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Complete expressions of the thermal-expansion coefficient α and the Grüneisen parameter � are derived on
the basis of the self-consistent renormalization (SCR) theory. By considering the zero point as well as thermal
spin fluctuation under the stationary condition, the specific heat for each class of the magnetic quantum critical
point (QCP) specified by the dynamical exponent z = 3 [feorromagnetism (FM)] and z = 2 [antiferromagnetism
(AFM)] and the spatial dimension (d = 3 and 2) is shown to be expressed as CV = Ca − Cb, where Ca is
dominant at low temperatures, reproducing the past SCR criticality endorsed by the renormalization group
theory. Starting from the explicit form of the entropy and using the Maxwell relation, α = αa + αb (with αa

and αb being related to Ca and Cb, respectively) is derived, which is proven to be equivalent to α derived
from the free energy. The temperature-dependent coefficient found to exist in αb, which is dominant at low
temperatures, contributes to the crossover from the quantum-critical regime to the Curie-Weiss regime. For
sufficiently low temperatures, the thermal-expansion coefficient at the QCP behaves as α ≈ αb ∼ T 1/3 (3D FM),
T 1/2 (3D AFM), − ln T (2D FM), and − ln(− ln T )/ ln (− T

ln T
) (2D AFM). Based on these correctly calculated

CV and α, Grüneisen parameter � = �a + �b is derived, where �a and �b contain αa and αb, respectively. The
inverse susceptibility (renormalized by the mode-mode coupling of spin fluctuations) coupled to the volume V

in �b gives rise to the divergence of � at the QCP for each class even though the characteristic energy scale
of spin fluctuation T0 is finite at the QCP, which gives a finite contribution in �a = − V

T0
( ∂T0

∂V
)
T =0

. For T � T0,
the Grüneisen parameter at the QCP behaves as � ≈ �b ∼ −T −2/3/ln T (3D FM), T −1/2/(const. − T 1/2) (3D
AFM), −T −2/3 ln T (2D FM), and ln(− ln T )/[T ln T ln (− T

ln T
)] (2D AFM). General properties of α and �

including their signs as well as the relation to T0 and the Kondo temperature in temperature-pressure phase
diagrams of Ce- and Yb-based heavy electron systems are discussed.
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I. INTRODUCTION

Quantum critical phenomena in itinerant electron systems
have attracted much attention in condensed matter physics.
When the transition temperature to the magnetically ordered
phase is suppressed continuously to absolute zero by tuning
a control parameter of materials such as pressure, magnetic
field, and chemical substitution, the quantum critical point
(QCP) is realized. Near the QCP, enhanced magnetic fluctua-
tion causes a non-Fermi-liquid behavior in physical quantities,
which is referred to as quantum critical phenomena.

The self-consistent renormalization (SCR) theory of spin
fluctuation has been developed by Moriya and Kawabata in
1973 [1,2]. The SCR theory succeeded in explaining not only
the Curie-Weiss behavior but also quantum critical behavior at
low temperatures in magnetic susceptibility, which are caused
by spin fluctuation in nearly ferromagnetic metals [3,4]. The
spin fluctuation has been revealed to cause a non-Fermi-liquid
behavior in the specific heat [5] and the resistivity [6] in nearly
ferromagnetic metals and also in nearly antiferromagnetic
metals [3].

The quantum critical phenomena have been studied by
the renormalization-group (RG) theory by Hertz in 1976 [7]
and reexamined by Millis in 1993 [8], which has explained
low-temperature properties of physical quantities in the

vicinity of the QCP. The RG theory has been shown to yield
the same critical exponents [9] as those found in the SCR
theory [10–14].

The magnetovolume effect in nearly ferromagnetic metals
has been studied by Moriya and Usami in 1980 [15]. They
discussed the effect of spin fluctuation on the thermal ex-
pansion and the effect was also studied in nearly antiferro-
magnetic metals [13]. In 1997, Kambe et al. analyzed the
thermal-expansion coefficient and the Grüneisen parameter
observed in Ce1−xLaxRu2Si2 by using the SCR theory and
the RG theory and pointed out a possibility that the Grüneisen
parameter diverges at the QCP [16]. In 2003, by using the
scaling hypothesis and the RG theory, Zhu et al. evaluated a
critical part of the thermal expansion coefficient. By taking
the ratio to the critical part of the specific heat, they evaluated
the critical part of the Grüneisen parameter, which actually
diverges at the QCP [17,18]. Experimentally, in CeNi2Ge2,
which is located closely to the three-dimensional (3D) AFM
QCP, the divergence of the Grüneisen parameter has been
observed [19]. Divergence of the Grüneisen parameter has
also been observed in CeIn3−xSnx (x = 0.65) [20] and in
CeRhIn5−xSnx (x = 0.48) [21], where the 3D AFM order is
suppressed by the chemical doping.

It is well known that if the system is dominated by a single
energy scale T ∗, the entropy is expressed as a scaled form
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S = kBf (T/T ∗), where kB is the Boltzmann constant and T is
temperature, so that the Grüneisen parameter is given by � =
− V

T ∗ ( ∂T ∗
∂V

)
S

with V being the volume [22–24]. Normal metal
with the Fermi temperature is known to be the case and lattice
system with the Debye temperature where acoustic phonons
give the dominant contribution is also the case. The expression
of � suggests that if T ∗ becomes zero with nonvanishing
(∂T ∗/∂V )S , the Grüneisen parameter diverges.

On the other hand, in the SCR theory, there exists the
characteristic energy scale of spin fluctuation T0, which is
known to be finite even at the QCP in general [3]. It is also
known that the magnetic correlation length diverges at the
QCP, the inverse of which gives the zero characteristic scale.
Hence, it is interesting to clarify how these quantities affect �

at the FM QCP and also AFM QCP. This requires theoretical
study to clarify how the Grüneisen parameter behaves at the
QCP in the SCR theory.

An advantageous point of the SCR theory is that it de-
scribes not only the quantum critical behavior in the vicinity
of the QCP, but also the Curie-Weiss behavior at higher
temperatures in the magnetic susceptibility in a unified way
[3]. The crossover from the quantum-critical regime to the
high-temperature (Curie-Weiss) regime for the other physical
quantities such as the specific heat and the resistivity can also
be calculated [3,25,26].

So far, critical parts of the thermal-expansion coefficient
α and the Grüneisen parameter � were reported by the RG
theory [17,18]. It seems important to clarify their complete
expressions with not only the critical part but also noncritical
part including their coefficients of the temperature-dependent
terms in the SCR theory. In many cases the critical part
is observed in the very vicinity of the QCP, and in case
experimentally accessible temperature does not reach the low-
temperature regime, the crossover behavior is usually ob-
served. Hence, it is useful to obtain the complete expressions
of α and � for comparison with experiments.

In the original SCR theory, the specific heat was calculated
with the zero-point spin fluctuation being neglected [10–12].
Taking into account the zero-point spin fluctuation [14,27] as
well as the stationary condition of the free energy adequately
[27], the specific heat was calculated, which has shown that
the dominant contribution to the quantum criticality comes
from the thermal spin fluctuation and the critical indices
[10–12] endorsed by the RG theory [8,9] do not change.

However, in the calculation of the thermal-expansion co-
efficient and the Grüneisen parameter in the SCR theory, the
zero-point spin fluctuation as well as the stationary condition
of the free energy should be taken into account correctly,
which has not been addressed in Refs. [15,16]. Takahashi
considered these effects in the extended SCR theory by in-
troducing the conservation law of the total spin-fluctuation
amplitude and discussed the magnetovolume effect [28].

In this paper we derive the thermal expansion coefficient
α and the Grüneisen parameter � in the complete framework
of the original SCR theory. By taking into account zero-point
spin fluctuation as well as the stationary condition of the free
energy correctly, we reexamine the specific heat CV near the
ferromagnetic (FM) QCP and the antiferromagnetic (AFM)
QCP in three spatial dimensions (d = 3) and two spatial
dimensions (d = 2). Then we derive the thermal expansion

coefficient α for each class starting from the entropy, which is
proven to be equivalent to that obtained from the explicit form
of the free energy with the use of the stationary condition in
the SCR theory. On the basis of these correctly calculated CV

and α, we obtain �. By performing analytical and numerical
calculations of CV , α, and � near the magnetic QCP, their
quantum-critical properties are clarified.

We find that the temperature dependent coefficient exists
in the expressions of α(T ) and �(T ), which has not been
reported in the past RG studies [17,18]. Furthermore, the
complete expressions of α(T ) and �(T ) clarify the crossover
from the quantum-critical regime at low temperatures to the
Curie-Weiss regime at higher temperatures for each class of
the QCP. Then we give the answers to the following questions:
(1) What is the relation to the divergence of � at the QCP
shown by the RG theory? (2) How to reconcile with finite T0

at the QCP in the SCR theory? (3) What is the relation to the
Moriya-Usami theory?

The organization of this paper is as follows: In Sec. II
the definitions of the thermal-expansion coefficient and the
Grüneisen parameter are explained by introducing thermody-
namically equivalent expressions. In Sec. III the SCR theory
is outlined and the properties of the specific heat near the
QCP are summarized. In Sec. IV the Grüneisen parameter
is derived from the entropy in the SCR theory. In Sec. V
the thermal-expansion coefficient near the QCP is derived
from the entropy and the free energy, respectively, in the
SCR theory and equivalence of both the results is proven. In
Secs. VI, VII, and VIII, results of numerical calculations of
the thermal expansion coefficient and the Grüneisen param-
eter near the QCP for each class are analyzed, respectively.
Section IX is devoted to discussions by comparing the present
theory with other theories and experiments. In Sec. X the pa-
per is summarized. From Secs. II to VIII we concentrate on the
electronic Grüneisen parameter relevant for low temperatures
where lattice degrees of freedom give minor contributions. In
Sec. IX the general case including phonons is discussed.

II. THERMAL-EXPANSION COEFFICIENT
AND GRÜNEISEN PARAMETER

In this section the definitions of the thermal-expansion
coefficient α and the Grüneisen parameter � are summarized.
The equivalent expressions of α and � are also derived for the
use in discussions in the forthcoming sections.

A. Thermal-expansion coefficient

The thermal-expansion coefficient is defined as

α = 1

V

(
∂V

∂T

)
P

, (1)

where P is the pressure. By using the relation(
∂V

∂T

)
P

= −
(

∂P
∂T

)
V(

∂P
∂V

)
T

, (2)

Eq. (1) is expressed as

α = κT

(
∂P

∂T

)
V

, (3)
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where the isothermal compressibility κT is defined as

κT = − 1

V

(
∂V

∂P

)
T

. (4)

On the other hand, by using the Maxwell relation
(∂V/∂T )P = −(∂S/∂P )T in Eq. (1), α can be expressed as

α = − 1

V

(
∂S

∂P

)
T

. (5)

B. Grüneisen parameter

The Grüneisen parameter � is defined by

� = αV

CV κT

, (6)

where CV is the specific heat at a constant volume

CV = T

(
∂S

∂T

)
V

. (7)

With the use of Eq. (5) for α in Eq. (6), the Grüneisen
parameter � is expressed as follows:

� = − ∂ (S, T )

∂ (P, T )

1

T ∂ (S,V )
∂ (T ,V )

(−V )
∂ (V,T )
∂ (P,T )

= −V

T

∂ (S, T )

∂ (S, V )
= −V

T

(
∂T

∂V

)
S

. (8)

If the entropy is expressed as S = kBS(T/T ∗) with a single
characteristic temperature scale T ∗ as in the Fermi-liquid
region of metals, (∂T /∂V )S is given in a form as(

∂T

∂V

)
S

= T

T ∗

(
∂T ∗

∂V

)
S

. (9)

Then the Grüneisen parameter � is expressed as a conven-
tional form as [23,29]

� = −
(

∂lnT ∗

∂lnV

)
S

. (10)

III. SCR THEORY

In this section the self-consistent renormalization (SCR)
theory of spin fluctuation is outlined. By taking into account
the zero point as well as thermal spin fluctuation under
consideration of the stationary condition of the SCR theory,
the specific heat near the magnetic QCP is reexamined. Here-
after the energy units are taken as h̄ = 1 and kB = 1 unless
otherwise noted.

A. Formulation of the SCR theory

The action of the itinerant electrons with Coulomb interac-
tion is expressed in the form of the Ginzburg-Landau-Wilson
functional

�[ϕ] = 1

2

∑
q̄

�2(q̄ )ϕ(q̄ )ϕ(−q̄ ) +
∑

q̄1,q̄2,q̄3,q̄4

�4(q̄1, q̄2, q̄3, q̄4)

×ϕ(q̄1)ϕ(q̄2)ϕ(q̄3)ϕ(q̄4)δ

(
4∑

i=1

q̄i

)
, (11)

which can be derived from the Hamiltonian via the
Stratonovich-Hubbard transformation applied to the on-site
Coulomb interaction term [7]. Hence, Eq. (11) describes the
action for isotropic spin space [30]. Here q̄ is an abbreviation
for q̄ ≡ (q, iωl ) where ωl = 2πlT with l being an integer.
Since long wavelength |q| � qc around the magnetically or-
dered vector Q and low frequency |ω| � ωc regions play the
dominant role in the critical phenomena with qc and ωc being
the cutoffs for momentum and frequency, respectively, �i for
i = 2, 4 are expanded for q and ω around (Q, 0):

�2(q, iωl ) ≈ η0 + Aq2 + Cq |ωl|
NF

, (12)

where Cq is defined as Cq ≡ C/qz−2 with z being the dy-
namical exponent (e.g., z = 3 for ferromagnetism and z =
2 for antiferromagnetism) and NF is the density of states
at the Fermi level, and �4(q̄1, q̄2, q̄3, q̄4) ≈ v4/(βN ) with
β ≡ 1/T .

