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Current state-of-the-art devices for detecting and manipulating Majorana fermions commonly consist of
networks of Majorana wires and tunnel junctions. We study a key ingredient of these networks—a topological
Josephson junction with charging energy—and we pinpoint crucial features for device implementation. The
phase-dependent tunneling term contains both the usual 2π -periodic Josephson term and a 4π -periodic Majorana
tunneling term representing the coupling between Majoranas on both sides of the junction. In nontopological
junctions when the charging energy is small compared to the Josephson tunneling scale, the low-energy physics
is described by 2π phase slips. By contrast, in a topological junction, due to the 4π periodicity of the tunneling
term, it is usually expected that only 4π phase slips are possible while 2π phase slips are suppressed. However,
we find that if the ratio between the strengths of the Majorana assisted tunneling and the Josephson tunneling is
small, as is likely to be the case for many setups, 2π phase slips occur and may even dominate the low-energy
physics. In this limit, one can view the 4π phase slips as a pair of 2π phase slips with arbitrarily large separation.
We provide an effective description of the system in terms of 2π and 4π phase slips valid for all values of the
tunneling ratio. Comparing the spectrum of the effective models with numerical simulations, we determine the
crossover between the 4π phase slip regime to the 2π phase slip dominated regime. We also discuss the role
of the charging energy as well as the implications of our results on the dissipative phase transitions expected in
such a system.
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I. INTRODUCTION

In recent years, extensive scientific efforts have been
invested to understand, realize, and manipulate topological
states in condensed matter [1,2]. Particularly, topological
superconducting wires [3,4], which are constructed using
systems with strong spin-orbit coupling, induced Cooper pair-
ing, and a Zeeman field, have gathered much attention [5].
Interest in these Majorana wires is motivated by the possibil-
ity of using the non-Abelian nature of Majorana modes for
quantum computation schemes [6,7], and it is sustained by
encouraging experimental results [8–16]. Hence, networks of
Majorana wires have been proposed as tools to manipulate
Majorana modes for quantum information purposes [17–22]
or to create more exotic matter [23,24]. In this work, we study
a phenomenon commonly relevant to this type of network,
namely charge-induced quantum fluctuations in topological
Josephson junctions.

In a superconductor, the charge is conjugate to the or-
der parameter phase, and charging effects induce quantum
phase fluctuations [25,26]. In a nontopological Josephson
junction, tunneling processes are known as phase slips and
are essentially 2π jumps in the phase difference between the
superconductors. The delocalization of the phase induced by
these fluctuations can be prevented by dissipation. As a result,
Josephson junctions present a dissipative phase transition
[27,28]. In a topological junction, which is composed of two
topological superconductors, there are Majorana modes at
both edges of the junction. The presence of these modes leads

to coherent single-particle tunneling between the supercon-
ductors, commonly referred to as the 4π periodic Josephson
effect [3,4,7,29–32]. The change of periodicity in the overall
tunneling current suppresses 2π phase slips in topological
Josephson junctions [33]. Both the 2π phase slip suppression
[33–35] and its effects on the dissipative phase transition [35]
have been proposed as a probe for topological superconductiv-
ity. Most studies of 2π phase slip suppression focus on having
a sufficiently strong single-particle tunneling [33–35]. This
is despite the fact that the single-particle tunneling may be
a small component of the overall tunneling current, as is the
case for 3D topological insulator-based Josephson junctions
[36,37]. As a result, there are currently no studies that describe
the 2π phase slip suppression throughout the transition from
a nontopological to a topological junction. Our work extends
the existing literature and provides (a) a semiclassical descrip-
tion of 4π phase slips as coupled 2π phase slips, and (b) the
relevant regimes for bound and unbound pairs of phase slips.

In this work, we develop a theory for the effect of charging-
induced phase fluctuations in the low-energy spectrum of
a topological Josephson junction, valid for any ratio of the
single particle and the Cooper pair tunneling. Our results show
that a description of the low-energy physics of the topological
junction in terms of 4π phase slips alone is insufficient when
the strength of the 4π periodic tunneling is too small. In
the presence of both 2π and 4π periodic components of the
tunneling current, the potential energy of the junction as a
function of the phase difference between the superconductors,
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(a)

(b) EM/(8EJ ) > 1 (c) EM/(8EJ ) < 1

FIG. 1. Depending on the relative strength between the single
particle (set by EM ) and the pair tunneling (set by EJ ), the potential
of the topological Josephson junction may be minimized when
(b) the phase difference across the junction is an integer multiple
of 4π only, or (c) the phase difference across the junction is any
integer multiple of 2π . In (c) the minima at odd 2π are local
minima. (a) In (c), the strength of phase fluctuations (set by the
charging energy EC) determines whether oscillations around the local
minima contribute to the ground state (unbound 2π QPS) or not (4π

QPS). The crossover is found numerically by evaluating the relative
accuracy of the 4π and 2π phase slip scenarios.

θ , may have one or two minima in [0, 4π ) [see Figs. 1(b) and
1(c)]. If only one minimum exists, the description in terms
of 4π phase slips is valid for small phase fluctuations. In the
presence of two minima, this description may break down
even for small phase fluctuations if they are relatively large
compared to the strength of the 4π periodic tunneling. In this
case, a description of the junction in terms of unbound 2π

phase slips is more appropriate. This is shown in Fig. 1(a),
where EJ and EM correspond to the energy scale of the 2π

and 4π periodic tunneling, respectively, and EC to the strength
of the phase fluctuations. The junction potential has only one
minimum for EM > 8EJ and two otherwise.

We treat the appearance of phase slips in the topological
Josephson junction in two ways. First, we calculate the phase
slip probability using a semiclassical method where we calcu-
late a path integral between a state with θ = 0 in the distant
past and θ = 4π in the distant future describing the phase slip
process. We calculate the phase slip probability up to Gaussian
fluctuations around this 4π instanton. While the phase slip
probabilities for the case of nontopological junctions are well-
known, we use the double-sine-Gordon formalism to derive

them for the case of a topological junction. In the small
Majorana tunneling regime, we assume dominance of 2π

phase slips and calculate their probability using a method
for asymmetric barriers [38]. Secondly, we solve the problem
numerically in a truncated Hilbert space. The numerics give
us the ground-state energy of the junction as a function of a
tuning parameter, which we can compare with the spectrum
expected for the 2π and 4π phase slip scenarios. This gives
us a regime of validity for either scenario and therefore a
crossover between the two behaviors, as depicted in Fig. 1(a).

This paper is organized as follows. In Sec. II, we give a
brief review of the effects of charging-induced phase fluc-
tuations in Josephson junctions. The review is followed by
a qualitative discussion of the effects of phase fluctuations
for different regimes of a topological Josephson junction in
Sec. III. The main results are stated in Sec. IV, where we in-
troduce low-energy effective models of topological Josephson
junctions. In Sec. VI we discuss the implications of our results
on the dissipative phase transition. Our conclusions are stated
in Sec. VII.

II. REVIEW OF THE EFFECTS OF QUANTUM PHASE
SLIPS IN JOSEPHSON JUNCTIONS

We begin with a quick review of the effects of small
phase fluctuations in a nontopological junction. The junction
consists of a weak link between two superconductors with a
junction capacitance C described by the Hamiltonian

Ĥ = EC (n̂ − ng)2 − EJ cos θ̂ , (1)

where EJ is the Josephson energy associated with the tun-
neling of Cooper pairs between the two superconductors,
EC = e2/(2C) is the charging energy of the weak link, and
ng is the offset charge. The operator n̂ measures the charge,
and the operator θ̂ measures the phase difference between
the superconductors. To simplify the comparison with the
following sections, we measure n̂ (and ng) in units of the
electron charge e, rather than in the more conventional units of
2e. The commutation relation, [θ̂ , n̂] = 2i, therefore follows.
Several examples of superconducting circuits, such as the ones
used in the Cooper pair box [39,40], namely quantronium [41]
and transmon [42] qubits, can be mapped to Eq. (1). In these
circuits, ng is tuned using gate voltages, while the ratio of
EJ and EC may be tuned using split junctions or by adding
additional capacitances (see, e.g., Ref. [43]).

