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Anisotropic superconductors between types I and II
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Self-duality or matching between the magnetic and the condensate coherence lengths is a fundamental prop-
erty of isotropic superconductors at the critical Bogomolnyi point (B point). The self-dual state of the condensate
is infinitely degenerate, which is the core reason for the sharp transition between the superconductivity types in
the nearest vicinity of the critical temperature Tc. Below Tc nonlocal interactions in the condensate remove
the degeneracy, which leads to the appearance of a finite intertype (IT) domain between types I and II. This
domain exhibits the mixed state with exotic field-condensate configurations and nonstandard magnetic response,
which cannot be understood within the dichotomy of the conventional superconductivity types. At a first glance,
this picture does not apply to an anisotropic system because no spatial matching between the condensate and
magnetic field can be generally expected for direction-dependent characteristic lengths. However, contrary
to these expectations, here we demonstrate that anisotropic superconductors follow the same scenario of the
interchange between types I and II. In anisotropic materials the IT domain is governed by the B point of the
effective isotropic model obtained by the appropriate scaling transformation of the initial anisotropic formalism.
This transformation depends on the direction of the applied magnetic field, and thus the superconductivity type
of strongly anisotropic materials can be dependent on this direction.
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I. INTRODUCTION

Conventional superconductors are traditionally divided
into two classes: ideally diamagnetic type-I materials, and
type-II superconductors with penetration of a magnetic field in
the form of single-quantum vortices arranged in an Abrikosov
lattice. The distinction between these types is routinely ex-
plained within the Ginzburg-Landau (GL) picture [1–3],
where the superconducting magnetic response is fully de-
termined by the GL parameter κ = λ/ξ , with λ and ξ the
magnetic and coherence lengths. Type I is realized when
κ < κ0 = 1/

√
2 and type II occurs for κ > κ0.

However, as is well known since the 1970s, this classifica-
tion of superconductivity types does not apply for materials
with κ ∼ κ0 [4–18]. The GL picture is valid only in the
limit T → Tc while at T < Tc there is a finite temperature-
dependent interval κ∗

min � κ � κ∗
max [7,8,10,12,19], where su-

perconductivity cannot be described within the type-I/type-II
dichotomy. Materials that belong to this domain in the κ-T
plane between types I and II, can be broadly referred to as the
intertype (IT) superconductors (see, e.g., recent results for Nb
[17,18] and ZrB12 [20–22]).

A physical reason for the appearance of the IT supercon-
ductivity is the degeneracy of the self-dual condensate-field
configurations at the Bogomolnyi point (B point) (κ0, Tc )
[23,24] that separates types I and II. When the degeneracy
is removed, e.g., by nonlocal interactions at T < Tc, exotic
self-dual configurations “escape” their confinement at the B
point and shape the mixed state as a finite IT domain [19,25–
27]. Note, that this mechanism is much more complex and
far-reaching than the type-II/1 concept proposed in earlier

works where it was conjectured that the IT superconductivity
can be fully understood in terms of nonmonotonic vortex-
vortex interaction with long-range attraction and short-range
repulsion (see, e.g., Ref. [8]). Recent studies demonstrated
that the nonmonotonic pair vortex interaction is only one
example of the nonconventional IT properties; others include,
e.g., strong many-body (many-vortex) interactions [27,28].
The proximity to the infinitely degenerate B point increases
the sensitivity of the superconducting state to external param-
eters such as temperature, magnetic field, and current, as well
as to impurities and system geometry. This sensitivity opens
the way for controlled manipulations of the superconducting
magnetic properties.

However, until now the relation between the B point and
IT superconductivity has been investigated only for isotropic
materials. At the same time, most of the real superconductors
are anisotropic and in this case the coherence ξj and magnetic
lengths λj (j = x, y, z) are direction dependent and so is the
GL parameter κj = λj/ξj . When these lengths have different
direction dependences, one can hardly expect to achieve the
spatial matching between the condensate and magnetic field,
which questions the relevance of the self-dual properties in
anisotropic materials. Thus, the scenario of the interchange
between superconductivity types worked out for isotropic
superconductors (type I-IT-type II) appears to be inapplicable
for real anisotropic materials.

