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Recent experiments have observed strongly correlated physics in twisted bilayer graphene (TBG) at very
small angles, along with nearly flat electron bands at certain fillings. A good starting point in understanding
the physics is a continuum model (CM) proposed by Lopes dos Santos et al. [Phys. Rev. Lett. 99, 256802
(2007)] and Bistritzer et al. [Proc. Natl. Acad. Sci. USA 108, 12233 (2011)] for TBG at small twist angles,
which successfully predicts the bandwidth reduction of the middle two bands of TBG near the first magic angle
θ0 = 1.05◦. In this paper, we analyze the symmetries of the CM and investigate the low energy flat band structure
in the entire moiré Brillouin zone near θ0. Instead of observing flat bands at only one “magic” angle, we notice
that the bands remain almost flat within a small range around θ0, where multiple topological transitions occur.
The topological transitions are caused by the creation and annihilation of Dirac points at either K, K′, or � points
or along the high symmetry lines in the moiré Brillouin zone. We trace the evolution of the Dirac points, which
are very sensitive to the twist angle, and find that there are several processes transporting Dirac points from � to
K and K′. At the � point, the lowest energy levels of the CM are doubly degenerate for some range of twisting
angle around θ0, suggesting that the physics is not described by any two-band model. Based on this observation,
we propose an effective six-band model (up to second order in quasimomentum) near the � point with the full
symmetries of the CM, which we argue is the minimal model that explains the motion of the Dirac points around
� as the twist angle is varied. By fitting the coefficients from the numerical results, we show that this six-band
model captures the important physics over a wide range of angles near the first “magic” angle.
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I. INTRODUCTION

Recently, the physics of twisted bilayer graphene (TBG)
has garnered substantial interest both experimentally and the-
oretically. For small twist angles a moiré pattern with a large
unit cell results. Theoretically, the band structure then be-
comes very strongly renormalized and sensitive to the precise
angle θ of rotation of one layer relative to the other [1]. At cer-
tain magic angles, the Dirac velocity of the bands near charge
neutrality is predicted to vanish [2], with the entire low energy
bands becoming exceptionally flat throughout the moiré Bril-
louin zone. Experimentally, the renormalization of electronic
structure by the twist has been observed through tunneling
measurements [3]. It is expected that flat bands promote
interaction-induced instabilities, when the bandwidth be-
comes comparable or smaller than the interaction energy. Re-
cently, when the filling is such that the Fermi level lies within
these flat bands, i.e., close to charge neutrality, correlated in-
sulating states [4,5] and superconductivity [6] were observed,
and similar insulators were observed in trilayers [7]. Also
new experimental results [8] have confirmed previously found
correlated states in TBG systems. Furthermore, they have
observed strong correlations at angles larger than the magic
angle range, when sufficient pressure is applied. All these
experimental studies have stimulated a large number of the-
oretical works attempting to explain these phenomena [9–25].

Here we take a step back and return to the electronic struc-
ture of the flat bands. Theoretically, a continuum description,

in which the states are derived primarily from the vicinity
of the Dirac points in each layer, is expected to apply when
the twist angle is small. Such a model was derived by Lopes
dos Santos et al. [1] and studied more intensely by Bistritzer
and Macdonald [2], who discovered the sequence of magic
angles. We will use the continuum model (CM) of these
authors in this paper. The CM has an infinite number of bands.
Many authors have sought to simplify further to construct low
energy effective models of the flat bands alone, i.e., containing
just two bands (or four if the valley degree of freedom is
counted). Such a theory should possess the correct symmetries
of TBG [16,26,27] and should be able to recover the real
space charge density distributions, which is seen to peak at the
moiré triangular sites [4]. In this regard, Wannier functions
for TBG have been studied by several authors [16,22,28] as
a preliminary step towards a tight binding model for the flat
bands. However, the expected symmetry and topology of these
flat bands impose obstructions to the use of Wannier functions
for a tight binding construction [26], to which one remedy is
to regard some of the symmetries as emergent ones at low
energy, rather than the symmetries of the bilayer system. Due
to these complications, finding a low energy noninteracting
model describing the bands with correct symmetries is still a
subject of intensive research.

The CM still provides a significant simplification com-
pared to a full microscopic treatment. Specifically, while a
tight binding description has two dimensionless parameters—
the ratio of the interlayer hopping to the intra-layer one,
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and the twist angle—the CM has only one nontrivial di-
mensionless parameter α, which is given by the ratio of the
interlayer hopping energy to the energy mismatch of the layers
due to the shift of the zone boundary wavevector caused by
the rotation. When both of the aforementioned microscopic
dimensionless parameters are small, the CM applies, and α

can still be arbitrary. We note that since the interlayer hopping
is essentially fixed physically, α ∼ 1/θ . Another significant
advantage of the CM is that within it, the angle (and hence α)
can be tuned continuously, while microscopically, the system
is only quasiperiodic in real space for all but a set of measure
zero of angles and hence has no true Brillouin zone. In the
CM the two microscopic Dirac valleys are decoupled and can
be treated independently. We will focus just on one valley,
the other being its time reversal partner. Within the CM, the
Dirac cones of the two layers reconstruct and form (sub)bands
which are periodic in the moiré Brillouin zone (we will use
BZ to abbreviate the moiré Brillouin zone). The low energy
physics near charge neutrality is governed by the two middle
bands, which touch at two effective Dirac cones at the corners
of the BZ (we denote these K and K′ points) for all values of
α. The Dirac velocity at these points vanishes for the sequence
of magic angles, and moreover, the width of the two middle
bands is very small in the vicinity of each of these magic
angles, i.e., for almost all the angles satisfying θ � 1◦. The
CM has been the starting point of many works, and the low
energy band dispersions in the BZ as a function of the twisting
angle θ have been studied in Ref. [6], but the resolution was
not fine enough to uncover the entire low energy physics.

In this paper, we study the low energy band structure of the
CM in a more careful manner. We find that the low energy
flat bands exist not only at the so-called first magic angle
for which α0 = 0.6051 but also within a finite range of α

around it. As we gradually vary α near α0, we observe that
(1) the middle two bands remain almost flat and (2) multiple
topological transitions occur in the middle two bands due
to the creation and annihilation of Dirac points (DPs) in the
entire BZ. Apart from the two DPs at K and K′ points which
persist at all α, DPs also appear at the � point (the center
of BZ) for specific α values and along the high symmetry
lines in the BZ for a range of α near α0. These DPs carry
vorticity (topological charge) and are topologically protected
by symmetries of the CM. Furthermore, they can only be
annihilated by fusing with the DPs of opposite vorticity.

We construct an effective model to better understand the
low energy physics in the vicinity of the � point, for α close
to α0. Notice that when 0.57524 < α < 0.6125, the middle
bands at � point are each twofold degenerate, implying that
the effective theory should be at least four dimensional instead
of two dimensional. Away from the above regime, the middle
two energy levels are no longer degenerate and carry a dif-
ferent representation of the symmetry group, which suggests
that the minimal model for the low energy physics at � is
six dimensional. We propose such a six-band model using
pure symmetry constraints. By including terms up to second
order in momentum, this model is capable of capturing the
correct number and location of DPs and the rich topological
transitions around α ∼ α0 predicted by the CM.

