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Torsional chiral magnetic effect due to skyrmion textures in a Weyl superfluid 3He-A
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We investigate torsional chiral magnetic effect (TCME) induced by skyrmion-vortex textures in the A phase
of the superfluid 3He. In 3He-A, Bogoliubov quasiparticles around point nodes behave as Weyl fermions, and
the nodal direction represented by the � vector may form a spatially modulated texture. � textures generate
a chiral gauge field and a torsion field directly acting on the chirality of Weyl-Bogoliubov quasiparticles. It
has been clarified by Volovik [Pi’sma Zh. Eksp. Teor. Fiz. 43, 428 (1986)] that, if the � vector is twisted
as �̂·(curl�̂) �=0, the chiral gauge field is responsible for the chiral anomaly, leading to an anomalous current
along �. Here we show that, even if �̂·(curl�̂)=0, a torsion arising from � textures brings about contributions to
the equilibrium currents of Weyl-Bogoliubov quasiparticles along curl�. This implies that while the anomalous
current appears only for the twisted (Bloch-type) skyrmion of the � vector, the extra mass current due to TCME
always exists regardless of the skyrmion type. Solving the Bogoliubov–de Gennes equation, we demonstrate
that both Bloch-type and Néel-type skyrmions induce chiral fermion states with spectral asymmetry, and possess
spatially inhomogeneous structures of Weyl bands in the real coordinate space. Furthermore, we discuss the
contributions of Weyl-Bogoliubov quasiparticles and continuum states to the mass current density in the vicinity
of the topological phase transition. In the weak-coupling limit, continuum states give rise to backflow to the
mass current generated by Weyl-Bogoliubov quasiparticles, which makes a non-negligible contribution to the
orbital angular momentum. As the topological transition is approached, the mass current density is governed by
the contribution of continuum states.
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I. INTRODUCTION

Weyl semimetals have been attracting much attention be-
cause of the realization of chiral anomaly in condensed-
matter systems, which is experimentally detectable in various
exotic transport phenomena such as the anomalous Hall ef-
fect, chiral magnetic effect, and negative magnetoresistance
[1–14]. Chiral anomaly is the violation of conservation law
of axial currents in the case with both electric and magnetic
fields which are not orthogonal to each other. Its origin is
attributed to monopole charge carried by Weyl points in the
momentum space, which generate the Berry curvature, and
are sources and drains of momentum generation. Recent ex-
perimental studies revealed the realization of chiral anomaly
in Weyl semimetal materials via the observation of negative
magnetoresistance [15–17].

The notion of Weyl semimetals is naturally generalized
to superconducting states [18]. In superconductors with bro-
ken time-reversal symmetry such as chiral pairing states and
nonunitary odd-parity pairing states, nodal excitations from
point nodes of the superconducting gap behave as Weyl
fermions accompanying the Berry curvature. There are several
candidate systems of Weyl superconductors and superfluids
such as the A phase of the superfluid 3He [19–22], URu2Si2

[23], the B phase of UPt3 [24], UCoGe [25], and the B phase
of U1−xThxBe13 [26–28]. Since the Bogoliubov quasiparti-
cles are the superposition of electrons and holes, the usual
coupling with electromagnetic fields does not directly lead to
chiral anomaly. However, it is still possible that in Weyl super-
conductors and Weyl superfluids, emergent electromagnetic

fields arising from spatially inhomogeneous textures of the
superconducting order parameter and its dynamics give rise
to chiral anomaly phenomena. As a matter of fact, in 1997,
more than ten years before the invention of the notion of Weyl
semimetals, Bevan et al. observed momentum generation
due to chiral anomaly in 3He-A with skyrmion textures of
the �-vector field [29], which was motivated by pioneering
theoretical works of Volovik and his collaborators [19,30–35].
In the experiment [29], the chiral anomaly was detected via
the measurement of an extra force on skyrmion vortices.

In this paper, we consider another chiral anomaly effect
which is referred to as the torsional chiral magnetic effect
(TCME). The TCME was originally proposed for magnetic
Weyl semimetals with lattice dislocations [36]. Lattice dis-
locations give rise to torsion fields which cause emergent
magnetic fields acting on Weyl fermions, and result in equilib-
rium currents flowing along the dislocation lines. The current
induced by the torsion field is given by

JTCME = evF �

4π2

∑
a=x,y,z

T a (pLa − pRa ), (1)

where vF is the Fermi velocity, � is the momentum cutoff,
pL(R)a (a = x, y, z) is the position of the Weyl point with left-
(right-)handed chirality in momentum space, and

(T a )μ = εμνλ

2
T a

νλ, (2)

where T a
νλ is torsion which can be realized in condensed-

matter systems by topological defects such as lattice
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FIG. 1. Real-space skyrmion � textures and “torsional” magnetic
fields acting on Wely-Bogoliubov quasiparticles, T 3̄ = curl�̂: (a)
Néel-type skyrmion vortex with α = 0 and (b) Bloch-type skyrmion
with α = π/2 [see Eq. (27)]. The former texture has jTCME ∝ T 3̄ and
j an = 0, while the latter has nonvanishing jTCME ∝ T 3̄ and j an ∝ �̂.

dislocation and a skyrmion texture of magnetic order. In the
case of superconductors, torsional magnetic fields arise from
vortex textures of the superconducting order parameter or lat-
tice strain, and hence the negative thermal magnetoresistivity,
that is, the anomalous enhancement of longitudinal thermal
conductivity along the torsional magnetic field [37].

Here we focus on the A phase of 3He having a skyrmion
vortex as a promising platform for the TCME. The order-
parameter tensor Aμi , that transforms as a vector with respect
to index μ = x, y, z (i = x, y, z) under spin (orbital) rota-
tions, is given by the complex form [38,39]

Aμi = �A(T )d̂μ(m̂ + in̂)ie
iϕ, (3)

where d̂ and (m̂, n̂) are unit vectors representing spin and
orbital degrees of freedom in the superfluid vacuum, respec-
tively. This is the Cooper-pair state with a definite orbital
angular momentum represented by �̂ ≡ m̂ × n̂, and the � vec-
tor points to the nodal orientation at which Weyl-Bogoliubov
quasiparticles reside. Owing to the spontaneously broken
gauge-orbit symmetry, the rotation of the orbital part, m̂ + in̂,
about �̂ is equivalent to the U(1) phase rotation ϕ. This implies
that the superfluid current can be generated by the texture
of the triad (m̂, n̂, �̂) without U(1) phase singularities. For
rotating 3He-A, therefore, the �-vector field spontaneously
forms a skyrmionlike texture as a ground state [40–42], which
is known as the Anderson-Toulouse vortex and the Mermion-
Ho vortex (see Fig. 1) [22,43–45]. The �-texture fields also
appear in 3He confined in a narrow cylinder [46,47]. The
relation between � textures and the mass current density at
zero temperatures was derived by Mermin and Muzikar [48]
as

jMM = ρvs + h̄

4M
curlρ�̂ − h̄

2M
C0�̂(�̂ · curl�̂), (4)

where ρ is the mass density of 3He atoms, M is the mass, and
C0 ≈ ρ in the weak-coupling approximation. The first term
in Eq. (4) results from the superfluid velocity, and the second
term arises from a variation of orbital angular momentum of
the Cooper pair, h̄�̂, which resembles the electric current in-
duced by a variation of the magnetization density in materials.