The goal of this work is to demonstrate that contrary to
these expectations, anisotropic superconductors, even with
a high degree of anisotropy, still follow the above scenario
of the type interchange. The corresponding IT domain is
governed by the B point of an effective isotropic model
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obtained by an appropriate scaling transformation of the
initially anisotropic formalism. However, this transformation
depends on the direction of the applied magnetic field and
thus, the superconductivity type of a strongly anisotropic
material can depend on the orientation of the system.

II. MODEL AND METHOD

To achieve this goal we consider a single-band s-wave
model with an ellipsoidal Fermi surface, as a prototype of
anisotropic superconductors. For the sake of clarity, it is also
assumed that the magnetic field is directed along one of the

principal anisotropic axes. This choice seems to be restrictive
but, in fact, our qualitative conclusions do not depend on
details of the model and hold in a more general case.

The analysis is done using the extended GL (EGL) formal-
ism [29] that accounts for the leading-order corrections to the
GL theory in the perturbative expansion of the microscopic
equations with the proximity to the critical temperature τ =
1 − T/Tc as a small parameter. We briefly recall the main
steps of the derivation of this expansion in order to highlight
important changes introduced by the anisotropy. First, the
condensate contribution to the free energy F is expanded in
powers of the order parameter �(x) known to be small near
Tc. This yields

F =
∫

d3x

⎡
⎣B2(x)

8π
+ |�(x)|2

g
−

∞∑
n=0

1

n

∫ 2n+1∏
j=1

d3yj K2n+1(x, {y}2n+1)�∗(x)�(y1) · · · �∗(y2n)�(y2n+1)

⎤
⎦, (1)

where B(x) is the magnetic field, g denotes the coupling
constant, and {y}2n+1 = {y1, . . . , y2n+1} stays for the set of
spatial coordinates. The integral kernels in Eq. (1) read (m
is odd)

Km(x, {y}m) = −T
∑

ω

G (B )
ω (x, y1)Ḡ (B )

ω (y1, y2)

× · · ·G (B )
ω (ym−1, ym)Ḡ (B )

ω (ym, x), (2)

where ω is the fermionic Matsubara frequency, G (B )
ω (x, y) is

the Fourier transform of the normal Green’s function calcu-
lated in the presence of the magnetic field, and Ḡ (B )

ω (x, y) =
−G (B )

−ω (y, x). The magnetic-field dependence of G (B )
ω is taken

into account within the standard Peierls approximation suffi-
cient to derive the extended GL theory

G (B )
ω (x, y) = exp

[
i

e

h̄c

∫ x

y
A(z) · dz

]
G (0)

ω (x, y), (3)

where the contour integral with the vector potential A is
calculated along the classical trajectory of a charged particle
in the magnetic field and the free-particle Green’s function at
zero field writes as

G (0)
ω (x, y) =

∫
d3k

(2π )3

exp[ik · (x − y)]

ih̄ω − ξk
, (4)

where ξk = εk − μ is the single-particle energy measured
from the chemical potential. Equations (1)–(4) are valid for
an arbitrary single-particle dispersion εk. However, analytical
results can be obtained only for a limited number of models.
One of them is the model of an ellipsoidal Fermi surface,
often employed to study anisotropy-related effects. Choosing
the principal axes of the ellipsoidal Fermi surface as the
coordinate system, one gets ξk in the diagonal form as

ξk =
3∑

j=1

h̄2k2
j

2mj

− μ, (5)

where mj is a direction-dependent effective carrier mass.