The locations and total number of these DPs are highly
sensitive to α. At some α < α0, twelve DPs emerge around

the � point, and as one increases α, six of those with positive
topological charge move towards K and K′ and cause the
Lifshitz transition at α0. As the value of α exceeds α0, these
twelve DPs continue to move around in the BZ, until α =
0.74, at which each one of the positively charged DPs annihi-
lates with one of the negative ones. For α > 0.74, one is again
left with only the two DPs at K and K′. The existence of a large
number of DPs forces the two bands to repeatedly approach
each other at many points in the BZ, which is potentially the
ultimate reason for the observation of the nearly flat bands
around the first magic angle.

The rest of the paper is organized as follows. In Sec. II, we
introduce the CM and analyze various symmetries satisfied by
this model. Then in Sec. III we numerically study how the DPs
in the middle two bands evolve as one changes α close to the
first magic angle. In particular, we discuss the trajectories of
the DPs in the BZ and assign them a vorticity by computing
their Berry phase. An effective model for momenta close to
K (and also K′) is also presented, which describes Lifshitz
transition at the first magic angle. In Sec. IV, we introduce
the effective six-band model mentioned above to linear and
quadratic order in momenta. By numerical fitting, we show
that the physics of the emergence of the twelve DPs near the �

point exhibited in the CM can be accurately captured by this
six band model. Finally, we discuss our results and possible
future directions in Sec. V.

II. CONTINUUM MODEL AND ITS SYMMETRIES

We use a slight reformulation of the CM as presented by
Bistritzer and Macdonald in Ref. [2]. In their work, a separate
momentum space origin was chosen for each layer (to coin-
cide with the layer’s DP). We prefer to use a common origin,
so momentum has the conventional meaning (see Fig. 1). A

(a)
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Q1 Q2

K

K

K

(b)

FIG. 1. The relevant Brillouin zones. (a) The Brillouin zone for
the top (bottom) single layer is shown by the big red (gray) hexagon.
The twist angle θ > 0 is labeled; the top layer is rotated by an angle
of −θ/2 and the bottom one with θ/2 in real space. The BZ of the
TBG system for the valley on the right is shown by the small black
hexagon bordering the single layer Brillouin zones; its zoomed-in
version is shown in (b), where the high symmetry points �, K, and
K′ are labeled. The moiré reciprocal lattice vectors Q1,2 are shown.
Notice that the K point with its other two equivalent points are
labeled by red dots and the K′ point with its equivalent points are
labeled by black dots. We further denote k = (0, 1) as the K̃ point.
In most of this paper, we will focus on the topological transitions
near � and K̃ points.
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layer-dependent unitary rotation of their Hamiltonian, written
in real space, accomplishes this, and produces the form con-
venient for our further analysis:

H (x) = −i

(
∇ − iτ z q0

2
+ iqh

)
· σ

+α τ+[α(x) + β(x)σ+ + γ (x)σ−] + H.c., (2.1)

where qh = (
√

3
2 , 0), and q0 = (0,−1) represents the shift of

one DP relative to another by the rotation, in units scaled
by the size of the rotation (see below). We use Pauli matrix
notations to address the layers—τ z = ±1 for the top and
bottom layers—and the sublattice σ z = ±1 for the A and B
sublattices. The tunneling part of the Hamiltonian (i.e., the
τ+ = 1

2 (τ x + iτ y ) term and its hermitian conjugate) contains
three functions

α(x) =
2∑

j=0

e−i Qj ·x, (2.2a)

β(x) =
2∑

j=0

e−i Qj ·xζ j , (2.2b)

γ (x) =
2∑

j=0

e−i Qj ·x ζ̄ j . (2.2c)

Here ζ = e2πi/3, Q0 = (0, 0), Q1 = √
3(− 1

2 ,
√

3
2 ), and

Q2 = √
3( 1

2 ,
√

3
2 ) are the reciprocal lattice vectors for the

BZ (see Fig. 1). Note that we have conducted a real space
rescaling x → x/kθ so that units are chosen proportionally
to the size of the moiré unit cell. Energy is measured in
units of vkθ , which absorbs the Dirac velocity v. The angle
dependence is now subsumed into the parameter α = w

vkθ
,

where kθ = 4π

3
√

3a
θ (θ is assumed small) is the displacement

between the K points of the Brillouin zones of the two
layers, a is the spacing between two nearest carbon atoms
in a monolayer graphene, and w is the tunneling strength in
Bistritzer and MacDonald’s original notation. Note that while
θ is the only physically tunable parameter, the rescaled model
(2.1) depends on θ only through the explicit dependence on
α, which is inversely proportional to θ . We remark that in
the Dirac term in (2.1) the sublattice matrices σ in principle
should be rotated by −θ/2 for the top layer and +θ/2 for
the bottom layer, in response to the real space graphene layer
twist (see Appendix A). However, this angular dependence
in the Dirac term was shown to be negligible in Ref. [2], as
θ is a small number of order ∼1◦ ∼ 0.02; since the effect of
this rotation is perturbative, we will neglect it in this paper.
For a discussion of the effects of including this correction
see Sec. V.

For a complete low energy description of a TBG system
one needs to consider the physics given close to both of the
two distinct valleys; however, as we mentioned earlier, in the
small angle limit the coupling between the two valleys is
negligible. Thus one needs to consider two decoupled copies
of the Hamiltonian given in (2.1) (one of them with slight
modifications, see Appendix A). As a result of all this, we
will focus on one of the valleys throughout this work. Note

that within our settings the energy bands for the other valley
will be given by rigid transformations of the present ones.

The CM is manifestly periodic, and so we can apply
Bloch’s theorem. Writing Hk = e−ik·xHeik·x , where k is the
quasimomentum defined in the BZ, we have

Hk(x) = −i

(
∇ − iτ z q0

2
+ iqh + ik

)
· σ

+α τ+(α(x) + β(x)σ+ + γ (x)σ−) + H.c. (2.3)

The CM is simple in the sense that it is a noninteracting model
with only one tuning parameter, α, however the physics it
exhibits is far from being understood. Of particular interest
is the flat band physics at specific values of α: at α =
0.605, 1.2, . . ., where the Fermi velocity is renormalized to
zero. A first step in understanding this is a symmetry study of
the CM.

This model has five explicit symmetries:
(i) Translation symmetry in real space:

Hk(x + r i ) = Hk(x), i = 1, 2, (2.4)

where r1 = 4π
3 (−

√
3

2 , 1
2 ), r2 = 4π

3 (
√

3
2 , 1

2 ) are the moiré lattice
vectors. Dual to this, we have a k space translation symmetry
along Q1, Q2 directions:

U
†
Ti

(x)Hk+ Qi
(x)UTi

(x) = Hk(x), i = 1, 2, (2.5)

where UTi
= e−i Qi ·x . Unlike the real space translation sym-

metry, the momentum space translation is not a physical sym-
metry since it is a direct consequence of the Bloch theorem.
Note that although formally we have eiq·xHk+q (x)e−iq·x =
Hk(x) for any momentum q, the fact that Hk(x) is a Bloch
Hamiltonian only allows a periodic UTi

(x) in real space, i.e.,
q = n1 Q1 + n2 Q2.

(ii) C3 rotation symmetry around origin (an AA point, see
Appendix A for the geometry of TBG) in real space:

U
†
C3

(x)HC3(k)(C3(x))UC3
(x) = Hk(x), (2.6)

where C3 is the counterclockwise 2π/3 rotation, and
UC3 (x) = ei 2π

3 σ z

ei Q1·xP+ei2qh·x , where P+ = 1+τ z

2 . Note that
C3 rotates real space x and quasimomentum k in the same
way. The k translation symmetry and C3 rotation together
allow for a new C ′

3 rotation symmetry around the rotation
center K and K′, a fact that will be used in the K point
representation analysis.

