
PHYSICAL REVIEW B 99, 035106 (2019)

Anisotropy of Dirac cones and Van Hove singularity in an organic Dirac fermion system
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We propose an experimental method to examine the in-plane anisotropy of electronic structure in layered
conductors. In the method, we measure the interlayer magnetoresistance as a function of in-plane magnetic field
orientation. We applied it to an organic Dirac fermion system α-(BEDT-TTF)2I3 to experimentally determine
the orientation of the anisotropic Dirac cones. It is concluded that the long axis of the elliptic constant-energy
contours of the Dirac cone is tilted by approximately −30° from the crystalline a axis to the b axis under
hydrostatic pressures. Additionally, we observed a signature of Van Hove singularity (which is a saddle point of
the band dispersion) at 30–40 K above or below the Dirac point. The ridgeline of the saddle point is estimated
as almost parallel to the crystalline b axis.
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I. INTRODUCTION

A layered organic conductor α-(BEDT-TTF)2I3 where
BEDT-TTF denotes bis(ethylenedithio)-tetrathiafulvalene has
attracted significant attention due to its two-dimensional (2D)
massless Dirac fermion state under high pressure, which is
similar to that of graphene [1]. Coupling between BEDT-TTF
conducting layers is extremely low (i.e., the interlayer transfer
energy, tc, is significantly lower than 1 meV), and thus the
compound is typically considered as a 2D system. At ambient
pressure, α-(BEDT-TTF)2I3 exhibits a phase transition into
the insulating phase due to charge ordering (CO) at TCO =
135 K. The CO transition temperature decreases with increas-
ing pressure. Above the critical pressure Pc > 1.2 GPa, the
CO phase vanishes, and the metallic phase survives at low
temperatures [2]. Based on the tight-binding band calculation
in the metallic phase, each BEDT-TTF layer exhibits 2D band
dispersion in which the conduction and valence bands contact
at two points (k0 and −k0) to form a pair of Dirac cones
(termed as valleys) [3,4]. The Fermi level is fixed at the
Dirac point due to crystal stoichiometry, and thus the system
is considered as a 2D Dirac semimetal (SM). In contrast to
graphene, the Dirac cones are tilted and anisotropic. Dirac
points are located at general points in the 2D Brillouin zone
and not at symmetric points. Although the band structure of
α-(BEDT-TTF)2I3 is discussed by the tight-binding approach
[3–9] and the first principles calculations [10,11], most of
which are performed for uniaxial pressure condition, the
Dirac SM state under hydrostatic pressure is not necessarily
reproduced well.

The realization of a Dirac SM in α-(BEDT-TTF)2I3 is ex-
perimentally suggested in indirect ways via negative interlayer
magnetoresistance [12,13], interlayer Hall effect [14,15],
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temperature dependence of magnetoresistance [16], specific
heat [17], thermoelectric power [18], and site-selective nu-
clear magnetic resonance (NMR) measurements [19,20].
Specifically, Ref. [16] reported that the thermal excitation
from the ground Landau level (zero mode) to the first Lan-
dau level exhibits square-root field dependence, and this is
characteristic of the massless Dirac fermions. The excitation
energy is less than 2 meV below 10 T. Additionally, Ref. [20]
indicated Dirac cone narrowing due to the interaction as well
as the existence of Van Hove singularity (which was pre-
dicted to be located at approximately 12 meV from the Dirac
points) [19].

Conversely, an extant study suggested the coexistence
of massive-hole pockets with Dirac cones in the complete
pressure range based on magnetotransport and thermopower
measurements [21]. This two-carrier scenario is not consistent
with the aforementioned experiments. Unfortunately, it is
essentially difficult to directly determine the band dispersion
by angle-resolved photoemission spectroscopy (ARPES) or
scanning tunneling spectroscopy (STS), which are impossible
in a pressure cell. In the present study, we do not adopt the
two-carrier picture and assume that only tilted Dirac cones
exist around Fermi energy.