In the next step of the EGL derivation one substitutes the
gradient expansion for the order parameter �(y) = �(x) +
[(y − x) · ∇]�(x) + · · · as well as for the field into Eqs. (1)–
(3). This allows one to represent nonlocal integrals in Eq. (1)
as a series in powers of the order parameter and field, as well
as of their spatial derivatives. As the single-particle dispersion
is anisotropic, the gradient-dependent contributions to the free
energy functional are also anisotropic. However, it is well
known that the GL contribution to the free energy can be
isotropized for any anisotropic single-particle dispersion by
applying a proper scaling transformation [30–32]. In particu-
lar, for our choice given by Eq. (5) the spatial coordinates and
momenta are scaled as

x̃j = xj/
√

αj , k̃j = √
αjkj , (6)

where

αj = M/mj, M = 3
√

mxmymz, αxαyαz = 1. (7)

This transformation yields the isotropic energy dispersion
ξk̃ = h̄2k̃2/(2M ) − μ with the scaled Fermi wave num-
ber k̃F =

√
2μM/h̄2. Further, the anisotropy in the field-

dependent contributions to the condensation energy is elim-
inated by scaling the components of the vector potential and
magnetic field as

Ãj = √
αjAj , B̃j = Bj/

√
αj , (8)

which obviously preserves the standard relation ∇̃ × Ã = B̃
(with the changed gauge). The scaling transformation given
by Eqs. (6)–(8) ensures that the GL contribution to the con-
densate free energy is isotropic but the magnetic-field energy
becomes anisotropic [30–32] and writes as B2 = ∑

j αj B̃
2
j .

For the case of interest, when the magnetic field is directed
along a principal axis, only a single component remains in the
field contribution (here it is the z component), i.e., B2 = αzB̃

2
z .

Then the factor αz is eliminated by rescaling the total free
energy as f̃ = f/αz and renormalizing the carrier density
of states (DOS) accordingly. As a result, one obtains a fully
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isotropic GL functional

f = B2

8π
+ a|�|2 + K|D�|2 + b

2
|�|4, (9)

where D = ∇ − (2ie/h̄ c)A and, from now on, the tilde mark
for the scaled quantities is suppressed. The coefficients of
this effective isotropic functional are given by the standard
expressions

a = −N (0)τ, b = N (0)

T 2
c

7ζ (3)

8π2
, K = b

6
h̄2v2

F , (10)

where ζ (· · · ) is the Riemann zeta function and one uses
material parameters of the isotropic “scaled” model such as
M and vF = h̄kF /M [see Eq. (7)]. However, a difference
with the usual isotropic case is that the DOS is renormalized
as N (0) = Nin(0)/αz, with Nin(0) = MkF /(2πh̄2) being the
DOS of the original model.

This scaling has been considered earlier in studies of the
mixed state of anisotropic superconductors deep in the type-II
regime [30–32]. Notice, however, that this transformation of
the originally anisotropic GL formalism leads to an important
observation concerning the interchange between supercon-
ductivity types I and II: anisotropic materials also have an
infinitely degenerate B point that separates types I and II at
T → Tc and unfolds into a finite IT domain below Tc. How-
ever, here this point appears in the “scaled” isotropic model.
This observation, which has not been discussed previously,
implies that the anisotropy does not destroy the isotropic
scenario of the type interchange unlike, for example, mecha-
nisms related to finite sample dimensions. The latter eliminate
the B-point degeneracy in superconducting films and wires,
thereby destroying the sharp transition between types I and II
at T → Tc (see Ref. [25]).

In order to investigate a finite IT domain appearing at
T < Tc, the leading corrections to the GL contribution are
to be retained in the free energy [19]. Such additional con-
tributions are also subject to the transformation defined by
Eqs. (6)–(8). However, the final result depends on details of
the band structure. The adopted model with an ellipsoidal
Fermi surface is special in this regard because it ensures that
any term in the expansion of the free energy in powers of
the order parameter given by Eq. (1) becomes isotropic under
the same transformation. This is seen from the fact that the
scaling transformation in Eqs. (6)–(8) reduces the Green’s
function in Eq. (4) to its isotropic form. Then, the scaled
leading corrections to the GL free energy are obtained as

δf = aτ

2
|�|2 + 2τK|D�|2 + τb|�|4 − c

3
|�|6

−Q
(

|D2�|2 + 1

3
rotB · i + 4e2

h̄2c2
B2|�|2

)

− L
2

[8|�|2|D�|2 + (�∗)2(D�)2 + �2(D∗�∗)2], (11)

where i = (e/h̄c)Im[�∗D�] is the supercurrent density, the
relevant coefficients are

c = N (0)

T 4
c

93ζ (5)

128π4
, Q = c

30
h̄4v4

F , L = c

9
h̄2v2

F , (12)

and N (0) is the renormalized DOS introduced in Eq. (10).
Notice that the resulting total free energy density f + δf

coincides with the isotropic Neumann-Tewordt functional
[19,33,34].