To construct the effective action for the best Gaussian,
taking account of the mode-mode coupling effects up to the
fourth order in �[ϕ], we employ the Feynman’s inequality
[32] on the free energy:

F � Feff + T 〈� − �eff〉eff ≡ F̃ (η). (13)

Here the effective action �eff is parametrized as

�eff [ϕ] = 1

2

∑
l

∑
q

η + Aq2 + Cq |ωl|
NF

|ϕ(q, iωl )|2, (14)

where η expresses the effect of the mode-mode coupling
of spin fluctuations and parametrizes the closeness to the
quantum criticality. In Eq. (13), 〈· · · 〉eff denotes the statistical
average taken by the weight exp (−�eff [ϕ]) and Feff is given
by

Feff = −T ln
∫

Dϕ exp (−�eff [ϕ]). (15)

By optimal condition dF̃ (η)
dη

= 0, the self-consistent renor-
malization (SCR) equation for η is given by

η0 − η

2NF
+ 6v4

N
〈ϕ2〉eff = 0, (16)

where spin fluctuation 〈ϕ2〉eff is defined as

〈ϕ2〉eff = T
∑

q

∑
l

NF

η + Aq2 + Cq |ωl| . (17)

Here 〈ϕ2〉eff consists of the quantum (zero-point) fluctuation
〈ϕ2〉zero and thermal fluctuation 〈ϕ2〉th as

〈ϕ2〉eff = 〈ϕ2〉zero + 〈ϕ2〉th, (18)

where 〈ϕ2〉zero and 〈ϕ2〉th are expressed as

〈ϕ2〉zero = NF

π

∑
q

1

Cq

∫ ωc

0
dω

ω

�2
q + ω2

, (19)

〈ϕ2〉th = NF

π

∑
q

2

Cq

∫ ωc

0
dω

1

eβω − 1

ω

�2
q + ω2

, (20)

respectively. Here �q is defined by �q ≡ (η + Aq2)/Cq .
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From Eq. (14), the dynamical magnetic susceptibility is
given by

χQ(q, ω) = NF

η + Aq2 − iCqω
, (21)

where Q is the wave number vector of the magnetically
ordered phase (e.q., Q = 0 for ferromagnetism and Q 	= 0 for
antiferromagnetism).

The free energy F̃ defined by Eq. (13) is expressed as

F̃ = 1

π

∑
q

∫ ωc

0
dω

�q

ω2 + �2
q

{
ω

2
+ T ln(1 − e− ω

T )

}

+ η0 − η

2NF
〈ϕ2〉eff + 3v4

N
〈ϕ2〉2

eff − 1

π

∑
q

πωc

4
. (22)

Here, let us define dimensionless parameters for η,

y ≡ η

Aq2
B

(23)

and the wave number x ≡ q/qB with qB being the wave
number of the Brillouin zone. Thus, �q is expressed as

�q = 2πT0x
z−2(y + x2), (24)

where the characteristic temperature of spin fluctuation is
defined as

T0 ≡ Aq2
B

2πCqB

. (25)

Near the QCP, quantum spin fluctuation 〈ϕ2〉zero is calcu-
lated [13] for the cases above and just at the upper critical
dimension 4, respectively, as

〈ϕ2〉zero = Nd
T0

2TA

{
C1 − C2y + · · · , for d + z > 4,

C1 + ylny − C2y + · · · , for d + z = 4,

(26)

where TA is defined as

TA ≡ Aq2
B

2NF
. (27)

The constants C1 and C2 are given by

C1 =
∫ xc

0
dxxd+z−3 ln

∣∣∣∣∣ω
2
cT0

+ x2z

x2z

∣∣∣∣∣, (28)

C2 =

⎧⎪⎨
⎪⎩

2
∫ xc

0 dxxd+z−5 ω2
cT0

ω2
cT0

+x2z , for d + z > 4,

1 + ln x2
c − 1

2 ln
∣∣ω2

cT0
+x4

c

ω2
cT0

∣∣, for d + z = 4,

(29)

respectively. Here the cut off of the wave number is set to be
qc in the q integration, which is expressed as xc ≡ qc

qB
in the

dimensionless scaled form and ωcT is defined as ωcT ≡ ωc
2πT

.
The thermal spin fluctuation 〈ϕ2〉th is calculated as

〈ϕ2〉th = Nd
T0

TA

∫ xc

0
dxxd+z−3

{
lnu − 1

2u
− ψ (u)

}
, (30)

where ψ (u) is the digamma function with u defined as

u ≡ �q

2πT
= xz−2(y + x2)

t
. (31)

Here t is defined as the dimensionless scaled temperature

t ≡ T

T0
. (32)

By substituting Eqs. (26) and (30) into Eq. (18), the SCR
equation [Eq. (16)] is written in the scaled form for d + z > 4
as [10–12]

y = y0 + d

2
y1

∫ xc

0
dxxd+z−3

{
lnu − 1

2u
− ψ (u)

}
, (33)

and for d + z = 4 as [13]

y = y0 + y1

2

(
ylny + d

∫ xc

0
dxx

{
lnu − 1

2u
− ψ (u)

})
,

(34)

where y0 and y1 are given by

y0 =
η0

Aq2
B

+ 3dv4
T0

T 2
A

C1

1 + 3dv4
T0

T 2
A

C2
, (35)

y1 =
12v4

T0

T 2
A

1 + 3dv4
T0

T 2
A

C2
, (36)

respectively. Here, note that y0 is different from that obtained
by substituting η0 for η on the right-hand side (r.h.s.) of
Eq. (23).

The solution of the SCR equation y is proportional to the
inverse susceptibility

y = 1

2TA

1

χQ(0, 0)
, (37)

which is obtained by substituting Eq. (23) into Eq. (21) with
the use of Eq. (27). Numerical solutions of Eqs. (33) and (34)
are shown in Figs. 1(a)–1(c) and Fig. 1(d), respectively
[10–13]. The t dependencies of y for the paramagnetic region
(y0 > 0) and the region where the magnetic order occurs
(y0 < 0) and just at the QCP (y0 = 0) are shown. For y0 <

0, y = 0 is realized for t > 0 in the case of d = 3 [see
Figs. 1(a) and 1(b)], where the magnetic phase transition
takes place at finite temperature, while y = 0 is realized only
at t = 0 for d = 2 [see Figs. 1(c) and 1(d)], satisfying the
Mermin-Wagner theorem [33]. In each class, the Curie-Weiss
behavior χQ(0, 0) ∝ y−1 ∼ t−1 appears in the high-t regime
[e.g., see t � 0.07 in Fig. 1(a)]. The quantum critical region
appears in the low-t regime at the QCP realized for y0 = 0,
whose property in each class is analyzed as follows.

In d = 3, the x integral in Eq. (33) converges for y → 0
and then the solution is obtained as

y ∝ t1+ 1
z (38)

at the QCP with y0 = 0.0, as shown in Appendix B. This
yields y ∼ t4/3 for the 3D FM QCP (z = 3) and y ∼ t3/2 for
the 3D AF QCP (z = 2).

In d = 2, the x integral in Eq. (33) shows logarithmic
divergence for y → 0. At the FM QCP for z = 3, the solution
of Eq. (33) is obtained as y = − y1

12 t ln t (see Appendix C). At
the AF QCP for z = 2, the solution of Eq. (34) is obtained as
y = −t ln(− ln t )

2 ln t
(see Appendix D). The criticality y (∝η) for

each class is summarized in Table I.
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FIG. 1. Scaled temperature dependence of y for (a) 3D FM, (b) 3D AFM, (c), 2D FM, and (d) 2D AFM. The inset shows the scaled
temperature dependence of 1/y ∝ χQ(0, 0).

B. Entropy and specific heat

The entropy S = −( ∂F̃
∂T

)
V

is obtained by differentiating the
free energy F̃ in Eq. (22) with respect to the temperature.
Noting that the terms with ( ∂η

∂T
)
V

and also ( ∂〈ϕ2〉eff

∂T
)
V

vanish
with the use of the SCR equation [Eq. (16)], the entropy is
derived as [27]

S = −Nd

∫ xc

0
dxxd−1

{
ln

√
2π − u

+
(

u − 1

2

)
lnu − ln�(u)

}

+Nd

∫ xc

0
dxxd−1u

{
lnu − 1

2u
− ψ (u)

}
, (39)

where �(u) is the Gamma function.
The specific heat under a constant volume is obtained by

differentiating the entropy S in Eq. (39) with respect to the

temperature [14,27] as

CV = T

(
∂S

∂T

)
V

= Ca − Cb, (40)

where Ca and Cb are given by

Ca = −Nd

∫ xc

0
dxxd−1u2

{
1

u
+ 1

2u2
− ψ ′(u)

}
, (41)

Cb = C̃b

(
∂y

∂t

)
V

, (42)

respectively. Here ψ ′(u) is the trigamma function and C̃b is
given by

C̃b = −Nd

∫ xc

0
dxxd+z−3u

{
1

u
+ 1

2u2
− ψ ′(u)

}
. (43)

As for Ca, the x integral in Eq. (41) shows no divergence
from x = 0 even for y → 0 irrespective of spatial dimensions

TABLE I. Quantum criticality at the magnetic QCP for each class specified by z = 3 (FM) and z = 2 (AFM) in d = 3 and 2 [3]. Electrical
resistivity ρ(T ), specific-heat coefficient C/T , uniform susceptibility χ (T ), and NMR relaxation rate (T1T )−1. For χ, → C.W. denotes the
crossover to the Curie-Weiss behavior. Note that η ∝ y holds [see Eq. (23)].

Class η ρ C/T χ (T1T )−1 Refs.

3D FM T 4/3 T 5/3 − ln T T −4/3 → C.W. T −4/3 [6,12]

3D AFM T 3/2 T 3/2 const.−T 1/2 const.−T 1/4 → C. W. T −3/4 [11,34]

2D FM −T ln T T 4/3 T −1/3 −1/(T ln T ) → C.W. −1/(T ln T )3/2 [10]

2D AFM −T ln(− ln T )
ln T

T − ln T – − ln T/T [13,35]
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FIG. 2. Specific-heat coefficient vs scaled temperature just at the QCP. CV /Nt (bold solid line), Ca/Nt (thin line), and Cb/Nt (dash-dotted
line) are calculated numerically in Eqs. (40), (41), and (42), respectively for y0 = 0.0 and y1 = 1.0. (a) 3D FM QCP. (b) 3D AFM QCP. The
inset shows log-log plot of 1/2 − CV /Nt (thick solid line), 1/2 − Ca/Nt (thin solid line), and Cb/Nt (dash-dotted line). (c) 2D FM QCP.
The dashed line represents the least-square fit of Ca/Nt for 10−5 � t � 10−4 with at−1/3. (d) 2D AFM QCP. The dashed line represents the
least-square fit of Cb/t for 10−5 � t � 10−4 with −a {ln(−lnt )}2

−lnt
.

[27]. Hence, Ca for t � 1 at the QCP has no explicit y

dependence.
As for C̃b, in d = 3, the x integral in Eq. (43) shows no

divergence from x = 0 for y → 0 and is evaluated as [27]

C̃b

N
∼ t1+ 1

z , (44)

for t → 0 at the QCP. Namely, C̃b shows the same temperature
dependence as y, i.e., C̃b ∼ y, as seen in Eq. (38). In d = 2,
the x integral in Eq. (43) shows logarithmic divergence arising
from x = 0 for y → 0. Hence, C̃b has the lny dependence at
the QCP.

The temperature dependence of the specific heat at the
magnetic QCP for each class is summarized in the following
subsections. The numerical calculation of Eq. (40) is also
performed. To calculate ( ∂y

∂t
)
V

, by differentiating the SCR
equation [Eqs. (33) and (34)] with respect to the scaled
temperature t , we have

(
∂y

∂t

)
V

=

⎧⎪⎨
⎪⎩

y1
2t

C̃b
1
N

1− dy1
2t

M
for d + z > 4,

y1
2t

C̃b
1
N

1− y1
2 (ln y+1)− dy1

2t
M

for d + z = 4,
(45)

where M is given by

M =
∫ xc

0
dxxd+2z−5

{
1

u
+ 1

2u2
− ψ ′(u)

}
. (46)

To calculate the t dependence of the specific heat just at the
QCP, we set y0 = 0.0 in the SCR equation [Eqs. (33) and (34)]

with setting as y1 = 1.0 and xc = 1.0. By solving the SCR
equation, we obtain the solution y(t ). Then, by inputting y(t )
to Eq. (45), we obtain ( ∂y

∂t
)
V

. Finally, by substituting y(t ) and

( ∂y

∂t
)
V

into Eq. (40) for each class, we obtain CV (t ), which is
shown in Figs. 2(a)–2(d), respectively.

1. 3D ferromagnetic case

For t � 1, Ca is evaluated as [5,12,27]

Ca

N
≈ − t

6
lnt. (47)

For t � 1, C̃b is evaluated as [27]

C̃b

N
∼ t4/3. (48)

Since Cb behaves as Cb ∼ t5/3 in Eq. (42) with ∂y/∂t ∼ t1/3

for t � 1, the specific heat in Eq. (40) behaves as

CV

N
≈ Ca

N
∼ −t lnt, (49)

for t � 1, where the dominant contribution comes from Ca,
as seen in Fig. 2(a). This reproduces the criticality shown by
the past SCR theory, which is summarized in Table I (see C/T

for 3D FM). It is noted that the same temperature dependence
as Eq. (49) was also derived from the RG theory [9].
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2. 3D antiferromagnetic case

For t � 1, Ca is evaluated as [11,27]

Ca

N
≈ 1

2
t

(
xc − 15

2
a∗

5/2t
1/2

)
, (50)

where a∗
5/2 is a constant given by a∗

5/2 = ∫ ∞
0 duu3/2

{ 1
2u2 − ln u + 1

2u
+ ψ (u)}. For t � 1, C̃b is evaluated as [27]

C̃b

N
∼ t3/2. (51)

Since Cb behaves as Cb ∼ t2 in Eq. (42) with ∂y/∂t ∼ t1/2 for
t � 1, the specific heat in Eq. (40) behaves as

CV

N
≈ Ca

N
∼ 1

2
t

(
xc − 15

2
a∗

5/2t
1/2

)
, (52)

for t � 1, where the dominant contribution comes from Ca,
as seen in Fig. 2(b). This reproduces the criticality shown by
the past SCR theory (see C/T for 3D AFM in Table I). It is
noted that the same temperature dependence as Eq. (52) was
also derived from the RG theory [9].

3. 2D ferromagnetic case

For t � 1, Ca is evaluated as [10,27]

Ca

N
≈ 10

9
a5/3t

2/3, (53)

where aν is a constant given by aν ≡ πζ (ν)�(ν)/
[(2π )ν sin(νπ/2)] and a5/3 = 0.5629 . . . . For y � t2/3 � 1,
we have

C̃b

N
≈ t

2
ln

[
1

y

(
t

6

)2/3
]
. (54)

Since y ≈ − y1

12 t lnt at the QCP is obtained from the SCR
equation [Eq. (33)] for d = 2 and z = 3 by setting y0 = 0.0
[10], we have

C̃b

N
≈ − t

6
lnt. (55)

Since the coefficient 10
9 a5/3 in Eq. (53) is the quantity of O(1),

which is much larger than that in C̃b( ∂y

∂t
)
V

∼ y1

72 t lnt (lnt + 1),
the specific heat in Eq. (40) is dominated by Ca as

CV

N
≈ Ca

N
∼ t2/3, (56)

for t � 1. This can be confirmed by numerical calculation of
Eq. (40), as shown in Fig. 2(c). This reproduces the criticality
shown by the past SCR theory (see C/T for 2D FM in
Table I). It is noted that the same temperature dependence as
Eq. (56) was also derived from the RG theory [17].