Recently, an electronic structure was experimentally clari-
fied in the “weak CO” state, which denotes the CO state just
below the critical pressure, in a manner similar to the Dirac
SM state. The weak CO state is a massive Dirac fermion state
where a small gap opens in the Dirac cone [22]. In the weak
CO state, anomalous behaviors are observed. For example, the
spin gap remains finite although the transport gap vanishes
[23]. The edge transport along the boundary between CO
domains was discussed [24]. Furthermore, the possibility of
a topological phase was considered in the weak CO state [25].

The purpose of the study involves determining the
anisotropy of Dirac cones by an experiment independent of
any band models. Hence, we developed a magnetotransport
method that investigates the dependence of interlayer resis-
tance on in-plane magnetic field orientation as shown in
Fig. 1(a). In the study, we first discuss the principle of the
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FIG. 1. (a) Schematic view of the experimental configuration.
Interlayer resistance is measured as a function of the azimuthal angle
ϕ of in-plane magnetic field. (b) Wave number shift between two
wave functions coupled by interlayer tunneling. The dashed line
indicates the loop that is arbitrarily selected. (c) Schematic band
dispersion of the 2D Dirac fermion system. An example of the saddle
point exhibiting Van Hove singularity is also shown.

experimental method. Subsequently, we present the experi-
mental results for α-(BEDT-TTF)2I3. Finally, we discuss the
anisotropy of the Dirac cone and Van Hove singularity in the
Dirac SM and weak CO states.

II. INTERLAYER RESISTANCE IN LAYERED
CONDUCTORS UNDER IN-PLANE MAGNETIC FIELDS

We consider the interlayer transport in general layered
conductors with weak interlayer coupling under an in-plane
magnetic field B = (Bx, By, 0). This denotes the quantum
mechanical generalization of the preceding argument based
on semiclassical Boltzmann transport theory [26]. The effec-
tive Hamiltonian of the system with the Landau gage A =
(Byz, −Bxz, 0) is expressed as follows:

Ĥ = ε

(
−i

∂

∂x
+ e

h̄
Byz,−i

∂

∂y
− e

h̄
Bxz

)
−2tccos

(
−ic

∂

∂z

)
,

(1)

where ε(kx, ky ) is the energy dispersion of each 2D layer
parallel to the xy plane, and tc and c denote the interlayer
transfer energy and interlayer spacing, respectively. We con-
sider the interlayer coupling Ĥ ′ ≡ −2tccos(−ic∂/∂z) as a
perturbation. The energy and envelope function of unper-
turbed electronic states are given as follows:

Ek,zi
= ε(kx, ky ) ≡ ε(k), (2)
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(3)

Here, k, zi , and S denote the in-plane wave number
(kx, ky, 0), the z coordinate of each layer, and system area,
respectively. It should be noted that the crystal momentum
h̄k no longer corresponds to the canonical momentum. It
is defined on each layer and not conserved on the occasion
of interlayer hopping. Specifically, the perturbation matrix
elements are given as follows:

〈k′, z′
i |Ĥ ′|k, zi〉 = −tc

(
δk′,k+Qδz′

i ,zi+c + δk′,k−Qδz′
i ,zi−c

)
. (4)

Here, Q ≡ (−e/h̄)c × B = (ecBy/h̄,−ecBx/h̄, 0 ) de-
notes the shift of the wave number after the single tunneling
process. It originates from the Aharonov-Bohm phase corre-
sponding to the magnetic flux surrounded by the loop over
two neighboring layers as shown in Fig. 1(b). When wave
functions with wave numbers k and k′ on two neighboring
layers are coupled by interlayer tunneling, the phase of wave
functions changes by kL− k’L after making a circuit of the
loop L × c, where L can be arbitrarily selected. The phase
must correspond to the Aharonov-Bohm phase (−e/h̄)

∮
A ·

dl = (−e/h̄)BLc, and thus the wave number shift k′ − k =
Q is obtained.