The third term is the anomalous current referred to as j an,
which brings about a long-standing issue involved with the
McClure-Takagi paradox [48–52]. For twisted � textures with
�̂ · curl�̂ �= 0, j an violates the McClure-Takagi relation that
the ground state with an axially symmetric � texture has the
total angular momentum per particle Lz/N = h̄/2.

Using the semiclassical theory for Weyl-Bogoliubov quasi-
particles, we here consider the contribution of the TCME to
equilibrium mass flow in 3He-A with skyrmion vortices. The
texture of the � field brings both a chiral gauge field (Aem ∝ �̂)
and torsion (T a

μν) into Weyl-Bogoliubov quasiparticles. It has

been discussed that, if �̂ is twisted as � · (curl�) �= 0, the
chiral gauge field directly acting on the chirality of Weyl
fermions leads to an anomalous current, j an ∝ �̂(�̂ · curl�̂)
[19,30–35,53,54], which is the chiral anomaly due to the
emergent gauge field Aem. Here we show that a “torsion”
field, T 3̄ = curl�̂, arising from a texture of the triad (m̂, n̂, �̂),
gives rise to new torsional contributions as in Eq. (1). This is
the torsional-anomaly aspect of the second term of Eq. (4).
While j an exists only for twisted (Bloch-type) skyrmions
with �̂ · curl�̂ �= 0 [Fig. 1(b)], jTCME ∝ curl�̂ is always finite
regardless of the skyrmion type [Fig. 1(a)].

The Bogoliubov–de Gennes (BdG) equation enables a full
quantum-mechanical treatment of Bogoliubov quasiparticles
and provides a tractable and feasible approach to the vicinity
of the topological phase transition. Solving the BdG equa-
tion, we demonstrate that Néel-type skyrmions induce chiral
fermion states with spectral asymmetry, which are responsible
for the macroscopic mass flow along the azimuthal direction.
The results are consistent with the semiclassical theory for
Weyl-Bogoliubov quasiparticles with the torsional magnetic
field, T 3̄ = curl�̂. We also discuss the chiral fermion states
and mass flow for both Néel-type and Bloch-type skyrmions
in light of the torsional magnetic field and discrete symmetries
prevented by the skyrmion vortex. Furthermore, we show
that skyrmion � textures give rise to spatially inhomogeneous
structures of the Weyl fermion band in addition to the tor-
sional magnetic field [55]; the position of Weyl points in
the momentum space exhibits inhomogeneous textures in the
real space. Last we discuss the contribution of the Weyl-
Bogoliubov quasiparticles and continuum states to the mass
current in the vicinity of the topological phase transition.
In the weak-coupling limit, continuum states give rise to
backflow to the mass current generated by Weyl-Bogoliubov
quasiparticles, which makes a non-negligible contribution to
the orbital angular momentum. As the topological transition
is approached, the mass current density is governed by the
contribution of continuum states.

The organization of this paper is as follows. In Sec. II, we
present semiclassical analysis for TCME in the case of Weyl
superconductors/superfluids. In Sec. III, we describe the nu-
merical method for solving the Bogoliubov–de Gennes (BdG)
equation for our purpose, and show the intrinsic features of
Weyl-Bogoliubov quasiparticles in the presence of the � tex-
ture, such as spectral asymmetry and spatially inhomogeneous
structures of the Weyl fermion band. In Sec. IV, we discuss
the mass current density induced by the skyrmion texture from
the viewpoint of the TCME. The final section is devoted to the
conclusion and discussion.
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II. TORSIONAL CHIRAL MAGNETIC EFFECT
AND SEMICLASSICAL ANALYSIS

A. Semiclassical equation of motion
for Weyl-Bogoliubov quasiparticles

We consider the Bogoliubov–de Gennes (BdG)
Hamiltonian for the Bogoliubov quasiparticles in the A
phase of the superfluid 3He, i.e., a three-dimensional
(3D) chiral p + ip superfluid, with spatially varying gap
structures such as skyrmionlike �-vector textures of the
Anderson-Toulouse vortex and the Mermin-Ho vortex. We
apply the path-integral formulation in a curved space with
nonzero torsion which is induced by a vortex structure. In
the Lagrangian in the Feynmann kernel, the spatially varying
gap function is expressed as Aμipi/pF with the tensorial field
Aμi in Eq. (3). Here m̂ and n̂ are unit vectors for a local
orthogonal frame which are perpendicular to the direction
of the point nodes at p = s p0 ≡ spF�̂, where s = ±1 is the
chirality of the Weyl points, and �̂ = m̂ × n̂ is the � vector. �

is the superconducting gap, and pF is the Fermi momentum.
Then, the effective Lagrangian for Bogoliubov quasiparticles
around p = s p0 is given by

Ls = p · ṙ − Hs ( p, r ), (5)

with the Weyl-Bogoliubov Hamiltonian

Hs ( p, r ) = seμ
a V a

b τ b(pμ − sp0μ), (6)

where V a
b = diag[ �

pF
, �

pF
, v] with v the Fermi velocity, τ a is

the Pauli matrix in the particle-hole space, and the vielbein e
μ
a

is given by (
e
μ

1̄ , e
μ

2̄ , e
μ

3̄

) = (mμ, nμ, �μ). (7)

We use greek letter indices μ = 1, 2, 3 as space indices for the
laboratory frame, and roman letters a = 1̄, 2̄, 3̄ as indices for
a local orthgonal frame. The Weyl Hamiltonian must obey the
particle-hole symmetry

CHs ( p, r )C−1 = −H−s (− p, r ), (8)

where C = Kτ1 is the particle-hole conversion operator with
τμ the Pauli matrices in the particle-hole space. The particle-
hole symmetry guarantees that the Weyl point appears as
a pair of p0 and − p0 and the pairwise Weyl points have
opposite chirality, s = ±1.

For 3He-A with p0 = pF�̂, the space-time modulation of
the �̂ texture generates the emergent electromagnetic field,
Bem = pFcurl�̂ and Eem = pF∂t �̂, which directly acts on the
chirality of Weyl-Bogoliubov quasiparticles. Volovik and his
collaborators [19,30–35] found the chiral anomaly that the
emergent field is responsible for the production of net quasi-
particle momentum, ∂t PQP = 1

2π2

∫
d3rpF�̂Eem · Bem. As the

quasiparticle momentum PQP is equivalent to the quasipar-
ticle mass current in 3He-A, the violation of the quasiparticle
momentum conservation is compensated for by the extra mass
current carried by the superfluid vacuum, that is, the anoma-
lous current in Eq. (4), j an = − h̄

2M
C0�̂(�̂ · curl�̂). Below, we

show another contribution of Weyl-Bogoliubov quasiparticles
to Eq. (4) that the nontrivial torsion field due to the modulation
of the vielbein, e

μ
a , is accompanied by the extra mass current

along curl�̂. This is the chiral magnetic effect due to the
torsion field, which can be significant even if �̂ · curl�̂ = 0.

