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We report point-contact Andreev reflection spectroscopy studies on possible topological superconductor
candidates Cl- (Br-) doped (PbSe)1.12(TaSe2) with superconducting transition temperature Tc ∼ 1.2 K. A
common double-peak feature is observed for the conductance curves at low temperature in the absence of a
zero-bias conductance peak. We analyze conductance curves with the Blonder-Tinkham-Klapwijk model and the
extracted superconducting gap follows a typical Bardeen-Cooper-Schrieffer temperature- and field-dependent
behavior, with 2�0/kBTc ≈ 3.7 and 3.8 for Cl and Br doping, respectively. Our results strongly suggest that
both Cl- and Br-doped (PbSe)1.12(TaSe2) are fully gapped superconductors in an intermediate-coupling regime.
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Majorana fermion, identical to its own antiparticle, has
attracted intensive attention in condensed matter physics, due
to its potential application in fault-tolerant quantum compu-
tations [1–4]. Topological superconductors (TSCs) have been
proposed as a promising platform to host Majorana fermions
in the form of Bogoliubov quasiparticles, where the nontrivial
topology of the bulk superconductivity (SC) yields gapless
Andreev bound states only at its surface/edge or topological
defects. Despite the fact that various superconducting com-
pounds are claimed to be intrinsic TSCs such as Sr2RuO4 [5],
CuxBi2Se3 [6], Cux (PbSe)5(Bi2Se3)6 [7,8], and PdTe2 [9,10],
whose exact topological nature remains controversial, it is
generally difficult to simultaneously achieve both nontrivial
topology and superconductivity for the same compound. One
strategy is to integrate distinct compounds with respective
ingredients of TSC into an artificial hybrid device, where
TSC emerges at the interface via superconducting proximity
effect. For example, one-dimensional (1D) semiconducting
nanowire/2D semiconducting film with strong spin-orbit cou-
pling or 3D topological insulators are engineered in contact
with an s-wave superconductor, such as InSb/Nb, InAs/Al,
and InSb/NbTiN devices, and fully gapped superconductivity
is induced at the interface due to the proximity effect [11–23].
A zero-bias tunneling conductance peak (ZBCP) in magnetic
field has been observed at the surface/edge/vortex core as
a signature of Majorana zero modes in these heterostruc-
tures [11–24].

Some misfit compounds are natural heterostructures with
alternative stacking of topological and superconducting
layers, serving as a good candidate to realize TSC at the
heterostructure interfaces. Among them, a group of planar
intergrowth compounds consist of an alternating rocksalt
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double-layer MX and transition metal dichalcogenide T X2

sheets, described as (MX)1+δ (TX2)m, where M is Sn, Pb, Sb,
Bi, or lanthanide; T is Ti, V, Nb, Ta, or Cr; and X is S or
Se with m = 1–3. The MX and T X2 layers match in one
crystallographic axis but are incommensurate in the other
axis, resulting in a nonstoichiometry in the formula with
0.08 < δ < 0.28 [25–27]. In this series, (PbS)1.13(TaS2),
(BiS)1.07(TaS2), (SnSe)1.18(TiSe2)2, (PbSe)1.14(TiSe2)n
(n = 1, 2, 3), (BiSe)1.10(NbSe2), (LaSe)1.14(NbSe2)2,
(PbSe)1.14(NbSe2)n, and (SnSe)1.16(NbSe2) have been
reported to display exotic superconductivity [28–32]. It
has been confirmed that charge-density-wave (CDW) in
most bulk T X2 is suppressed in the corresponding misfit
compounds while SC is induced due to the charge transfer
from the MX to T X2 layers. In particular, the Sn-doped
misfit compound (Pb1−xSnxSe)1.14(TiSe2)2 for 0 � x � 0.6
displays a SC dome with the maximum Tc of 4.5 K at
x = 0.2 [33,34]. Interestingly, its building block PbSe in
bulk form is a trivial semiconductor while Pb1−xSnxSe with
Sn substitution x � 0.23 becomes topological crystalline
insulator with topological surface states [35,36]. Moreover,
a PbSe monolayer is predicted to be a 2D topological
crystalline insulator, which also owns a topological surface
state protected by crystal symmetry [37]. It is thus promising
to explore possible TSC in the (PbSe)1+δ (T X2)m misfit phase
superconductors with a natural presence of topology and SC
heterostructures. Meanwhile, the corresponding transition-
metal dichalcogenide T X2 serves as an interesting platform to
explore superconductivity and charge-density waves and their
intricate relationship [38,39]. Recently, a similar series of
misfit compounds (PbSe)1.12(TaSe2) with 8% Cl (Br) substi-
tution of the Se atoms are reported to be superconducting with
Tc ∼ 1.2 K and can be referred to as Pb1.12Ta(Se0.92T0.08)3.12