On the basis of phase eigenstates, the wave function
�(θ ) = 〈θ |�〉 describing the Josephson junction follows the
equation

[
EC

(
−2i

d

dθ
− ng

)2

− EJ cos θ

]
�(θ ) = E�(θ ) (2a)

respecting the boundary condition

�(θ + 2π ) = �(θ ). (2b)

The dependence of the system on the offset charge ng can
be transferred from Schrödinger’s equation to the boundary
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condition via �(θ ) → eingθ/2�(θ ), which results in

[
EC

(
−2i

d

dθ

)2

− EJ cos θ

]
�(θ ) = E�(θ ), (3a)

�(θ + 2π ) = eiπng�(θ ). (3b)

The above equations can be solved using Mathieu
functions. Nonetheless, expansions for different parameter
regimes have been developed to provide more intuition. Since
we are interested in studying phase fluctuations, we focus on
the EC � EJ limit. This corresponds to the regime of interest
of transmon qubits [42].

When EC � EJ the potential energy −EJ cos θ dominates
the energy of the system. Around the potential energy minima,
at θ = 2π j with integer j, Eq. (3a) can be mapped onto a har-
monic oscillator having frequency h̄ω = √

8EJEC . The low
energy levels of the Josephson junction, therefore, correspond
to harmonic-oscillator levels. Deep inside the potential well,
these harmonic oscillations do not depend on the boundary
conditions given by Eq. (3b). To find the junction dependence
on ng, we need to account for quantum tunneling between the
different potential minima.

Denoting the amplitude for quantum tunneling between the
mth harmonic-oscillator level of one of the potential minima
and its nearest neighbors by νm, it is possible to write an
effective tight-binding Hamiltonian for the junction:

Ĥ =
∞∑

m=0

∑
j

[εma†
m, jam, j − νma†

m, j+1am, j + H.c.]. (4)

Here a†
m, j is the creation operator for the mth level of a

harmonic oscillator around 2π j, and εm = h̄ω(m + 1/2) is the
energy of the a level. The tight-binding Hamiltonian in Eq. (4)
is diagonalized using the operators am,k = ∑

j e−ik jam, j :

Ĥ =
∑

m

∑
k

(εm − 2νm cos k)a†
m,kam,k . (5)

Comparing with Eq. (3b) leads to the identification k = πng,
which allows us to conclude that for EC � EJ the dispersion
of the mth level of the junction is given by

Em(ng) = εm − 2νm cos(πng), (6)

which holds when νm � h̄ω.
The tunneling amplitudes νm can be calculated using semi-

classical methods. Here we briefly outline the calculation
for the lowest energy level corresponding to the phase slip
probability ν0. We use the dilute instanton gas approxima-
tion in the path integral imaginary-time formalism (see, e.g.,
Ref. [44]). In this formalism, the amplitude to propagate from
0 to 2π during an imaginary-time interval of length 2L is
written as a weighted sum over all the paths that start at 0
at time τ = −L and end at 2π at τ = L:

(0,−L|2π, L) =
∫

[Dθ ]e− 1
h̄

∫ L
−L L[θ (τ )]dτ , (7)

where

L(θ ) = h̄2(∂τ θ )2

16EC
+ EJ (1 − cos θ ) (8)

is commonly known as the sine-Gordon Lagrangian, which
is related to the Hamiltonian in Eq. (1) through a Legendre
transform.

For L → ∞ the classical solution is a 2π -kink, also
referred to as an instanton. It is given by θ cl

2π (τ ) =
4 arctan(eω(τ−τ0 ) ), where ω = √

EJEC/h̄ coincides with the
frequency of harmonic oscillations around the 2π j minima.
Conversely, the model also has a classical solution with
θ (−∞) = 2π and θ (∞) = 0 known as an antikink. In the
dilute instanton gas approximation, the path integration of
Eq. (7) is done over combinations of kinks and antikinks
and Gaussian fluctuations around them. Furthermore, it is
assumed that the kinks and antikinks are separated enough
(in imaginary time) that the interactions between them are
negligible. This yields the result

ν0 =
√

2(h̄ω)3/(πEC )e−h̄ω/EC , (9)

where h̄2ω/EC = h̄
√

8EJ/EC is the action of a 2π kink.
To test the validity of Eq. (9), we ask whether the gas of

kinks and antikinks is in fact dilute. This can be done by
comparing the width of the kinks, 2/ω, with the expected
average separation among them, h̄/ν0. The gas is dilute, and
Eq. (9) is self-consistent, as long as ν0 � h̄ω/2, which is
satisfied for EJ � EC .

This formalism can be extended to calculate the ng depen-
dence of higher levels through the use of periodic instantons
(see, e.g., Ref. [45]). The decision to focus on ν0 was made
for the sake of simplicity.

III. PHASE FLUCTUATIONS IN A TOPOLOGICAL
JOSEPHSON JUNCTION

In a topological junction, the two superconductors coupled
by the junction each present a Majorana mode close to the
junction. We denote these by γ1 and γ2, and we ignore the
other two Majorana modes, which are far from the junction.
The coupling of these Majorana modes adds a 4π periodic
term to the tunneling current [3,4,7,29–32]. The topological
junction can then be modeled by the following Hamiltonian:

Ĥ = EC (n̂ − ng)2 − EJ cos θ̂ − iγ1γ2
EM

2
cos

θ̂

2
, (10)

where iγ1γ2 is the parity of the fermionic mode caused by
the hybridization of the Majorana modes on both sides of the
junction.

A physical realization of the above phenomenological
model is possible using a Majorana Cooper pair box, such
as the one studied in Ref. [46]. To achieve the desired
phase-dominated limit, the Majorana Cooper pair box could
be shunted by a larger capacitance, as is done in transmon
qubits [42].

If the local parity is conserved, the operator iγ1γ2 in
Eq. (10) can be substituted by either one of its two eigenvalues
±1. Without loss of generality, from now on we assume
iγ1γ2 = 1. As long as the local parity is conserved, our results
do not rest on this assumption. As in the previous section, after
a charge translation the wave function in phase basis follows
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FIG. 2. Phase fluctuations in the single-minimum and double-
minimum regimes of a topological Josephson junction. The first
harmonic levels (blue lines) and the junction potential (green
line) are shown for a junction with EM = 2 = 10EJ and (a) EC =
0.001 and (b) EC = 0.1, and a junction with EJ = 1 = 50EM and
(c) EC = 0.001 and (d) EC = 0.1. The ground-state wave functions
(amplitudes shown in gray) correspond to linear superpositions of
harmonic oscillations around the potential minima. The tunneling
processes that give rise to the ng dispersion of each level are shown
in red. In the double-minimum regime [(c) and (d)], increasing EC

can change the dominant tunneling processes. The ground-state wave
function in (d) shows an additional (small) peak around 2π . Note that
in panels (c) and (d), the 2π minimum is not degenerate with the 4π

ones.

an ng-independent Schrödinger’s equation:

[
EC

(
−2i

d

dθ

)2

− EJ cos θ − EM

2
cos

θ

2

]
� = E� (11a)

and a boundary condition

�(θ + 4π ) = ei2πng�(θ ). (11b)

As in the nontopological case, when EC is small compared
to the tunneling EJ and EM , the energy is dominated by the
tunneling terms, which we refer to as “the potential.” We
therefore expect the ground-state wave function to be concen-
trated around the potential minima. In the topological Joseph-
son junction, the competition between the pair and single-
particle tunneling creates two different regimes depending on
whether the junction potential has a single minimum or two
minima for 0 � θ < 4π .