4. 2D antiferromagnetic case

For t � 1, Ca is evaluated as [27]

Ca

N
≈ − t

6
lnt. (57)

For y � t � 1, C̃b is evaluated as

C̃b

N
≈ − t

2
ln

(
6
y

t

)
. (58)

Since y ≈ −t ln(−lnt )
2lnt

at the QCP is obtained from the SCR
equation [Eq. (34)] for d = 2 and z = 2 by setting y0 = 0.0
[35], we have

C̃b

N
∼ t ln(−lnt ). (59)

Since Cb behaves as Cb ∼ −t
{ln(− ln t )}2

ln t
in Eq. (42) with

∂y/∂t ∼ − ln(− ln t )/ ln t for 0 < t � 1 [see the dashed line
in Fig. 2(c)], the specific heat in Eq. (40) behaves as

CV

N
≈ Ca

N
∼ −t lnt, (60)

for t � 1, where the dominant contribution comes from Ca,
as seen in Fig. 2(d). This reproduces the criticality shown by
the past SCR theory (see C/T for 2D AFM in Table I). It is
noted that the same temperature dependence as Eq. (60) was
also derived from the RG theory [17].

IV. GRÜNEISEN PARAMETER NEAR
THE MAGNETIC QCP

The Grüneisen parameter � near the magnetic QCP is de-
rived on the basis of Eq. (8) in the SCR theory. The calculation
starts from the entropy S in Eq. (39). By differentiating both
sides of Eq. (39) with respect to the volume V under a constant
entropy S, we have

0 = Nd

∫ xc

0
dxxd−1

(
∂u

∂V

)
S

u

{
1

u
+ 1

2u2
− ψ ′(u)

}
, (61)

where (∂u/∂V )S is given by(
∂u

∂V

)
S

= 1

t

{
xz−2

(
∂y

∂V

)
S

− u

(
∂t

∂V

)
S

}
. (62)

Then, substituting Eq. (62) into Eq. (61) we have(
∂t

∂V

)
S

= C̃b
(

∂y

∂V

)
S

Ca
, (63)

where Ca and C̃b are defined by Eqs. (41) and (43), respec-
tively. By differentiating Eq. (32) with respect to the volume
V under a constant entropy S, we have(

∂t

∂V

)
S

= 1

T0

(
∂T

∂V

)
S

− T

T 2
0

(
∂T0

∂V

)
S

. (64)

By substituting Eq. (64) into Eq. (63), the Grüneisen parame-
ter [Eq. (8)] is expressed as follows:

� = − C̃b

Ca

V

t

(
∂y

∂V

)
S

− V

T0

(
∂T0

∂V

)
S

. (65)

This is one of the central results of the present paper, whose
property will be discussed in detail in Sec. VII. The second
term expresses the volume derivative of the characteristic
temperature of spin fluctuation. The first term is proportional
to C̃b, which gives a minor contribution to CV as shown in
Fig. 2. However, this term gives the dominant contribution to
� at low temperatures, which will be shown in Sec. VII.

The Grüneisen parameter � can also be derived from
Eq. (6) with the specific heat CV in Eq. (40) and the thermal-
expansion coefficient α defined by Eq. (3) or by Eq. (5). Each
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derivation will be shown in the following Secs. V C and V A,
respectively.

V. THERMAL-EXPANSION COEFFICIENT
NEAR THE MAGNETIC QCP

So far, in the theory of spin fluctuations, the thermal-
expansion coefficient α in itinerant magnets has been dis-
cussed on the basis of Eq. (3) [27]. In Sec. V A we will show
that α can be derived from Eq. (5) in a much simpler form
in the SCR theory, which enables us to capture the physical
picture. Next, we will derive α by the standard way from
Eq. (3) in Secs. V B and V C. It will be shown that the result is
lengthy, where it is hard to see an immediate correspondence
to the result obtained in Sec. V A, although both should be
equivalent from the viewpoint of the thermodynamic relation
as shown in Sec. II. To show the equivalence in the SCR theory
explicitly, the proof will be given in Sec. V D.

A. Derivation from α = − 1
V ( ∂ S

∂ P )T

First, let us derive the thermal-expansion coefficient α

defined by Eq. (5). Then, calculation starts from the entropy

S in Eq. (39). By differentiating the entropy S with respect to
the pressure P under a constant temperature, we obtain(

∂S

∂P

)
T

= − C̃b

t

(
∂y

∂P

)
T

− Ca

T0

(
∂T0

∂P

)
T

, (66)

where C̃b and Ca appeared in the formula of the specific heat,
which are given by Eqs. (43) and (41), respectively. Then, the
thermal-expansion coefficient is obtained as

α = − 1

V

(
∂S

∂P

)
T

(67)

= αa + αb, (68)

where αa and αb are defined by

αa ≡ 1

V

Ca

T0

(
∂T0

∂P

)
T

, (69)

αb ≡ 1

V

C̃b

t

(
∂y

∂P

)
T

, (70)

respectively. This is one of the central results of the present
paper, whose property will be discussed in detail in Sec. VI.

B. Pressure near the magnetic QCP

Next, let us derive the pressure P = −( ∂F̃
∂V

)
T

starting from the free energy in Eq. (22). By differentiating �q [Eq. (24)] with
respect to the volume V under a constant temperature, we have(

∂�q

∂V

)
T

= 2π

(
∂T0

∂V

)
T

xz−2(y + x2) + 2πT0x
z−2

(
∂y

∂V

)
T

. (71)

In the calculation of ( ∂F̃
∂V

)
T

, the terms with ( ∂y

∂V
)
T

and also ( ∂〈ϕ2〉eff

∂V
)
T

vanish because of the SCR equation [Eq. (16)] or
optimization condition dF̃ (y)/dy = 0 [28]. The details are given in Appendix E. Then, only the first term with ( ∂T0

∂V
)
T

in
Eq. (71) remains and we have

P = −
(

∂F̃

∂V

)
T

= − 1

T0

(
∂T0

∂V

)
T

I −
[

∂

∂V

(
η0

Aq2
B

)]
T

TA〈ϕ2〉eff −
(

η0

Aq2
B

− y

)(
∂TA

∂V

)
T

〈ϕ2〉eff − 3

N

(
∂v4

∂V

)
T

〈ϕ2〉2
eff , (72)

where I is given by

I = 1

π

∑
q

∫ ωc

0
dω�q

∂

∂�q

(
�q

ω2 + �2
q

)[
ω

2
+ T ln(1 − e− ω

T )

]
. (73)

Here, by using the relation [27]

∂

∂�q

(
�q

ω2 + �2
q

)
= − ∂

∂ω

(
ω

ω2 + �2
q

)
, (74)

the partial integration with respect to ω can be performed. Then we have

I = 1

π

∑
q

�q

{
− ω

ω2 + �2
q

[
ω

2
+ T ln(1 − e− ω

T )

]∣∣∣∣∣
ωc

0

+
∫ ωc

0
dω

ω

ω2 + �2
q

(
1

2
+ 1

e
ω
T − 1

)}
. (75)

The first line in Eq. (75) is neglected since the spectrum of the spin fluctuation is considered to decrease faster than the Lorentzian
in the high-frequency regime [27]. Hence, the first and second terms in the last line in Eq. (75) are expressed as

I = Izero + Ith, (76)

respectively, where Izero is given by

Izero = NdT0t

2

∫ xc

0
dxxd−1uln

∣∣∣∣ω2
cT + u2

u2

∣∣∣∣, (77)
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and Ith is given by

Ith = NdT0t

∫ xc

0
dxxd−1u

{
lnu − 1

2u
− ψ (u)

}
. (78)

C. Derivation from α = κT ( ∂ P
∂T )V

Let us derive the thermal-expansion coefficient α defined by α ≡ κT ( ∂P
∂T

)
V

in Eq. (3), where the isothermal compressibility
is given by Eq. (4). By differentiating the pressure in Eq. (72) with respect to the temperature T under a constant volume V , we
have

α

κT

=
(

∂P

∂T

)
V

= − 1

T0

(
∂T0

∂V

)
T

[(
∂Izero

∂T

)
V

+
(

∂Ith

∂T

)
V

]
− ∂

∂T

{[
∂

∂V

(
η0

Aq2
B

)]
T

TA〈ϕ2〉eff

+
(

η0

Aq2
B

− y

)(
∂TA

∂V

)
T

〈ϕ2〉eff + 3

N

(
∂v4

∂V

)
T

〈ϕ2〉2
eff

}∣∣∣∣
V

, (79)

where (
∂Izero

∂T

)
V

= Nd

(
∂y

∂t

)
V

{
1

2

∫ xc

0
dxxd+z−3ln

∣∣∣∣ω2
cT + u2

u2

∣∣∣∣ −
∫ xc

0
dxxd+z−3 ω2

cT

ω2
cT + u2

}
, (80)

(
∂Ith

∂T

)
V

=
(

∂y

∂t

)
V

(NdL − C̃b) + Ca. (81)

Here L is given by

L =
∫ xc

0
dxxd+z−3

{
lnu − 1

2u
− ψ (u)

}
. (82)

By substituting Eqs. (80) and (81) into Eq. (79), we obtain

α

κT

= 1

T0

(
∂T0

∂V

)
T

[(
∂y

∂t

)
V

{
−Nd

2

∫ xc

0
dxxd+z−3ln

∣∣∣∣ω2
cT + u2

u2

∣∣∣∣ + Nd

∫ xc

0
dxxd+z−3 ω2

cT

ω2
cT + u2

− NdL + C̃b

}
− Ca

]

−
(

∂y

∂t

)
V

{
N

6v4

T 2
A

T0

[
∂

∂V

(
η0

Aq2
B

)]
T

− 2

T0
〈ϕ2〉eff

(
∂TA

∂V

)
T

+ TA

T0
〈ϕ2〉eff

1

v4

(
∂v4

∂V

)
T

}
, (83)

where the last three terms have been obtained by using the SCR equation [Eq. (16)]. Details are given in Appendix F.

D. Equivalence of the expressions of thermal-expansion coefficients

In Secs. V A and V C, each expression of the thermal-expansion coefficient α has been derived from Eqs. (5) and (3),
respectively. At first glance, it seems unclear whether Eqs. (68) and (83) are equivalent. However, with the use of the stationary
condition of the SCR theory, it can be shown that both expressions are equivalent, which will be proven in this subsection.

Multiplying κT on both sides of Eq. (83) and using Eq. (4) with the relation ( ∂V
∂P

)
T

( ∂Y
∂V

)
T

= ( ∂Y
∂P

)
T

for Y = T0, η0, NF, and
v4, we obtain

α = 1

V

1

T0

(
∂T0

∂P

)
T

[
Ca +

(
∂y

∂t

)
V

{
NdL − C̃b + Nd

2

∫ xc

0
dxxd+z−3ln

∣∣∣∣ω2
cT + u2

u2

∣∣∣∣ − Nd

∫ xc

0
dxxd+z−3 ω2

cT

ω2
cT + u2

}]

+ 1

V

(
∂y

∂t

)
V

{
N

6v4

T 2
A

T0

[
∂

∂P

(
η0

Aq2
B

)]
T

− 2

T0
〈ϕ2〉eff

(
∂TA

∂P

)
T

+ TA

T0
〈ϕ2〉eff

1

v4

(
∂v4

∂P

)
T

}
. (84)

Near the QCP, the x integration on the first line of Eq. (84) is expanded around y = 0 as∫ xc

0
dxxd+z−3 ln

∣∣∣∣ω2
cT + u2

u2

∣∣∣∣ =
{
C1 − C2y + · · · (d + z > 4),
C1 + ylny − C2y + · · · (d + z = 4), (85)

where C1 and C2 are given by Eqs. (28) and (29), respectively. On the last term in the first line of Eq. (84), the x integration is
also expanded around y = 0 and we obtain

− 1

T0

(
∂T0

∂P

)
T

∫ xc

0
dxxd+z−3 ω2

cT

ω2
cT + u2

= 1

2

{(
∂C1

∂P

)
T

−
(

∂C2

∂P

)
T

y

}
+ · · · , (86)

whose derivation is given in Appendix G.
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By substituting the SCR equation [Eq. (33)] into y which appears on the r.h.s. of Eqs. (85) and (86), and 〈ϕ2〉eff in the last
line of Eq. (84), Eq. (84) is expressed as

α = 1

V

1

T0

(
∂T0

∂P

)
T

Ca + 1

V

(
∂y

∂t

)
V

[
− 1

T0

(
∂T0

∂P

)
T

C̃b + N
2

y1

{(
∂y0

∂P

)
T

+
(

∂y1

∂P

)
T

d

2
L

}]
, (87)

for d + z > 4. The details of the derivation are given in Appendix H. Here the following equations, which are obtained by
differentiating Eqs. (35) and (36) with respect to the pressure, respectively, are used to derive the second line of Eq. (87):(

∂y0

∂P

)
T

=
{

1

T0

(
∂T0

∂P

)
T

− 2

TA

(
∂TA

∂P

)
T

+ 1

v4

(
∂v4

∂P

)
T

}
d

4
y1(C1 − C2y0)

+ d

4
y1

{(
∂C1

∂P

)
T

−
(

∂C2

∂P

)
T

y0

}
+

[
∂

∂P

(
η0

Aq2
B

)]
T

1

Aq2
B

y1

12v4
T0

T 2
A

, (88)

(
∂y1

∂P

)
T

=
{

1

T0

(
∂T0

∂P

)
T

− 2

TA

(
∂TA

∂P

)
T

+ 1

v4

(
∂v4

∂P

)
T

}
y1

(
1 − d

4
C2y1

)
− d

4
y2

1

(
∂C2

∂P

)
T

. (89)

For d + z = 4, by substituting the SCR equation [Eq. (34)] into Eq. (86) and with the use of Eqs. (88) and (89), Eq. (84) is
shown to lead to

α = 1

V

1

T0

(
∂T0

∂P

)
T

Ca + 1

V

(
∂y

∂t

)
V

[
− 1

T0

(
∂T0

∂P

)
T

C̃b + N
2

y1

{(
∂y0

∂P

)
T

+
(

∂y1

∂P

)
T

(
L + 1

2
y ln y

)}]
, (90)

which has a form with a logarithmic term in the last term in Eq. (87).
The results of Eqs. (87) and (90) are consequences of the fact that the quantities T0, TA, v4, and η0/(Aq2

B), which are included
in y0 and/or y1 defined by Eqs. (35) and (36), respectively, have the pressure dependence. Since T0 is included in the constants
C1 and C2, as seen in Eqs. (28) and (29), respectively, the pressure dependencies appear via T0.