(iii) Mirror symmetry along the x = 0 line My : (x, y) →
(x,−y), (kx, ky ) → (kx,−ky ):

U
†
My

HMy (k)(My (x))UMy
= Hk(x), (2.7)

where UMy
= σxτ x .

(iv) Composition of a C2 rotation and time reversal T :

U
†
C2T H ∗

k (−x)UC2T = Hk(x), (2.8)

where UC2T = σx and the C2T symmetry is defined by
UC2T K. Note that the full TBG system has both C2 rotation
symmetry and time reversal symmetry T separately. However,
each of these symmetry transformations maps the two valleys
into each other (see Appendix A). Since we are focusing on
one of the valleys here, we need to consider the composition of
the two transformations to stay within the space of one valley.
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(v) Particle-hole symmetry C:

U
†
phH(−kx ,ky )((−x, y))Uph = −Hk(x), (2.9)

where Uph = σxτ ze2iqh·x . The particle-hole symmetry
emerges only in the small θ approximation: It is an artifact of
the CM in which the θ rotation for the sublattice matrices in
the Dirac term is neglected. Since the numerical value of θ

is very small (∼0.02), the particle-hole symmetry introduced
above remains a good approximate symmetry. If on the
other hand this θ rotation is retained in the Hamiltonian,
it introduces a small asymmetry between the particle and
hole bands and slightly modifies the low energy topological
transitions (see the subsequent sections and especially
Sec. V).
All the four point-group symmetries introduced here act on-
site at the � point in the k space (see Fig. 1), making this
point have the highest symmetry. Before analyzing the rich
physics exhibited at this point, let us first look at the K point
(and the physics at K′ is ensured to be the same by the mirror
symmetry My).

Three out of the four symmetries map K to K: C ′
3, C2T ,

and particle-hole symmetry C. The most prominent feature
of the K point is that it remains gapless for all values of α

with a Dirac-like dispersion at its vicinity. While there is no
algebraic proof for the persistence of zero energy states, a
topological and group-theoretical argument has been given in
Ref. [16], and a low energy effective model has been proposed
to understand the Dirac-like dispersion and the “trigonal
warping” [4].

We can use the symmetry and representation analysis to
better understand the degeneracies. Since all the irreducible
representations (irreps) are one dimensional, at the K point
we can diagonalize the action of C3 to get an eigenstate of C3:
call it �. Under C3 rotation, we have

�(x) → UK,C3 (x)�(C3(x)) = eiϕ�(x), (2.10)

where ϕ is some global phase. Noting that (C3)3 = 1 we must
have e3iϕ = 1, ϕ = 2πn

3 , n = 0,±1. Then, the state C2T �

transforms under C3 as

UC2T �∗(−x) → UK,C3 (x)UC2T �∗(−C3(x))

= UC2T U ∗
K,C3

(−x)�∗(C3(−x))

= e−iϕ UC2T �∗(−x). (2.11)

This shows that � ′ = UC2T �∗(−x) is an eigenstate of C3

with opposite ϕ. Furthermore, if one zero mode has C3 rota-
tion value n = 1, then C2T symmetry ensures the existence
of another zero mode with n = −1. The two states form
a two-dimensional irrep of the group 〈C3, C2T 〉 ∼= D3. The
two-dimensional irrep has indeed been confirmed in numerics,
see next section.

III. NUMERICAL SOLUTION

A. The Lifshitz transition at K and K′ points

In this subsection, we investigate the middle two bands
(flat bands close to E = 0) around the K or K′ point (and the
other equivalent points shown in Fig. 1). As discussed in the
previous section, at these points, the middle two eigenvalues

-0.1 0 0.1
-0.1

0

0.1
α =0.6

1.1

 0.9

1.0ky

kx

(a)

-0.1 0 0.1
-0.1

0

0.1
α =0.61

1.1

 0.9

1.0ky

kx

(b)

(c) (d)

FIG. 2. The Lifshitz transition in the vicinity of the first magic
angle α0. (a) At α = 0.6, there is one DP with negative topological
charge at the K̃ point (the blue dot, which is equivalent to the K
point) surrounded by three DPs with positive topological charge
(red dots). (b) Location and topological charge of DPs at α = 0.61.
(c) The quadratic band touching at the K̃ point for α = α0 = 0.6051.
(d) The energy difference between lowest two bands along the ky

direction for various α at kx = 0. In panels (a) and (b), arrows show
the motion of DPs as α is increased. The DPs meet at the K̃ point
when α = α0.

are twofold degenerate and are always equal to zero due to the
particle-hole symmetry. We focus on the K̃ point here, defined
in Fig. 1, for the ease of notation. At the first magic angle
α0 = 0.6051, near K̃, the spectrum has a quadratic dispersion
and can be described by a quadratic band touching (QBT)
model with Berry phase 2π ,

HQBT ∝
(

0 k2
+

k2
− 0

)
, (3.1)

where k± = kx ± iky , and k shows the quasimomentum devi-
ation from the K̃ point. Away from α0, this quadratic band
touching point breaks into four DPs. This is the so-called
trigonal warping (see Fig. 2) in which one DP with nega-
tive topological charge sitting at the K̃ point is surrounded
by another three DPs with positive topological charge (see
Appendix B for the discussion of topological charge). The
effective Hamiltonian can be considered as H = HQBT +
HDirac, i.e.,

H = (vkx + 2akxky )μ1 + (
vky + a

[
k2
x − k2

y

])
μ2, (3.2)

where μ1,2 are Pauli matrices. This Hamiltonian satisfies all
three symmetries of K̃, i.e., C3, C2T , and C, discussed in the
previous section. Note that a is the curvature of the quadratic
band and v/a determines the distance of the three DPs from
the K̃ point. The Lifshitz transition occurs at v = 0, at which
the Hamiltonian becomes HQBT.
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α = 0.5689, Δkx = Δky = 0.4

α = 0.577, Δkx = Δky = 0.02

α = 0.5405, Δkx = Δky = 0.8

α = 0.5695,Δkx = Δky = 0.2
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-0.2

0

0.2
α =0.568

-0.2 0 0.2
-0.2

0

0.2
α =0.5689

-0.2 0 0.2
-0.2

0

0.2
α =0.56935
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0.1

-0.01 0 0.01
-0.01

0

0.01

-0.1 0 0.1
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0
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-0.01 0 0.01
-0.01
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0.01
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-0.4

0

0.4
α =0.5405

α = 0.54 α = 0.56895

α2 = 0.57524α1 = 0.56945

α = 0.5695 α = 0.56985 α = 0.5751 α = 0.577

FIG. 3. The evolution of the DPs around the � point (the center of the eight plots) as we vary α. The red dot is the DP with positive charge
(+1/2 vorticity) while the blue dot is the DP with negative charge (−1/2 vorticity).

Having understood the physics around K and K′ points,
we may ask one question: Are there other DPs in the BZ?
Since the total topological charge should be conserved, the
appearance of three DPs around K and K′ points suggests that
there should be other DPs in the BZ if these two bands are
separated from other bands. This motivates us to study the
moiré band structure of the entire BZ, which is the subject of
the next subsection.