When EM/(8EJ ) > 1, the junction potential has a single
minimum in the [0, 4π ) interval. Hence, the potential is
minimized when θ = 4πm, with m an integer, and all the min-
ima are degenerate. The frequency of harmonic oscillations
around these minima, obtained by expanding Eq. (11a) around
these values, is h̄ω = √

8EJEC + EMEC . This is exemplified
in Fig. 2(a), where the first few harmonic-oscillator levels
and the ground-state wave-function amplitude are shown for

EM = 2 = 10EJ and EC = 0.001. The junction potential and
the tunneling processes between the degenerate levels are also
shown in Fig. 2(a). As EC increases, the spacing between the
levels and tunneling amplitude increases and the harmonic
wave functions widen, as shown in Fig. 2(b) for EM = 2 =
10EJ and EC = 0.1. However, the tunneling processes that
give rise to the ng dispersion remain unchanged by the in-
crease of EC . In this regime, the topological junction behaves
qualitatively similar to the nontopological junction from the
previous section with half the ng periodicity and 4π phase
slips taking the role of 2π phase slips.

On the other hand, if EM/(8EJ ) < 1, the junction potential
has two minima in the [0, 4π ) interval. Hence, the poten-
tial has two kinds of minima with two different frequencies
for harmonic oscillations around them: θ = 4πm with fre-
quency h̄ω+ = √

8EJEC + EMEC , and θ = 4πm + 2π with
frequency h̄ω− = √

8EJEC − EMEC . In addition to the effects
discussed in the previous paragraph, changing EC may also
change the tunneling processes that contribute to each energy
level. This is shown in Figs. 2(c) and 2(d). The ground-state
wave function in Fig. 2(c) is peaked around 0 and 4π , whereas
the ground-state wave function in Fig. 2(d) shows additional
contributions from oscillations around 2π .

IV. EFFECTIVE MODELS

In this section, we will discuss two different effective
models for the junction ground state: one in which only
oscillations between 4πm minima contribute and one in which
oscillations around all 2πm minima contribute to the ground
state. We calculate the effective hopping parameters of each
model and discuss their regions of validity.

A. 4π QPS model

We can write an effective Hamiltonian for the ground state
of the junction as a combination of harmonic oscillations
around 4π j plus hopping between such minima:

Ĥ =
∑

j

(
h̄ω

2
a†

j a j − ν4πa†
j+1a j + H.c.

)
, (12)

where ω the frequency of harmonic oscillations around the
minima at 4π j and is given by h̄ω = √

8EJEC + EMEC . Ac-
counting for the boundary condition, Eq. (11b), results in the
following ground-state energy dispersion:

Egs(ng) = h̄ω

2
− 2ν4π cos(2πng). (13)

This model gives an effective description of the system in the
single-minimum regime and in the double-minimum regime
for small enough EC (see Fig. 2).

The tunneling amplitude ν4π can be calculated follow-
ing the procedure outlined in Sec. II. The imaginary-time
Lagrangian of the topological junction,

L(θ ) = h̄2(∂τ θ )2

16EC
+ EJ (1 − cos θ ) + EM

2

(
1 − cos

θ

2

)
,

(14)

is known as the double sine-Gordon Lagrangian, and its
semiclassical dynamics have been widely studied [47].
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FIG. 3. A 4π instanton is made of two 2π instantons of width ω

separated by an imaginary time of 2R/ω.

Interestingly, as shown in Fig. 3, the 4π kink in the DSG
model can be written as a sum of two 2π SG kinks:

θ cl
4π = 4 arctan eω(τ−τ0 )−R + 4 arctan eω(τ−τ0 )+R. (15a)

The imaginary-time separation of the two 2π kinks, 2R/ω, is
set by the ratio of EM and 8EJ as R is given by

R = arccosh

(√
1 + 8EJ

EM

)
. (15b)

The 4π DSG kink is depicted in Fig. 3. The width of the kinks
is controlled by the Josephson tunneling and the capacitance
energy through ω = √

EJEC/h̄, and the separation between
kinks is controlled by the ratio of EM and EJ through 2R/ω.
When EM → 0, the separation between the two 2π kinks
diverges (R → ∞), meaning that the 4π kinks effectively
decouple into two separate 2π kinks as the DSG Lagrangian
reduces to the SG Lagrangian.

Using the dilute instanton gas approximation, as before, we
find

ν4π =
√

8(h̄ω)5

πEME2
C

exp

[
− h̄ω

EC
× f

(
EM

8EJ

)]
, (16a)

where

f (x) = 2 + 2x√
1 + x

coth−1(
√

1 + x) (16b)

is an increasing function with f (0) = 2 and f (∞) = 4. With
the appropriate modifications, this result is in agreement with
the result found by Ref. [48] in the context of statistical
mechanics. A more detailed derivation of how Eq. (16) is
obtained is shown in Appendix A 1.

When EM → 0, ν4π presents a square-root divergence, i.e.,
ν4π ∼ 1/

√
EM . This divergence has two physical interpreta-

tions. First, it is indicative of a resonance in tunneling [49]
when EM → 0. In our context, it is a sign that the validity of
the model breaks down in this limit. Secondly, this divergence
is indicative of the restoration of a symmetry. In this case, the
symmetry that is restored is the 2π translation symmetry, i.e.,
the decoupling of the two 2π kinks.

The restoration of the 2π translation symmetry for EM →
0 diminishes the range of the validity of the calculated ex-
pression for ν4π . This can be seen by noting that the dilute
instanton gas approximation breaks down when EM → 0: the
width of the 4π kinks (2 + 2R)/ω diverges as − log EM ,
whereas the average separation between the kinks h̄/ν4π goes
to zero as

√
EM . The assumption that the width of the 4π

kinks is much smaller than the average separation between
the kinks fails for EM → 0. We address this problem in the
next subsection.

Emergent translational mode correction

To derive a semiclassical expression whose validity ex-
tends to smaller EM/EJ ratios, we account for a higher order
of fluctuations in the direction of the emergent translational
mode [50,51]. Since the emergent translational mode is re-
lated to the decoupling of the two kinks, this is roughly equiv-
alent to letting the distance between the two kinks fluctuate
around its equilibrium value, 2R/ω.

The result of Ref. [51] can be written in terms of R as

ν4π = 4F (R)(h̄ω)2

πEC
I
(

R,
h̄ω

EC

)
, (17a)

where F (R) is a numerical factor bound by
√

2/5 � F (R) � 1
and is given by

F (R) =
√

cosh 2R − R tanh R − 3R coth R + 2

sinh R
√

2 − 8R2csch22R
(17b)

and

I (R, α) =
∫ ∞

0
dr

√
1 − 4r2csch2(2r)e−αSR (r) (17c)

with

SR(r) = 1 + tanh2 R

tanh2 r
+ 2r

(
1

sinh 2r
+ coth r

cosh2 R

− tanh2 R coth r

2 sinh2 r

)
. (17d)

In the above expressions, 2r/ω corresponds to the fluctuating
distance between the two kinks, and SR(r) is an r-dependent
effective action, which is minimized at r = R. For more
details on how this expression is obtained, see Appendix A 2
and Ref. [51].

To the best of our knowledge, a closed-form expression for
I (R, α) does not exist. Nonetheless, we can find approximate
expressions for I (R, α) for small and large R. When R is large,
the integral is dominated by the linear large-r behavior of
SR(r). In Appendix B 2, we find that for 16α2 � e2R,

I (R, α) ≈ cosh2(R)e−α(tanh2(R)+1)

2α
. (18)

This leads to ν4π ≈ ν lr
4π with

ν lr
4π = f2

( EM
8EJ

)
(h̄ω)3

πECEM
exp

[
− h̄ω

EC
× f1

(
EM

8EJ

)]
(19)

when EM/(8EJ ) � 0.25E2
C/(h̄ω)2. In the above equation,

f1(x) and f2(x) are order 1 numerical factors that decrease
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with x; their exact form can be found in Appendix B 2. Note
that according to the above calculations, ν4π diverges for
EM → 0 as 1/EM .

For small R, the greatest contribution to I (R, α) comes
from the r values around R. A saddle-point approximation of
the integral I (R, α) results in

I (R, α) ≈
√

π

2α

cosh R

F (R)
e−αSR (R). (20)

This is a good approximation to I (R, α) if e2R � 16α (see
Appendix A 2). Substituting this in Eq. (17a) gives the expres-
sion for ν4π obtained without including corrections due to the
emergent translational mode, i.e., Eq. (16). Hence, Eq. (16) is
valid when EM/(8EJ ) � EC/(4h̄ω).