Following the method developed in Ref. [56], we obtain
the effective Lagrangian for the upper band:

Ls = pμṙμ + Es + A+μ
ps ṗμ + A+

rsμṙμ, (9)

where the Berry connections are A+μ
ps = i〈us+|∂pμ

|us+〉, and
A+

rsμ = i〈us+|∂rμ |us+〉 with Hs |us+〉 = Es |us+〉 and Es is the
single-particle energy of Weyl-Bogoliubov quasiparticles with
chirality s.

The Berry connection and the Berry curvature in the
momentum space characterizing Weyl fermions appear when
one projects the state into the one of the two energy bands
of Hs ( p, r ). This approach is justified for Weyl semimetals,
when the Fermi level crosses only one band and the other band
is well separated from the Fermi level. However, in the case of
Weyl superconductors and Weyl superfluids, the Fermi level
crosses the Weyl point at which the lower band touches the
upper band, and thus, the projection procedure is not justified.
Nevertheless, we exploit this approach to see qualitatively
how the Berry curvature plays the role in the response against
torsion fields.

In some cases with a spatially varying structure of the gap
function such as a vortex, and the Mermin-Ho texture or the
Anderson-Toulouse texture of the � vector, nonzero torsion
appears. The torsion field is defined by

T a
μν = ∂ea

ν

∂rμ
− ∂ea

μ

∂rν
, (10)

where ea
μ is the inverse of e

μ
a .

In the case with nonzero torsion, the Euler-Lagrange equa-
tion for r and ṙ is modified as [57]

d

dt

(
∂L
∂ṙμ

)
− ∂L

∂rμ
= T ν

μλṙ
λ ∂L
∂ṙν

, (11)

with T ν
μλ = eν

aT
a
μλ, while that for p and ṗ is not changed.

Then, we obtain the equation of motion for the Weyl-
Bogoliubov quasiparticles:

d r
dt

= ∂Es

∂ p
− �̂+

prs · d r
dt

− d p
dt

× �+
p ps + �+

t ps , (12)

d p
dt

=−∂Es

∂ r
+ �̂+

r ps · d p
dt

+ d r
dt

× �+
r rs − �+

t rs

+ d r
dt

× Tμ(pμ + A+
rsμ), (13)

where the Berry curvatures are

�+
X Xs = i〈∇Xus+| × |∇Xus+〉, (14)

�+
t Xs = i(〈∂tus+|∇Xus+〉 − 〈∇Xus+|∂tus+〉), (15)

(�̂+
prs )αβ = i(〈∂pα

us+|∂rβ
us+〉 − 〈∂rβ

us+|∂pα
us+〉), (16)

�̂+
r ps = −(�̂+

prs )t , (17)

with X = r, p, and (Tμ)ν = 1
2ενλρT

μ
λρ . In Eqs. (12) and (13),

all components of vectors are expressed in the laboratory
frame. We can obtain similar equations also for the lower
band. The Berry curvature is �−

XYs = −�+
XYs It is noted that,

as seen from (13), the torsion generates an effective magnetic
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field acting on quasiparticles. We denote it as

B = Tμ(pμ + A+
rμ) = T a (pa + A+

ra ). (18)

In the following, we consider static inhomogeneity of the
order parameter, and neglect �+

t ps and �+
t rs . Then, as follows

from Eqs. (12) and (13),

d r
dt

=∂Es

∂ p
+ ∂Es

∂ r
× �+

p ps −
(

∂Es

∂ p
· �+

p ps

)
B̃

− �̂+
prs · d r

dt
+ (�+

p ps · B̃)
d r
dt

, (19)

d p
dt

=−∂Es

∂ r
+ d r

dt
× B̃ +

(
∂Es

∂ r
· B̃

)
�+

p ps

+ �̂+
r ps · d p

dt
+ (�+

p ps · B̃)
d p
dt

, (20)

where v ps = ∂Es/∂ p, and B̃ = �+
r r + B. In Eq. (19), the third

term of the right-hand side represents the chiral magnetic
effect, and the contribution proportional to B corresponds to
the torsional chiral magnetic effect found in Ref. [36]. The
third term of the right-hand side of Eq. (20) is associated with
chiral anomaly; i.e., the momentum is generated or annihi-
lated at the Weyl points when both an effective magnetic field
and a bias potential are applied in the same direction. It has
recently been found that from Eqs. (19) and (20) the torsional
chiral magnetic effect arising from a U(1) phase vortex or
lattice strain leads to the negative thermal magnetoresistivity,
that is, the anomalous enhancement of longitudinal thermal
conductivity along the vortex line [37],

B. Torsional chiral magnetic effect due to � textures

The current density induced by the torsional field is written
as [56]

jTCME
μ =

∑
s,±

∫
d3k

(2π )3
(v±

ks · �±
kks )f (Es )Bμ, (21)

where f (ε) = 1/(eε/T + 1) is the Fermi distribution function.
Equation (21) reproduces the current expression based on the
linear response of the effective action for Weyl-Bogoliubov
quasiparticles with respect to the torsional magnetic field [36].
The effective Hamiltonian in Eq. (6) possesses anisotropic
dispersion of Weyl-Bogoliubov quasiparticles and the Berry
curvature is

�±
kks = ±s

(
1

pFξ

)2 k − sk0

2|k̃ − s k̃0|3
, (22)

where we have introduced k̃b = V a
b ka/vF and ξ = vF/�A. We

also introduce a momentum cutoff |k̃ − s k̃0| < b�A/vF ≡
� for Weyl-Bogoliubov quasiparticles with the chirality s,
where b ∼ 1. A nonzero torsional magnetic field leads to the
equilibrium current

jTCME = vFpF�

2π2
T 3̄, (23)

where we utilize the particle-hole symmetry in Eq. (8).
As seen from Eqs. (10) and (18), in the A phase of 3He,

a torsional magnetic field is generated by the rotation of the

Weyl points, p0 = pF �̂, as

T 3̄ = curl�̂. (24)

The real-space texture of the � vector field is thermody-
namically stable in superfluid 3He-A under rotation. This is
a consequence of the broken gauge-orbit symmetry in the
superfluid vacuum; the U(1) phase rotation in Eq. (3) is
equivalent to the rotation of the orbital part m̂ + in̂ about �̂.
Therefore, the supercurrent can be generated by a variation of
(m̂, n̂, �̂) without a U(1) phase singularity. The � texture spon-
taneously emerges in 3He-A under rotation, and continuous
skyrmionlike textures provide an elementary building block
for a variety of coreless vortices with the spatially uniform su-
perfluid density [40,41]. Here we consider skyrmion vortices
with the Néel-type and Bloch-type �̂ textures as in Fig. 1.