By substituting Eq. (45) into Eqs. (87) and (90), the thermal-expansion coefficient is expressed as

α = αa + αb, (91)

where αa is given by

αa = 1

V

1

T0

(
∂T0

∂P

)
T

Ca, (92)

and αb is given by

αb = 1

V

C̃b
t

[(
∂y0

∂P

)
T

+ (
∂y1

∂P

)
T

d
2 L − 1

T0

(
∂T0
∂P

)
T
C̃b

y1

2
1
N

]
1 − dy1

2t
M

, (93)

for d + z > 4, and

αb = 1

V

C̃b
t

[(
∂y0

∂P

)
T

+ (
∂y1

∂P

)
T

(
d
2 L + 1

2y ln y
) − 1

T0

(
∂T0
∂P

)
T
C̃b

y1

2
1
N

]
1 − y1

2 (ln y + 1) − dy1

2t
M

, (94)

for d + z = 4, respectively.
On the other hand, let us turn to Eq. (68) to be compared with Eqs. (91) and (94). We see that Eq. (69) is exactly the same as

Eq. (92). As for αb, to calculate ( ∂y

∂P
)
T

, by differentiating the SCR equation [Eq. (33) and Eq. (34)] with respect to the pressure
P , we obtain

(
∂y

∂P

)
T

=

⎧⎪⎪⎨
⎪⎪⎩

(
∂y0
∂P

)
T
+
(

∂y1
∂P

)
T

d
2 L− 1

T0

(
∂T0
∂P

)
T
C̃b

y1
2

1
N

1− dy1
2t

M
(d + z > 4),(

∂y0
∂P

)
T
+
(

∂y1
∂P

)
T

(
d
2 L+ 1

2 y ln y

)
− 1

T0

(
∂T0
∂P

)
T
C̃b

y1
2

1
N

1− y1
2 (ln y+1)− dy1

2t
M

(d + z = 4),

(95)

respectively. By substituting Eq. (95) into Eq. (70), αb is obtained as

αb = 1

V

C̃b
t

[(
∂y0

∂P

)
T

+ (
∂y1

∂P

)
T

d
2 L − 1

T0

(
∂T0
∂P

)
T
C̃b

y1

2
1
N

]
1 − dy1

2t
M

, (96)

for d + z > 4, and

αb = 1

V

C̃b
t

[(
∂y0

∂P

)
T

+ (
∂y1

∂P

)
T

(
d
2 L + 1

2y ln y
) − 1

T0

(
∂T0
∂P

)
T
C̃b

y1

2
1
N

]
1 − y1

2 (ln y + 1) − dy1

2t
M

, (97)
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FIG. 3. (a) Temperature dependence of the thermal-expansion coefficient α (thick solid line), αa (thin solid line), and αb (dash-dotted line)
at the 3D FM QCP. (b) Log-log plot of (a). The dashed line represents the least-square fit of α with at1/3 for 10−5 � t � 10−4. The inset shows
the t dependence of ( ∂y

∂P
)
T
/( ∂y0

∂P
)
T =0

.

for d + z = 4, respectively. Now we see that Eq. (96) is
exactly the same as Eq. (93) for d + z > 4. We also see that
Eq. (97) is exactly the same as Eq. (94) for d + z = 4. Hence,
it is proven that both expressions on α of Eqs. (68) and (83)
are equivalent.

VI. NUMERICAL RESULTS ON THERMAL-EXPANSION
COEFFICIENT α AT THE MAGNETIC QCP

Since equivalence of Eqs. (68) and (83) has been proven,
let us analyze the temperature dependence of the thermal-
expansion coefficient α on the basis of Eq. (68), which has a
simpler expression. In Eq. (68), αb [Eq. (70)] includes ( ∂y

∂P
)
T

,
which can be obtained by calculating the r.h.s. of Eq. (95).
Namely, when the pressure derivatives of T0, TA, v4, and
η0/(Aq2

B) are given, one can obtain ( ∂y0

∂P
)
T

by Eq. (88) and

( ∂y1

∂P
)
T

by Eq. (89). Then, substituting them into Eq. (95),

one obtains the temperature dependence of ( ∂y

∂P
)
T

. At the
QCP tuned to the critical pressure P = Pc, y0 = 0 is realized.
However, ( ∂y0

∂P
)
T =0

can have a nonzero value at the QCP in
general, which will be shown for d + z > 4 below. Since y0

defined by Eq. (35) is the quantity for T = 0, the first terms in
the numerator and denominator of the r.h.s. of Eq. (95) are
constants. Note that y1 defined by Eq. (36) is the quantity
for T = 0 and hence ( ∂y1

∂P
)
T

has no temperature dependence.
Since T0 is defined by Eq. (25), ( ∂T0

∂P
)
T

also has no temperature
dependence.

To see the temperature dependence of α at the QCP,
numerical calculation of Eq. (68) is performed. First, we solve
the SCR equation [Eq. (33) or (34)] by setting y0 = 0.0 and
y1 = 1.0. With the use of the solution y and ( ∂y

∂T
)
V

obtained
by Eq. (45), we calculate Ca(t ) in Eq. (41) and C̃b(t ) in
Eq. (43). Then we calculate ( ∂y

∂P
)
T

in Eq. (95) by setting

( ∂y0

∂P
)
T

= 1.0, ( ∂y1

∂P
)
T

= 1.0, and 1
T0

( ∂T0
∂P

)
T

= 1.0 as represen-
tative values (the reason for this parametrization is explained
below). Finally, by substituting Ca(t ), C̃b(t ), and ( ∂y

∂P
)
T

into
Eq. (68), we obtain the temperature dependence of α(t ) at the
QCP. In the plot of α(t ), the lattice constant is set as unity.
The results for each universality class are shown in Figs. 3,

4, 5, and 6, respectively, whose properties are analyzed in the
following subsections.

Before going into a detailed analysis of α(t ), here we com-
ment on the unit and parametrization. In Eq. (68), the volume
V is regarded as the molar volume. Then, by multiplying
the value of 1

T0
( ∂T0

∂P
)
T

in the unit of GPa−1 to the restored
Boltzmann constant over the unit-cell volume kB/Vunit , where
Vunit is given by Vunit = a [Å] × b [Å] × c [Å], we obtain αa

in the unit of K−1, as follows:

αa = 1.38

abc
× 10−2 × 1

T0

(
∂T0

∂P

)
T

× Ca

N
[K−1]. (98)

As for αb, by multiplying the value of ( ∂y

∂P
)
T

in the unit of
GPa−1 to kB/Vunit , we obtain αb in the unit of K−1, as follows:

αb = 1.38

abc
× 10−2 ×

(
∂y

∂P

)
T

× C̃b

Nt
[K−1]. (99)

Hence, multiplying the numerical value of the underlined
part of Eqs. (98) and (99) for each material to αa and αb,
respectively, in the following Figs. 3–6, direct comparison
with experiments can be made. More detailed discussion
about experiments will be given in Sec. IX C 1.

A. 3D ferromagnetic case

Figure 3(a) shows the temperature dependence of the
thermal-expansion coefficient α at the FM QCP (z = 3) in
d = 3. As t decreases, αb in Eq. (68) contributes to α dom-
inantly, α ≈ 1

V
C̃b
t

( ∂y

∂P
)
T

, while contribution from αa becomes
not negligible as t increases.

For t � 1, we estimate L ∼ t4/3, C̃b ∼ t4/3, and M ∼
−t4/3 in Eq. (95). Hence, we have ( ∂y

∂P
)
T

≈ ( ∂y0

∂P
)
T =0

− b1t
1/3

with b1 being a positive constant. This can be seen in the
inset of Fig. 3(b) where the t dependence of ( ∂y

∂P
)
T
/( ∂y0

∂P
)
T =0

is plotted. At sufficiently low temperatures where ( ∂y

∂P
)
T

can

be regarded as a constant ( ∂y

∂P
)
T

≈ ( ∂y0

∂P
)
T =0

, α behaves as

α ∝ C̃b

t
∼ t1/3, (100)
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FIG. 4. (a) Temperature dependence of the thermal-expansion coefficient α (thick solid line), αa (thin solid line), and αb (dash-dotted line)
at the 3D AFM QCP. (b) Log-log plot of (a). The dashed line represents the least-square fit of α with at1/2 for 10−5 � t � 10−4. The inset
shows the t dependence of ( ∂y

∂P
)
T
/( ∂y0

∂P
)
T =0

.

where C̃b
t

∼ t1/3 dominates over Ca ∼ −t ln t [Eq. (49)] in
Eq. (68). This coincides with the temperature dependence
of the critical part shown by the RG theory [17]. However,
it should be noted that α ∼ t1/3 appears at sufficiently low
temperatures for t � 10−3, as shown in Fig. 3(b). This is
because the temperature dependent ( ∂y

∂P
)
T

exists in αb in
Eq. (70), as noted above.

B. 3D antiferromagnetic case

Figure 4(a) shows the temperature dependence of the
thermal-expansion coefficient α at the AFM QCP (z = 2) in
d = 3. As t decreases, αb in Eq. (68) contributes to α domi-
nantly, α ≈ 1

V
C̃b
t

( ∂y

∂P
)
T

, while contribution from αa becomes
not negligible as t increases.

For t � 1, we estimate L ∼ t3/2, C̃b ∼ t3/2, and M ∼
−t5/4 in Eq. (95). Hence, we have ( ∂y

∂P
)
T

≈ ( ∂y0

∂P
)
T =0

− b2t
1/4

with b2 being a positive constant. This can be seen in the
inset of Fig. 4(b) where the t dependence of ( ∂y

∂P
)
T
/( ∂y0

∂P
)
T =0

is plotted. At sufficiently low temperatures where ( ∂y

∂P
)
T

can

be regarded as a constant ( ∂y

∂P
)
T

≈ ( ∂y0

∂P
)
T =0

, α behaves as

α ∝ C̃b

t
∼ t1/2, (101)

where C̃b
t

∼ t1/2 dominates over Ca ∼ t (const. − t1/2)
[Eq. (52)] in Eq. (68). This coincides with the temperature
dependence of the critical part shown by the RG theory [17]. It
should be noted however that α ∼ t1/2 appears at sufficiently
low temperatures for t � 10−3, as shown in Fig. 4(b). This is
due to the temperature dependence of ( ∂y

∂P
)
T

in αb in Eq. (70),
as noted above.

C. 2D ferromagnetic case

Figure 5(a) shows the temperature dependence of the
thermal-expansion coefficient α at the FM QCP (z = 3) in
d = 2. As t decreases, αb in Eq. (68) contributes to α dom-
inantly, α ≈ 1

V
C̃b
t

( ∂y

∂P
)
T

, while contribution from αa becomes
not negligible as t increases.

For t � 1, we estimate L ∼ −t ln t , C̃b ∼ −t ln t , and
M ∼ t/ ln t in Eq. (95). Hence, we have ( ∂y

∂P
)
T

≈ ( ∂y0

∂P
)
T =0

+
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FIG. 5. (a) Temperature dependence of the thermal-expansion coefficient α (thick solid line), αa (thin solid line), and αb (dash-dotted line)
at the 2D FM QCP. (b) Semi-log plot of (a). The dashed line represents the least-square fit of α with a ln t for 10−5 � t � 10−4. The inset
shows the t dependence of ( ∂y

∂P
)
T
/( ∂y0

∂P
)
T =0

.
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FIG. 6. (a) Temperature dependence of the thermal-expansion coefficient α (thick solid line), αa (thin solid line), and αb (dash-dotted line)
at the 2D AFM QCP. (b) Semi-log plot of (a). The dashed line represents the least-square fit of α with −a ln(− ln t )

ln t
for 10−7 � t � 10−4. The

inset shows the t dependence of ( ∂y

∂P
)
T
/( ∂y0

∂P
)
T =0

.

b3a/ ln t + b3bt
1/3 with b3a and b3b being positive constants.

This can be seen in the inset of Fig. 5(b), where the t

dependence of ( ∂y

∂P
)
T
/( ∂y0

∂P
)
T =0

is plotted. At sufficiently low

temperatures where ( ∂y

∂P
)
T

can be regarded as a constant

( ∂y

∂P
)
T

≈ ( ∂y0

∂P
)
T =0

, α behaves as

α ∝ C̃b

t
∼ − ln t, (102)

where C̃b
t

∼ − ln t dominates over Ca ∼ t2/3 [Eq. (56)] in
Eq. (68). This coincides with the temperature dependence
of the critical part shown by the RG theory [17]. It should
be noted however that α ∼ − ln t appears at sufficiently low
temperatures for t � 10−4, as shown in Fig. 5(b). This is due
to the temperature dependence of ( ∂y

∂P
)
T

in αb in Eq. (70),
as noted above. As shown in Fig. 5(a), α(t ) shows a slight
increase down to t ∼ 10−2, which is seen as almost flat-t
behavior, and divergent-t behavior becomes visible for lower
temperatures t � 10−2.

Note that although α diverges for t → 0, the entropy
becomes zero, i.e., S → 0, for t → 0, which is confirmed with
the use of Eq. (39), satisfying the third law of thermodynam-
ics. This can also be seen by integrating αV with respect to P

[see Eq. (5)] as [17]

S(P, T ) = S(Pc, T ) −
∫ P ∗

Pc

αV dP ′ −
∫ P

P ∗
αV dP ′, (103)

where Pc denotes the QCP and P ∗ characterizes the crossover
from the quantum-critical to Fermi-liquid regimes. Let us
consider the case for P > P ∗ that S(P, T ) and the last term
of the r.h.s. in Eq. (103) are in the Fermi-liquid regime,
both of which vanish for t → 0. Since y(t = 0) has a finite
slope at P = Pc, i.e., ( ∂y

∂P
)
T =0

	= 0, the crossover line in
the P -t phase diagram behaves as P ∗ − Pc ∼ ( ∂P

∂y
)
T =0

t2/3.

Here t2/3 is the crossover temperature between the quantum-
critical region and the Fermi-liquid region in the P -t phase
diagram, where y/t2/z much smaller (larger) than 1 for t → 0
gives the quantum-critical (Fermi-liquid) region [see Eq. (B4)
in Appendix B]. Then, the second term on the r.h.s. of
Eq. (103) becomes zero for t → 0 since the integration region

vanishes as P ∗ − Pc ∼ t2/3 → 0 over which α is divergent as
Eq. (102). This yields S(Pc, T → 0) = 0.

D. 2D antiferromagnetic case

Figure 6(a) shows the temperature dependence of the
thermal-expansion coefficient α at the AFM QCP (z = 2) in
d = 2. As t decreases, αb in Eq. (68) contributes to α domi-
nantly, α ≈ 1

V
C̃b
t

( ∂y

∂P
)
T

, while contribution from αa becomes
not negligible as t increases.

In Eq. (95) for d + z = 4, we estimate y1

2 (y ln y + 2L) =
y ≈ − t

2
ln(− ln t )

ln t
[see Eq. (34) and Appendix D], C̃b ∼

t ln(− ln t ) [Eq. (59)], and M ∼ t ln t
ln(− ln t ) for t � 1. Hence,

we have ( ∂y

∂P
)
T
/( ∂y0

∂P
)
T =0

≈ −b4/ ln (− t
ln t

) with b4 being a
positive constant. Note that divergence of the denominator
of Eq. (95) occurs because the ln y and M terms diverge for
t → 0 and then we have limT →0 ( ∂y

∂P
)
T

= 0 irrespective of the

input values of ( ∂y0

∂P
)
T =0

in Eq. (95). This can be confirmed by
the numerical calculation of Eq. (95), which is shown in the
inset of Fig. 6(b).