The choice of the terms contributing to Eq. (11) is dictated
by the subsequent τ expansion of the free energy obtained
from Eqs. (9)–(12) by substituting � = τ 1/2(�0 + τ�1),
A = τ 1/2(A0 + τA1), and B = τ 1/2(B0 + τB1) and using
the coordinate scaling x′ = xτ−1/2, which is equivalent
to the substitution ∇′ → τ 1/2∇. Then, the GL contributions
to the free energy are of order τ 2 while the leading corrections
are of order τ 3. The obtained τ expansion for the free energy
density produces the EGL equations: the GL equations for
�0 and A0 (B0) and additional equations for �1 and A1

(B1). An important advantage of the formalism is that the
leading-order corrections to the GL stationary free energy
can be expressed only in terms of the solutions of the GL
equations (see Ref. [19]).

We complete the discussion of the formalism by briefly
dwelling on the validity of the used model with an ellipsoidal
Fermi surface. The fact that the leading corrections to the GL
theory and, in general, any higher order contributions to the
free energy can be converted into the isotropic form by the
same scaling transformation is clearly a result of this model.
For a more general choice of the single-particle dispersion, the
GL contributions can still be isotropized by the above scaling
transformation [35]. However, some corrective terms remain
anisotropic. In particular, in the leading corrections these are
the terms with the fourth-order gradients in Eq. (11) (see
the contribution with the coefficient Q). When adopting the
dispersion (5), such fourth-order gradient terms are obtained
as ∑

ijnm

〈kikj knkm〉∇i∇j∇n∇m

∝
⎛
⎝∑

ij

〈kikj 〉∇i∇j

⎞
⎠(∑

nm

〈knkm〉∇n∇m

)
, (13)

where 〈kikj knkm〉 and 〈kikj 〉 are the k-averaging integrals
of the products kikj knkm and kikj (indices denote the vec-
tor components) with the weight given by the product of
the Fourier transforms of G (0)

ω (x, y) and Ḡ (0)
ω (x, y) (details

of the calculation are in Ref. [29]). Equation (13) holds
for an ellipsoidal Fermi surface, which yields 〈kikj knkm〉 ∝
〈kikj 〉〈knkm〉, with a constant proportionality coefficient.
When the principal axes of an ellipsoidal Fermi surface form
the coordinate system, each factor in the right-hand side
of Eq. (13) acquires the diagonal form and is isotropized
simultaneously with the GL contribution.

A more general model for the Fermi surface may result in
deviations from Eq. (13). Such deviations generate additional
anisotropic contributions to the free energy functional that
cannot be made isotropic simultaneously with the GL terms.
Adopting the model with an ellipsoidal Fermi surface is thus
equivalent to neglecting such extra contributions. However, as
already mentioned above, only the terms with the coefficient
Q will be affected. The previous investigations in Refs. [19]
and [26] have demonstrated that the contribution of these
terms to the results for the IT domain is significant only in
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multiband materials with one of the contributing bands being
shallow, i.e., when the chemical potential μ is close to its
edge. However, this case is irrelevant for the current study of
single-band materials.