Let us now clarify the torsional field induced by skyrmion
vortices. It is convenient to express the orbital part of the order
parameter tensor in Eq. (3) in terms of Euler angles α, β, γ as
m̂ + in̂ = e−iγ (m̂′ + in̂′), where

m̂′ = cos β cos α x̂ + cos β sin α ŷ − sin β ẑ, (25)

n̂′ = − sin α x̂ + cos α ŷ, (26)

and �̂ = cos α sin β x̂ + sin α sin β ŷ + cos β ẑ. The texture is
assumed to be translationally invariant along the z axis and
be axially symmetric. The axisymmetric skyrmion texture
requires the Euler angles to obey α ≡ θ + α0(r ), γ = −nθ

(n ∈ Z), and β ≡ β(r ), where r is the distance from the center
of the vortex and θ is the azimuthal angle. For the real-space
�-vector field with axial symmetry, therefore, the parametriza-
tion reduces to

�̂ = sin β cos α0 r̂ + sin β sin α0θ̂ + cos β ẑ, (27)

where �̂ ≡ �̂(r ), β ≡ β(r ), and α0 ≡ α0(r ). The bending an-
gle is a monotonic function on r which obeys β(r ) = 0 at
r = 0 and β(r ) = π/2 at r = R, where R determines the size
of the skyrmion texture. In Fig. 1, we present the texture of
(m̂, n̂, �̂) in the skyrmion vortex with n = 1: (a) the Néel-type
skyrmion with α = 0 and (b) the Bloch-type skyrmion with
α = π/2. From Eqs. (27) and (7), the nonzero torsion field
in Eq. (10) can be generated by a skyrmion � texture of
continuous vortices as

T 3̄ = β ′ sin β θ̂ +
[(

β ′ cos β + 1

r
sin β

)
sin α

+ α′

r
sin β cos α

]
ẑ, (28)

where α′ ≡ ∂α/∂r and β ′ ≡ ∂β/∂r . As shown in Fig. 1, the
Néel-type skyrmion texture for α = 0 generates the toroidal
torsional magnetic field in the xy plane, while the Bloch-type
skyrmion for α �= 0 is accompanied by the nonzero torsion
field along the z axis.

Using the particle density, ρ = p3
F/3π2, the TCME is

recast into

jTCME =
(

b′

pFξ

)
h̄

4M
ρcurl�̂, (29)
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where b′ ∼ 1 is the dimensionless quantity associated with the
cutoff of the Weyl cone. The skyrmion texture with Eq. (27)
therefore gives rise to the in-plane circulating current and the
out-of-plane current, depending on α. We note that jTCME in
Eq. (29) corresponds to the Weyl-Bogoliubov quasiparticle
contributions to the second term of the right-hand side of the
equilibrium current density in Eq. (4). This is distinct from
the chiral anomaly effect due to the emergent electromagnetic
fields considered in previous studies [19,30]. In Sec. IV, we
will discuss the temperature dependence of the equilibrium
current density based on the full quantum-mechanical calcu-
lation.

III. CHIRAL FERMIONS IN SKYRMION VORTEX

In this section, we show the emergence of chiral fermions
in superfluid 3He-A with skyrmion � textures. Beyond the
semiclassical effective theory, we here utilize the BdG equa-
tion which is the fully quantum-mechanical equation for
Bogoliubov quasiparticles in superfluid 3He-A.

We start with the Hamiltonian for the equal spin pairing
state, Aμi (r ) = �i (r )d̂μ,

H =
∫

d rψ†(r )ε(−i∇)ψ (r )

+ 1

2

∫
d r

[
ψ†(r )

{
�j (r ),

i

pF
∂j

}
ψ†(r ) + H.c.

]
,

(30)

where ψa and ψ
†
a denote the fermionic field operators. As

3He-A is the equal spin pairing state, we omit the spin
degrees of freedom. The single-particle Hamiltonian density
represents fermions with mass M , ε(−i∇) = −∇2/2M − μ.
The repeated Roman and Greek indices imply the sum over
the spin degrees of freedom and (x, y, z), respectively.

Now, let us introduce the Bogoliubov transformation of the
fermion operator � ≡ [ψ,ψ†]T,

�(r ) =
∑
E>0

[ϕE (r )ηE + CϕE (r )η†
E], (31)

where ηE and η
†
E stand for Bogoliubov quasiparticle oper-

ators with the energy E that satisfy fermionic anticommu-
tation relations. We notice that Eq. (31) obeys the particle-
hole symmetry, C� = �, with C = τxK where K is the
complex conjugation operator. Substituting Eq. (31) into the
Hamiltonian (30), one obtains the Bogoliubov–de Gennes
(BdG) equations

HBdG(r )ϕE (r ) = EϕE (r ), (32)

with

HBdG(r ) =
(

ε(−i∇) 1
2

∑
j

{
�j ,

i
pF

∂j

}
1
2

∑
j

{
�∗

j ,
i

pF
∂j

} −ε(−i∇)

)
,

(33)

where {, } denotes an anticommutator. To make the
Bogoliubov transformation canonical, the quasiparticle
wave function must satisfy the orthonormal conditions∫

d rϕ†
E (r )ϕE′ (r ) = δE,E′ .

A. Symmetry of Weyl-Bogoliubov quasiparticles
in skyrmion vortices

To clarify the symmetry of Bogoliubov quasiparticles in
the presence of a skyrmion � texture, we start with the
symmetry group relevant to the classification of axisymmetric
vortices in superfluid 3He,

Gv = D∞,h × t z × T × U(1)ϕ, (34)

where D∞,h contains the group of rotations about the vortex
line ( ẑ), rotations about an axis perpendicular to ẑ, and space
inversion, and t z represents the translational symmetry of the
skyrmion vortex along ẑ. The time-reversal symmetry T trans-
forms the order-parameter tensor as Aμi �→ A∗

μi . The genera-
tor of the continuous rotation symmetry about ẑ is expressed
as eiQ̂ϕ , where Q̂ ≡ L̂z − nÎ (n ∈ Z) is the combination of
the orbital angular momentum operator L̂z and the U(1)
phase rotation operator. The order parameter for axisymmetric
vortices satisfies Q̂�j (r ) = 0. For the skyrmion vortex states
in Fig. 1, the orbital components of the order parameter are
given by

�(r ) = �A(T )eiθ [m̂′(r ) + in̂′(r )], (35)

with Eqs. (25) and (26). In this paper, we focus on the n = 1
case.

It is convenient to transform Eq. (35) into the eigen-
states of the orbital angular momentum l = +1, 0,−1 as
(�+1,�0,�−1). This transforms the off-diagonal component
of Eq. (33) as

∑
j {�j ,

i
pF

∂j } �→ ∑
l{�l (r ),Y1,l (∂ )}, where

YL,l (∂ ) is the spherical harmonic function of degree L ob-
tained by replacing p̂ → −i∂/pF. The phase factor eilθ ,
which appears in Y1,l , is compensated by the winding of
(m̂′, n̂′) in �l (r ) and the U(1) phase factor eiθ is factorized
from the off-diagonal component in Eq. (33) at all. The
quasiparticle wave functions are then factorized in terms of the
azimuthal quantum number m ∈ Z and axial quantum number
k as

ϕE (r ) = eikz

(
unmk (r )eimθ

vmmk (r )ei(m−1)θ

)
. (36)

Here we impose the periodic boundary condition along the
axial direction, ϕE (x, y, z) = ϕE (x, y, z + Z), which implies
k = 2πnz/Z with nz ∈ Z. By using the factorization in
Eq. (36), Eq. (33) is reduced to the one-dimensional dif-
ferential equation for [unmk (r ), vnmk (r )], where the set of
the quantum numbers is given as (n,m, k). The differential
equation in the cylindrical coordinate is solved by expanding
the wave functions with the orthonormal basis. The set of
the basis functions is constructed with the Bessel function
and the ith zeros of the ν Bessel function, Jν (r ) and αν

i , as
{Cν

j Jν (αν
j r/R)}j=1,...,N , where Cν

j and N denote the normal-
ization constant and the number of the orthonormal functions,
respectively. This imposes the rigid wall boundary condi-
tion, unmk (r = R) = vnmk (r = R) = 0. The Bessel function
expansion then reduces Eq. (33) to the 2N × 2N eigenvalue
equation [58–60]. We take R = 50–200k−1

F and N = 600.
Apart from the continuous symmetry, there are discrete

symmetries, which leave the axisymmetric vortex order-
parameter invariant. First we note that the BdG Hamiltonian
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TABLE I. Classification of skyrmion-vortex textures in terms of
the discrete symmetries. The “Néel,” “Bloch,” and “twist” textures
correspond to α = 0, α = π/2, and α(r ), respectively, B is the
torsional magnetic field due to the � texture, and “ZES” denotes the
distribution of the zero-energy states.