We thus find that whether the distance between the two 2π

phase slips R is fixed depends on how EM/(8EJ ) compares
with EC/(4h̄ω). Since

EC

4h̄ω
= EC

4
√

8EJEC
− ECEM

64EJ
√

8EJEC
+ O

(
E2

M

)
, (21)

EM/(8EJ ) ∼ EC/(4h̄ω) when EM ∼ (8EJEC )/(EC/2 +√
8EJEC ). Roughly, the distance between the two 2π phase

slips R will be fixed when EM is greater than this value, and it
will fluctuate when it is smaller.

B. Coupled 2π QPS model

If the junction parameters are such that there are addi-
tional (local) minima at 2πm with m odd, and oscillations
around those minima contribute to the ground state [see,
e.g., Fig. 2(d)], we can describe it by the following effective
Hamiltonian:

Ĥ =
∑

j

(ε ja
†
j a j − ν2πa†

j+1a j − ν2π a†
j a j+1), (22)

where ν2π corresponds to the tunneling amplitude between
potential minima separated by 2π . The energies εn are given
by

ε2n = εe = h̄ω+
2

,

ε2n+1 = εo = EM + h̄ω−
2

, (23)

h̄ω± =
√

8EJEC ± EMEC .

The dispersion of Eq. (22) is

E±(ng) = 1

2
(εo + εe)

± 1

2

√
(εo − εe)2 + 8ν2

2π [1 + cos(2πng)]. (24)

The hopping ν2π can be calculated using the formula
proposed by Ref. [38] for the tunneling through an asym-
metric potential. Without loss of generality, we can focus on
calculating the amplitude for tunneling between 0 and 2π .
The minimum at 0 and the minimum at 2π are separated by a
barrier that is largest at θmax. Following Ref. [38], we define
two potentials symmetric around θmax, VL(θ ) and VR(θ ), such
that VL(θ ) [VR(θ )] is equal to the junction potential for 0 <

θ < θmax (θmax < θ < 2π ). Then ν2π can be written as

ν2π = A
√

νLνR, (25)

where νs, s = L, R, is the probability for tunneling from 0 to
2π through the potential Vs and

A = 1

2

[(
Vmax − εe

Vmax − εo

)1/4

+
(

Vmax − εo

Vmax − εe

)1/4
]1/2

, (26)

with Vmax = V (θmax). The above expression for ν2π clearly
breaks down when εo � Vmax; at that point, the zero-point
motion of the shallow minimum becomes larger than the
potential barrier. The approximations leading to the above
expression for ν2π start failing before this point.

For our model of a topological Josephson junction, θmax

and Vmax are given by

θmax = 4 arctan(ω+/ω−),

Vmax = 2EJ [EM/(8EJ ) + 1]2, (27)

and the θmax-symmetric potentials VL and VR are well approx-
imated by

VL(θ ) ≈ EJ

(
1 + EM

8EJ

)2[
1 − cos

(
πθ

θmax

)]
,

VR(θ ) ≈ EM + EJ

(
1 − EM

8EJ

)2[
1 − cos

(
π (θ − 2π )

θmax − 2π

)]
,

(28)

which leads to the following tunneling amplitudes:

νs = 4√
Psπ

(
8E3

s EC
)1/4

e
−Ps

√
8Es
EC (29)

with PL = θmax/π = 2 − PR, EL = EJ [1 + EM/(8EJ )]2, and
ER = EJ [1 − EM/(8EJ )]2. Ps and Es are, respectively, the
period and amplitude of the potential Vs for s = L, R.

For EM → 0, the dispersion in Eq. (24) becomes

E±(ng) → h̄ω

2
± |2ν0 cos(πng)|. (30)

This is the expected result for the EM → 0 limit, as it corre-
sponds to the breaking of the symmetry between the minima
at even and odd multiples of 2π “folding” the ng-Brillouin
zone.

We also note that for ν2π � |εo − εe|, the lowest of the two
bands becomes

E−(ng) ≈ εe − 2ν2
2π

|εo − εe| − 2ν2
2π

|εo − εe| cos(2πng). (31)

This dispersion would be equivalent to the dispersion found
for the 4π phase slip model (13) if ν2

2π/|εo − εe| → ν4π . As
shown in Fig. 4, we find that ν2

2π/|εo − εe| ≈ ν lr
4π . This allows

us to interpret ν lr
4π as arising from coupled but not confined

2π phase slips. From this we conclude that the 2π phase
slips become bound when ν2π � |εo − εe|. To provide a rough
approximation for when the 2π phase slips are bound, we
consider that

ν2π = ν0 + O
(
E2

M

)
and

|εo − εe| = EM

(
1 − 1

2

√
EC

8EJ

)
+ O

(
E3

M

)
(32)

so ν2π ∼ |εo − εe| when EM ∼ ν0/(1 − 1
2

√
EC
8EJ

). The 2π

phase slips bound for EM > ν0/(1 − 1
2

√
EC
8EJ

).
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FIG. 4. Comparison of ν2
2π/|εo − εe| (solid line) and ν lr

4π (dashed
line) for EJ = 1. The ν2

2π/|εo − εe| lines stop when the potential
barrier is smaller than the zero-point motion energy for oscillations
around the shallow minima εo.

C. Validity of the effective models

The image that emerges from the results in this section and
the previous energetic considerations is as follows. The 4π

tunneling—whose strength is set by EM—acts as a binding
potential between pairs of 2π phase slips. We find three
relevant regimes:

(i) Unbound 2π phase slips. For 0 < EM < ν0/(1 −
1
2

√
EC
8EJ

), the 2π phase slips couple to each other but the 4π

tunneling is not strong enough to bind them.
(ii) Bound 2π phase slips with fluctuating R. For ν0/(1 −

1
2

√
EC
8EJ

) < EM < (8EJEC )/(EC/2 + √
8EJEC ), pairs of 2π

phase slips bound forming 4π phase slips. However, the
distance between the two 2π phase slips that form the 4π

phase slip R (see Fig. 3) fluctuates.
(iii) Bound 2π phase slips with fixed R. For EM >

(8EJEC )/(EC/2 + √
8EJEC ), the 4π tunneling is strong

enough to bind pairs of 2π phase slips together and fix the
distance between them R.

As will be further discussed in this section, the transition
between neighboring regimes is not sharp. Both regimes will
be valid in a region around these boundaries.

To further clarify the range of parameters in which each
picture is valid, we compare the different effective models
for the topological Josephson junction with numerical re-
sults. The spectrum of Eq. (10) is obtained numerically by
truncating the Hilbert space in the number basis, where the
Hamiltonian becomes

H =
∞∑

n=−∞

[
EC (n − ng)2|n〉〈n| − EM

4
(|n〉〈n + 1|

+ |n〉〈n − 1|) − EJ

2
(|n〉〈n + 2| + |n〉〈n − 2|)

]
. (33)

FIG. 5. The ground-state energy of the model as a function of
the control parameter ng depends on the phase slip probability.
We therefore use the quantity Egs(1/2) − Egs(0) to benchmark the
effective models against numerical results (black solid line). If only
4π phase slips are present [Eq. (13)], Egs(1/2) − Egs(0) = 4ν4π . The
different obtained expressions for 4ν4π , Eqs. (16) (dotted gray) and
Eqs. (17a)-(20) (solid red line), are shown. When 2π phase slips
dominate [Eq. (24)], Egs(1/2) − Egs(0) = (

√
(εo − εe)2 + (4ν2π )2 −

|εo − εe|)/2 with ν2π given by Eq. (9) (blue dashed-dotted). The
graphs are shown as a function of EM/(8EJ ) with the sum 8EJ + EM

fixed at 1. The red shaded region corresponds well with the 4π phase
slip scenario, while the blue shaded region denotes good agreement
with the 2π phase slip scenario. The regions overlap where both
approximations are close to the numerical data.

The numerical results shown in this paper are obtained by
taking the sum in the above equation from n = −N to n = N
with N = 104.