(T = Cl and Br) [40]. It is desirable to have careful studies
on its superconductivity and possible topological nature.
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In this article, we present a detailed point-contact
Andreev reflection spectroscopy (PCARS) study on
Pb1.12Ta(Se0.92T0.08)3.12 (T = Cl and Br) single crystals
(referred to as PSTS-Cl and PSTS-Br hereafter, respectively).
A typical double-peak structure is observed in PCARS
conductance curves for both compounds in the absence of
a zero-bias conductance peak. A single superconducting
gap � with 2�0/kBTc close to 3.8 is obtained when the
data are fitted by the standard Blonder-Tinkham-Klapwijk
(BTK) model and the gap � follows a conventional
Bardeen-Cooper-Schrieffer (BCS) behavior as a function
of either temperature or magnetic field.

PSTS-Cl and PSTS-Br single crystals with a typical size
of 3 × 4 mm2 were grown by the chemical vapor transport
method using PbBr2 or PbCl2 as the chemical agent, while
detailed procedures were described elsewhere [40]. Electrical
resistivity measurements in zero magnetic field confirm the
onset superconducting transition temperatures Tc ∼ 1.25 and
1.20 K, respectively, as in Figs. 1(c) and 1(e). The single
crystal x-ray diffraction patterns of PSTS-Cl and PSTS-Br
single crystals are plotted in Fig. 1(b) with a full width at half
maximum of all peaks about 0.05◦ as evidenced in the inset of
Fig. 1(b). Due to distinct doping elements, the peaks of PSTS-
Cl slightly shift toward the higher angles. Instead of the stan-
dard needle-anvil type, soft point-contact Andreev reflection
spectroscopy was employed to study both samples from the
same batch as in the resistivity, where a drop of Ag conductive
paint was attached to the freshly cleaved sample surface with
a 25-μm-diameter platinum wire in ambient atmosphere. In
such a configuration, contact resistance comes from thousands
of parallel channels of Ag grains in nanoscale contact and the
conductance curve as a function of bias voltage, G(V ), was
measured by the conventional lock-in technique. A sorption
pumped He3 insert from Oxford Instruments was used to cool
down to 300 mK and magnetic field can be applied along the
sample’s c axis above its upper critical field.

Figures 1(c) and 1(e) show the temperature dependence
of zero-bias conductance, G0(T ), for PCARS on PSTS-Cl
and PSTS-Br single crystals, respectively. The kink at 1.2 K
in G0(T ) suggests a same Tc with that from the electrical
resistivity, indicative of nondegradation of the cleaved surface.
Figures 1(d) and 1(f) show several representative conductance
G(V ) curves for contacts at 0.3 K of 10 contacts measured
on different PSTS-Cl and PSTS-Br samples. We note that
for the contacts on PSTS-Cl, no dip structure in G(V ) due
to local heating effect is present with the bias voltage up to
0.8 mV, confirming contacts in the ballistic limit. However,
for PSTS-Br, the dip structure in G(V ) indicates the contacts
not in a pure Sharvin limit and that a heating effect cannot be
avoided for our contacts on PSTS-Br. The G(V ) curves show
two symmetric peaks around the bias voltage ≈0.2 mV and
the SC gap � can be roughly estimated to be around 0.2 meV
at 0.3 K. In order to quantitatively analyze the SC gap,
we adopt the widely accepted Blonder-Thinkham-Klapwijk
model with three parameters including the superconducting
gap �, the tunneling barrier parameter Z and the quasiparticle
broadening parameter �. At the lowest temperature, the G(V )
curves for PSTS-Cl can be well fitted by the BTK model as
shown in Fig. 1(d), while a systematic deviation appears in
the case of PSTS-Br due to the dip structure. We stress that the