Class � texture P1 P2 P3 B ‖ ẑ ZES

v Néel
√

flat
w Bloch

√ √
point

uvw twist
√

point

in Eq. (33) always satisfies the particle-hole symmetry

CHBdG(r )C−1 = −HBdG(r ). (37)

This results in relation (8). The symmetry guarantees that
the eigenstate of the BdG equation must appear as a pair of
the positive- and negative-energy states. The positive-energy
state with En(m, k) and ϕn,m,k (r ) ≡ [unmk (r ), vnmk (r )]T has
the particle-hole symmetric partner with −En(−m + 1,−k)
and Cϕn,−m+1,−k (r ).

The other discrete symmetries relevant to the vortex
classification are given by three operators, {P1, P2, P3}
[22,40,61,62]. P1 is the space inversion operator. The order-2
antiunitary operator P3 is the combination of the time-reversal
symmetry and π rotation about any axis perpendicular to
the vortex line. The P2 symmetry is defined as P2 = P1P3,
which is the combination of the time-reversal symmetry and
mirror reflection symmetry in a plane that contains the vortex
line. Axisymmetric continuous vortices with skyrmionlike �

texture are classified in terms of these discrete symmetries
into three categories: v, w, and uvw vortices [40]. The order
parameters of the v and w vortices are invariant under the
P2 and P3 symmetry, respectively, while the uvw-vortex class
spontaneously breaks all the discrete symmetries.

Let us define the operator M = iσy that denotes
the mirror reflection in the xz plane. The operator
flips the spin, momentum, and spatial coordinate as
σ �→ (−σx, σy,−σz), k �→ (kx,−ky, kz), and r �→
(x,−y, z), respectively. The P2 operator is defined as
the combination of M and the time-reversal operator
T = −iσyK . For d̂ ‖ ẑ, the P2 operator flips the triad as
m̂(r, θ, z) �→ [m̂x (r,−θ, z),−m̂y (r,−θ, z), m̂z(r,−θ, z)],
n̂(r, θ, z) �→ [−n̂x (r,−θ, z), n̂y (r,−θ, z),−n̂z(r,−θ, z)],
and �̂(r, θ, z) �→ [�̂x (r,−θ, z),−�̂y (r,−θ, z), �̂z(r,−θ, z)].
Similarly, the P3 symmetry relates the triad at (r, θ, z)
to (m̂x,−m̂y, m̂z), (−n̂x, n̂y,−n̂z), and (�̂x,−�̂y, �̂z) at
(r, π − θ,−z). The Néel-type skyrmion-vortex (v vortex)
with α = 0 in Fig. 1(a) spontaneously breaks the P1 symmetry
but maintains the P2 symmetry. The vortex state with the
Bloch-type skyrmion texture (α = π/2) in Fig. 1(b) belongs
to the w-vortex class with P3 symmetry. The uvw-vortex
class can be realized by twisting the skyrmion � texture so
as to satisfy the conditions α(0) = π/2 and α(R) = 0. In
Table I, we summarize the possible classification of skrymion
vortices in terms of the discrete symmetries.

The P2 symmetry imposes an important constraint on the
energy spectrum of the Bogoliubov quasiparticles so as to
prohibit the equilibrium current along the axial direction.
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0
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FIG. 2. Bogoliubov quasiparticle spectra for Néel-type skyrmion
(α = 0) at En(m, k = 0) (a) and En(m = 0, k) (b). (c) k-resolved
zero-energy local density of states, N (k, r, E = 0), representing the
spatial distribution of the chiral fermion. We fix R = 200k−1

F and
pFξ = 20.

Axisymmetric v vortices must satisfy the relation

En(m, k) = En(m,−k) = −En(−m + 1,−k). (38)

The first equality results from the P2 symmetry, while the sec-
ond equality reflects the particle-hole symmetry. Hence, the
Bogoliubov quasiparticle spectrum in the Néel-type skyrmion
vortex with α = 0 is an even function on k and the current flow
along ẑ is prohibited. In contrast, as the P3 symmetry does
not impose any constraints on the eigenvalues, the Bloch-type
and twisted skyrmion � textures may generate the equilibrium
current along the axial direction.

B. Chiral fermions and real-space texture of Weyl points

Let us consider the superfluid 3He-A confined in a cylinder
with radius R. The triad (m̂, n̂, �̂) parametrized as Eqs. (25)–
(27) slowly varies from �̂ = ẑ at r = 0 to �̂ = r̂ at r = R.
Hence, the bending angle is given by β(r ) = π

2R
r . We here set

the angle as α(r ) = 0 for the Néel-type skyrmion (v vortex)
and α(r ) = π

2 (1 − r/R) for the twisted skyrmion (uvw vor-
tex). The size of the half-skyrmion is set to be larger than the
superfluid coherence length ξ , R � 10ξ where ξ ≡ vF/�A >

k−1
F .

In Fig. 2, we show the Bogoliubov quasiparticle spec-
tra obtained by diagonalizing Eq. (33) with the Néel-type
skyrmion textures (v vortex). The Bogoliubov spectrum is
asymmetric with respect to the azimuthal quantum number
m and lowest branch (n = 0) crosses the zero energy. As
mentioned in Sec. II, the Weyl-Bogoliubov quasiparticles
around point nodes experience the torsional magnetic field
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FIG. 3. Bogoliubov quasiparticle spectra for twisted skyrmion
[α = π/2(1 − r/R)] at En(m, k = 0) (a) and En(m = 0, k) (b). We
fix R = 200k−1

F and pFξ = 20.

T 3̄ = ∇ × �. For the Néel-type � skyrmion with α = 0, the
toroidal torsional magnetic field, T 3̄ ∝ θ̂ , leads to the emer-
gence of the Landau levels linearly dispersing from m = 0.
The lowest energy branch crossing the Fermi level in Fig. 2(a)
is asymmetric with respect to m,

E0(m, k) = −v
(
m − 1

2

)
, (39)

which is identified as the chiral fermion due to the emergent
toroidal field. The group velocity, −v < 0, is an order of
�A/kF. Figure 2(b) shows the dispersion of the Bogoliubov
spectrum with respect to the axial momentum k at m = 0,
which satisfies the P2 symmetry constraint in Eq. (38). The
almost flat dispersion of the lowest eigenstates indicates that
the chiral branch in Eq. (39) exists within |k| < kF. Hence, the
spectral asymmetry in the Néel-type skyrmion vortex leads to
the equilibrium current along the azimuthal direction and the
P2 symmetry prohibits the flow along the axial direction.