Comparisons between Egs(ng) for the topological Joseph-
son junction predicted by the effective models discussed
previously and numerical results are shown in Fig. 5. The
comparisons are done by plotting the difference Egs(1/2) −
Egs(0) as a function of EM/(8EJ ) for different values of
EC . In Fig. 5 we have fixed 8EJ + EM = 1 such that h̄ω

is kept constant throughout each plot; this is done to show
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the entire range of EM/(8EJ ) in the same plot. As expected,
when EM/(8EJ ) → 0 the numerical results (solid black line)
agree with the 2π QPS description (dotted-dashed blue line)
provided by the tight-binding Hamiltonian, Eq. (22), while
for larger values of EM/(8EJ ) the 4π QPS description, i.e.,
that of Eq. (12), is closer to the numerical results. In addition,
increasing EC reduces the range of EM/(8EJ ) in which the 4π

QPS description is valid. This can be seen by comparing the
two panels of Fig. 5.

Moreover, Fig. 5 shows the results of the 4π QPS descrip-
tion calculated in two ways. One scheme, commonly used in
the literature, assumes that the distance between phase slips
is fixed [Eq. (16), represented by gray dotted lines in Fig. 5].
This leads to a dispersion that agrees with the numerical data
only for large ratios of EM/8EJ . Since the 2π phase slip
scenario is only appropriate at much smaller EM/8EJ , an inter-
mediate regime is unexplained by either scenario. To remedy
this, we extend the 4π phase slip model to allow fluctuations
of R [Eq. (17), red solid line in Fig. 5]. This extends the regime
of validity of the model such that it overlaps with the 2π -phase
slip scenario in the regime shaded in purple in both panels of
Fig. 5.

We can use the numerical results to figure out the range
of parameters in which each picture is more appropriate. This
is shown in Fig. 1(a). As discussed previously, close to the
boundary between the coupled 2π QPS and the 4π QPS
regions, both descriptions give similar results.

V. CONNECTION WITH THE LARGE CHARGING
ENERGY LIMIT

The above results indicate that the presence of local min-
ima at odd multiples of 2π in the junction potential lead
to a ground-state wave-function weight at odd multiples of
2π if EC is large enough. A question that arises is whether
the presence of local minima in the potential guarantees that
there will be a large enough EC such that the ground-state
wave function is peaked at odd multiples of 2π . This can be
answered by looking at the dominant charging energy limit.

For EM = EJ = 0, the eigenstates of the junction have a
well-defined particle number n, and their energies are given
by EC (n − ng)2. In the gauge where �(θ + 4π ) = �(θ ),
the phase-space wave functions of such states are given by
�(θ ) = e−ilθ/2 with integer l . If EM, EJ � EC , the eigenstates
of the junction can be found perturbatively from the well-
defined number states. To first order in perturbation theory,
the ground state of the junction for ng ∈ (−1/2, 1/2) is given
by the unnormalized wave function

�gs(θ )=1 − EMe−iθ/2

4EC (2ng − 1)
+ EMeiθ/2

4EC (2ng + 1)

− EJe−iθ

8EC (ng − 1)
+ EJeiθ

8EC (ng + 1)
. (34)

The above wave function will be peaked at 2π if |�gs(θ )| has
a local maximum at this point.

For simplicity, we focus on ng = 0. In this case,

�gs(θ ) = 1 + EM

2EC
cos

θ

2
+ EJ

4EC
cos θ. (35)

Since EM � EC and EJ � EC , then �gs(θ ) = |�gs(θ )|. Look-
ing at the derivatives of �gs at θ = 2π , we find that 2π is a
minimum of �gs when EM/(2EJ ) > 1 and a maximum when
EM/(2EJ ) < 1. Therefore, the ng = 0 ground-state wave func-
tion is peaked around odd multiples of 2π if EM/(2EJ ) < 1.

We see then that for 2EJ < EM < 8EJ and ng = 0, the
ground-state wave function does not peak around odd mul-
tiples of 2π despite the junction having local potential min-
ima there. Moreover, the wave-function weight around odd
multiples of 2π is highest for integer values of ng. This can
be intuitively understood by noticing that the wave-function
weight around odd multiples of 2π for half-integer ng is
strongly suppressed as a result of the degeneracy between the
two nearby n states. Therefore, for any given ng the ground-
state wave function does not peak around odd multiples of
2π if 2EJ < EM . Then the presence of local minima in the
potential does not guarantee that there will be a large enough
value of EC to cause a ground-state wave-function peak at odd
multiples of 2π .

VI. DISCUSSION

In the previous sections, we found that for any ration
of EM < 8EJ one might find both 4π and 2π phase slips,
depending on the strength of the phase fluctuations given by
EC . Therefore, the scenario of 4π phase slips only is bound
to fail for some value of EC . We have estimated the value
of EC above which 2π phase slips dominate in the following
way. First, we have evaluated the 4π phase slip probability ν4π

using a double sine-Gordon model. Well below the crossover
line in Fig. 1(a), a double instanton classical solution with
Gaussian quantum fluctuations yields Eq. (16). This equation
fails at low EM even before 2π phase slips take over due to a
possible translational mode that was not taken into account.
We improve the calculation in Eqs. (17), which does not
have a closed-form solution but may be approximated in the
subsequent equations. In the 2π phase slip dominated regime,
we estimate ν2π using a method for an asymmetric barrier and
we arrive at Eqs. (25)–(29). Using both the 2π and 4π phase
slip scenario, we generate plots for the energy difference
Egs(ng = 1/2) − Egs(ng = 0), which are compared with nu-
merical solution for the problem in a truncated Hilbert space
[using Eq. (33)]. The quality of the various approximations
points to the crossover depicted in Fig. 1. A rough estimate
of the crossover as a function of the problem’s energy scales
x = EM/8EJ and y = EC/8EJ can be found by comparing ν4π

and ν2π , which yields x ∝ exp (−α/
√

y) with some slowly
varying α(x).

It is interesting to discuss the implications of our results
on the dissipative transition that is expected in this system
[27,28,35]. This transition was previously studied in Ref. [35],
where it was found that the presence of 4π periodic tunnel-
ing would reduce the Ohmic dissipation needed to restore
superconductivity by a factor of 4. However, the results of
Ref. [35] assumed that the topological junction could always
be described by 4π QPS. In this work, we find that this is not
necessarily the case. Consider a junction with fixed EJ and EC .
When EM = 0 the junction is described by 2π QPS. Turning
on EM leads to coupling of these 2π QPS, which increases
with EM until they become confined into pairs. Following the
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critical dissipation throughout this same path would lead to a
continuous decrease in it until it reaches 1/4 of the original
value at the point where the 2π QPS are fully suppressed.
We also find that the critical dissipation needed to stabilize
the superconductivity in our model of a topological Josephson
junction is dependent on EC .

An important caveat of using the dissipative phase tran-
sition as a mechanism for detecting Majorana modes is
that the dissipation induced by quasiparticle tunneling also
reduces the critical resistance of nontopological Josephson
junctions by a factor of 4. Furthermore, the effects of dissi-
pation induced by quasiparticle tunneling in nontopological
Josephson junctions are dependent on the ratio between the
Josephson coupling and the charging energy [28]. This is
because both the 4π periodic tunneling induced by Majoranas
and the quasiparticle tunneling are single-particle tunneling
processes that break the same symmetry (the 2π periodicity
of a nontopological Josephson junction), albeit the difference
in coherence. A more careful analysis of dissipation in the
topological Josephson junction is required to find whether
there are signatures in the dissipative transition that would
allow us to distinguish between the 4π periodic tunneling
induced by Majoranas and the quasiparticle tunneling.

The difference in the effects of 4π periodic versus quasi-
particle tunneling in the dissipative transition is unclear. How-
ever, the effects on the charge offset dispersion are clearly
different. While both kinds of single-particle tunneling turn
the system from 2π periodic to 4π periodic, the Majorana
assisted tunneling opens up a gap [see Eq. (24)] while the
quasiparticle tunneling does not [28]. This could be a potential
probe to distinguish between the two kinds of single-particle
tunneling.