B. The numerics of the Dirac points

In this subsection, we are going to explore the structure
of the DPs of the middle two bands in the entire BZ in the
vicinity of α0. We present the numerical results in Fig. 3.
When α < 0.54, there are only two DPs at K and K′ points.
At α = 0.54, we notice that six band touching points occur
around the � point (the center of BZ) with quadratic disper-
sion (see Fig. 3). As we increase α, each of them splits into
two DPs with opposite topological charges. These two DPs
annihilate again at α = 0.56895 and for α > 0.56895, a small
gap forms near the � point.

This small gap closes at α = 0.56945, where the two
bands touch at the � point with quadratic dispersion. Upon
further increasing α, we find that there are twelve DPs with
alternating topological charge at angles (with respect to the
kx axis) 2πn/12 (n = 0, 1, . . . 11) surrounding the � point.
As α increases, the six DPs with positive charge at even n

move away from the � point. Notice that these six DPs are
not pinned to zero energy. Three DPs with n = 0, 4, 8 (related
with C3 symmetry) are at E = ε > 0 and the other three are
particle-hole pairs of them at E = −ε < 0. If we increase α,

these six DPs move towards the K and K′ points. In Fig. 4,
we explicitly demonstrate the trajectory of the DPs that move
along the high symmetry line with the angle π/3 [29]. It
involves three steps:

(1) The DP moves along the π/3 direction towards the
boundary of the BZ.

(2) The DP combines with another DP from the neighbor-
ing BZ at the boundary (M point of the BZ) and they fuse into
a QBT.

(3) This QBT splits into two DPs moving in the opposite
directions along the boundary. Eventually, they move towards
K and K′ points and cause the Lifshitz transition over there
at α0.

The other six DPs with negative charge remain close to
the � point and are pinned to zero energy due to particle-hole
symmetry. Two of them are located along the ±ky direction
with kx = 0 and the other four are C3 rotation counterparts. At
α = 0.57524, these six DPs combine at the � point, forming
a very sharp band touching point, involving the middle four
bands. As we further increase α, we again find six DPs sur-
rounding the � point along the same directions. At α = 0.74,
these six DPs eventually annihilate with the other six DPs at
six points located on the high symmetry lines connecting �

point to K, K′ and the other equivalent points.
To better understand the physics around the � point, we

plot the energy levels at the � point as a function of α in
Fig. 5. We find that the energy is only equal to zero at two α’s
and denote them as α1 = 0.56945 and α2 = 0.57524, which
is also consistent with the result presented in Fig. 3. The
zero crossing at α1 is a crossing of nondegenerate levels,
while the crossing at α2 = 0.57254 is a crossing of twofold
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1
2

3

FIG. 4. The schematics of DPs around the � point. The blue
diamonds denote the � point and two other equivalent points. The
red dots represent the DPs with positive charge and blue dots are
the DPs with negative charge. The six blue dots are always at zero
energy, while the six red dots are not necessarily at zero energy since
none of them are along the kx = 0 axis (or C3 equivalent directions).
However, as they move towards the boundary (gray dots) and further
move along the boundary (open circles), they approach zero energy.
The arrows denote the motion of DPs as we increase α.

degenerate levels. Moreover, we find that when α ∈
[0.5, 0.75], the lowest six levels are well separated from the
higher levels [with an energy gap of O(1)]. This motivates us
to construct an effective six band Hamiltonian to explain the
rich physics around the � point.

Before moving on to the next section, let us mention that
six points of accidental crossings of the two middle bands also
appear when α is very close to α2 on both sides of it. These

FIG. 5. The six energy levels closest to E = 0 at the � point as a
function of α. The numbers 1 and 2 denote the degeneracy. When
α < α1 = 0.56945 and α > 0.6125, the levels closest to zero are
nondegenerate and the higher energy levels are twofold degenerate.
The zero crossing at α1 = 0.56945 is a crossing of nondegenerate
levels, while the crossing at α2 = 0.57524 is a crossing of twofold
degenerate levels.

six nodes are along ±kx directions and the other C3 equivalent
directions and one finds out that they are topologically trivial
if one computes the Berry phase associated with them. As α

gets very close to α2 from either higher or lower values, one
observes that these crossing points also get very close to the
� point. Please note that these accidental nodes are not shown
in Fig. 3.

IV. SIX BAND MODEL

In this section, we construct a six-band model which
describes the low energy behavior around the � point over the
parameter range α ∈ (0.568, 0.578), including both values α1

and α2.

A. Symmetry and representation analysis

The � point is invariant under all the four symmetry
operators: C3, My, C2T , and C. The six lowest bands form
a representation of the group generated by these symmetries;
we use this fact to construct an effective Hamiltonian.

The C3 and My symmetry operators generate a six-
dimensional group isomorphic to the dihedral group D3

and hence have both one- and two-dimensional irreps. The
particle-hole symmetry C further maps a +ε state to a −ε

state, doubling the representation dimension. This is consis-
tent with the degeneracies seen in the spectrum in Fig. 5,
suggesting that the six lowest energy levels at � are a direct
sum of a two-dimensional irrep and a four-dimensional irrep.
The symmetries act on these irreps in the form of the matrices
shown in Table I, which have been verified numerically upon
proper choice of basis.

One can then use these symmetry actions to write down
the most general forms of effective models for the two irreps,
respectively, which are expected to be valid in the vicinity of
the � point. Up to second order, they are given by

H4 = � τ z + v k · σ + (d1k
2 + d2(k2

+σ+ + k2
−σ−))τ z

+ id3(k2
+σ+ − k2

−σ−)τ x + O(k3),

H2 = (δ + b1k
2)μz, (4.1)

where H4 and H2 correspond to the 4D and 2D irreps, respec-
tively, and k± = kx ± iky .

In order to capture the low energy physics in the vicinity
of �, and in particular, the transitions at α1 and α2, we need a
description of the lowest six bands altogether by combining
H4 and H2 to form a six-band Hamiltonian. In doing so,
cross coupling terms H42 are possible and should be included

TABLE I. Action of the symmetries C3, My, C2T , and C on the
two-dimensional and the four-dimensional irreps of the lowest six
bands upon proper choice of basis.

Action Action Action
Symmetry on 2D irrep on 4D irrep on k

C3 1 e
2π
3 iσ z

k → C3(k)
My μz τ zσ x (kx, ky ) → (kx, −ky )
C2T K σ xK k → k
C μx τxσ x (kx, ky ) → (−kx, ky )
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(a) (b)

(c) (d)

FIG. 6. The comparison of energy spectrums between six-band
model at linear order and numerical solution of the CM around the
� point. The solid lines are the numerical data and the dashed lines
are the results of the six-band model. In all of the plots, ky is fixed
to be zero. (a) is the energy spectrum at α1 = 0.56945 along the
kx direction. The middle two bands are very flat and have energy
close to zero. (b) is the zoomed-in structure of the two middle bands
in a smaller range of kx . These two bands touch at kx = 0 and
have quadratic dispersion around it. (c) is the energy spectrum at
α2 = 0.57524 along the kx direction. The middle four bands form
two Dirac cones around the � point with the same velocity as is
seen in (d). However they show deviations for larger values of |k|;
interestingly for |k| > 0.1, the two middle bands are very flat with
energy close to zero.

according to symmetry analysis. Since at the � point the two
irreps decouple, H42 must vanish for k = 0, and to linear
order, one has

H42 =

⎛
⎜⎜⎝

g1k+ ig2k+
g1k− −ig2k−

−ig2k+ g1k+
ig2k− g1k−

⎞
⎟⎟⎠. (4.2)

Combining all these terms listed above, we can write down
the six-band Hamiltonian,

H6 =
(

H4 H42

H24 H2

)
, (4.3)

where H24 = H
†
42. One can then fit this effective model to the

CM order by order, which will be the subject of the following
subsections.