To capture the spatial distribution of the chiral fermions,
we show in Fig. 2(c) the kz-resolved zero-energy local density
of states, N (kz, r, E) [63],

N (k, r, E) =
∑
E>0

′(|unmk (r )|2δ[E − En(m, k)]

+ |vnmk (r )|2δ[E + En(m, k)]), (40)

where
∑′

E>0 stands for the sum over (n,m) that satisfies
En(m, k) > 0. The peak amplitude in the plane (k, r ) shifts
from r = R at k = 0 to r = 0 at k = ±kF. The spectral evo-
lution reflects the spatial profiles of the Néel-type skyrmion �

texture that smoothly tilts from the axial direction to the Néel-
type direction. Therefore, the asymmetric branch crossing
E = 0 in Fig. 2 is attributed to the Weyl-Bogoliubov quasi-
particles bound to the Weyl points and the �-vector texture
leads to spatially inhomogeneous structures of Weyl bands in
the real coordinate space.

Figure 3 shows the Bogoliubov quasiparticle spectra for the
twisted skyrmion � texture. It is seen that the chiral fermion
branch with the spectral asymmetry exists in the k direction
as well as the azimuthal momentum m. In order to satisfy
the rigid wall boundary condition, �̂ = r̂ , at r = R, we set
the azimuthal angle as α(r ) = (1 − r/R)π/2. The resulting
� texture generates the torsional magnetic field along the
axial direction in addition to the azimuthal direction. This

is categorized to the uvw-vortex class which holds neither
the P2 symmetry nor P3 symmetry. The symmetry relation
in Eq. (38) can be violated and the spectral asymmetry along
k is responsible for the equilibrium current along the axial
direction.

IV. TORSIONAL CHIRAL MAGNETIC EFFECT AND MASS
CURRENT IN SKYRMION VORTEX

In the previous section, we have demonstrated that the
chiral fermion branches emerge in the Bogoliubov quasipar-
ticle spectrum under skyrmionlike � textures. Using the full
quantum-mechanical BdG equation, in this section, we show
that low-lying Weyl-Bogoliubov quasiparticles dominantly
contribute to the current density in the weak-coupling regime,
while the contributions from continuum states become signif-
icant as the topological phase transition is approached. Here
we introduce the dimensionless parameter pFξ = 2EF/�A so
as to quantify the quantum corrections to the quasiclassical
limit (pFξ � 1).

A. Néel-type skyrmion

We define the mass current density j (r ) as the lin-
ear response of the thermodynamic potential with respect
to an infinitesimal flow v, jμ = (δ〈H〉/δvμ)v=0, where the
Hamiltonian under a homogeneous velocity field is given
by a Galilean transformation −i∇ �→ −i∇ − Mv. The cur-
rent density is then given by jμ(r ) = −i〈ψ†(r )∂μψ (r ) −
ψ (r )∂μψ†(r )〉. In terms of the Bogoliubov quasiparticle wave
functions ϕE = [uE, vE]T, this is rewritten to

jμ(r ) =2
∑
E>0

[Im{u∗
E (r )∂μuE (r )}f (E)

+ Im{vE (r )∂μv∗
E (r )}f (−E)], (41)

where the factor “2” arises from the spin degeneracy
in the equal spin pairing state and f (E) = 1/(eE/T + 1)
is the Fermi distribution function at temperature T . Owing to
the particle-hole symmetry, the azimuthal current density in
Eq. (41), or the angular momentum density (r × j )z = rjθ (r ),
is recast into

rjθ (r ) = −2
∑
E>0

(m − 1)|vE (r )|2 = 2
∑
E<0

m|uE (r )|2 (42)

at T = 0, where n(r ) = 2〈ψ†ψ〉 is the particle density and∑
E>0 stands for the sum over (n,m, k) within En(m, k) > 0.

As shown in Fig. 2(a), the chiral fermion states with m � 1
have negative energy and thus are occupied at T = 0. These
chiral fermion states make a positive contribution to the
mass current density along the azimuthal direction, jθ (r ). In
the Néel-type skyrmion vortex, therefore, they produce an
azimuthal mass current in the same sense as the torsional field,
T 3̄ = curl�̂.

In Fig. 4(a), we plot the current density jθ (r ) in the
Néel-type skyrmion vortex (v vortex) at T = 0 for pFξ = 20,
6.7, and 4.0. For comparison, we plot the current density
obtained from the gradient expansion, jMM, with C0 = ρ. As
the Néel-type skyrmion vortex always satisfies �̂ ⊥ curl�̂, this
configuration is free from the issue on the anomalous term j an.
It is seen from Fig. 4(a) that the current density obtained from
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FIG. 4. (a) Current density in the Néel-type skyrmion vortex,
where n is the particle density. (b) E-resolved current density pro-
file, jθ (r, E), for kFξ = 20. Here we fix T = 0, R = 200k−1

F , and
μ = EF.

the BdG equation is in good agreement with jMM in the weak-
coupling regime pFξ = 20, while jθ (r ) deviates from jMM as
pFξ decreases. To clarify the Weyl-Bogoliubov quasiparticle
contributions, we introduce the E-resolved current density as

jμ(r, E) =2
∑
Ei>0

[
Im

{
u∗

Ei
(r )∂μuEi

(r )
}
δ(E − Ei )

+ Im
{
vEi

(r )∂μv∗
Ei

(r )
}
δ(E + Ei )

]
, (43)

where Ei ≡ En(m, k). The current density is obtained by
integrating j (r, E) over E as jμ(r ) = ∫

dEjμ(r, E)f (E).
For numerical calculations, the δ function in Eq. (43) is
replaced by the Lorentzian function with the width 0.025�A.
Figure 4(b) shows the E-resolved current density for the Néel-
type skyrmion vortex at pFξ = 20. The mass current den-
sity may be decomposed into two contributions, j = jWeyl +
j cont. The contribution arising from Weyl-Bogoliubov quasi-
particles jWeyl is defined as

jWeyl(r ) ≡
∫ �A

−�A

dE j (r, E)f (E), (44)

 0

 0.5
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-0.5
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FIG. 5. pFξ dependence of the total angular momentum at T =
0: Lz/N (solid line), LWeyl

z /N (dashed line), and Lcont
z /N (dashed-

dotted line). N is the total particle number, N = ∫
n(r )d r , and LWeyl

z

stands for the contributions of low-lying Weyl-Bogoliubov quasipar-
ticles within |En(m, k)| < �A to the total angular momentum.

and j cont ≡ j − jWeyl is the current carried by continuum
states. It is seen from Fig. 4(b) that Weyl-Bogoliubov quasi-
particle states, including the chiral branch, dominantly con-
tribute to the mass current. However, the continuum states
within |E| > �A make nonvanishing contributions to the
mass current. They satisfy j cont (r ) ≈ − jWeyl/2 for pFξ �
1, and lead to the counterflow to the Weyl-Bogoliubov
quasiparticle flow.