For t � 1, α behaves as

α ∝ C̃b

t

(
∂y

∂P

)
T

∼ − ln(− ln t )

ln
(− t

ln t

) , (104)

where C̃b
t

( ∂y

∂P
)
T

∼ − ln(− ln t )
ln (− t

ln t
) dominates over Ca ∼ −t ln t

[Eq. (60)] in Eq. (68). Although Eq. (104) gives the accurate
expression of α for t � 1, here taking the leading term of
the denominator, we plot α ∼ − ln(− ln t )

ln t
in Fig. 6(b) as a

dashed line, which well reproduces αb and also α for t <

10−2. It is noted that the low-temperature behavior ln(− ln t )
in Eq. (104) coincides with the temperature dependence of
the critical part shown by the RG theory [17] except for the
prefactor (∂y/∂P )T , which gives the − ln (− t

ln t
) contribution

to the denominator of Eq. (104) [36] .
The temperature dependence of α for t � 1 at the QCP for

each class is summarized in Table II.
It is noted that Takahashi derived α(t ) from the volume

derivative of the free energy in the extended SCR theory by
introducing the conservation law of the total spin fluctuation
amplitude and discussed the 3D FM case with finite transition
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TABLE II. Temperature dependence of the thermal-expansion
coefficient α and the Grüneisen parameter � just at the QCP for each
class specified by z = 3 (FM) and z = 2 (AFM) in d = 3 and 2.

Class α �

3D FM T 1/3 − T −2/3

ln T

3D AFM T 1/2 T −1/2

const.−T 1/2

2D FM − ln T −T −2/3 ln T

2D AFM − ln (− ln T )

ln
(
− T

ln T

) 1
T ln T

ln(− ln T )

ln
(
− T

ln T

)

temperatures [28]. The present study has shown that α(t )
derived from the volume derivative of the SCR free energy
(Sec. V C) is equivalent to α(t ) derived from the pressure
derivative of the SCR entropy (Sec. V A), On the basis of
the latter result, which has a much simpler expression, the
critical properties of α(t ) at the QCP for each class (z = 3, 2
in d = 3, 2) have been clarified.

VII. NUMERICAL RESULTS ON GRÜNEISEN
PARAMETER � AT THE MAGNETIC QCP

The Grüneisen parameter � is defined by Eq. (6). On the
other hand, � in the adiabatic process has been derived in
Sec. IV, whose explicit form is given by Eq. (65). It can be
shown that for t → 0 the former expression is equivalent to
the latter one as follows:

Let us consider Eq. (6). Near the magnetic QCP, the
thermal-expansion coefficient α is given in Eq. (68) and the
specific heat CV is given in Eq. (40). As shown in Sec. III,
for t � 1, the dominant contribution to CV comes from Ca as
CV = Ca − Cb ≈ Ca. Hence, � is expressed for t � 1 as

� ≈ C̃b

Ca

1

t

1

κT

(
∂y

∂P

)
T

+ 1

κT

1

T0

(
∂T0

∂P

)
T

= − C̃b

Ca

V

t

(
∂y

∂V

)
T

− V

T0

(
∂T0

∂V

)
T

, (105)

where κT defined in Eq. (4) has been used to derive the second
line. Since T0 defined in Eq. (25) is the quantity at T = 0
and does not depend on T , we have ( ∂T0

∂V
)
T

= ( ∂T0
∂V

)
S
. For

sufficiently low temperatures, ( ∂y

∂V
) at a constant T can be

approximated as the one at a constant S, i.e., ( ∂y

∂V
)
T

≈ ( ∂y

∂V
)
S
.

Then, it is confirmed explicitly for t � 1 that Eq. (105)
coincides with Eq. (65).

Here we remark the property of the isothermal compress-
ibility κT defined by Eq. (4). By differentiating the pressure P

in Eq. (72) with respect to the volume V under a constant tem-
perature T , ( ∂P

∂V
)
T

can be calculated as discussed in Sec. V C.
It can be shown that the t → 0 limit of ( ∂P

∂V
)
T

is finite but
not zero at the QCP for each class specified by z = 3 and
2 in d = 3 and 2. Hence, the t → 0 limit of the isothermal
compressibility is finite at the QCP, i.e., limt→0 κT = const.

In the following subsections the temperature dependence
of � at the QCP for each class will be analyzed on the basis of
Eq. (6). The specific heat CV in Eq. (40) is calculated by the
procedure in Sec. III and the thermal-expansion coefficient α

in Eq. (68) is calculated by the procedure in Sec. VI. With the
use of Eq. (68), � is expressed as

� = �a + �b, (106)

where �i is defined by

�i ≡ αiV

CV κT

, (107)

for i = a, b. For t � 1, �a and �b lead to the second and first
terms in Eq. (105), respectively. To plot the t dependence of �,
here we input κT = 0.1 as a representative value (the reason
for this parametrization is explained below), although given
the first and second derivatives of T0, TA, v4, and η0/(Aq2

B)
with respect to V , the temperature dependence of κT can be
computed explicitly. Other input parameters are the same as
those set in Figs. 2 and 3.

Here we comment on the parametrization. The Grüneisen
parameter �a(T = 0) = − V

T0
( ∂T0

∂V
)
T =0

in heavy electron sys-

tems is estimated to be in the same order of − V
TK

( ∂TK
∂V

)
T =0

,
with TK being the characteristic temperature called Kondo
temperature, which typically has an enhanced value of
O(10), as will be shown in Sec. IX C [see Eq. (120)].
Since 1

T0
( ∂T0

∂P
)
T

= �a(T = 0)κT = 1.0 was used in Sec. VI
as a typical input value, here we input κT = 0.1 as a typ-
ical value for the heavy electron system, giving rise to
�a(T = 0) = 10.0.

If one makes a comparison with the system with the normal
metal where the Grüneisen parameter is not enhanced in the
Fermi-liquid region but has the value of O(1) (e.g., d electron
systems), κT of O(1) is to be input for 1

T0
( ∂T0

∂P
)
T

= 1.0, which
gives �a(T = 0) of O(1). Hence the vertical scales of the
following Figs. 7–10 are an order of magnitude smaller in that
case.

To make more explicit comparison with experiments, the
bulk modulus κ−1

T in the unit of GPa for each material is
multiplied to 1

T0
( ∂T0

∂P
)
T

in the unit of GPa−1 [see Eqs. (98)
and (99)], giving rise to the dimensionless �a. These values
can actually be determined from the measurements, which
will be discussed in Sec. IX C 1.

A. 3D ferromagnetic case

Figure 7(a) shows the temperature dependence of the
Grüneisen parameter � at the FM QCP (z = 3) in d = 3.
As t decreases, � increases and diverges at the ground
state, which is mainly contributed from �b. For t � 1, the
thermal-expansion coefficient is evaluated as α ≈ αb ∼ t1/3

in Eq. (100) and the specific heat is evaluated as CV ≈ Ca ∼
−t ln t in Eq. (49). Then, � is evaluated as

� ≈ �b ∼ − t−3/2

ln t
, (108)

for t � 1. This is numerically confirmed in Fig. 7(b), where
�(t )(− ln t ) (thick solid line) behaves as ∼t−2/3 (dashed line)
for t � 1. The behavior of Eq. (108) is in accord with the RG
theory [17], which appears at sufficiently low temperatures for
t � 10−4, as shown in Fig. 7(b).

In the Curie-Weiss regime [see Fig. 1(a)], �(t ) shows a
monotonic decrease as t increases. The least-square fit of
1/�(t ) in the form of atγ for 0.07 � t � 0.20 gives γ =
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FIG. 7. (a) Temperature dependence of the Grüneisen parameter � (thick solid line), �a (thin solid line), and �b (dash-dotted line) at the
3D FM QCP. (b) Temperature dependence of �(− ln t ) (thick solid line) and �b(− ln t ) (dash-dotted line). The dashed line represents the
least-square fit of �(− ln t ) with at−2/3 for 10−5 � t � 10−4.

0.43. Hence, �(t ) behaves as �(t ) ∼ t−0.43 in the Curie-Weiss
regime.

B. 3D antiferromagnetic case

Figure 8(a) shows the temperature dependence of the
Grüneisen parameter � at the AFM QCP (z = 2) in d =
3. As t decreases, � increases and diverges at the ground
state, which is mainly contributed from �b. For t � 1, the
thermal-expansion coefficient is evaluated as α ≈ αb ∼ t1/2

in Eq. (101) and the specific heat is evaluated as CV ≈ Ca ∼
t (const. − t1/2) in Eq. (52). Then � is evaluated as

� ≈ �b ∼ t−1/2

const. − t1/2
, (109)

for t � 1. This is numerically confirmed in Fig. 8(b), where
�(t )( 1

2 − t1/2) (thick solid line) behaves as ∼t−1/2 (dashed
line) for low t . The behavior of Eq. (109) is in accord
with the RG theory [17], which appears at sufficiently low
temperatures for t � 10−4, as shown in Fig. 8(b).

As for the Curie-Weiss regime [see Fig. 1(b)], the least-
square fit of 1/�(t ) in the form of atγ in the Curie-Weiss
regime for 0.07 � t � 0.20 gives γ = 0.43. Hence, �(t ) be-
haves as �(t ) ∼ t−0.43 in the Curie-Weiss regime.

C. 2D ferromagnetic case

Figure 9(a) shows the temperature dependence of the
Grüneisen parameter � at the FM QCP (z = 3) in d = 2.
As t decreases, � increases and diverges at the ground
state, which is mainly contributed from �b. For t � 1, the
thermal-expansion coefficient is evaluated as α ≈ αb ∼ − ln t

in Eq. (102) and the specific heat is evaluated as CV ≈ Ca ∼
t2/3 in Eq. (56). Then, � is evaluated as

� ≈ �b ∼ −t−2/3 ln t, (110)

for t � 1. This is numerically confirmed in Fig. 9(b), where
�(t )/(− ln t ) (thick solid line) behaves as ∼t−2/3 (dashed
line) for low t . The behavior of Eq. (110) is in accord
with the RG theory [17], which appears at sufficiently low
temperatures for t � 10−4, as shown in Fig. 9(b).

As for the Curie-Weiss regime [see Fig. 1(c)], the least-
square fit of 1/�(t ) in the form of atγ in the Curie-Weiss
regime for 0.07 � t � 0.20 gives γ = 0.50. Hence, �(t ) be-
haves as �(t ) ∼ t−0.50 in the Curie-Weiss regime.

D. 2D antiferromagnetic case

Figure 10(a) shows the temperature dependence of the
Grüneisen parameter � at the AFM QCP (z = 2) in d = 2.
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FIG. 8. (a) Temperature dependence of the Grüneisen parameter � (thick solid line), �a (thin solid line), and �b (dash-dotted line) at the
3D AFM QCP. (b) Temperature dependence of �( 1

2 − t1/2) (thick solid line) and �b( 1
2 − t1/2) (dash-dotted line). The dashed line represents

the least-square fit of �( 1
2 − t1/2) with at−1/2 for 10−5 � t � 10−4.
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FIG. 9. (a) Temperature dependence of the Grüneisen parameter � (thick solid line), �a (thin solid line), and �b (dash-dotted line) at the
2D FM QCP. (b) Temperature dependence of �/(− ln t ) (thick solid line) and �b/(− ln t ) (dash-dotted line). The dashed line represents the
least-square fit of �/(− ln t ) with at−2/3 for 10−5 � t � 10−4.

As t decreases, � increases and diverges at the ground state,
which is mainly contributed from �b. For t � 1, the thermal-
expansion coefficient is evaluated in Eq. (104), whose precise
form is α ≈ αb ∼ − ln(− ln T )

ln (− T
ln T

)
. The specific heat is evaluated as

CV ≈ Ca ∼ −t ln t in Eq. (60). Then, � is evaluated as

� ≈ �b ∼ 1

t ln t

ln(− ln t )

ln
(− t

ln t

) , (111)

for t � 1. This is confirmed in Fig. 10(b), where �(t )t (− ln t )
(thick solid line) behaves as ∼− ln(− ln t )

ln (− t
ln t

) (dashed line) for low

t . The behavior of Eq. (111) agrees with the critical part shown
by the RG theory [17] except for ln (− t

ln t
) in the denominator,

which arises from the prefactor (∂y/∂P )T in αb as discussed
in Sec. VI D [36] .

As for the Curie-Weiss regime [see Fig. 1(d)], the least-
square fit of 1/�(t ) in the form of atγ in the Curie-Weiss
regime for 0.07 � t � 0.20 gives γ = 0.41. Hence, �(t ) be-
haves as �(t ) ∼ t−0.41 in the Curie-Weiss regime.

The temperature dependence of � for t � 1 at the QCP for
each class is summarized in Table II.

VIII. NUMERICAL RESULTS ON GRÜNEISEN
PARAMETER � NEAR THE MAGNETIC QCP

In this section we discuss the Grüneisen parameter near
the QCP for each class on the basis of the SCR theory.
We calculate �(t ) in the paramagnetic phase by solving the
SCR equation (33) for d + z > 4 and Eq. (34) for d + z = 4
in the paramagnetic region (y0 > 0) and also in the region
where the magnetic order takes place (y0 < 0). The input
parameters other than y0 are the same as those in Sec. VII.
The results are shown in Figs. 11(a)–11(d) [see corresponding
Figs. 1(a)–1(d), respectively].

At the QCP specified by y0 = 0, �(t ) shows the diver-
gence for t → 0 in each class. As getting away from the QCP
in the paramagnetic region, �(t ) for t → 0 becomes finite,
whose value decreases as y0 increases from 0, as shown in
Figs. 11(a)–11(d).

On the other hand, as y0 decreases from 0, the magnetic
order occurs at finite temperature t = tc ≡ Tc/T for 3D FM
[Fig. 11(a)] and 3D AFM [Fig. 11(b)]. In the high-t regime
for t � 0.7, �(t ) shows the Curie-Weiss behavior in each
class as mentioned above. As t decreases, �(t ) increases and
turns to decrease, which finally converges into a finite value
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FIG. 10. (a) Temperature dependence of the Grüneisen parameter � (thick solid line), �a (thin solid line), and �b (dash-dotted line) at the
2D AFM QCP. (b) Temperature dependence of �t (− ln t ) (thick solid line) and �bt (− ln t ) (dash-dotted line). The dashed line represents the
least-square fit of �t (− ln t ) with −a ln(− ln t )

ln (− t
ln t )

for 10−5 � t � 10−4.
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FIG. 11. Scaled temperature dependence of the Grüneisen parameter for (a) 3D FM, (b) 3D AFM, (c) 2D FM, and (d) 2D AFM.