Based on the tunneling picture for the interlayer transport
in layered conductors, the lowest-order contribution of the
interlayer coupling to the complex interlayer conductivity
σ̃zz(ω) corresponds to the single tunneling process between
two neighboring layers [27]. It is given by the Kubo formula
as follows [12,14,27]:

σ̃zz(ω) = − 2ih̄

(2π )2c

(
etcc

h̄

)2

×
∑
±
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f [ε(k)] − f [ε(k ± Q)]

ε(k ± Q) − ε(k)

× 1

ε(k ± Q) − ε(k) − h̄ω − ih̄
τk

dkxdky, (5)

where τk indicates the scattering relaxation time. We take the
limit of weak magnetic field and derive the formula for dc
conductivity as follows:

σzz = 2

π2c

(
etcc

h̄

)2 ∫∫ {
−df [ε(k)]

dε(k)

}

× τk

1 + {[− e
h̄

v(k) × B
] · c

}2
τ 2

k

dkxdky. (6)

Here, v(k) ≡ (1/h̄)[dε(k)/dk] denotes group velocity.
The interlayer conductivity denotes the summation of
the contributions from every k point with the weight
−df [ε(k)]/dε(k). We assume a constant relaxation time,
and thus the contribution corresponds to a maximum when
the Lorentz force (−e)v(k) × B corresponds to zero, in
other words, when the group velocity v(k) is parallel to the
magnetic field. Therefore, with respect to a constant-energy
contour with sufficient thermal distribution, the segment per-
pendicular to the magnetic field significantly contributes to in-
terlayer conductivity. This is the general result for multilayer
conductors and even applies in the case wherein interlayer
coupling is incoherent.

In the section below, we apply the aforementioned model
to a layered conductor where each layer exhibits tilted Dirac
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cone dispersion as schematically shown in Fig. 1(c). At
low temperatures, the electrons and holes are thermally dis-
tributed around the apex of the tilted cones (Dirac points).
The constant-energy contours around the Dirac point are
almost elliptic in the 2D k space. When the magnetic field
is perpendicular to the long axis of the ellipses, the segments
of constant-energy contours almost normal to the magnetic
field correspond to the longest segment, thereby causing the
local maximum of the interlayer conductivity. Thus, the field
direction that yields a local minimum of interlayer resistance
indicates the short axis of the elliptic constant-energy contours
of the tilted Dirac cone.

III. TRANSPORT MEASUREMENTS ON α-(BEDT-TTF)2I3

We performed the magnetotransport measurement in
α-(BEDT-TTF)2I3. The sample crystals were grown via the
standard electrochemical method. The crystal axes were deter-
mined via x-ray diffraction (XRD). The lattice parameters ob-
tained via XRD were in good agreement with the parameters
reported in extant studies [28] (we use the same definition of
the crystal axes as Ref. [28] in this paper). The electrodes were
formed on the top and bottom surfaces of crystals using gold
paste for four-terminal interlayer resistance measurements.
The sample was mounted in the piston-cylinder-type pressure
cell to align its orientation relative to the pressure cell, and it
was set in a split-type superconducting magnet system with
a rotation mechanism where the rotation origin was adjusted
using the reflection of the laser beam.

The inset of Fig. 2 shows the schematic phase diagram
of α-(BEDT-TTF)2I3 under hydrostatic pressures. The crit-
ical temperature TCO of the CO phase is suppressed by the
pressure, and the Dirac SM phase is stabilized to zero temper-
ature above the critical pressure Pc. As mentioned above, we

FIG. 2. Temperature dependence of interlayer resistance of
α-(BEDT-TTF)2I3 under several hydrostatic pressures at zero mag-
netic field. The inset shows a schematic phase diagram. The high-
pressure region just below the critical pressure Pc in the CO phase
is referred to as the weak CO state. It is considered to exhibit a
gapped Dirac cone dispersion. The metallic behavior in the weak CO
state is indicated by a dashed circle. Unclarified insulating behavior
is observed at low temperatures in the Dirac semimetal phase as
denoted by a dashed oval.

refer to the CO region just below Pc as the weak CO state.
Although the CO transition is the first-order phase transition,
the weak CO state was experimentally clarified as a massive
Dirac fermion state with a small energy gap [22].

The main panel of Fig. 2 shows the temperature depen-
dence of interlayer resistance Rzz of α-(BEDT-TTF)2I3 under
hydrostatic pressures. When the temperature decreases at P =
1.2 GPa, the resistance begins to increase at approximately
T = 50 K, and this corresponds to the transition from the
Dirac SM to the weak CO state. In the weak CO state, TCO

and the resistance are significantly reduced due to the small
gap. It should be noted that metallic temperature dependence
(dRzz/dT > 0) is observed in the weak CO state as indicated
by a dashed circle. Around the region, a finite spin gap was
observed by the NMR measurement despite the suppression
of the charge gap [23]. There is no established explanation for
the anomalous behaviors yet.