The backflow of the continuum states is also pointed out
in the edge mass current with spatially polarized �̂ vectors
[64,65] and the surface spin current in the B phase of the su-
perfluid 3He [66–68]. The main contributions to the mass/spin
currents originate in chiral/helical fermion states that are the
topologically protected Andreev bound states at the edge. As
pointed out by Stone and Roy [69], however, the bound states
are not the only contribution. Another contribution results
from the continuum states affected by the formation of the
Andreev bound states. The contribution cancels the bound
states, and the edge current arising from the bound states alone
differs from the actual edge current by a factor of 2. The
E-resolved current density in Fig. 4(b) resembles the behavior
of the edge mass/spin current, where the continuum states
are affected by the existence of the nontrivial �̂ texture and
weaken the flow arising from the chiral fermion states.

To capture the contribution of the Weyl-Bogoliubov quasi-
particles more systematically, we calculate the total angular
momentum per particle at T = 0. The total angular momen-
tum is defined as

Lz =
∫

(r × j )zd r, (45)

and the total particle number is given by N = ∫
n(r )d r .

The angular momentum arising from the Weyl-Bogoliubov
quasiparticles within |E| < �A is given by L

Weyl
z = ∫

(r ×
jWeyl )zd r and the contribution of the continuum states is
Lcont

z ≡ Lz − L
Weyl
z . In Fig. 5, we plot the pFξ dependence of
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the total angular momentum. The total angular momentum in
an isolated Mermin-Ho vortex or a Néel-type skyrmion vortex
was also calculated by Nagai [70,71] using the quasiclassical
theory, which reproduces the McClure-Takagi prediction [49],
Lz = h̄N/2, at T → 0. In Fig. 5, the total angular momentum
approaches Lz = h̄N/2 at T = 0 for pFξ � 1. The angular
momentum associated with the Weyl-Bogoliubov quasiparti-
cles differs from the total angular momentum by a factor of
2, which implies the existence of backflow arising from the
continuum states, Lcont

z = −L
Weyl
z /2 = −Nh̄/2.

In Fig. 5, however, the numerical calculation of the BdG
equation in the vicinity of the topological phase transition
(pFξ = 0) shows that Lz/N gradually increases from h̄/2
as pFξ decreases. Although Lz/N almost stays constant for
pFξ � 5, we find two characteristic behaviors in L

Weyl
z and

Lcont
z : (i) The Weyl-Bogoliubov quasiparticle contribution

L
Weyl
z /N exhibits the nonmonotonic behavior as a function of

pFξ and has a maximum around pFξ = 10. (ii) The contin-
uum contribution, Lcont

z /N , changes its sign around pFξ = 3
and makes a dominant contribution to Lz in pFξ � 1. As for
(i), the characteristic pFξ dependence of L

Weyl
z enables one to

discriminate the contribution of TCME from other low-lying
quasiparticle contributions. For pFξ � 10, the lower energy
part of the angular momentum, L

Weyl
z , is approximately de-

composed into L
Weyl
z ∼ h̄N + LTCME

z , where LTCME
z ≡ ∫

(r ×
jTCME)zd r ∝ 1/(pFξ ) is the angular momentum arising from
the torsion-induced current jTCME in Eq. (23). The TCME
vanishes at the weak-coupling limit pFξ � 1, while it makes
a significant contribution to L

Weyl
z as pFξ decreases. The

contribution of jTCME is consistent with the increase behavior
of L

Weyl
z with decreasing pFξ within pFξ � 10. We note that

the anomalous enhancement of L
Weyl
z is compensated for by

Lcont
z and the resultant Lz/N stays constant at Lz/N = h̄/2

for pFξ � 10.
As Eq. (23) is derived from the semiclassical equations

of motion for Weyl-Bogoliubov quasiparticles, however, we
must be careful about the applicability of Eq. (23). Equation
(23) is applicable only to the large pFξ regime and fails down
in the quantum regime pFξ ∼ O(1). Figure 5 indeed shows
that L

Weyl
z vanishes at pFξ = 0 where the bulk excitation gap

closes and topological phase transition occurs.
As we pointed out in (ii), the properties of the mass current

and angular momentum in the regime of pFξ � 10 are essen-
tially different from those in the quasiclassical limit. The mass
current arising from Weyl-Bogoliubov quasiparticles alone
weaken with decreasing pFξ , while high-energy quasiparticle
states with |E| > �A make a dominant contribution to Lz/N .
In Fig. 6, we plot the T dependence of Lz/N for pFξ = 10
and 2.0, where �A(T ) is obtained by calculating the gap
equation for a spatially uniform ABM state in Eq. (3). For
comparison, we calculate LCross

z = ∫
(r × jCross)zd r , which is

obtained from the gradient expansion as [72]

jCross = ρsvs + h̄

4m
ρs‖curl�̂ − h̄

2m
ρs‖�̂(�̂ · curl�̂), (46)

where ρs‖ and ρs⊥ are the components of the superfluid
mass density tensor (ρs) parallel and perpendicular to �̂,
respectively, and their T dependencies are determined by the
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FIG. 6. (a),(b) T dependence of total angular momentum Lz(T )
for the Néel-type skyrmion vortex (red line): (a) pFξ = 20 and
(b) 2.0. (c),(d) T dependence of Weyl-Bogoliubov quasiparticle
contributions, LWeyl

z (T ) (red line), for pFξ = 10 (a) and 2.0 (b). In all
figures, the solid lines are the components of the superfluid density
tensor parallel and perpendicular to �̂, ρ‖ and ρ⊥. The dashed line
corresponds to ρave, where ρave = LCross

z (T )/LCross
z (0) for pFξ � 1.

generalized Yosida function [72]. For the case of ∇ρ = 0,
Eq. (46) coincides with Eq. (4) at T = 0, jCross(T = 0) =
jMM. The averaged superfluid density, ρave ≡ (ρ⊥ + ρ‖)/2,
describes the T dependence of LCross(T ) for pFξ � 1, i.e.,
LCross

z (T )/LCross
z (0) = ρave(T ).

As shown in Fig. 6(a), the T dependence of Lz(T )/Lz(0) is
in good agreement with that of LCross

z (T )/LCross
z (0) = ρave(T )

in the weak-coupling regime, pFξ = 10. As the topological
phase transition (pFξ = 0) is approached, however, the T

dependence of Lz(T )/Lz(0) is distinct from that of ρave(T ).
In Figs. 6(c) and 6(d), we plot L

Weyl
z (T )/LWeyl

z (0), the contri-
bution of the Weyl-Bogoliubov quasiparticles to the angular
momentum. In pFξ = 10, the T dependence is slightly devi-
ated from that of ρave and enhanced at the low-T regime. This
is understandable with an extra contribution of the torsional
chiral magnetic effect, LTCME

z , as discussed in Fig. 5. Such
extra contribution vanishes as the topological phase transition
(pFξ = 0) is approached and the mass current is dominated
by the contribution arising from continuum states.