�(t ) → �a(t = tc) = − V
T0

( ∂T0
∂V

)
T =Tc

= 10.0 for t → tc+. This

is because C̃b → 0 is realized for y → 0 as t approaches tc

from the high-t side, making αb ∝ C̃b(tc )
tc

→ 0 in Eq. (70).
Then, by Eq. (106), it turns out that the Grüneisen parameter
at tc is expressed as �(t ) → �a(t ) for t → tc+.

For 2D FM and 2D AFM, the magnetic order occurs only at
t = tc = 0. The Grüneisen parameters for y0 < 0 in this case
also show �(t ) → �a(t ) = − V

T0
( ∂T0

∂V
)
T =0

= 10.0 for t → 0+,
as seen in Figs. 11(c) and 11(d), respectively.

IX. DISCUSSION

A. Divergence of the Grüneisen parameter
and the characteristic energy scale at the QCP

In the SCR theory, the characteristic temperature of spin
fluctuation T0 is not zero even at the QCP in general, as will
be illustrated in Fig. 12. In Sec. VII it was shown that the
Grüneisen parameter � diverges at the magnetic QCP for each
class (z = 3, 2 in d = 3, 2). The origin of the divergence can
be traced back to the entropy of the SCR theory. The entropy
S is expressed as the scaled form in Eq. (39) with a variable
u defined by Eq. (31). The volume dependence arises from y

in the numerator and T0 in the denominator of Eq. (31), which
lead to the first and second terms in Eq. (65), respectively.
The former gives rise to the divergence of � for t → 0 at the
QCP and the latter gives the V derivative of the characteristic
temperature T0 [see Eq. (65) or (105)]. The present study has
clarified that the inverse susceptibility (renormalized by the
mode-mode coupling of spin fluctuations) coupled to V gives
rise to the divergence of � in addition to the ordinary contri-

bution from the V derivative of the characteristic temperature
of the system.

The temperature dependence of the dominant term of the
thermal-expansion coefficient α and � for t � 1 coincides
with the critical part shown by the RG theory [17] except
for the temperature dependent ( ∂y

∂P
)
T

in α and � for z = 2 in
d = 2 (see Secs. VI D and VII D). In Ref. [17], the Grüneisen
parameter defined by � ≡ α/CP was analyzed and the
relation � ∼ T − 1

νz was derived by assuming the hyperscaling
relation, which is generally justified only below the upper
critical dimension (d + z < 4) within the �4 theory [see
Eq. (11)]. Here ν is the exponent for the correlation length
ξ ∼ |r|−ν with r ≡ (P − Pc)/Pc. The results in Sec. VII
are obtained above (d + z > 4) and just at the upper critical
dimension (d + z = 4). For comparison, let us reexpress the
specific heat CV , α, and � in terms of d and z for each class
in the following subsections.

1. 3D ferromagnetic case (d = 3, z = 3)

For t � 1, the specific heat [Eq. (49)] is expressed
as CV ≈ Ca ∼ −t

d
z ln t . The thermal expansion coefficient

α [Eq. (100)] is expressed as α ≈ αb ∼ t
d−2

z . Then, the
Grüneisen parameter [Eq. (108)] is expressed as

� ≈ α

CV

∼ − t−
2
z

ln t
. (112)

2. 3D antiferromagnetic case (d = 3, z = 2)

For t � 1, the specific heat [Eq. (52)] is expressed
as CV ≈ Ca ∼ t

d−1
z (const. − t

d
z
−1). The thermal expansion

coefficient α [Eq. (101)] is expressed as α ≈ αb ∼ t
d−2

z . Then,
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FIG. 12. Schematic temperature-pressure phase diagram of Ce-
based heavy-electron systems (right-pointing P axis) and Yb-based
heavy-electron systems (left-pointing P axis) in d = 3. The Kondo
temperature TK and the characteristic temperature of spin fluctuation
T0 are given by the solid lines (left axis). Note that vertical scales for
TK and T0 can be different in general. Depending on the parameters
in each material, it is possible that T0(P ) gets close to TK(P ) (see
text). The magnetic transition temperature Tc (solid line, left axis)
is suppressed to 0 at the QCP denoted by Pc. The dashed line gives
y = 1/[2TAχQ(0, 0)] (right axis) for P > Pc. Note that in d = 2 for
z = 2 the dashed line starts to appear from Pc with a vanishing slope
( ∂y

∂P
)
T =0

= 0 (see Sec. VI D). Note that it is possible that a crossing
of TK(P ) and Tc(P ) occurs depending on the material parameters. If
the system has XY or Heisenberg symmetry, no magnetic transition
occurs for finite T in d = 2.

the Grüneisen parameter [Eq. (109)] is expressed as

� ≈ α

CV

∼ t
d−2

z

t
d−1

z (const. − t
d
z
−1)

. (113)

3. 2D ferromagnetic case (d = 2, z = 3)

For t � 1, the specific heat [Eq. (56)] is expressed as CV ≈
Ca ∼ t

d
z . The thermal expansion coefficient α [Eq. (102)] is

expressed as α ≈ αb ∼ − ln t . Then, the Grüneisen parameter
[Eq. (110)] is expressed as

� ≈ α

CV

∼ − t−
d
z

ln t
. (114)

4. 2D antiferromagnetic case (d = 2, z = 2)

For t � 1, the specific heat [Eq. (60)] is expressed
as CV ≈ Ca ∼ −t

d
z ln t . The thermal expansion coeffi-

cient α [Eq. (104)] is expressed precisely as α ≈
αb ∼ − ln(− ln t )/ ln (− t

ln t
). Then, the Grüneisen parameter

[Eq. (111)] is expressed as

� ≈ α

CV

∼ t−
d
z

ln t

ln(− ln t )

ln
(− t

ln t

) . (115)

In Eqs. (112), (114), and (115), � has the t dependence
as t−2/z with logarithmic corrections. In Eq. (113), if the first

term of the denominator is neglected, � has the t dependence
as t

z−d−1
z , which is also expressed as t−2/z. Since the dynamical

magnetic susceptibility with the quadratic momentum depen-
dence in Eq. (21) yields ν = 1/2 in the SCR theory, as a result,
all these t dependence can be expressed as t−

1
νz except for the

logarithmic corrections.

B. Comparison with the Moriya-Usami theory

Moriya and Usami discussed the magnetovolume effect in
nearly ferromagnetic metals [15] on the basis of the volume
strain ωm ≡ δV

V
expressed as

ωm(T ) − ωm(Tc) ∝ y, (116)

for T > Tc, where Tc is the ferromagnetic-transition temper-
ature. The volume strain in nearly antiferromagnetic metals
was also discussed on the basis of Eq. (116) where Tc is the
Néel temperature [13]. Since the thermal-expansion coeffi-
cient α is obtained by α = dωm

dT
according to its definition in

Eq. (1), Eq. (116) indicates that α is proportional to dy

dT
, i.e.,

α ∝ dy

dT
.

It should be noted here that Eq. (116) was not shown to
be derived from the free energy [13,15,28]. In this paper, we
have derived the thermal-expansion coefficient α starting from
the free energy (or equivalently from the entropy) in the SCR
theory with the use of the stationary condition adequately,
which results in Eq. (68). Then we have obtained α ≈ αb ∼
C̃b
t

( ∂y

∂P
)
T

for t � 1 at the QCP, as shown in Sec. VI. Hence,
let us compare our result with the Moriya-Usami theory at
Tc = 0.

For d + z > 4, the temperature dependence of y and C̃b is
the same for t � 1, and ( ∂y

∂P
)
T

∼ const. for t → 0, as shown

in Secs. VI A, VI B, and VI C. Hence, it turns out that C̃b
t

( ∂y

∂P
)
T

has the same temperature dependence as dy

dT
for t � 1.

For d + z = 4, the temperature dependence of y ∼
− t ln(− ln t )

ln t
and C̃b ∼ t ln(− ln t ) for t � 1 are different. How-

ever, ( ∂y

∂P
)
T

has the temperature dependence as ( ∂y

∂P
)
T

∼
−[ln (− t

ln t
)]−1 for t � 1, as shown in Sec. VI D. Hence,

C̃b
t

( ∂y

∂P
)
T

is expressed as ∼− ln(− ln t )
ln (− t

ln t
) . This still looks different

from dy

dT
∼ − ln(− ln t )

ln t
. However, at low temperatures C̃b

t
( ∂y

∂P
)
T

can be approximated as ∼− ln(− ln t )
ln t

, which was confirmed
numerically as shown in Fig. 6(b). Thus, it can be regarded
that in practice C̃b

t
( ∂y

∂P
)
T

has the same temperature dependence

as dy

dT
∼ − ln(− ln t )

ln t
as far as the leading term is concerned.

Hence, as a consequence, our result in Eq. (68) and
Moriya-Usami’s α ∝ dy

dT
give the same (practically the same)

t dependence of α for t � 1 for d + z > 4(d + z = 4). This
can be seen immediately by comparing dy

dT
∝ dη

dT
in Table I

with α(t ) in Table II for each class. Note that behavior in
Table II appears at sufficiently low temperatures as shown in
Figs. 3–6, and hence α ∝ dy

dT
does not hold at temperatures

except for t � 1.

C. Comparison with experiments

The thermal-expansion coefficient is generally expressed
as

α = αe + αph + αmag, (117)
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where αe and αph are contributions from itinerant electrons
and acoustic phonons, respectively. At low temperatures, αe

behaves as αe = aT , as shown by the free-electron model, and
αph is given by αph = βT 3 [37]. In Eq. (117), αmag arises from
spin fluctuations, which become profound near the continuous
magnetic-transition point, as discussed in Sec. V (note that
αmag was denoted as α in Sec. V).

The Grüneisen parameter is generally expressed as

� = �e + �ph + �mag, (118)

where �i is defined by Eq. (107) with i = e, ph, and mag,
corresponding to each term in Eq. (117). For sufficiently lower
temperatures than the Fermi temperature, �e is given as a
constant [37]. In heavy electron systems, the characteristic
temperature of the quasiparticles is the effective Fermi tem-
perature, which is referred to as the Kondo temperature TK in
the lattice system. Then, the characteristic temperature T ∗ in
Eq. (8) is set to be TK, which leads to [29,38,39]

�e = − V

TK

(
∂TK

∂V

)
S

. (119)

To grasp the main property, let us take the view from the
strong limit of on-site Coulomb repulsion of f electrons. By

inputting TK = De
− 1

NcFJ to Eq. (119), where D and NcF are
the half-band width and the density of states at the Fermi
level of conduction electrons per “spin,” respectively, and J is
the effective Kondo exchange coupling (J > 0) in the lattice
system [40,41], we obtain for NcFJ � 1

�e ≈ − 1

NcFJ

{
V

J

(
∂J

∂V

)
S

+ c

}
, (120)

where c is a constant of O(1) (e.g., c = 2/3 for free conduc-
tion electrons in d = 3). In heavy electron systems, (JNcF )−1

typically has a magnitude of O(10). Thus we see that the
factor (NcFJ )−1 gives rise to the enhancement of |�e|, which
is often observed in the heavy electron metals with about
10–100 times larger values than those of ordinary metals
[29,39,42,43].

When the system approaches the continuous magnetic-
transition point by varying parameters, e.g., by applying
pressure or magnetic field, or chemical doping, �mag arising
from spin fluctuations becomes predominant in Eq. (118),
as discussed in Sec. VII (note that �mag was denoted as �

in Sec. VII). In the following subsections, let us discuss the
pressure tuning to the magnetic QCP in the Ce- and Yb-based
heavy electron systems.

1. Pressure effects on Ce-based systems

In the Ce-based heavy electron systems, by applying pres-
sure, the hybridization between f and conduction electrons
|Vf c| increases and the f level εf increases in general. Hence,

the Kondo coupling J ∼ V 2
f c

εF−εf
increases, giving rise to in-

crease in the Kondo temperature TK. This yields ( ∂J
∂V

)
S

< 0,
which leads to �e > 0 in Eq. (120) [44].

Namely, the system becomes more itinerant under pres-
sure, which makes the characteristic temperature of spin
fluctuation T0 increase. Direct evaluation of T0 in Eq. (25)
gives T0 = ÃvFq̃B/(π2n2/3) in d = 3, where vF is the Fermi

velocity and n is the filling defined by n ≡ Ne
2N

. Here q̃B is
given by q̃B = qB for z = 3 and q̃B = Q for z = 2, and Ã is
a dimensionless constant defined by the q2 coefficient around
the ordered vector Q in the irreducible susceptibility at ω = 0
(e.g., Ã = 1

12 for the free electron model [7]). Since vF ∼ TK

holds, applying pressure induces an increase in vF reflecting
the pressure-induced expansion of the effective bandwidth of
the quasiparticles. This effect contributes to increase in T0

under pressure, i.e., ( ∂T0
∂P

) > 0.
Indeed, in Ce7Ni3, it was observed that T0 increases as

pressure increases [48]. Moreover, smooth variation of T0

and TK observed under pressure is also understandable, since
T0(P ) can get close to TK(P ) according to the parameters
of Ã and n. The plot of T0(P ) as well as TK(P ) determined
from the measurements of the specific heat and resistivity in
Ce7Ni3 under pressure [48] enables us to estimate 1

TK
( ∂TK

∂P
) =

4.0 GPa−1, which is comparable to 1
T0

( ∂T0
∂P

) [39]. The bulk

modulus is observed as κ−1
T = 24.6 GPa at room temperature.

The Grüneisen parameter is estimated to be � ≈ 100 [39].
Figure 12 with the right-pointing P axis illustrates the

T -P phase diagram of the Ce-based heavy electron systems.
As P increases, the magnetic transition temperature Tc is
suppressed to be absolute zero at the QCP denoted by Pc. At
P = Pc, the magnetic susceptibility χQ(0, 0) diverges with
y = 0 [see Eq. (21)]. Since y increases as P increases from
Pc as shown by the dashed line, ( ∂y

∂P
)
T =0

> 0 holds. [For the
AFM QCP (z = 2) in d = 2, y starts to appear with zero
slope ( ∂y

∂P
)
T =0

= 0 at Pc, as discussed in Sec. VI D.] Then,
from Eq. (70) and the resultant Eq. (68), the positive thermal
expansion coefficient appears αmag > 0 for P > Pc at low
temperatures.

This is understandable from the P dependence of the en-
tropy S. When the QCP is approached from the paramagnetic
side for P > Pc, S/T ≈ CV /T (see Table I) increases toward
Pc at the infinitesimal temperature. This gives ( ∂S

∂P
)
T

< 0 for
P > Pc, leading to αmag > 0 by Eq. (5) and hence �mag > 0.