At higher pressures, the resistance exhibits metallic tem-
perature dependence corresponding to the Dirac SM state
with the exception of the low-temperature region. At low
temperatures below 5 K, the resistance exhibits a significant
insulating increase (dRzz/dT < 0) in all pressures (Dirac SM
and weak CO states) as shown in Fig. 2. The insulating
behavior corresponds to another unexplained problem [23].
The possibility of a small gap due to the spin-orbit interaction
is discussed as a potential explanation [29,30].

IV. MAGNETOTRANSPORT MEASUREMENTS AND
IN-PLANE ANISOTROPY OF THE DIRAC CONE

The interlayer magnetoresistance was measured under in-
plane magnetic fields as a function of its azimuthal angle
measured from the crystalline a axis towards the b axis.
The measurements were performed above 1.2 GPa where the
resistance is in the measurable range at low temperatures
in the CO phase. Even a small misalignment in the sample
crystal can lead to the superposition of the normal field
effect, which yields sharp peak structures reflecting negative
interlayer magnetoresistance [14,15]. To prevent mixing of the
normal field effect without any reproducibility, we performed
measurements at sufficiently low magnetic fields where the
normal field effect disappears. Figure 3(a) shows the angle
dependence of interlayer resistance at a low temperature
(4 K) and a weak magnetic field (0.1 T) for several pressures
between 1.2 and 2.0 GPa. The resistance exhibits a sinusoidal
change, and it exhibits local minima at approximately 60◦ and
240◦. This suggests that the short axis of elliptic constant-
energy contours of the Dirac cones is tilted from the a axis
towards the b axis by approximately 60◦, and thus the long
axis is oriented at approximately −30◦.

It should be noted that low-pressure data (P < 1.5 GPa)
were considered in the weak CO phase with a small energy
gap at the Dirac point. The quasiparticles activated ther-
mally beyond the small CO gap must display angle depen-
dence corresponding to the elliptic constant-energy contours
of gapped Dirac cones. The minimum angle exhibits weak
pressure dependence as shown in Fig. 3(b). The minimum
angle increases from 50° to 60° with increases in the pressure
from 1.5 to 2.0 GPa while it decreases below 1.5 GPa. Thus,
in approximate terms, the direction of the Dirac cone axis
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FIG. 3. Interlayer magnetoresistance of α-(BEDT-TTF)2I3 as a
function of the azimuthal angle of the in-plane magnetic field under
several hydrostatic pressures. The field strength is fixed at 0.1 T, and
the temperature is 4.0 K. (a) Whole angle dependence with twofold
symmetry. Two resistance minima indicated by arrows correspond to
the short axis directions of elliptic constant-energy contours of Dirac
cones as indicated in insets. (b) Angle dependence in an enlarged
scale. The resistance minimum exhibits weak pressure dependence.

appears to exhibit opposite changes in the Dirac SM and weak
CO states with respect to pressure.

V. TEMPERATURE-INDUCED CHANGE OF
ANGLE-DEPENDENT PATTERN

The angle-dependent pattern of interlayer resistance ex-
hibits unexpected temperature dependence. Figure 4(a) shows
the angle-dependent pattern in the Dirac SM state (P =
2.0 GPa) at several temperatures. When the temperature
increases from 4.0 K, the minimum angle rapidly switches
from approximately 60◦ to 0◦ at approximately T = 30–40 K.

FIG. 4. Interlayer magnetoresistance of α-(BEDT-TTF)2I3 as
a function of the azimuthal angle of the in-plane magnetic field
at several temperatures. The field strength was selected to obtain
clear angular dependence. (a) Angle dependence at 2.0 GPa (Dirac
SM phase). (b) Angle dependence at 1.2 GPa (weak CO state at
low temperatures). (c) Temperature dependence of the resistance
minimum angle for different pressures. As shown in the insets, the
minimum angle at low temperatures (50◦−60◦) and high tempera-
tures (0◦−10◦) reflects the orientation of the Dirac cone and Van
Hove singularity, respectively.