Finally, another important issue to consider is the effect
of quasiparticle poisoning in this system. Since instanton
techniques tend to be useful to describe systems coupled to
external environments [52], the formalism used in this work
could be useful to study the effects of quasiparticle poisoning.

VII. CONCLUSIONS

We studied the effects of phase fluctuations induced by
charging effects in a simple model of a topological Josephson
junction. Our model considers both single-particle tunneling
and pair tunneling, which are, respectively, 4π and 2π pe-
riodic with respect to the superconducting phase difference
across the junction. We found that when the single-particle
tunneling is a small component of the total tunneling current,
there are two possible ways to describe the ground state of
the junction: (i) in terms of 4π QPS or (ii) in terms of
coupled 2π QPS. We found the tunneling amplitudes for both
effective descriptions and compared them to numerical results
to determine the range of parameter in which each description
is appropriate. We note that in a real junction, one may not
have control over the relative strength of EM and EJ , and
therefore observing 2π phase slips does not necessarily imply
that the junction is not topological. However, if the junction
is indeed topological and phase fluctuations can be reduced
through capacitance (reducing EC), 2π phase slips will be
suppressed, revealing the topological nature of the junction.

In addition, we discussed the possible implications that our
results have for the dissipative phase transition expected in
this system. As was previously found by Ref. [35], when the
ground state of the junction is described by 4π QPS, we ex-
pect the critical resistance needed to make the junction super-
conducting to be four times smaller than the critical resistance
needed to make a nontopological junction superconducting.
In the regime where tunneling processes between minima
separated by 2π are still present in the system, we expect the
critical transition to be somewhere between these two critical
values. Given that increasing the charging energy of the junc-
tion may change the tunneling processes present in the system,
our results also point toward a charging energy dependence of
the critical resistance for the dissipative transition.

Several questions regarding the dissipative transition, par-
ticularly in relation to quasiparticle tunneling, remain unan-
swered. In the future, we will use the formalism developed in
this work to obtain a quantitative description of this transition.
It would also be interesting to pinpoint the relation between
the results presented in this work and the dominant charging
energy limit.
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APPENDIX A: PATH INTEGRAL CALCULATIONS

1. 4π phase slip amplitude

The calculation of the tunneling amplitude between the
different potential minima can be performed using standard
semiclassical methods. We include the calculation here in
detail for completeness, largely following Ref. [44].

We begin by calculating the amplitude to propagate from 0
to 4π in an imaginary-time interval 2L. This is given by the
following path integral:

(0,−L|4π, L) =
∫

[Dθ ]e− 1
h̄

∫ L
−L L[θ (τ )]dτ , (A1)

where L(τ ) is the double sine-Gordon (DSG) Lagrangian
given by Eq. (14), which can be rewritten as

L(θ ) = M

(
(∂τ θ )2

2
+ V (θ )

)
(A2)

with

V (θ ) = ω2

[
tanh2 R(1 − cos θ ) + 4 sech2 R

(
1 − cos

θ

2

)]
(A3)

and

M = h̄2/(8EC ),

ω =
√

EC (8EJ + EM )/h̄, (A4)

cosh(R) =
√

(8EJ + EM )/EM .
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We expect the leading contribution to the path integral to
be from paths of the form

θ (τ ) = θ cl(τ ) + χ (τ ), (A5)

where θ cl(τ ) is the classical path, which minimizes the action
and interpolates between θ = 0 at τ = −L and θ = 4π at τ =
L. χ (±L) = 0 is the deviation from the classical path, and
θ cl(τ ) fulfills the following equation:

dV

dθ
[θ cl(τ )] = d2θ cl

dτ 2
. (A6)

In the limit L → ∞, θ cl(τ ) is given by

θ cl = 4 arctan
[
eω(τ−τ0 )+R

] + 4 arctan
[
eω(τ−τ0 )−R

]
. (A7)

Up to second order in χ (τ ), the Lagrangian for paths of the
form Eq. (A5) is

L(θ ) = L(θ cl )+ M

2
(∂τχ )2 + M

2

d2V

dθ2
(θ cl )χ2 + M∂τ (χ∂τ θ

cl ).

(A8)

This allows us to split the path integral in Eq. (A1) into two
parts:

(0,−L|4π, L) ≈ F exp

(
−Scl

h̄

)
(A9)

with Scl the action of the instanton,

Scl =
∫ L

−L
dτ L(θ cl ), (A10)

and F contains the sum over Gaussian fluctuations around
such an instanton. F can be written as

F =
∫

[Dχ ] exp

(
− M

2h̄

∫ L

−L
dτ χDχ

)
, (A11)

with D is the following differential operator:

D = − d2

dτ 2
+ d2V

dθ2
[θ cl(τ )]. (A12)

The path integral in Eq. (A11) can be solved expanding χ

in terms of the eigenfunctions of the operator D, i.e., taking

χ (τ ) =
∑

n

χnyn(τ ) (A13)

with

Dyn(τ ) = λnyn. (A14)

This leads to

F = N
∏

n

∫ ∞

−∞

dχn√
2π h̄/M

e− Mλnχ2
n

2h̄ (A15)

with N a normalization constant. However, the above expres-
sion in not well-defined since the operator D contains a zero
mode, λ0, which leads to a divergence in F . The time τ0 at
which the kink solution is centered is arbitrary, which leads
to D∂τ θ

cl = 0, i.e., the zero mode is a consequence of the
time-translational invariance of the system. To deal with this
divergence, we use the Fadeev-Popov method to transform the
χ0 integration to a τ0 integration.

The Fadeev-Popov method consists of inserting

1 =
∫

dτ0

∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣δ(χ0) (A16)

into the expression for F given by Eq. (A15):

F = N
∞∏

n=1

∫ ∞

−∞

dχn√
2π h̄/M

e− Mλnχ2
n

2h̄

∫
dτ0

∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣
×

∫
dχ0√

2π h̄/M
δ(χ0)

= N
∞∏

n=1

∫ ∞

−∞

dχn√
2π h̄/M

e− Mλnχ2
n

2h̄

∫
dτ0√

2π h̄/M

∣∣∣∣∂χ0

∂τ0
(χ0 =0)

∣∣∣∣.
(A17)

The Jacobian | ∂χ0

∂τ0
(χ0 = 0)| can be found rewriting the path θ

so that fluctuations in the direction of the zero mode are traded
for an explicit τ0 dependence:

θ (τ ) = θ cl(τ − τ0) +
∞∑

n=1

χnyn(τ − τ0). (A18)

Comparing the above expression for the path with that of
Eq. (A5) leads to

χ0 = f (τ0) +
∞∑

m=1

ξmrn(τ0) (A19)

with

f (τ0) =
∫

dτ [θ cl(τ − τ0) − θ cl(τ )]y0(τ ),

rm(τ0) =
∫

dτ ym(τ − τ0)y0(τ ). (A20)

Furthermore, we note that the constraint χ0 = 0 corresponds
to τ0 = 0, so we obtain∣∣∣∣∂χ0

∂τ0
(χ0 = 0)

∣∣∣∣ =
∣∣∣∣∣ f ′(0) +

∞∑
m=1

ξmr′
m(0)

∣∣∣∣∣. (A21)

We know ∂τ θ
cl ∝ y0(τ ) since D∂τ θ

cl = 0. The proportion-
ality constant can be found using the following expression:∫ ∞

−∞
dτ (∂τ θ

cl )2 = Scl

M
, (A22)

which stems from the fact that θ cl(τ ) minimizes the action
[Eq. (A6)]. We use this to find f ′(0):

f ′(0) = −
∫

dτ ∂τ θ
cl(τ )y0(τ ) = −

√
Scl

M
. (A23)

The appropriate boundaries of integration for τ0 are −L and
L since τ takes values in the interval (−L, L). We then obtain

F = N
∞∏

n=1

∫ ∞

−∞

dχn√
2π h̄/M

e− Mλnχ2
n

2h̄

×
∫ L

−L

dτ0√
2π h̄/M

(√
Scl

M
−

∞∑
m=1

ξmr′
m(0)

)

= N2L

√
Scl

2π h̄

1√∏′
n λn

, (A24)
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where
∏′

n indicates the product over the eigenvalues taking
out the zero eigenvalue.