Let us examine the six band model above qualitatively
around α = α1 and α = α2. In H4, when � = 0, the gap
vanishes and there are two DPs at k = 0 with the same
velocity; this corresponds to the transition at α2 (see Fig. 6).
The higher order corrections (coming from H4 itself and H42

coupling) become more important as we move away from the

� point and therefore result in deviations between these two
cones.

δ = 0, on the other hand, corresponds to a quadratic touch-
ing of the two bands, and thus we expect δ close to zero to
explain the transition at α = α1 (see Fig. 6). Indeed, one can
derive an effective two-band Hamiltonian from the above six
band model via a Schrieffer-Wolf transformation which will
result in the following form for the effective Hamiltonian (see
Appendix C 1 for details and derivation):

H eff
2 = c0 Re(k3

+) + (δ + c3,2 k2 + c3,6 Re(k6
+))μz

+ c1,6 Im(k6
+) μx, (4.4)

where terms up to sixth order are kept and only the lowest
order for each angular-pseudospin dependence is shown here.
Note that the c coefficients can be written in terms of the bare
coefficients of the original model (Appendix C 1). This form
can also be derived from symmetry considerations.

The above effective two-band Hamiltonian is capable of
explaining how twelve DPs emerge from the � point at
α = α1. To see this note that for δ = 0, there is a quadratic
band touching at k = 0, and for small nonzero δ there is the
possibility that DPs are present close to � if δ + c3,2 k2 =
c1,6 Im(k6

+) = 0, neglecting the c3,6 Re(k6
+) term. This can

only happen if δ and c3,2 have opposite signs, which indeed
happens for α > α1 (see next subsections and Appendix C 1).
Furthermore, one needs to consider the twelve directions
given by the angles θk = arctan(kx/ky ) = n(2π/12), n =
0, 1, . . . , 11, in order for the Im(k6

+) term to vanish. Note
that this results in twelve DPs along these directions with
alternating positive and negative vorticities. The presence of
the term c0 Re(k3

+) finally indicates that the DPs along ±kx

and their C3 counterparts are not pinned to zero energy.

B. Six-band model at linear order

In this subsection, we study the six-band model at linear
order in quasimomentum and compare the results with the
CM around the � point in order to fix the coefficients in the
effective model. At this order, we have H4 = � τ z + v k ·
σ , H2 = δ μz, and H42 as in Eq. (4.2). � and δ determine
the gaps at k = 0. If we tune δ to zero with � > 0, we
have twofold degeneracy at zero energy at k = 0. Around
this point, the energy of the middle two bands are equal
to ±2[(g2

2 − g2
1 )/�]k2 due to the H42 coupling terms. In

contrast, if we take � = 0 and δ > 0, we have two Dirac cones
around k = 0 with the same velocity v. As we move away
from the k = 0 point, the hybridization with H2 induces the
splitting between lower and upper bands. We will show below
that these two scenarios correspond to α = α1 and α = α2,
respectively.

The parameters in the effective model can be evaluated by
comparing to the numerical results very close to the � point.
As the first step, we determine δ and �, which show the value
of the energy exactly at the � point. As seen in Fig. 5, both
δ and � behave linearly around α1 and α2. Since δ vanishes
at α1 and � vanishes at α2, we have � = S (α2 − α) and δ =
s (α − α1), where s = 1.13 and S = 1.29.

For the rest of the parameters, we expect them to be
smooth functions of α so that they can be expressed as Taylor
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(a) (b)

(c) (d)

FIG. 7. The comparison of �E of the middle two bands between
the six-band model at linear order and numerical data from CM along
kx and ky directions. The solid lines are the numerical data and the
dashed lines are the results from the six-band model. (a) is the result
around α1 = 0.56945 along the kx direction with fixed ky = 0. (b) is
the result along the ky direction with fixed kx = 0. (c) is the result
around α2 = 0.57524 along the kx direction with fixed ky = 0. (d) is
the result along the ky direction with fixed kx = 0.

series around α1 (or α2). In the regime of small enough k’s
(with only linear k terms in the expansion of the effective
mode), one is able to derive expressions for the energy of
the six bands and compare them with the numerical results.
For the range of α we are interested in, we find that the
band structure can be reproduced by the effective model if we
simply treat all coefficients other than δ and � as constants.
Numerically, we find the coefficients of linear order terms to
be: v = 0.263, g2 = 0.339, and g1 = g2 + 0.00146. Note that
we have not attempted to derive the errors corresponding to
the above values. Details on how these parameters are derived
can be found in Appendix C 2.

In Fig. 6, we compute the six bands closest to zero energy
in the CM and compare them with the six-band model. At
α = α1, we see that the middle two bands are well separated
from the rest of the four bands and that there is a very good
agreement between the computed middle two bands and the
effective model, when kx ∈ [−0.015, 0.015]. The quadratic
dispersion of these two bands around the � point is caused
by the coupling with the other four bands. On the other hand,
at α = α2, those other four bands have lower energy and form
two Dirac cones in the vicinity of the � point with the same
velocity v. Here, again the agreement is very good within the
interval mentioned above.

In Fig. 7, we present �E = E+ − E− of the middle two
bands for various values of α and compare them with the
six-band model. The results agree for |k| � 0.02 in different
plots, however, we notice qualitative deviations at larger mo-
mentum. At α = α1, the CM results show a k2 behavior for
larger |k|, though with a different coefficient than the similar

k2 behavior that occurs for very small |k|. In contrast, in the
effective model, �E saturates to some constant in both kx, ky

directions and therefore cannot reproduce the correct physics
at large momenta.

With all this said, we should note that the six-band model
up to linear order in k provides a faithful approximation
of the band structure for |k| � 0.02 as long as α is close
enough to α1 and α2. The discrepancy beyond this regime
can be resolved by considering the quadratic corrections in
the effective Hamiltonian, which is the subject of the next
subsection.

C. Quadratic correction

In this subsection, we study the effects of quadratic cor-
rections in the effective model. The effective six-band model
up to second order in k now contains H2 and H4 as given in
Eq. (4.1), along with H42 as in Eq. (4.2).

Our goal, similar to what was done in the previous subsec-
tion, is to find the coefficients in the second order effective
Hamiltonian by fitting to well-chosen combinations of ener-
gies in the CM. In particular, we use the information from the
second quadratic behavior discussed above in determining the
coefficients. We show in Appendix C 2 how the following set
of coefficients are derived:

v = 0.263, g2 = 0.339, g1 − g2 = 0.00130,

b1 = −0.0289, d1 = 0, d2 = −0.0106 d3 = 0. (4.5)

As one can see, the values found above for the linear coeffi-
cients are slightly different from those found when only linear
terms were taken into account.

Figure 8 shows a comparison between these results and the
CM, where the two middle energy bands are plotted when k
lies in the ky or kx direction; it is evident that the agreement
between the two results has now expanded to a much wider
interval around the � point, for a variety of α’s chosen close
to α1. Notice that around α2, we observe similar improvement
as we include second order terms, however, since the number
and location of the six DPs are already correctly described by
the six-band model at linear order, we focus on α near α1 in
this subsection.

