = S3/E(c) {1} {1, s} {1,r,r%}

R € (E(¢))ir 1d A B 1d w ? 1d A
ng 1 1 2 1 1 1 1 1
a 1 A Jv J* J?Y J? K“ Kb
d, = |c| - ng 1 1 2 2 2 2 3 3
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Here are the representations.

For R € (S3);r the corresponding unitary matrices ['g(g)
with g € Sy are (1) I'jy(g) =1forVge S5. 2) Ta(r) =1
and I'y(s) = —1. Other T'4(g) for g € S5 can be obtained
using T4(r) and Ta(s). 3) Tp(r) = (4 9 and T(s) =

((1) (1)). Here, w = ¢/ 5. Other I'z(g) for g € S; can be ob-
tained using I'p(7) and T'z(s).

For R € (Z3)i, Z3 = {1, r, r?}, the corresponding unitary
matrices I'r(g) with g € Z3 are (1) I';,(g) = 1 for Vg € Z;.
Q) To(1) =1, T, () = o, T'y(r?) = w?. Here, w = e 3)
T,o(1) =1, T2 (r) = 0* T2 (r?) = w. Here, w = i 5 .

For R € (Z,)ir, Z> = {1, s}, the corresponding unitary
matrices ['g(g) with g € Z, are (1) I';4(g) = 1 for Vg € Z,.
(2)Ta(l)=1,Ta(s) = -1

2. The fusion rules of S; quantum double

The following fusion rules of the S; quantum double model
can be found in Ref. [29]:

AxA=1
A x K9P = KV,
Ax Je=J"

Jex Je=14+A+J¢

Jrx Jh=ygr+ g% =~

J* x KB =K+ KV

K*x KY=14+J" 4+ J+ J¥ + J=.
Kix Kb = A+ JY+J 4+ JY 4+ J*?

(B1)

Here, o, B, y, and § are running indices. «, B, y, and §
with values different from each other in the equation, which
has all of them, ie., in J¥ x J?# = JY 4+ J%. The fusion
rules (in a different notation) together with the calculation
method for a general quantum double model can be found in
Ref. [20].

3. K = {1} boundary superselection sectors
and condensation rules

According to Sec. V, the boundary superselection sec-
tors (boundary topological excitation types) of a K = {1}
boundary are labeled by the group element « € G. Therefore,
for G = S3, we have six types {1,772, s,sr, s}, a € 53
corresponds to (7', R) = ({a}, Id).

T e{INS/{1}y {1} {r} {rz} {s} sy (s
1

2

rr r r S Sr Sr
K'" U5 N S E S R ( B O ¥ {1}
0=K/K'T oW WMy {1}
{s:12) {y Ay sy sy (sr?)
R e (K'T);, Id Id Id Id Id Id
ng 1 1 1 1 1 1
o 1 r r? s Sr sr?
dy 1 1 1 1 1 1

The following condensation rules are discussed [27] in the
physical context of confined boundary excitations.

ce(S3)y a={1} e ={r,r? ¢y = {s, sr, sr?}
a 1A Jv J* J?Y J? K K"
o 1 121 r r>r 2r r®s srsr* s sr sr’

The same condensation rules also apply to our case, i.e.,
condense a bulk anyon into a deconfined boundary topological
excitation. This is suggested by the construction of ribbon
operators and the results of X(£2;), X(£22)pulk, and X(£23), see
Sec. V.
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