The same feature is observed in the weak CO state (P =
1.2 GPa) as shown in Fig. 4(b). With respect to various pres-
sures between 1.2 and 2.0 GPa, the temperature dependences
of the minimum angle are plotted in Fig. 4(c). As mentioned
above, the minimum angle is in the range of 50◦−60◦ at
low temperatures both in the Dirac SM and weak CO states
although it is slightly dependent on pressure. When the tem-
perature increases, the minimum angle decreases rapidly at
approximately 30–40 K both in the Dirac SM and weak
CO states and reaches almost 0◦ (parallel to the a axis) at
higher temperatures. It is important to note that the behavior
is independent of pressure. This suggests that the behavior
mainly originates from the change in the thermal distribution
and not the change in electronic structure. The distribution
effect is also supported by the fact that the resistance does not
exhibit a characteristic structure at approximately 30–40 K as
shown in Fig. 2.

The change in the minimum angle at approximately 30–
40 K is explained by the thermal excitation on the Van Hove
singularity. We assume that the ridges of two Dirac cones meet
at a saddle point of the 2D dispersion of the conduction or
valence band as shown schematically in Fig. 1(c). The saddle
point must correspond to one of the symmetric points in the
2D Brillouin zone due to time-reversal symmetry. It yields
a Van Hove singularity with a divergent peak of density of
states (DOS). At low temperatures, electrons and holes are
distributed only around the Dirac point where the DOS is
low. When the temperature increases, electrons or holes are
thermally excited on the Van Hove singularity. The Van Hove
singularity exhibits high DOS, and thus the contribution of the
excited carriers dominates the resistance anisotropy at high
temperatures. Therefore, the observed change in the resistance
minimum angle must correspond to the excitation from the
Dirac point to the Van Hove singularity, and the minimum
angle at higher temperatures reflects the anisotropy of the
saddle point.

If the aforementioned picture is accurate, then this implies
that a Van Hove singularity exists approximately 3–4 meV
above or below the Dirac point, and the value is not ex-
tremely sensitive to pressure. The minimum angle at high
temperatures (approximately 0◦) suggests that most parts of
hyperbolic constant-energy contours around the saddle point
are normal with respect to the crystalline a axis, and thus the
ridgeline of the saddle point (median line of two asymptotes of
hyperbolic constant-energy contours) is parallel to the b axis.

The thermal excitation onto the Van Hove singularity
was already observed as the shoulder structure of local spin
susceptibility measured by NMR [20]. Although the present
excitation energy (3–4 meV) is slightly lower than the NMR
estimation (6–12 meV), the value is of the same order. The
value still exceeds the excitation energy from the ground
Landau level (zero mode) to the first Landau level, which is
less than 2 meV below 10 T [16]. Therefore, the present result
does not conflict with those obtained in extant experimental
studies.

The configurations of the Dirac cone and the Van Hove
singularity suggested by the present study (which is indepen-
dent of any band models) disagree with those of conventional
band models [3–13]. Specifically, they predict that the long
axis of Dirac cone ellipse and the ridgeline of the Van Hove
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singularity are typically tilted from the a to the b axis by
70◦ and 30◦, respectively. The reason for the inconsistency is
unclear at the present stage. Hence, further investigations are
potentially necessary.

VI. SUMMARY

In conclusion, we developed an experimental method to
study the anisotropy of the electronic structure of layered
conductors based on the dependence of interlayer magnetore-
sistance on the azimuthal angle of in-plane magnetic fields.
We applied the method to an organic Dirac fermion system
α-(BEDT-TTF)2I3. The long axis of elliptic constant-energy
contours of the Dirac cone is tilted by approximately −30◦
from the a to the b axis. The configuration slightly depends

on the pressure. In addition, the existence of a Van Hove
singularity is strongly suggested at 30–40 K above or below
the Dirac point. The ridgeline of saddle point dispersion of
Van Hove singularity is almost parallel to the b axis. Further
examination might be needed since the results disagree with
the conventional band models.
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