It is now worthwhile to discuss the location of the DPs
of the two middle bands and see how they are captured by
the effective six-band model with quadratic correction. First,
when α is slightly larger than α1, twelve DPs emerge from
the � point as shown in Fig. 3. This emergence of the DPs
is captured by the effective model even at the linear level.
However, as we increase α further, the DPs along the ±kx

direction and their C3 counterparts start to move apart from
the � point (Fig. 3) and cannot be captured by the six-band
model at the linear order. Thus, in order to reproduce these
six moving DPs in the effective Hamiltonian, the quadratic
corrections are required (see Fig. 8). In contrast, the linear-
order effective Hamiltonian is sufficient to reproduce the other
six almost stationary DPs along the ±y direction and their
C3 counterparts over the parameter range α1 � α � α2 and
even beyond; the reason is that these DPs always stay close
to � (recall Fig. 3). Also, the effective model replicates the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. The energy of the middle two bands closest to zero energy along the ky or kx directions at various α values (near α1 = 0.56945).
The solid lines are the numerical data and the dashed lines are the results from the six-band model with quadratic correction. In (a)–(f),
kx is fixed to be zero, while in (g)–(i), ky is fixed to be zero.

accidental nontopological crossings along ±kx and the C3

equivalent directions at values of α very close to α2.
The inclusion of the second order term in the effective

Hamiltonian is also crucial for describing the band structure
in the parameter range α < α1 (upper panel of Fig. 3): As α

is decreased below α1, the DPs first disappear and a small gap
forms between these two bands (Fig. 8). At α = 0.56895, the
gap closes and these two bands touch quadratically along the
±ky and the other C3 equivalent directions (Fig. 8). If α is
decreased further, twelve DPs emerge along the ±ky and its
C3 equivalent directions (Fig. 8). Note that there is no band
touching along the ±kx (and its C3 equivalent directions) in
this regime (Fig. 8). Based on the above analysis, we observe
that adding the quadratic terms to the effective Hamiltonian
lets us reproduce most features of the CM within a larger
window of momenta |k| � 0.2 around � over the range of
interest of α.

V. CONCLUSION AND OUTLOOK

In summary, we have presented a comprehensive study of
the CM of twisted bilayer graphene, focusing on how the
middle two bands in this model (the celebrated “flat bands”)
evolve upon changing the twist angle around the first magic

angle. We have found that close to the first magic angle,
there is actually a range of α in which two bands are nearly
flat. Multiple topological transitions occur in the BZ over this
range of α.

As a first step, we discussed the Lifshitz transitions at K
and K′ points around α = α0 = 0.6051, which is denoted as
the “first magic angle” in the literature. We have shown that
there is always a twofold degeneracy at K and K′ points due to
C2T and C3 symmetries, and it is locked to zero energy by the
particle-hole symmetry. At α = α0, the two middle bands of
the CM touch quadratically at K and K′ points. As we move
away from α0, each of these quadratic band touching points
breaks into four DPs, with one DP always at the K or K′ point
surrounded by three DPs with opposite topological charge. We
kept track of the motion of these three DPs and found that they
all originate from the � point, which is the highest symmetry
point in the BZ.

This finding motivates us to study the band structure in
the vicinity of the � point in detail. We noticed that the
band structure near the � point is rather complicated and
is very sensitive to small changes in α. Roughly speaking,
for a given α slightly smaller than α0, twelve DPs emerge
from the � point; six of them with the same positive charge
move to the K and K′ points as α is increased and lead to
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the Lifshitz transition at α0. The other six with the negative
charge stay close to the � point; at α = 0.74 > α0, these six
DPs are annihilated with the other six positively charged DPs
somewhere close to the K or K′ points; this leaves behind the
only two DPs at K and K′.

To better understand the rich physics of the topological
transitions near the � point, we proposed an effective six-band
model which incorporates all the symmetries satisfied at �.
We demonstrated that when its parameters are carefully tuned
with reference to the solution of the CM, this six-band model
is capable of capturing the essential physics that happens close
to the � point for the range of α we are interested in. In
particular, the six-band model, which includes both linear and
second order terms in quasimomentum k, predicts the correct
number and locations of DPs. This effective six-band model
is much simpler than the CM and can be a starting point to
study strongly correlated phenomena as we add four fermion
interactions.

One interesting question to ask is: Why are the bands so
flat near the magic angles? One possible answer is that there
are in fact many DPs required to exist near these angles,
and this fact forces the two bands to repeatedly approach
each other at many points in the BZ. To better illustrate
this point, we further studied the band structure near the
second and third magic angles (results are not shown in this
paper) and we observed that very similar physics, although
not identical, happens over there. The Lifshitz transitions at
the K and K′ points are still the same, while the topological
transitions around the � point involve more DPs and are more
complicated.

One potential future research direction is to study modified
versions of the CM in which some of the symmetries are
broken. The CM is a highly symmetric model; the much
more complicated experimental TBG system, however, is not
expected to preserve all the symmetries of the CM. As a better
simulation of the real system, it would be interesting to carry
out the stability analysis of the DPs upon including symmetry
breaking terms in the CM from physical considerations. For
instance, particle-hole symmetry of the CM is broken by
various effects: It is artificial and its breaking allows DPs to
move away from zero energy. We have remarked that the θ

rotation for the sublattice matrices in the Dirac term breaks
this symmetry; it would be interesting to study how this modi-
fies topological transitions discussed in this work. Preliminary
results indicate that adding the θ rotation will result in some
modifications indeed: First, the second gapless point at �,
namely the one that occurs at α = α2, disappears. However,
one can check that the � point transition at α = α1 and the
transitions at K and K′ points at α = α0 are all preserved.
The DP transfers sketched in Fig. 4 are still qualitatively true,
although altered slightly in details. We will present a thorough
study of these effects in a future work.

Another very important process is the lattice relaxation
[30] of the two layers of graphene, which is not taken into
account in the CM, while it can be the dominant source of
particle-hole symmetry breaking. In short, the in-plane relax-
ation process leads to a deformed lattice with larger AB/BA
stacking regions, since the AB/BA stackings are more ener-
getically favored. It is worth studying the topological phase
transitions in the presence of lattice relaxation and examining

the strongly correlated physics including this effect. Further-
more, the out-of-plane lattice relaxation can also significantly
modify the low energy bands, for instance it can increase the
gap between the middle and the higher bands, which can lead
to a more experimentally relevant regime. A systematic study
of the CM in the presence of lattice relaxations can be the
subject of a future work.

Note added. Recently, another paper [31] studied the topo-
logical transitions and representation of the low energy bands
of the CM, which is consistent with our work.
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APPENDIX A: GEOMETRY OF TWISTED
BILAYER GRAPHENE

A single-layer graphene is a 2D honeycomb lattice of
carbon atoms. Its periodic unit belongs to the triangular type,
with a unit cell consisting of two atoms which we call A

and B. The twisted bilayer graphene (TBG) is one layer
of graphene sitting on top of the other, whose difference in
orientations is parameterized by an angle θ . When θ is small,
the TBG system forms long interference patterns which are
called moiré patterns. While there are no unit cells for a
generic θ , the TBG exhibits an m × n enlarged unit cell at
specific value of θ given by cos θ = m2+4mn+m2

2(m2+mn+n2 ) [1], where
m, n are arbitrary positive integers, and the corresponding θ is
called a commensurate angle (see Fig. 9).