B. Bloch-type skyrmion

In twisted textures with �̂ · curl�̂ �= 0, the existence of the
anomalous term, which is the third term in Eq. (4), has been a
long-standing issue. The derivation of Eq. (4) is based on the
configuration-space form of the BCS variational ground-state
wave function [48]. The similar approach was also used by
Ishikawa, Miyake, and Usui but they came to the different
conclusion that the anomalous term, j an ∝ �̂(�̂ · curl�̂), is
absent and the resulting mass current is given by j IMU =
jMM − j an [50]. As j an violates the McClure-Takagi relation,
the discrepancy between jMM and j IMU is referred to as
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FIG. 7. Current densities in the twisted skyrmion-vortex state at
T = 0 and R = 200k−1

F : (a) azimuthal current jθ (r )/n and (b) axial
current jz(r )/n. The particle number density n is obtained from
the eigenstates of the BdG equation. (c),(d) Rescaled current den-
sities, where n∗ is a fitting parameter to rescale jμ(r ) to jMM

μ (R) =
j IMU
μ (R).

the McClure-Takagi paradox [48,51,52]. The physical origin
of j an was addressed by Combescot and Dombre [53,54]
and Balatsky et al. [19,33,34], where the latter unveiled the
chiral-anomaly aspect of j an. Solving the BdG equation in
Bloch-type skyrmions, we show below that the mass current
is well describable with jMM in the weak-coupling limit,
while it approaches j IMU as the topological phase transition
is approached.

Here we consider the mass current induced by Bloch-type
twisted-skyrmion textures with α(r ) = π

2 (1 − r/R). Using
the particle-hole symmetry, one obtains the current along the
axial direction, jz(r ), from Eq. (41) as

jz(r ) = 2
∑
E<0

k|unmk (r )|2, (47)

at T = 0. As shown in Fig. 3(b), the Bloch-type skyrmion
with the broken P2 symmetry induces the chiral fermion
branches along axial momentum. As the branch has the
negative group velocity with respect to k and the k > 0
region is occupied at T = 0, the asymmetry branch makes
a positive contribution to jz(r ). In Fig. 7, we plot the az-
imuthal and axial currents, jθ (r ) and jz(r ). In the weak-
coupling regime (pFξ = 20), both the current profiles are in
good agreement with jMM including the anomalous term,
rather than j IMU. The total angular momentum per parti-
cle is estimated as Lz(0)/h̄N = {0.4490, 0.4361, 0.4339} for
pFξ = {10, 20, 40}, respectively. As pFξ increases, the values
approach Lz/h̄N = 0.4336 obtained from jMM, but deviate
from the McClure-Takagi prediction that Lz(0)/h̄N = 0.5 is
independent of the � texture [49]. The depletion of Lz(0)
from h̄N/2 in the weak-coupling regime is consistent with

the predictions in Refs. [19,33,34] that in the Bloch-type
twisted skyrmion, the anomalous current arising from the
chiral anomaly of Weyl-Bogoliubov quasiparticles makes an
extra contribution to j when μ > 0. We note that in contrast
to j an, the torsional contribution jTCME does not give rise
to significant deviation of Lz/N in pFξ → ∞, as jTCME ∝
1/(pFξ ).

It is shown in Fig. 7 that the current density deviates
from jMM as the topological phase transition (pFξ = 0) is
approached. To capture the change of the spatial profile in jθ

and jz, we plot in Figs. 7(c) and 7(d) the rescaled mass current
densities, where n∗ is a fitting parameter to rescale jμ(r )
to jMM

μ (R) = j IMU
μ (R). These figures show that the rescaled

profiles gradually shift from jMM to j IMU as pFξ decreases.
This implies that while the contributions of Weyl-Bogoliubov
quasiparticles through j an become significant in the weak-
coupling regime, j an and jTCME become negligible around
pFξ ∼ 0.

V. SUMMARY

We have investigated chiral anomaly phenomena induced
by skyrmionlike � textures in the superfluid 3He-A which
is a prototype of Weyl superfluids. Using the semiclassical
theory, we have shown the torsional chiral magnetic effect,
that a torsion field induced by skyrmionlike � textures results
in an equilibrium mass current. In general, the texture of
the � field generates two different emergent fields directly
acting on the chirality of Weyl-Bogoliubov quasiparticles: a
chiral gauge field (A ∝ curl�̂) and a torsion field (T ā

μν). In
the case of a twisted (Bloch-type skyrmion) � texture with
�̂ · curl�̂ �= 0, the chiral gauge field leads to the extra mass
current along �̂, which is the third term of Eq. (4), referred
to as the anomalous current [19,30–34,53,54]. Here we find
the torsional contribution to the mass current. In contrast
to the anomalous current, the torsion-induced mass current
flows along curl�̂ and exists even in the case of a Néel-type
skyrmion with �̂ · curl�̂ = 0.

Using the full quantum-mechanical BdG equation, we
have demonstrated that in skyrmion vortices a chiral fermion
branch with spectral asymmetry appears in the low-lying
quasiparticle spectrum. The chiral fermion states are respon-
sible for the equilibrium mass flow. Our numerical results,
however, show that the total mass current and the total angular
momentum differ from those arising from the chiral fermions
alone by a factor of 1/2. The discrepancy is compensated
for by the backflow arising from the continuum states, and
for Néel-type skyrmion vortices, our numerical results in
the quasiclassical limit coincide with the prediction by Mc-
Clure and Takagi [49], Lz = h̄N/2. Furthermore, it has been
demonstrated that the angular momentum associated with the
Weyl-Bogoliubov quasiparticles increase as the topological
phase transition (pFξ = 0) is approached. This anomalous
behavior is understandable with the torsional contribution
of the current due to the torsional chiral magnetic effect in
Eq. (23). We have clarified the torsional-anomaly aspect of
the mass current density in Eq. (4); the curl�̂ term in Eq. (4) is
associated with the TCME of Weyl-Bogoliubov quasiparticles
induced by a skyrmion vortex.
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The appearance of a chiral branch in 3He-A was pointed
out by Combescot and Dombre [53,54], who demonstrated
that in the case of a twisted (nonskyrmionic) � texture (�̂ ‖
curl�̂) the BdG equation for low-lying quasiparticles reduces
to the Dirac-type equation with a fictitious magnetic field
generated by a variation of the � field. Balatsky et al. clar-
ified that the chiral branch is topologically protected by the
Atiyah-Singer index theorem and the chiral fermion carries
uncompensated current at T = 0 [34]. Although our result for
the mass current qualitatively agrees with that in Ref. [34], it
differs from Ref. [34] because they consider only the chiral
fermion contributions. As mentioned above, we find that in
the quasiclassical limit, the continuum states bring about
backflow to the quasiparticle flow, i.e., L

Weyl
z ≈ −2Lcont

z ≈
Nh̄. As the topological phase transition is approached, the
mass current carried by the continuum states changes its
sign and makes a dominant contribution. In the vicinity of
the topological phase transition (pFξ = 0), indeed, the total

angular momentum is governed by the continuum states and
the contribution from chiral fermions is negligible. We have
also shown that the contribution of j an is crucial for the
weak-coupling regime, while it vanishes as pFξ decreases.
Although Lz/N is composed of the composite contributions
of Weyl quasiparticles and continuum states and it is difficult
to extract the TCME contribution solely, our results may put
a different aspect on the paradox of the mass current and the
intrinsic angular momentum.
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