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (a) Schematic illustration of the crystal structure for the
misfit phase compound (PbSe)1.12TaSe2 adapted from Ref. [41];
(b) Single crystal x-ray diffraction of PSTS-Cl and PSTS-Br in
the [001] direction, suggesting an effective doping of Cl and Br
into (PbSe)1.12TaSe2; [(c) and (e)] the temperature dependence of
point-contact zero-bias conductance G0(T ) in comparison with the
electrical resistivity for PSTS-Cl and PSTS-Br, respectively. [(d)
and (f)] Representative point-contact conductance curves G(V ) at
0.3 K for PSTS-Cl and PSTS-Br, respectively. The curves are shifted
vertically for clarity and solid lines are the optimal BTK fitting
curves.

absence of a ZBCP in G(V ) probably implies a full SC gap
without Andreev bound states from the nodal gap for either
PSTS-Cl or PSTS-Br as discussed later.

Figure 2(a) plots one representative set of the normalized
conductance curves as a function of temperature for Soft
PCARS on PSTS-Cl, with their optimal BTK fitting curves
for comparison. With increased temperature, the Andreev
reflection intensity is reduced and the distance between dou-
ble peaks decreases and finally disappears above Tc. The
temperature-dependent SC gap � extracted from the BTK
fitting is shown in Fig. 2(b) and it follows the conventional
BCS temperature behavior. The SC gap � is extrapolated to be
0.20 meV at 0 K and it closes at the critical temperature Tc =
1.25 K, yielding 2�(0)/kBTc = 3.8 slightly larger than the
weak-coupling-limit value 3.52. Meanwhile, the ratio between
quasiparticle smearing parameter � and superconducting gap
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FIG. 2. (a) Temperature evolution of soft point-contact conduc-
tance curves G(V ) of PSTS-Cl (open symbols) in comparison with
their optimal BTK fitting curves with Z = 1.3 (solid lines). (b)
The superconducting gap as a function of temperature �(T ) (half-
filled circles) follows the BCS behavior (solid line) while the ratio
between the smearing parameter � and superconducting gap �, �/�

increases dramatically close to Tc (blue squares).

� as a function of temperature is plotted in Fig. 2(b) and
it increases dramatically close to Tc due to enhanced pair-
breaking effect. At the lowest temperature T = 0.3 K, the
fitting parameter �/� can be as low as 0.0025, signaling a
very small gap distribution, if any. It is thus likely that PSTS-
Cl is a single full-gap superconductor in the intermediate-
coupling regime.

A full SC gap in PSTS-Cl is also corroborated by its
behavior in a magnetic field. Figure 3(a) shows the field de-
pendence of its point-contact spectra at the lowest temperature
T = 0.3 K, where the magnetic field is applied perpendicular
to the ab plane. With increased field, the double-peak structure
is gradually suppressed and it completely vanishes with H ≈
0.17 T. From BTK fitting, the extracted superconducting gap
follows the typical magnetic behavior for a type-II supercon-
ductor in its vortex state [42], complying with � = �0(1 −
H/Hc2)1/2 as shown in Fig. 3(b). The quasiparticle smearing
parameter � monotonically increases when ramping up the
field as in Fig. 3(b), caused by the pair-breaking effect with
increased vortex density in the contact area.

A comparative PCARS study on PSTS-Br is performed
with the spectra evolution as a function of temperature and
magnetic field shown in Figs. 4(a) and 4(b), respectively. Its

FIG. 3. (a) Magnetic field evolution of soft point-contact conduc-
tance G(V ) of PSTS-Cl (open symbols) at 0.3 K with the field in
the [001] direction. The curves are shifted for clarity and compared
with their optimal BTK fitting curves (solid lines). (b) The extracted
superconducting gap as a function of field �(H ) (half-filled circles)
is consistent with the theoretical predicted behavior (solid line),
while the smearing parameter � (blue stars) increases as a function
of magnetic field.