The continuum model (2.1) introduced in the main text
is a low energy model applicable to both commensurate and
incommensurate cases. A more general form of this model
writes

Hξ (x) = −i R

(
τ zθ

2

)(
∇ + iξ

(
qh − τ z q0

2

))
· (ξσ x, σ y )

+α τ+[α(x) + β(x)σ+ + γ (x)σ−] + H.c.,

(A1)

where ξ = ±1 labels the two inequivalent valleys, and R(θ )
is the standard 2D rotation matrix that rotates the momenta
by θ in the plane, in response to the real space twist be-
tween graphene layers. Note that one needs to use ξ Qi and
ζ ξ instead of Qi and ζ in the definitions of α(x), etc. At
small angles in TBG the physics near the ξ = ±1 valleys
are decoupled from each other, however, either a C2 rotation
or a time reversal transformation T maps one into the other.
Furthermore note that the rotation of the momenta introduced
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ABAB

AB

BA

BA BA

FIG. 9. Illustration of twisted bilayer graphene system in real
space. The small twist angle θ has a commensurate value θ =
arccos 253

254 � 0.0888, with (m, n) = (6, 7) (see main text for the
definition of commensurate angle, m and n). Red (gray) is for the top
(bottom) layer. The origin is chosen at an AA region center (perfect
AA stacking point). The AB and BA regions closest to the origin are
labeled. Further AA stacking points are shown in black dots.

above by the rotation matrix R is equivalent to a rotation of
the sublattice sigma matrices instead; in the main text we have
addressed this point by the rotation of the sublattice matrices
in the Dirac term. The main text has chosen to focus only on
ξ = 1 and neglected the small θ rotation for the momentum.

APPENDIX B: TOPOLOGICAL CHARGE
OF SINGULAR POINT

In this Appendix, we describe the numerical method to
compute the vorticity (topological charge) of a singular point
in the band structure, such as a Dirac point. We follow the
method introduced in Ref. [32].

The topological charge around a singular point is defined
as a contour integral around this point

N = 1

2π

∮
C

A · dl = 1

2π

∫
�

B · n̂dS, (B1)

where the Berry connection Aj is given in terms of a deriva-
tive

Aj = −i〈ψ (k)|∂j |ψ (k)〉 (B2)

and Berry curvature is defined in terms of a second derivative,
i.e., B = ∂iAj − ∂jAi . For DP, the topological charge can
take the values N = ±1/2. The Berry curvature is zero except
at the DP, where B diverges to either ∞ or −∞.

To resolve the divergence of Berry curvature at the band
crossing point, we use the lattice Berry curvature introduced
in Ref. [32]. In the case of a singly occupied band, the single-
particle Berry curvature is given by

B� = i log U1(k�)U2(k� + δx )U1(k� + δy )−1U2(k�)−1,

(B3)

where k = (kx, ky ) is defined in the first Brillouin zone. Uμ is
the Berry connection and is given by

Uμ(k�) = 〈u(k�)|u(k� + δμ)〉
|〈u(k�)|u(k� + δμ)〉| , (B4)

where |u(k�)〉 is the Bloch function of the occupied state,
i.e., eigenstate of the Hamiltonian in momentum space
h(k) |u(k�)〉 = εk |u(k�)〉.

If there are N occupied bands, then the connection is given
by

Uμ(k�) = Detmn[〈um(k�)|un(k� + δμ)〉]
|Detmn[〈um(k�)|un(k� + δμ)〉]| , (B5)

where |un(k�)〉 is the nth occupied state at momentum k�. A
proof of the above formula follows from the anticommutation
relation of fermion operators and the Wick’s theorem. In this
paper, we use the above formula to study the topological
charge of band crossing points in the flat band in the vicinity
of the first magic angle.

Moiré lattice

Here we first show that in the Bistritzer-Macdonald’s
model [2], C2T symmetry forces the Berry curvature to be
zero except at band crossing points. Let us begin with the
definition of the Berry curvature at point k,

B(k) = iεij ∂i 〈u(k)|∂j |u(k)〉 , (B6)

where ∂j := ∂/∂kj .
We now look at the Berry curvature of the transformed state

|ũ(k)〉 = C2T |u(k)〉 = UC2T |u(k)〉∗ , (B7)

where UC2T = σx is the unitary part of the transformation and
the asterisk means complex conjugation. Note that C2T sends
k → k, unlike pure T . We have

B(k) = iεij ∂i 〈u(k)|(C2T )−1(C2T )∂j |u(k)〉
= iεij ∂i

∗ 〈u(k)|U †
C2T ∂jUC2T |u(k)〉∗

= iεij ∂i 〈u(k)|←−∂j |u(k)〉
= −iεij ∂i 〈u(k)|∂j |u(k)〉
= −B(k) (B8)

which implies B(k) = 0, unless there is a band crossing.
As mentioned, B(k) diverges at band crossing points.

Using Eq. (B4), we actually evaluate the Berry phase around
a singular point. Traversing a path around a DP leads to a
Berry phase of ±π (see Fig. 10). In order to resolve the
2π ambiguity of the lattice Berry curvature using Eq. (B4),
we added an infinitesimal C2T breaking term, δ σ z, to the
CM Hamiltonian where δ ∼ 10−10. This small term acts as
a reference mass term near each DP and resolves the Berry
phase ambiguity of the massless DPs. Note that the resulting
charge of each DP does depend upon the form of the global
mass term, but we take to be true that the relative charges do
not depend on the form of the global mass term.
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FIG. 10. The Berry phase of the 12 DPs around the � point at
α = 0.56985. The Berry phase is either π or −π .

APPENDIX C: THE EFFECTIVE SIX-BAND MODEL

1. Schrieffer-Wolff transformation

In this section of this Appendix, we outline how the ef-
fective two-band model shown in Eq. (4.4) is derived from
the full six-band Hamiltonian (4.3) using the Schrieffer-Wolff
(SW) transformation. We will use the notation and approach
used in Appendix B of Ref. [33].

Our goal is to carry out the SW effective Hamiltonian in a
perturbative (in powers of quasimomentum) fashion; we take
the unperturbed Hamiltonian to have the following form:

H
(0)
6 =

(
� τ z + v k · σ 0

0 δ μz

)
, (C1)

while treating what remains as a perturbation:

H
(1)
6 = λ

(
d2(k2

+σ+ + k2
−σ−)τ z H42

H24 b1k
2 μz

)
. (C2)

Note that the matrix H
(0)
6 is a six-band Hamiltonian consisting

of decoupled two-dimensional and four-dimensional sectors;
in H

(1)
6 , on the other hand, we have introduced the factor

λ to keep track of the powers of perturbation and we have
neglected d1 and d3 as explained in the next section of this
Appendix. Since we are interested in the regime of very small
δ, we will perform the perturbative calculation assuming δ =
0; this means that we are left with a degenerate low-energy
subspace and we need to utilize degenerate perturbation the-
ory. Neglecting it in the perturbative calculations, we will add
the δμz term to the final Hamiltonian eventually.

We seek an anti-Hermitian operator S which can be ex-
ploited to define an effective Hamiltonian as follows,

H eff
6 = eS H e−S, (C3)

such that [
H eff

6 ,P
] = 0, (C4)

where P is the projector onto the two-dimensional low energy
subspace. The commutation relation above, when satisfied,
means that H eff

6 consists of two decoupled low energy and
high energy sectors. We find S and H eff

6 as power series in
the perturbation parameter λ, so that the commutation relation
(C4) is satisfied at each order, according to a prescription
given in Ref. [33].