III. SUPERCONDUCTIVITY-TYPE INTERCHANGE
AND IT DOMAIN

Utilizing earlier results obtained within the isotropic EGL
formalism in Ref. [19], we calculate upper κ∗

min and lower
κ∗

max boundaries of the IT domain on the κ-T plane, where
κ is the GL parameter of the scaled isotropic system. The
critical parameters κ∗

min and κ∗
max are temperature dependent

and defined as follows: at κ > κ∗
min a superconductor can

develop a mixed state, while at κ < κ∗
max vortices become

attractive at long ranges.
These critical parameters κ∗ (and others related to the

internal subdivisions in the IT domain) are calculated using
the difference �G between the Gibbs free energy of a chosen
spatially nonuniform field-condensate configuration and of
the Meissner state, both calculated at the thermodynamic
critical magnetic field Hc [19]. The Gibbs free energy G is
obtained from the free energy by subtracting (H · B)/4π , with
H = (0, 0,Hc ) an external magnetic field.

The calculations are facilitated by performing an additional
perturbation expansion of the Gibbs free energy, this time with
respect to δκ = κ − κ0. Taking into account that δκ ∼ τ , one
keeps only the linear contribution in this series expansion.
The resulting Gibbs free energy difference (normalized to the
sample size Lz in the z direction), obtained from Eq. (11),
writes in the dimensionless units as [19]

�G

τ 2Lz

= τ (AI + BJ ) −
√

2Iδκ, (14)

where for single-band superconductors A = −0.407 and B =
0.681 are universal constants and the integrals

I =
∫

|�|2(1 − |�|2)dx, J =
∫

|�|4(1 − |�|2)dx,

(15)

are calculated using a solution � of the self-dual GL equations
at κ0; this solution is normalized as �(x → ∞) → 1 and its
spatial dependence is given in the units of

√
2λ. The absence

of the zero-order term in the right-hand side of Eq. (14) is a
consequence of the degeneracy of the GL theory at κ0. One
can also see that only the GL contribution ∝δκ in Eq. (14)
depends on the microscopic parameters (via κ), whereas its
leading corrections are material independent.

The critical parameters κ∗, that correspond to the appear-
ance/disappearance of a particular field-condensate configura-
tion or a specific property of such a configuration, are found
from the equation �G = 0 (see details and discussions in
Ref. [19]), which resolves as

κ∗ = κ0[1 + τ (A + BJ /I )]. (16)

The critical parameter κ∗
min yields the lower boundary of the

IT domain and is defined by the appearance/disappearance
of the mixed state. In order to calculate this parameter one
considers the limit � → 0 at which J /I → 0 and thus κ∗

min
is obtained by substituting J /I = 0 into Eq. (16). Notice

that this result coincides with the one obtained from the
more conventional definition for this critical parameter, which
follows from the equation Hc = Hc2, where Hc2 is the upper
critical field. The upper boundary of the IT domain κ∗

max is
related to the sign change of the long-distance asymptote of
the vortex-vortex interaction. It is calculated from Eq. (16),
using the GL solution for two vortices at the distance R

one from another. This solution yields the exact asymptotic
result J (R)/I (R) → 2 at R → ∞, which is inserted in
Eq. (16).

In order to see if a material falls into the type-I, type-II,
or IT domains, one needs to compare κmin/max with the GL
parameter κ of the scaled model given by

κ = h̄c

|e|

√
b

32πK2
, (17)

where b and K are given by Eq. (10). The B point separating
conventional superconductivity types I and II at T → Tc is
determined by the condition κ = κ0. Returning to the original
anisotropic GL model, one obtains the direction-dependent
GL parameters as (j = x, y, z)

κj = h̄c

|e|

√
bin

32πK2
in,j

, (18)

where bin = bαz, and Kin,j = Kαzαj are parameters of
the original anisotropic system. Then the relation between
the GL parameter of the scaled isotropic model and the
direction-dependent GL parameters of the original anisotropic
system is

κ = √
κxκy. (19)

An important consequence of this relation is that the critical
B point of the effective isotropic model becomes the critical
B line κxκy = κ2

0 on the plane κx-κy . Experimentally, κj can
be changed, e.g., by nitrogen doping (see Ref. [8]). When the
B line is crossed, the superconductivity type changes (see the
phase diagram in Fig. 1). Below and above this line one has,
respectively, types I and II.