On the other hand, when P further decreases from Pc, the
continuous transition to the magnetically ordered phase makes
S/T decrease continuously for P < Pc at the infinitesimal
T . This gives ( ∂S

∂P
)
T

> 0 for P < Pc, leading to αmag < 0
by Eq. (5) and hence �mag < 0. Namely, the sign change of
αmag and �mag occurs at Pc as a consequence of the entropy
accumulation near the QCP [17,18]. It is noted that the sign
change of αmag was shown in Refs. [3,49] and the sign change
of �mag as well was discussed in Ref. [18].

2. Pressure effects on Yb-based systems

On the other hand, in the Yb-based heavy electron sys-
tems, the electronic state with 4f 13 configuration for Yb3+

is understood on the basis of the hole picture. Hence, the
f -hole level εf decreases as pressure increases in the Yb-
based systems. In case this effect outweighs increase in the

f -c hybridization, the Kondo coupling J ∼ V 2
f c

εF−εf
decreases,

giving rise to decrease in the Kondo temperature TK under
pressure. This yields ( ∂J

∂V
)
S

> 0, which leads to �e < 0 in
Eq. (120) and hence the negative volume expansion αe < 0
in Eq. (117).
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Namely, pressure induces the system where f electrons
becomes more localized. When TK decreases under pressure,
decrease in the f -hole level is more effective than increase
in the f -c hybridization, which makes vF decrease. This
effect contributes to the decrease in T0 under pressure, i.e.,
( ∂T0

∂P
) < 0. This yields negative thermal-expansion coefficient

and Grüneisen parameter αa < 0 in Eq. (69) and �a < 0 in
Eq. (107).

Figure 12 with the left-pointing P axis illustrates the
T -P phase diagram of the Yb-based heavy electron systems,
where by applying pressure to the paramagnetic metal phase,
the magnetic transition occurs at Tc starting from the QCP
denoted by Pc. As P approaches Pc, the magnetic suscepti-
bility χQ(0, 0) ∝ y−1 increases and diverges at Pc for T = 0.
Hence, ( ∂y

∂P
)
T

< 0 holds for P < Pc, as shown by the dashed
line. Thus, from Eq. (70), αb < 0 appears, which results in the
negative thermal expansion coefficient αmag < 0 and hence
�mag < 0 for P < Pc at low temperatures.

On the other hand, when P further increases from Pc, the
continuous transition to the magnetically ordered phase makes
S/T decrease continuously for P > Pc at the infinitesimal
T . This gives ( ∂S

∂P
)
T

< 0 for P > Pc, leading to αmag > 0 by
Eq. (5) and hence �mag > 0. Namely, sign change of αmag and
�mag occurs at Pc due to the entropy accumulation near the
QCP.

D. Observation of α and � near the magnetic QCP

To detect the thermal expansion coefficient α and the
Grüneisen parameter � near the QCP, experimental efforts
have been devoted [16,51–53]. So far, a few data have been
reported to exhibit the quantum criticality shown in Tables I
and II in the stoichiometric compounds. To access the QCP,
chemical doping has often been performed for high accuracy
measurement of α at ambient pressure. However, the chemical
doping more or less brings about effects of disorder, which
sometimes masks true critical behaviors expected in clean
systems. In this subsection, keeping this aspect in mind, ex-
perimental data to be compared with the criticality in Tables I
and II are discussed.

In CeNi2Ge2, the specific heat C4f /T ∼ γ0 − aCT 1/2 and
resistivity ρ ∼ T nρ (1.2 � nρ � 1.5) are observed in the low
T region at ambient pressure, suggesting close proximity to
the 3D AFM QCP (see Table I) [19]. The measured thermal
expansion coefficient α = aα

√
T + bαT is in accordance with

αmag ∼ T 1/2 in Eq. (101) and αe ∼ T in Eq. (117). The
Grüneisen parameter � ≈ 57 at T = 5 K is already enhanced
reflecting the contribution from �a in Eq. (106) and the
heavy-electron background as noted around Eq. (120). Further
enhancement of � for lowering T is observed as � ≈ 98 ± 10
at T ≈ 0.1 K, which suggests the contribution from �b as
shown in Eq. (109) (see Fig. 8).

As for the sign change of the thermal expansion coefficient,
αmag < 0 in the AFM phase for x < xc and αmag > 0 in the
paramagnetic phase for x > xc were observed in CeIn3−xSnx

with xc = 0.67 ± 0.03 [20] and in CeRhIn5−xSnx with xc =
0.48 [21].

Since the systematic study of T0(P ) and TK(P ) has already
been performed in Ce7Ni3 [39,48], the measurements of α(T )
and �(T ) at the QCP specified by Pc = 0.39 GPa and their

analyses based on Eqs. (68) and (106) are an interesting
subject for future studies.

Furthermore, experimental observation of the quantum
criticality shown in Tables I and II for each class is also greatly
desired. Near the FM QCP, ( ∂y

∂P
)
T

can be directly observed
by measuring the pressure dependence of the uniform suscep-
tibility since χ0(0, 0)−1 ∝ y holds. Near the AFM QCP, by
measuring the pressure dependence of the NMR relaxation
rate (T1T )−1 or resistivity ρ(T ) at low temperatures, ( ∂y

∂P
)
T

can be extracted [3,25]. Observation of T0(P ) as well as
TK(P ) and evaluation of 1

T0
( ∂T0

∂P
)
T

as done in Ce7Ni3 and

( ∂y

∂P
)
T

enables us to make the complete analysis of α(T ) and
�(T ) at the QCP on the basis of Eqs. (68) and (106). Such
measurements are much to be desired.

X. SUMMARY

The properties of the thermal-expansion coefficient α and
the Grüneisen parameter � near the magnetic QCP in itinerant
electron systems have been discussed on the basis of the SCR
theory in this paper.

By taking into account the zero point as well as thermal
spin fluctuation, we have calculated the specific heat CV at the
magnetic QCP by considering the stationary condition of the
SCR theory correctly. For each class of the FM QCP (z = 3)
and AFM QCP (z = 2) in d = 3 and 2, CV was shown to be
expressed as CV = Ca − Cb, where Ca is dominant for t � 1.
The criticality of Ca reproduces the results obtained by the
past SCR theory, which was endorsed by the RG theory.

Then we have derived the thermal-expansion coefficient
α starting from the expression of the entropy in the SCR
theory, which has been proven to be equivalent to α derived
from the expression of the free energy in the SCR theory. The
result shows that α is expressed as α = αa + αb with αa =
1
V

Ca
T0

( ∂T0
∂P

)
T

and αb = 1
V

C̃b
t

( ∂y

∂P
)
T

where αb is dominant for
t � 1. An important result is that αb contains the temperature-
dependent ( ∂y

∂P
)
T

, which contributes to the crossover from the
quantum-critical to Curie-Weiss regimes for each universality
class and even affects the critical behavior for t � 1 in the
case of upper critical dimension, i.e., z = 2 in d = 2.

On the basis of these correctly calculated CV and α, we
have derived the Grüneisen parameter �. The results show
that � is expressed as � = �a + �b, where �a and �b contain
αa and αb, respectively. For t � 1, �a is given by �a =
− V

T0
( ∂T0

∂V
)
T

, which has an enhanced value of typically O(10)
in the heavy electron systems. A remarkable result is that for
t � 1, �b is expressed as �b = − C̃b

Ca

V
t

( ∂y

∂V
)
T

, which diverges
at the QCP for each universality class. This result shows that
the inverse susceptibility (renormalized by the mode-mode
coupling of spin fluctuations) coupled to V gives rise to
the divergence of the Grüneisen parameter even though the
characteristic energy scale T0 remains finite at the QCP.

The obtained results give the complete expressions of α

and �, which consist of not only the critical part but also non-
critical part with their coefficients as well as the temperature
dependencies. The temperature dependencies of αb and �b for
t � 1 coincide with the critical parts shown by the RG theory
for each universality class except for the case z = 2 in d = 2,
where the temperature dependent ( ∂y

∂P
)
T

affects the criticality.
The complete expressions of α and � clarify their whole
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temperature dependencies from the quantum-critical regime
to the Curie-Weiss regime, and are useful for comparison with
experiments. The temperature dependence of α coincides with
the Moriya-Usami theory for t � 1 where α ∝ dy

dt
holds for

d + z > 4 and approximately holds for d + z = 4.
Our study has made it possible to evaluate the temperature

dependence of the Grüneisen parameter in the Curie-Weiss
regime. The results are �(T ) ∼ T −0.43 for the d = 3 FM
and AFM QCPs, �(T ) ∼ T −0.50 for the d = 2 FM QCP, and
�(T ) ∼ T −0.41 for the d = 2 AFM QCP. These results are
also useful for comparison with experiments.

In the heavy electron systems, the Grüneisen parameter in
the Fermi-liquid regime is shown to be enhanced by a factor
of (JNcF )−1 � 1, where J is the Kondo coupling and NcF is
the density of states of conduction electrons at the Fermi level.
When the QCP is approached, further enhancement caused by
spin fluctuation is added to the heavy-electron background,
and � eventually diverges at the QCP.

The characteristic temperature of spin fluctuation is shown
to be proportional to the Kondo temperature in the lattice
system T0 ∝ TK. At sufficiently low temperatures, α > 0 and
� > 0 appear in the paramagnetic phase for P > Pc, while
α < 0 and � < 0 appear in the magnetically ordered phase for
P < Pc in the Ce-based heavy electron systems. On the other
hand, α < 0 and � < 0 appear in the paramagnetic phase for
P < Pc, while α > 0 and � > 0 appear in the magnetically
ordered phase for P > Pc in the Yb-based heavy electron
systems.
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APPENDIX A: GRÜNEISEN PARAMETER IN FERMI
LIQUID AT LOW TEMPERATURES

In this Appendix it is shown that the Grüneisen parameter
for free electrons in the isotropic three-dimensional system is
easily derived from the specific heat at low temperatures.

At low temperatures, the specific heat at a constant volume
is given by

CV = NkB
π2

2

T

TF
= NkB

T

T ∗ , (A1)

where T ∗ is defined as T ∗ ≡ 2
π2 TF. Then, the entropy S is

given by

S =
∫ T

0

CV

T
dT = NkB

T

T ∗ . (A2)

Note that the Fermi temperature TF is expressed as TF = εF
kB

with the Fermi energy εF ≡ h̄2k2
F

2m
, where m and kF are mass

of an electron and the Fermi wave number kF = (3π2 Ne
V

)
1/3

,
respectively. Then, by differentiating Eq. (A2) with respect to
the volume V under a constant entropy S, we obtain(

∂T ∗

∂V

)
S

= −2

3

T ∗

V
. (A3)

Hence, by Eq. (10), the Grüneisen parameter � is obtained as

� = 2
3 , (A4)

which reproduces the result of the free-electron model [37].

APPENDIX B: QUANTUM CRITICALITY IN d = 3

In this Appendix it is explained that the quantum criticality
at the QCP in d = 3 is given by Eq. (38) by analyzing the
solution of the SCR equation [Eq. (33)] at low temperatures
[26]. The x integral on the r.h.s. of Eq. (33) is defined by
Eq. (82) as

L ≡
∫ xc

0
dxxd+z−3

{
lnu − 1

2u
− ψ (u)

}
, (B1)

where d is the spatial dimension and z is the dynamical
exponent. By changing the integral variable as x ′ = x/t

1
z ,

Eq. (B1) is expressed as

L = t
d+z−2

z

∫ xc

t
1
z

0
dx ′(x ′)d+z−3

{
lnu − 1

2u
− ψ (u)

}
, (B2)

where u is given by

u = (x ′)z−2

{
y

t
2
z

+ (x ′)2

}
. (B3)

We see that at low temperatures t � 1 for

y

t
2
z

→ 0, (B4)

the x ′ integral in d = 3 converges in Eq. (B2) where the upper
bound of the integral is set to be ∞. Hence, the t dependence
of L is evaluated as

L ∝ t
z+1
z . (B5)

Then, from the SCR equation [Eq. (33)], the following solu-
tion

y ∝ t
z+1
z (B6)

is immediately obtained at the QCP where y0 = 0.0 is set in
Eq. (33). It is confirmed that this result satisfies the condition
of Eq. (B4), i.e., y/t

2
z � 1, for t � 1.

APPENDIX C: SOLUTION OF SCR EQUATION
FOR z = 3 in d = 2

The derivation of the solution of the SCR equation
[Eq. (33)] for z = 3 in d = 2 is shown in this Appendix [10].

By using the approximation formula

lnu − 1

2u
− ψ (u) ≈ 1

2u(1 + 6u)
(C1)

in Eq. (B1), the x integration can be performed and the leading
terms are evaluated as

L ≈ t

4
ln

[
1

y

(
t

6

)2/3
]
, (C2)

for y � t2/3 � 1. Then, the solution of the SCR equation
[Eq. (33)] y = y0 + y1L at the QCP with y0 = 0.0 is obtained
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as follows:

y = − y1

12
t ln t. (C3)

Since the correlation length ξ is given by y ∝ ξ−2, this
coincides with the result of the RG theory for z = 3 in d = 2
in Ref. [8].

APPENDIX D: EQUIVALENCE OF SCR SOLUTION AND
RENORMALIZATION GROUP FOR z = 2 IN d = 2

In this Appendix it is shown that the solution of the SCR
equation [Eq. (34)] for z = 2 in d = 2 coincides with the
result of the RG theory by Millis [8].

By using the approximation formula Eq. (C1) in the SCR
equation [Eq. (34)], the x integration can be performed as

y = y0 + y1

2

(
ylny + t

2

{
ln

x2
c + y

y
− ln

x2
c + y + t

6

y + t
6

})
.

(D1)

At the QCP with y0 = 0.0, the leading terms are evaluated as

−ln2y ≈ t

2y
ln

t

2y
, (D2)

for y � t � 1. Then, one finds that

y = −t
ln(−lnt )

2lnt
(D3)

is the solution of Eq. (D2) up to the order of ln t , which
coincides with the result of the RG theory for z = 2 in d = 2
in Ref. [8].

APPENDIX E: DERIVATION OF EQ. (72)

In this Appendix the derivation of Eq. (72) is explained.
By differentiating the free energy in the SCR theory

[Eq. (22)] with respect to V under a constant temperature, we
obtain

(
∂F̃

∂V

)
T

= 1

π

∑
q

∫ ωc

0
dω

[
∂

∂�q

(
�q

ω2 + �2
q

)]
T

(
∂�q

∂V

)
T

[
ω

2
+ T ln(1 − e− ω

T )

]
− 1

2NF

(
∂η

∂V

)
T

〈ϕ2〉eff

+
[
η0 − η

2NF
+ 6v4

N
〈ϕ2〉eff

](
∂〈ϕ2〉eff

∂V

)
T

+
{(

∂η0

∂V

)
T

1

2NF
+ (η0−η)

[
∂

∂V

(
1

2NF

)]
T

}
〈ϕ2〉eff + 3

N

(
∂v4

∂V

)
T

〈ϕ2〉2
eff .