H eff
6 is found to fifth order in λ; this guarantees that the

result is accurate to sixth order in k, however, it is not in
the form of a power series in k, since H

(0)
6 also contains k;

thus the result is expanded to sixth order in k. The effective
two-band Hamiltonian will then follow:

H eff
2 = PH eff

6 P = c0 Re(k3
+)

+ (δ + c3,2 k2 + c3,6 Re(k6
+))μz + c1,6 Im(k6

+) μx,

(C5)

where only the lowest order correction to each angular-
pseudospin dependence is retained here. The coefficients can
be given in terms of the original bare parameters as:

c0 = 2
(
g2

1 − g2
2

)
v

�2
,

c3,2 = −2
(
g2

1 − g2
2

)
�

,

c3,6 = 2
(
g2

1 + g2
2

)
v2

(
d2� + 2g2

1 − 2g2
2

)
�5

,

c1,6 = −4g1g2v
2
(
d2� + 2g2

1 − 2g2
2

)
�5

.

(C6)

Their numerical values can be derived according to the values
shown in Eq. (C12) in Appendix C 2:

c0 = 8.4,

c3,2 = −0.24,

c3,6 = 2.3 × 106,

c1,6 = −2.3 × 106. (C7)

Note that we will be dealing with very small values of k

(k � 0.01) in this effective Hamiltonian and that is why some
coefficients turn out to be large.

2. Parameters in the six-band model

In this section of this Appendix, we discuss how the
parameters in the effective Hamiltonian are derived. Let us
inform the reader that we have not attempted to derive error
bars for the following parameter values.

First, in the effective model with linear terms only, the
dispersion relations to second order in k can be written as:

ε0,± = ±
[
δ + 2k2

(
g2

1

δ − �
+ g2

2

δ + �

)]
,

ε−1,± = −� ± kv

+ k2

(
g2

1 (1 ± cos 3θk )

δ − �
− g2

2 (1 ∓ cos 3θk )

δ + �

)
,

ε+1,± = � ± kv

+ k2

(
−g2

1 (1 ± cos 3θk )

δ − �
+ g2

2 (1 ∓ cos 3θk )

δ + �

)
,

(C8)

where θk = arctan (ky/kx ) is the angle measured from the kx

direction. The indices are motivated by the spacing of the
above energy levels at α = α1.

035111-12



MULTIPLE TOPOLOGICAL TRANSITIONS IN TWISTED … PHYSICAL REVIEW B 99, 035111 (2019)

In the main text, we have shown that � = S(α2 − α) and
δ = s(α − α1), with s = 1.13 and S = 1.29. To find the rest of
the parameters, we focus on α = α1 and extract these param-
eters from the properties of the numerical dispersion curves
at this point. We list the dominant k dependent behaviors in
certain combinations below:

(i) The sum of two terms such as ε−1,+ and ε+1,+ when k
is in the ky direction is simply equal to 2vk.

(ii) The difference between ε0,+ and ε0,− is given by
4k2(g2

1 − g2
2 )/�.

(iii) The difference between two terms such as ε−1,+
and ε+1,+ along the kx direction (with fixed ky = 0) is
2(� + 2k2g2

1/�).
By fitting to graphs of the above combinations in well-chosen
intervals, one is able to find the following values of linear
parameters:

v = 0.263, g2 = 0.339, g1 − g2 = 0.00146. (C9)

Second, we show how the coefficients of the quadratic
model can be determined by fitting to suitable combina-
tions of energy functions. The quadratic coefficients include
b1, d1, d2, d3. With the introduction of quadratic corrections,
the very small k expansions of the six energies become:

ε0,± = ±
[
δ + 2k2

(
b1 + g2

1

δ − �
+ g2

2

δ + �

)]
,

ε−1,± = −� ± kv + k2

(
− d1 ∓ d2 cos 3θk

+ g2
1 (1 ± cos 3θk )

δ − �
− g2

2 (1 ∓ cos 3θk )

δ + �

)
,

ε+1,± = � ± kv + k2

(
d1 ± d2 cos 3θk

− g2
1 (1 ± cos 3θk )

δ − �
+ g2

2 (1 ∓ cos 3θk )

δ + �

)
. (C10)

Similar to the linear case, we will focus on α = α1 to
determine the coefficients. As is stated in the main text, the
difference between the two middle bands shows a further
quadratic behavior in the regime of larger k, which is not cap-
tured by the linear effective six-band model, the linear model
shows saturation in that regime. We would like to use some
of the information given by this quadratic behavior along
with the above very small k dispersion relations; although
combinations of the above energies give enough equations for
all the quadratic coefficients, one should be careful, since in
the above forms, the quadratic coefficients are added to terms
that are orders of magnitude larger.

To understand this saturation behavior in the linear ef-
fective model, consider α = α1 for concreteness; the regime
|k| � 0.02, i.e., saturation in �E of the two middle bands,
corresponds to the situation in which terms vk and gik are not
perturbations to � anymore; if one goes to higher and higher
values of k, the latter actually becomes a perturbation to the
linear terms and �

vk
turns out to be a small parameter. Indeed,

it is not correct to think of the effective system as composed of
the two-band and the four-band sectors, being weakly coupled
in this regime; all the eigenvectors are in fact nonperturbative
superpositions of the two-band and four-band basis vectors.

Motivated by the above discussion, we seek to find the
behavior for the regime kv � � for all of the six bands.
To this end, we impose � → 0 and g1 → g2 and find the
dominant k dependent terms for the six bands treating the
quadratic correction as a perturbation to the linear terms:

ε0,± = ±k2

√
b2

1v
4 + 8b1g

2
2v

2(d2 + d3) cos 6θk + 16g4
2 (d2 + d3)2

4g2
2 + v2

,

ε−1,± = −|k|
√

4g2
2 + v2, ε+1,± = |k|

√
4g2

2 + v2. (C11)

Note that in the expressions for ε0,± only the combination
d2 + d3 appears; also, having the fact that the quantities
d2 − d3 and d1 only appear in the subdominant quadratic
coefficients of ε±1 (which are not shown here) in mind, we
impose d1 = d3 = 0. The following dominant k dependent
behaviors at α = α1 can be used for finding the coefficients
including the quadratic ones:

(i) The sum of two terms such as ε−1,+ and ε+1,+ for very
small k, i.e., kv � �, when k is in the ky direction is again
equal to 2vk.

(ii) The difference between ε0,+ and ε0,−, for very small
k, i.e., kv � � is now given by 4k2[−b1 + 1

�
(g2

1 − g2
2 )].

(iii) The difference between two terms such as ε6 and ε4

for very small k, i.e., kv � �, when k is in the kx direction

now reads 2[� + k2(d2 + 2 g2
1

�
)].

(iv) The coefficient of the quadratic term of the differ-
ence between ε0,+ and ε0,− for the regime kv � �, has the

form

2
√

b2
1v

4 ± 8b1g
2
2v

2(d2 + d3) + 16g4
2 (d2 + d3)2(

4g2
2 + v2

) ,

where the +(−) sign is chosen when k is in the x(y) direction.
Again by fitting to graphs of the above combinations in

well-chosen intervals, one is able to find the following values
for the parameters:

v = 0.263, g2 = 0.339, g1 − g2 = 0.00130,

b1 = −0.0289, d2 = −0.0106. (C12)

Note that with the introduction of quadratic terms, the previ-
ously determined coefficients have also changed.
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