One notices that the GL parameter κ in Eq. (17) depends
on the field direction, which so far is assumed parallel to the
z axis. When the field is directed along the x or y axis, the
corresponding superconductivity type may change because
the isotropic-model GL parameter becomes κ = √

κyκz or
κ = √

κxκz, respectively. Thus the value of κ can be strongly
dependent on the field direction. To demonstrate this, let
us consider the case of strong anisotropy with the effective
masses obeying the inequality mz � my � mx . In this case
one obtains κz � κy � κx . It is then easy to see that if κy ∼ 1
then

√
κzκy � 1 � √

κxκy . This implies that when the field
is parallel to the x axis, the material belongs to type I; for the
field along the z axis it demonstrates a type-II behavior; and
when the field is along the y axis, the material is close to the
IT regime.

When the temperature is lowered, the B point unfolds into
a finite IT interval of κ values. Its boundaries κmax/min(T )
given by Eq. (16) are material independent and coincide with
those obtained for isotropic single-band superconductors [19].
Since the GL parameter κ of the scaled isotropic model is
a function of the two direction-dependent GL parameters of
the anisotropic model (κx and κy for the z-directed field),
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FIG. 1. The phase diagram for superconductivity types in the
κx-κy plane at T → Tc: the blue and red regions correspond to
types I and II, respectively, separated by the white critical B line
κxκy = κ2

0 = 1/2.

the boundaries of the IT domain on the κx-κy plane be-
come temperature-dependent lines, defined by the equations
κ∗

min/max(T ) = √
κxκy (see the phase diagram in Fig. 2). The

width of the IT domain increases when the temperature is
lowered: in Fig. 2 at T = 0.5Tc it occupies a noticeable part in
the phase diagram. Notice that even at these low temperatures
the EGL formalism yields quantitatively accurate results, as
has been demonstrated in the earlier analysis [19].

IV. CONCLUSIONS

In summary, this work has considered the interchange
between superconductivity types I and II in anisotropic su-

FIG. 2. The phase diagram for superconductivity types in the
κx-κy plane at T = 0.5Tc. The blue and red regions correspond
to types I and II, respectively, separated by the white region that
corresponds to the IT domain κ∗

min(T ) <
√

κxκy < κ∗
max(T ).

perconductors. The analysis is based on the single-band EGL
formalism combined with the coordinate-field scaling trans-
formation to isotropize the theory. Calculations have been
done for the ellipsoidal Fermi surface in the case when a
magnetic field is directed along one of the principal anisotropy
axes. We have demonstrated that irrespective of the anisotropy
degree, the scenario of the interchange of the types is the
same as in isotropic superconductors, being governed by the
proximity to the B point at which the field-condensate state
is self-dual and infinitely degenerate. Similarly to isotropic
materials, the degeneracy is removed at lower temperatures,
which opens a finite IT domain between types I and II with
unconventional superconducting magnetic properties.

The obtained conclusions are rather counterintuitive be-
cause the self-duality property generally is not expected in
systems with different direction dependence of the condensate
and magnetic lengths. However, here the B point is still
present in an effective isotropic model obtained by an appro-
priate scaling transformation. It has been shown that this trans-
formation and the corresponding GL parameter of the scaled
isotropic model strongly vary with the direction of an applied
magnetic field so that anisotropic materials can exhibit a qual-
itatively different magnetic response for different field align-
ments, which agrees with the experimental observation [36].

We stress that although our results have been obtained for
the model with the ellipsoidal Fermi surface, our conclusions
hold, at least qualitatively, for more complicated Fermi sur-
faces. This expectation is based on the fact that contributions
neglected in the adopted model can introduce only quantita-
tive corrections to the boundaries of the IT domain but do not
alter the physical mechanism behind the interchange of the
types. Since we have shown that the mechanism related to the
presence of the B point applies to a large class of situations we
expect that the type interchange proceeds qualitatively similar
in all these cases, in particular, when the field is not directed
along one of the principal anisotropy axes. Also, we expect the
conclusions hold for materials with many conduction bands
as long as the anisotropic contributions, that cannot be made
isotropic simultaneously with the GL terms, are marginal,
which is typically the case.
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