The normalization constant can be conveniently expressed
in terms of the sum over harmonic fluctuations around 0 or
4π . If we define

F0 =
∫

[Dχ ] exp

(
− M

2h̄

∫ L

−L
dτ χD0χ

)
(A25)

with

D0 = − d2

dτ 2
+ ω2, (A26)

the normalization constant N can be written as

N = F0

√∏
n

λ0
n, (A27)

where λ0
n are the eigenvalues of the differential operator

D0. F0, the fluctuation contribution to the imaginary-time
harmonic-oscillator propagator, is readily available in the
literature (see, e.g., Ref. [44]). For L → ∞, its leading con-
tribution is

F0 =
√

Mω

π h̄
e−ωL. (A28)

Our expression for F currently includes a ratio between the
products of eigenvalues of the operators D0 and D:

F = 2LF0

√
Scl

2π h̄

√∏
n λ0

n∏′
n λn

, (A29)

which can be evaluated using the Gelfand-Yaglom formula.
Following Ref. [44], we have∏

n λ0
n∏′

n λn
= 2Mωη2

Scl
, (A30)

where η is defined by the asymptotic behavior of the classical
solution:

∂τ θ
cl → ηe−ω|τ | for τ → ±∞. (A31)

To the leading order, the amplitude to propagate from 0 to
4π in an imaginary-time interval 2L is then

(0,−L|4π, L) ≈ 2LF0η

√
Mω

π h̄
e− Scl

h̄ . (A32)

However, the leading-order contribution is not enough to
obtain the level splitting. It is possible to obtain a more precise
expression for the amplitude using the dilute instanton gas
approximation.

Under the dilute instanton gas approximation, we sum over
paths consisting of combinations of kinks and antikinks and
quadratic fluctuations around them, i.e.,

θ (τ ) =
2N∑

n=0

νnθ
cl(τ − τn) + χ (τ ), (A33)

where νn = ±1 (+ for kinks and − for antikinks) and∑
n νn = 1. The approximation consists of considering that

the centers of the kinks and antikinks, i.e., τn, are sufficiently

spread out to make kink-kink interactions negligible. The
obtained result is

(0,−L|4π, L) =
∑

n

F0
(
2Lη

√
Mω
π h̄ e− Scl

h̄

)
2n+1

(2n + 1)!

= F0 sinh

(
2Lη

√
Mω

π h̄
e− Scl

h̄

)
. (A34)

The spectral representation of the amplitude in Eq. (A1) is

(0,−L|4π, L) =
∑

n

ψn(0)ψn(4π )e−2LEn/h̄. (A35)

Considering two ground-state levels of harmonic oscillators
with frequency ω and mass M, one centered around 0 and
the other around 4π , which can tunnel to each other with
amplitude ν, we have

ψ1(θ ) = 1√
2

[ψ0(θ ) + ψ4π (θ ), E1 = h̄ω

2
− ν,

ψ2(θ ) = 1√
2

[ψ0(θ ) − ψ4π (θ )], E2 = h̄ω

2
+ ν. (A36)

In the above expressions, ψ0(θ ) and ψ4π (θ ) are the ground-
state wave functions of harmonic oscillators centered around
0 and 4π , respectively, e.g.,

ψ0(θ ) =
(

Mω

π h̄

)1/4

e− Mωθ2

2h̄ . (A37)

The amplitude, Eq. (A1), for such a system would then be

(0,−L|4π, L) =
√

Mω

π h̄
e−Lω sinh(2Lν/h̄). (A38)

Comparing Eqs. (A34) and (A38) allows us to conclude

ν = h̄η

√
Mω

π h̄
exp

(
−Scl

h̄

)
. (A39)

For the kink in Eq. (A7) we have

Scl = 16Mω(1 + 2R csch 2R), η = 8ω cosh R. (A40)

Substituting the values of M, ω, and R from Eq. (A4), we
obtain

ν4π =
√

8(h̄ω)5

πEME2
C

exp

[
− h̄ω

EC
× f

(
EM

8EJ

)]
(A41)

with

f (x) = 2 + 2x√
1 + x

coth−1(
√

1 + x). (A42)

2. Emergent translational mode correction for the 4π

phase slip amplitude

Here, we follow the procedure outlined in Ref. [51] to
introduce corrections to the previously found expression for
ν4π . This section then follows the work done in Ref. [51]
closely. We include the calculation here for clarity, as the work
in Ref. [51] was done in the context of classical statistical
mechanics. We also note that Ref. [51] claims, incorrectly,
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that this procedure leads to a nondivergent expression. Here,
we find otherwise.

When EM → 0, the expression for ν found in (A 1) di-
verges. This occurs because one of the eigenmodes of the
operator D, which we will call λ1, approaches 0 when EM →
0. Physically, the two 2π kinks decouple, turning the distance
between the two 2π kinks 2R into another translation mode.
We must then have

y1(τ ) → ∂R(θ cl ) when EM → 0. (A43)

This means that we can deal with the effects of the emergent
translational mode by writing the path as

θ (τ ) = θ cl(τ ) +
∞∑

n=0

χnyn(τ )

= σ (τ − τ0, r) +
∞∑

n=2

χnyn(τ − τ0) (A44)

with

σ (τ, r) = 4 arctan[eωτ+r] + 4 arctan[eωτ−r]. (A45)

For R = r we recover the classical solution, i.e., σ (τ, R) =
θ cl(τ ). We should note that Eq. (A44), and therefore the
rest this Appendix, relies on y1 ≈ ∂R(θ cl ). This is a valid
assumption when R > 1.25 [50,51].

Up to second order in χ = ∑∞
n=2 χnyn(τ − τ0) = 0, the

Lagrangian for the above path is given by

L(σ, χ )

M
= (∂τσ +∂τχ )2

2
+V0(σ ) +χV1(σ ) + χ2V2(σ ),

(A46)

where V0(σ ) = V (σ ) is the potential of σ given by Eq. (A3),
and

V1(σ ) = ω2

cosh2(R)

(
sinh2(R) sin σ + 2 sin

σ

2

)
,

V2(σ ) = ω2

cosh2(R)

(
1

2
sinh2(R) cos σ + 1

2
cos

σ

2

)
. (A47)

The action of this path can be written as

S(σ, χ ) = S0(r) + S1(σ, χ ) (A48)

with S0(r) and S1(σ, χ ) given by

S0(r) = M
∫

dτ

(
1

2
(∂τσ )2 + V0(σ )

)

= 8Mω

(
1 + tanh2 R

tanh2 r
+ 2r

sinh 2r
+ 2r coth r

cosh2 R

− r tanh2 R coth r

sinh2 r

)
,

S1(σ, χ ) = M
∫

dτ [−∂τσ + V1(σ )]χ

+ M
∫

dτ

(
1

2
(∂τχ )2 + V2(σ )χ2

)
. (A49)

Using the Fadeev-Popov method to transform from the
coordinates χ0 and χ1 to τ0 and r leads to

(0,−L|4π, L) = N
∫∫

dτ0dr

2π h̄/M

∣∣∣∣∂χ0∂χ1

∂τ0∂r

∣∣∣∣
∣∣∣∣
χ0,χ1=0

×
∞∏

n=2

∫
dχn√

2π h̄/M
e−S0(r)/h̄−S1(σ,χ )/h̄.

(A50)

Following Ref. [51], we make the approximations

∣∣∣∣∂χ0∂χ1

∂τ0∂r

∣∣∣∣
∣∣∣∣
χ0,χ1=0

≈
√∫

dτ (∂τσ )2 ×
∫

dτ (∂rσ )2

×
∫ ∞∏

n=2

dχn√
2π h̄/M

e−S1(σ,χ )/h̄

≈ 1√∏′′
n λn

, (A51)

where the λn’s are the eigenmodes of the operator D from
Eq. (A12), and the product

∏′′
n skips the 0 eigenmode and λ1.