(E1)

Since the second term of Eq. (71) is expressed as (∂�q/∂y)T (∂y/∂V )T , by substituting

(
∂η

∂V

)
T

= Aq2
B

(
∂y

∂V

)
T

+ y

[
∂ (Aq2

B)

∂V

]
T

(E2)

into the second term of Eq. (E1), the first and second terms of Eq. (E1) are expressed as

1

T0

(
∂T0

∂V

)
T

I +
{

1

π

∑
q

∫ ωc

0
dω

[
∂

∂�q

(
�q

ω2 + �2
q

)]
T

(
∂�q

∂y

)
T

[
ω

2
+ T ln(1 − e− ω

T )

]
− TA〈ϕ2〉eff

}(
∂y

∂V

)
T

− y

[
∂ (Aq2

B)

∂V

]
T

1

2NF
〈ϕ2〉eff , (E3)

where I is defined by Eq. (73) and the definition of TA [Eq. (27)] has been used. Here we note that the {· · · } part vanishes
because of the stationary condition (∂F̃ /∂y)T = 0 applied to

(
∂F̃

∂V

)
T

=
(

∂y

∂V

)
T

(
∂F̃

∂y

)
T

+ · · · . (E4)

This implies that the coefficient multiplied to (∂y/∂V )T in the calculation of (∂F̃ /∂V )T vanishes, which is nothing but the {· · · }
part in Eq. (E3). This can also be directly confirmed by noting the fact that the term in the second line of Eq. (E3) equals to
(∂Feff/∂y)T , which is expressed as

(
∂Feff

∂y

)
T

= Aq2
B
T

2

∑
q

∑
l

1

η + Aq2 + Cq |ωl| = TA〈ϕ2〉eff . (E5)

Here Feff was defined by Eq. (15) and the definition of 〈ϕ2〉eff [Eq. (17)] has been used to derive the last result. Then, the last
term inside of {· · · } in Eq. (E3) is subtracted from Eq. (E5), which results in zero.
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On the first term in the second line of Eq. (E1), the [· · · ] part multiplied to (∂〈ϕ2〉eff/∂V )T vanishes because of the SCR
equation [Eq. (16)].

On the second term in the second line of Eq. (E1), the {· · · } part is expressed as(
∂η0

∂V

)
T

1

2NF
+ (η0 − η)

[
∂

∂V

(
1

2NF

)]
T

=
[

∂

∂V

(
η0

Aq2
B

)]
T

TA +
(

η0

Aq2
B

− y

)(
∂TA

∂V

)
T

+ y

[
∂ (Aq2

B)

∂V

]
T

1

2NF
. (E6)

Then, it turns out that the contribution from the last term is canceled by the last term of Eq. (E3).
Eventually, the remaining terms are the first term of Eq. (E3), the contributions from the first and second terms on the r.h.s.

of Eq. (E6), and the last term of Eq. (E1), which result in Eq. (72).

APPENDIX F: DERIVATION OF THE LAST THREE TERMS IN EQ. (83)

In this Appendix the last three terms in Eq. (83) are derived from the last three terms in Eq. (79).
The last three terms in Eq. (79) are calculated by using the SCR equation [Eq. (16)], as follows:

− ∂

∂T

{[
∂

∂V

(
η0

Aq2
B

)]
T

TA〈ϕ2〉eff

}∣∣∣∣
V

= −
(

∂y

∂t

)
V

N

6v4

T 2
A

T0

[
∂

∂V

(
η0

Aq2
B

)]
T

, (F1)

− ∂

∂T

[(
η0

Aq2
B

− y

)(
∂TA

∂V

)
T

〈ϕ2〉eff

]∣∣∣∣
V

=
(

∂y

∂t

)
V

2

T0
〈ϕ2〉eff

(
∂TA

∂V

)
T

, (F2)

− ∂

∂T

[
3

N

(
∂v4

∂V

)
T

〈ϕ2〉2
eff

]∣∣∣∣
V

= −
(

∂y

∂t

)
V

TA

T0
〈ϕ2〉eff

1

v4

(
∂v4

∂V

)
T

. (F3)

These are the last three terms in Eq. (83), respectively.

APPENDIX G: DERIVATION OF EQ. (86)

The derivation of Eq. (86) is shown in this Appendix.
The pressure dependence of C1 and C2 appears via the characteristic temperature T0, as seen in Eqs. (28) and (29),

respectively. Hence, differentiation of C1 and C2 with respect to the pressure P under a constant temperature gives(
∂C1

∂P

)
T

= − 2

T0

(
∂T0

∂P

)
T

∫ xc

0
dxxd+z−3 ω2

cT0

ω2
cT0

+ x2z
, (G1)

(
∂C2

∂P

)
T

= − 4

T0

(
∂T0

∂P

)
T

∫ xc

0
dxxd+z−5 ω2

cT0
x2z(

ω2
cT0

+ x2z
)2 , (G2)

respectively.
Near the QCP, the second term in {· · · } of Eq. (80) can be expanded around y = 0 as∫ xc

0
dxxd+z−3 ω2

cT

ω2
cT + u2

=
∫ xc

0
dxxd+z−3 ω2

cT0

ω2
cT0

+ x2z
− 2

∫ xc

0
dxxd+z−5 ω2

cT0
x2z(

ω2
cT0

+ x2z
)2 y + · · · . (G3)

By substituting Eqs. (G1) and (G2) into the first and second terms on the r.h.s. of Eq. (G3), respectively, we obtain

− 1

T0

(
∂T0

∂P

)
T

∫ xc

0
dxxd+z−3 ω2

cT

ω2
cT + u2

= 1

2

{(
∂C1

∂P

)
T

−
(

∂C2

∂P

)
T

y

}
+ · · · (G4)

for small y, which holds near the QCP. This gives Eq. (86).

APPENDIX H: DERIVATION OF EQ. (87)

The derivation of Eq. (87) is explained in this Appendix.
By substituting Eq. (85) and Eq. (86) into the third term and the fourth term in {· · · } in the first line of Eq. (84), respectively,

the terms with {· · · } in the first line of Eq. (84) are expressed as

1

V

(
∂y

∂t

)
V

[
− 1

T0

(
∂T0

∂P

)
T

C̃b + Nd

2

{
1

T0

(
∂T0

∂P

)
T

(C1 − C2y0) +
(

∂C1

∂P

)
T

−
(

∂C2

∂P

)
T

y0

+
[

1

T0

(
∂T0

∂P

)
T

(
2 − C2y1

d

2

)
−

(
∂C2

∂P

)
T

y1
d

2

]
L

}]
, (H1)

where the SCR equation (33), which is written as y = y0 + (d/2)y1L using the definition of L [Eq. (82)], is substituted into y

on the r.h.s. of Eqs. (85) and (86).
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Then, one realizes that the first line except for the C̃b term inside the outermost [· · · ] in Eq. (H1) can be expressed in the form
as

N
2

y1

(
∂y0

∂P

)
T

, (H2)

as far as the terms with the pressure derivative of T0, C1, and C2 in Eq. (88) are concerned. Similarly, one realizes that the second
line inside the outermost [· · · ] in Eq. (H1) can be expressed in the form as
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as far as the terms with the pressure derivative of T0, C1, and C2 in Eq. (89) are concerned.
As for the last two terms in Eq. (84), it turns out that the terms other than noted above in Eqs. (88) and (89) complement the

remaining terms in (∂y0/∂P )T in Eq. (H2) and (∂y1/∂P )T in Eq. (H3), respectively, as follows:
The term with [∂ (η0/Aq2

B)/∂P ]T in Eq. (84) can be expressed in the form as Eq. (H2), as far as the term with the pressure
derivative of η0/(Aq2

B) in Eq. (88) is concerned.
On the term with (∂TA/∂P )T in Eq. (84), by substituting Eqs. (26) and (30) into the expression of 〈ϕ2〉eff [Eq. (18)] and using

the SCR equation [Eq. (33)], we obtain
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On the last term in Eq. (84), we similarly obtain
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Hence, the last two terms in Eq. (84) can be expressed in the form as the summation of Eqs. (H2) and (H3), as far as the terms
with the pressure derivative of TA and v4 in Eqs. (88) and (89), respectively, are concerned.

Thus, the summation of all these terms noted above lead to the summation of Eqs. (H2) and (H3), which is nothing but the
last two terms of Eq. (87). Since the first term with Ca and the third term with C̃b in Eq. (84) directly appear in Eq. (87) as the
first and second terms, respectively, by combining the result of the last two terms of Eq. (87) derived above, we obtain Eq. (87).
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[40] Y. Ōno, T. Matsuura, and Y. Kuroda, Physica C (Amsterdam)
159, 878 (1989).

[41] N. Shibata, T. Nishino, K. Ueda, and C. Ishii, Phys. Rev. B 53,
R8828 (1996).

[42] J. D. Thompson, J. M. Lawrence, and Z. Fisk, J. Low Temp.
Phys. 95, 59 (1994).

[43] A. de Visser, J. N. M. Franse, and J. Flouquet, Physica B
(Amsterdam) 161, 324 (1989).

[44] It is generally expected that the first term in Eq. (120) dominates
over the second term since the volume dependence of the
Kondo exchange coupling is much stronger than that of the
density of states of conduction electrons. If we adopt the tight-
binding picture with the distance dependence of the hybridiza-
tion between the f and conduction electrons Vf c ∼ 1/r�+�′+1

with the azimuthal quantum numbers � = 3, �′, respectively
[45–47], we estimate V

J
( ∂J

∂V
) ∼ − 1

d
[2�′ + 6 + O( εf

εF−εf
)] in the

d-dimensional system. The absolute value is larger than c ≡
V

NF
( ∂NF

∂V
) ∼ 2

d
estimated from the nearly free-electron picture,

since εf is not so close to εF in typical heavy-electron
systems. This reflects the fact that the locality of the 4f

wave function reacts severely to the volume change of the
system.

[45] O. K. Andersen and O. Jepsen, Physica B (Amsterdam) 91, 317
(1977).

[46] O. K. Andersen, W. Klose, and H. Nohl, Phys. Rev. B 17, 1209
(1978).

[47] W. A. Harrison, Electronic Structure and the Properties of Solids
(W. H. Freeman, San Francisco, CA, 1980).

[48] K. Umeo, H. Kadomatsu, and T. Takabatake, J. Phys.: Condens.
Matter 8, 9743 (1996).

[49] It should be noted that sign change of αmag in the ferromag-
netically ordered phase (αmag < 0) and the paramagnetic phase
(αmag > 0) was shown by the Moriya-Usami theory [15] to
explain the observation in ZrZn2 [50]. See Fig. 5.4 on p. 89
in Sect. 5.2 in Ref. [3].

[50] S. Ogawa and N. Kasai, J. Phys. Soc. Jpn. 27, 789 (1969).
[51] R. Küchler, P. Gegenwart, C. Geibel, and F. Steglich,

Sci. Technol. Adv. Mater. 8, 428 (2007), and references therein.
[52] A. Steppke, R. Kuchler, S. Lausberg, E. Lengyel, L. Steinke,

R. Borth, T. Luhmann, C. Krellner, M. Nicklas, C. Geibel, F.
Steglich, and M. Brando, Science 339, 933 (2013).

[53] P. Gegenwart, Rep. Prog. Phys. 79, 114502 (2016), and
references therein.

035108-25

https://doi.org/10.1103/PhysRevLett.17.1307
https://doi.org/10.1103/PhysRevLett.17.1307
https://doi.org/10.1103/PhysRevLett.17.1307
https://doi.org/10.1103/PhysRevLett.17.1307
https://doi.org/10.1143/JPSJ.67.4002
https://doi.org/10.1143/JPSJ.67.4002
https://doi.org/10.1143/JPSJ.67.4002
https://doi.org/10.1143/JPSJ.67.4002
http://www.thp.uni-koeln.de/rosch/documents/DrArbeitMarkusGarst.pdf
https://doi.org/10.1088/0953-8984/17/11/011
https://doi.org/10.1088/0953-8984/17/11/011
https://doi.org/10.1088/0953-8984/17/11/011
https://doi.org/10.1088/0953-8984/17/11/011
https://doi.org/10.1103/PhysRevB.54.1194
https://doi.org/10.1103/PhysRevB.54.1194
https://doi.org/10.1103/PhysRevB.54.1194
https://doi.org/10.1103/PhysRevB.54.1194
https://doi.org/10.1016/0921-4534(89)90163-9
https://doi.org/10.1016/0921-4534(89)90163-9
https://doi.org/10.1016/0921-4534(89)90163-9
https://doi.org/10.1016/0921-4534(89)90163-9
https://doi.org/10.1103/PhysRevB.53.R8828
https://doi.org/10.1103/PhysRevB.53.R8828
https://doi.org/10.1103/PhysRevB.53.R8828
https://doi.org/10.1103/PhysRevB.53.R8828
https://doi.org/10.1007/BF00754923
https://doi.org/10.1007/BF00754923
https://doi.org/10.1007/BF00754923
https://doi.org/10.1007/BF00754923
https://doi.org/10.1016/0921-4526(89)90156-7
https://doi.org/10.1016/0921-4526(89)90156-7
https://doi.org/10.1016/0921-4526(89)90156-7
https://doi.org/10.1016/0921-4526(89)90156-7
https://doi.org/10.1016/0378-4363(77)90200-5
https://doi.org/10.1016/0378-4363(77)90200-5
https://doi.org/10.1016/0378-4363(77)90200-5
https://doi.org/10.1016/0378-4363(77)90200-5
https://doi.org/10.1103/PhysRevB.17.1209
https://doi.org/10.1103/PhysRevB.17.1209
https://doi.org/10.1103/PhysRevB.17.1209
https://doi.org/10.1103/PhysRevB.17.1209
https://doi.org/10.1088/0953-8984/8/48/006
https://doi.org/10.1088/0953-8984/8/48/006
https://doi.org/10.1088/0953-8984/8/48/006
https://doi.org/10.1088/0953-8984/8/48/006
https://doi.org/10.1143/JPSJ.27.789
https://doi.org/10.1143/JPSJ.27.789
https://doi.org/10.1143/JPSJ.27.789
https://doi.org/10.1143/JPSJ.27.789
https://doi.org/10.1016/j.stam.2007.06.010
https://doi.org/10.1016/j.stam.2007.06.010
https://doi.org/10.1016/j.stam.2007.06.010
https://doi.org/10.1016/j.stam.2007.06.010
https://doi.org/10.1126/science.1230583
https://doi.org/10.1126/science.1230583
https://doi.org/10.1126/science.1230583
https://doi.org/10.1126/science.1230583
https://doi.org/10.1088/0034-4885/79/11/114502
https://doi.org/10.1088/0034-4885/79/11/114502
https://doi.org/10.1088/0034-4885/79/11/114502
https://doi.org/10.1088/0034-4885/79/11/114502