point-contact spectra can also be well fitted except for the dip
region by a single-gap BTK model with � = 0.19 meV at
0.3 K, supporting a conventional full-gap superconductor in
PSTS-Br. We notice a systematic difference for the tunneling
barrier parameter Z between PSTS-Cl and PSTC-Br (roughly
1.1 and 0.4, respectively). ZCl > ZBr implies a much larger
interface tunneling barrier strength for PSTS-Cl than that for
PSTS-Br. We speculate that the exposed surface layer after
cleaving is different for these compounds, which terminate at
the insulating PbSe1−xTx layer for PSTS-Cl while it ends at
the metallic T X2 layer for PSTC-Br, yielding different barrier
strengths for soft point contacts. The exact origin of distinct
tunneling barrier in PSTS still remains an open issue and
careful characterizations of the cleaved surface are necessary
in the future.

Our PCARS results suggest a full SC gap for both PSTS-Cl
and PSTS-Br, which is essential to realize topological super-
conductivity [43]. Further exploration on the spin-polarized
density of states in the vortex core by STM should be informa-
tive to identify the possible existence of Majorana zero modes,
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FIG. 4. [(a) and (b)] Temperature and magnetic field evolution of
one representative set of PCARS data on PSTS-Br (open symbols)
in comparison with their optimal BTK fitting curves with Z = 0.43
(solid lines). The conductance curves are shifted for clarity and the
magnetic filed is applied in the [001] direction at 0.3 K. [(c) and (d)]
The extracted superconducting gap � from BTK model as a function
of temperature and magnetic field, respectively. The gap � follows
the theoretical predicted behaviors in both cases (solid lines).

while it is challenging for PCARS to observe the ZBCP
localized in the vortex core due to its lack of spacial reso-
lution. We also note that, for these misfit compounds, charge
transfer has been commonly observed at the interfaces from
the MX to T X2 layers. In the case of (PbSe)1.16(TiSe2)2, elec-
trons in the fully occupied valence band of PbSe come mostly
from Se 4p orbitals and are partially transferred to the empty
conduction band of TiSe2 derived from the Ti 3d orbitals,
changing both semiconducting layers to be metallic [31,44].
Due to the charge transfer in this natural heterostructure, it

is likely that the PbSe layer can no longer be viewed as a
topological crystalline insulator. Instead, the charge transfer
from PbSe to TaSe2 may act as electron doping into TaSe2,
tuning TaSe2 layers into a superconducting state as in the bulk
form. Another possible scenario for the bulk superconductiv-
ity in TaSe2 layers is due to enhanced surface-volume ratio
with the alternating stacking structure. Scanning tunneling
conductance of the TaSe2 crystal surface layers with 2H struc-
ture shows a superconducting gap with a critical temperature
around 1 K, much higher than its bulk Tc ∼ 0.15 K [48].

On the other hand, if the nontrivial topology of PbSe layers
remains intact, the surface states at the top and bottom inter-
faces for the same TaSe2 block will probably hybridize with
each other due to their proximity in distance, resulting in a
hybridization gap and preventing the emergence of Majorana
zero modes. Such a hybridization effect has been reported in
an angle-resolved photoemission study on (PbSe)5(Bi2Se3)3m

with m = 2, another natural heterostructure consisting of al-
ternating topological and ordinary insulating layers [45–47].
A gapped Dirac-cone state was observed and explained by
the hybridization between top and bottom topological states of
Bi2Se3 slabs, similarly to a typical Rashba system. Increasing
the thickness of the encapsulated Bi2Se3 slab with a larger m

has proven to eliminate the hybridization effect and to recover
the topological surface state.

To summarize, our PCARS measurements on the misfit
phase superconductors Pb1.12Ta(Se0.92T0.08)3.12 (T = Cl and
Br) reveal a typical double-peak structure in G(V ) curves
without a zero-bias conductance peak. Point-contact G(V )
curves can be well fitted by the BTK model and the extracted
superconducting gap �0 = 0.19 meV (0.20 meV) for PSTS-
Cl (PSTS-Br) gives 2�/kBTc ≈ 3.7 (3.8) in the intermediate
coupling regime, following the conventional BCS temperature
and magnetic field dependence. Further studies are required to
address its exact topological nature of the superconductivity in
this Pb1.12Ta(Se0.92T0.08)3.12 series.
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