Under these approximations, we can write

(0,−L|4π, L) = F ′K2L (A52)

with

F ′ = N√∏′′
n λn

= F0

√∏
n λ0

n∏′′
n λn

= F0η

√
2Mω

Scl

√
λ1 (A53)

and

K =
∫ Lω

0
dr

M
√∫

dτ (∂τσ )2 × ∫
dτ (∂rσ )2

2π h̄

× e−S0(r)/h̄
∫ L− r

ω

−L+ r
ω

dτ0

2L
. (A54)

Using the following result from Ref. [50]:√∫
dτ (∂τσ )2 ×

∫
dτ (∂rσ )2 = 16

√
1 − 4r2csch22r

(A55)

and performing the τ0 integration gives

K =
∫ Lω

0
dr

16M(ωL − r)
√

1 − 4r2csch22r

2π h̄ωL
e

−S0 (r)
h̄ . (A56)

It is possible to calculate λ1 by noting that calculating K
using a quadratic approximation on ρ = r − R gives

K0 =
√

Scl

2π h̄

1√
λ1

e− Scl

h̄ . (A57)

Expanding S0(r) up to second order in ρ leads to

S0(ρ) = Scl + 2Mωρ2csch3R sech3R(4 sinh 2R − 4R

+ sinh 4R − 8R cosh 2R). (A58)
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We then find

K0 =
∫ ∞

−∞
dρ

M16
√

1 − 4R2csch22R

2π h̄
e− S0 (ρ)

h̄

=
√

M

h̄ωπ
g(R)e− Scl

h̄ (A59)

with

g(R) = sinh 2R
√

2 − 8R2csch22R√
cosh 2R − R tanh R − 3R coth R + 2

. (A60)

Note that the factor (1 − r
L ) from Eq. (A56) goes to 1 in

Eq. (A59) as we are taking the L → ∞ limit. The vanishing
eigenvalue λ1 is then

√
λ1 =

√
Scl

2π h̄

e− Scl

h̄

K0
=

√
Sclω

2M

1

g(R)
, (A61)

which leads to

(0,−L|4π, L) = 2LF0
ηω

g(R)
K. (A62)

Using the dilute instanton gas approximation (see the pre-
vious section), this result leads to the tunneling amplitude

ν4π = h̄
ηω

g(R)
K = 8h̄ω2 cosh R

g(R)
K. (A63)

Taking L to infinity results in

K = 8M

π h̄
I
(

R,
h̄ω

EC

)
= h̄

πEC
I
(

R,
h̄ω

EC

)
, (A64)

with I (R, α) defined by Eq. (17c). Our final expression for ν

is

ν = 8(h̄ω)2 cosh R

g(R)πEC
I
(

R,
h̄ω

EC

)
, (A65)

which corresponds to Eq. (17) in the main text since F (R) =
2 cosh R/g(R).

APPENDIX B: APPROXIMATE EXPRESSIONS FOR I (R, α)

1. Validity of the harmonic approximation

Taking r = R + y/
√

αS′′
R(R), we can write the saddle-point

expansion of I (R, α) as

I (R, α) ≈
∫ ∞

−∞

dy
√

1 − 4R2csch22Re−αSR (R)√
αS′′

R(R)

× e−y2/2

(
1 +

∞∑
n=1

pn(y, R)

[αS′′
R(R)]n/2

)

= e−αSR (R)

√
2π (1 − 4R2csch22R)

αS′′
R(R)

×
(

1 +
∞∑

n=1

Cn(R)

[αS′′
R(R)]n

)
. (B1)

In the above equation, the pn(y, R) are odd/even polynomials
in y when n is even/odd, and the Cn(R) are functions of R,

which can be expressed in terms of derivatives of SR(r) and√
1 − 4r2csch22r evaluated at r = R.
The expression for I (R, α) in Eq. (20) corresponds to the

first term in the above saddle-point expansion; therefore, it
is a valid approximation if 1/[αS′′

R(R)] � 1. The function
1/S′′

R(R) diverges for R → 0 and for R → ∞ making the
approximation for both small and large R. However, since
Eq. (17) was obtained to address the large-R divergence, we
only need to find the upper R limit for the validity of Eq. (20).
Since

1

αS′′
R(R)

= e2R

16α
+ O(R), (B2)

Eq. (20) is valid when e2R � 16α. This condition makes
the tunneling expression of Eq. (16) valid for EM/(8EJ ) �
EC/(4h̄ω).

2. Large-R limit

To find an approximate expression for I (R, α) in the large-
R limit, we note that SR(r) grows linearly with r for large r.
Furthermore, the slope of the large-r linear behavior increases
as R increases. This means that, when R is large, the largest
contribution to I (R, α) will come from the large-r linear
behavior. We start by writing the following large r expansions:

SR(r) = 1 + tanh2 R + 2r sech2 R + 4e−2r (2r sech2R

+ tanh2 R) + O(e−4r )
√

1 − 4r2csch22r

= 1 + O(e−4r ). (B3)

This means we can expand I (R, α) as

I (R, α) =
∫ ∞

0
dr e−α(1+tanh2 R+2r sech2 R)(1 − α4e−2r

× (2r sech2R + tanh2 R) + O(e−4r ))

= I0(R, α) + I1(R, α) + · · · , (B4)

where

I0(R, α) = cosh2 Re−α(tanh2 R+1)

2α
(B5)

corresponds to the approximation to I (R, α) cited in Eq. (18)
and I1(R, α) is a leading-order correction that we calculate to
determine the range of validity of Eq. (18).

Performing the r interaction gives

I1(R, α) =−2α(α tanh2 R sech2R+1)e−α tanh2R−α

(α sech2R+1)2
, (B6)

and we obtain

I1(R, α)

I0(R, α)
∼ 16α2e−2R ∼ 4α2 EM

8EJ
. (B7)

The approximation is valid when 16α2e−2R � 1. For R
given by Eq. (15b) and α = h̄ω/EC , this is equivalent to
EM/(8EJ ) � 0.25E2

C/(h̄ω)2.
For I (R, α) ≈ I0(R, α), we obtain

ν4π = f2
( EM

8EJ

)
(h̄ω)3

πECEM
exp

[
− h̄ω

EC
× f1

(
EM

8EJ

)]
(B8)
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with

f1(x) = 2 + x

1 + x
, f2(x) =

⎡
⎣ 6(x + 1)

x√
x+1

log
(√

x+1+1√
x

) + 1
+ 2

x√
x+1

log
(√

x+1+1√
x

) − 1

⎤
⎦

1/2

. (B9)

APPENDIX C: DECOUPLING OF 4π PHASE SLIPS

As has been previously noted, the expression for ν4π in
Eq. (19) diverges when EM → 0. In this appendix, we will
show that it is possible to recover the decoupling of the 4π

phase slips into two 2π phase slips from Eq. (A63). This is
achieved by changing the order in which the limits EM → 0
and L → 0 are taken.

Expanding F ′ and K around x = EM/(8EJ ) = 0 leads to

F ′ = F0ω
2

{
4 + x

[
3 − 2 log

(
x

4

)]
+ O(x2)

}

K = 4LMωe− 16Mω
h̄

π h̄
− 16x

(
2LM2ω2(2Lω − 3)e− 16Mω

h̄

)
3(π h̄2)

+ O(x2). (C1)

Then, when EM → 0,

(0,−L|4π, L) → F0
8(2L)2Mω3e− 16Mω

h̄

π h̄
. (C2)

The tunneling amplitude between 0 and 2π in a nontopologi-
cal Josephson junction can be written as

ν2π = 4ω

√
h̄Mω

π
e− 8Mω

h̄ . (C3)

This leads to

(0,−L|4π, L) → F0
(2L)2

2

(
ν2π

h̄

)2

, (C4)

which is the expected result for propagating between 0 to 4π

through two uncoupled 2π phase slips. The 1
2 factor arises

from time ordering the phase slips, i.e.,

∫ L

−L
dτ1

∫ L

τ1

dτ2 = (2L)2

2
. (C5)
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