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We consider an atomic chain of magnetic impurities on the surface of a spin-orbit coupled superconductor with
a dominating d-wave and subdominating s-wave order parameters. In particular, we investigate the properties
of the Majorana bound states (MBSs) emerging at the chain end points in the topological phase and how MBSs
are affected by the d-wave order parameter. We provide a comprehensive picture by both studying time-reversal
invariant and breaking superconducting substrates as well as chains oriented in different directions relative to the
d-wave rotation. We show that increasing the d-wave order parameter significantly enhances the localization of
MBSs and their protective minigap, as long as the direction along which the impurity chain is oriented does not
cross any nodal lines of the gap function. Moreover, we find an extra gap-closing for a specific condensate and
chain orientation within the topological phase, which we are able to attribute to simple geometrical effects in the
corresponding two-dimensional limit. These results show how high-temperature d-wave superconductors can be
used to significantly enhance the properties and stability of MBSs.
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I. INTRODUCTION

Topological superconductivity generating Majorana bound
states (MBSs) in low dimensional systems represent one of
the most spectacular quantum states in condensed matter
physics [1–8]. During the last few years, several platforms
for engineering topological superconductors (SCs) and de-
tecting MBSs have been developed. Among them, magnetic
impurities on top of a spin-orbit coupled SC has shown great
promise and versatility [9–17]. In particular, one-dimensional
(1D) atomic chains of magnetic impurities on the surface
of conventional s-wave SCs with Rashba spin-orbit cou-
pling have been studied intensively [18–24]. These MBSs
are robust against nonmagnetic disorder [25] and their emer-
gence is also not restricted to single impurity chains, but
MBSs also appear at odd-numbered junctions in impurity
chain networks [26]. Extending also to two dimensions (2D),
Majorana edge states has been investigated around whole
islands of magnetic impurities [15,27]. Throughout all these
studies, the superconducting substrate has been a conventional
s-wave SC.

The unconventional d-wave cuprate SCs offer a tantalizing
possibility to realize MBSs at much higher temperatures
thanks to their larger order parameter [28–30] and higher
transition temperatures. However, for d-wave SCs the absence
of a full energy gap appears to pose an insurmountable obsta-
cle as nodal quasiparticles pollute the low-energy spectrum,
hybridize with the MBSs, and thus destroy their protection.
Also, in terms of magnetic impurities, d-wave SCs only host
resonance states with a finite life-time, i.e., virtual bound
states [31–35]. This is in sharp contrast with the magnetic
impurity induced subgap bound states in s-wave SCs, the
so-called Yu-Shiba-Rusinov (YSR) states [36–38], which are
the building blocks of topological SCs in magnetic impurity-
based platforms.

The problem with nodal quasiparticles in d-wave SCs
could potentially be resolved if a coexisting but subdominant

s-wave order parameter is also present. There exists some
evidence for such coexistence of dominant d-wave and sub-
dominant s-wave order parameter in cuprate SCs [39–44].
For example, fully gapped d-wave SCs has been found at
specific surfaces and also in nanoislands of YBa2Cu3O7−δ

[45,46]. More generally, in the vicinity of interfaces a time-
reversal symmetry breaking order parameter is anticipated to
appear in d-wave SCs [47–50]. In addition, an engineered
alternative is a hybrid structure between an unconventional
d-wave SC and an atomically thin layer of conventional
s-wave SC, which can produce a superconducting state com-
bining the benefit of the high transition temperature of the
d-wave SC with an additional s-wave component. In gen-
eral, the order parameter in these systems takes the form
� = �d + eiα�s , where α = 0 gives a time-reversal invariant
(TRI) phase, while α = π/2 results in a time-reversal broken
(TRB) phase. In the TRB d + is-wave SC, the coexistence
gives rise to a fully gapped spectrum where a single magnetic
impurity then induces YSR-subgap states [51]. On the other
hand, a TRI d + s SC with a dominating d-wave order still
has nodal lines, although modified from the pure d-wave
state.

In this paper, we investigate if and how a coexisting s-wave
order can turn high-temperature d-wave SCs into a viable
platform for MBSs forming at the end of magnetic impurity
chains. We assume dominating d-wave order, consider both
TRI and TRB coexistence phases with a small s-wave com-
ponent, and study chains oriented in different directions on
the substrate relative to the d-wave rotation, all to provide a
comprehensive study.

First, we show that MBSs actually emerge for an impurity
chain embedded in TRI SC with d+s-wave symmetry, despite
the nodal lines in the order parameter. However, it requires
some tuning, especially of the doping level. Also, there is a
strong dependence on chain orientation relative to the d-wave
rotation: If the impurity chain crosses the nodal lines of the
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order parameter, the minigap which protects the MBSs from
quasiparticle excitations is strongly suppressed. Besides the
emergence of MBSs and the protecting mini-gap, we also
focus on the localization of the MBSs. We show that the
localization length of the MBSs depends on effective order
parameter along the chain, not necessarily the minigap. For all
viable chain orientations, we find that the d-wave component
significantly enhances the MBS localization and the minigap
compared to a pure s-wave substrate.

Next we study an impurity chain on a TRB d+is-wave SC.
The complex order parameter results in a full energy gap in
the excitation spectrum, which results in the appearance of
MBSs becoming largely parameter independent, as well as
directional independent. Importantly, the d-wave component
strongly enhances the minigap and MBS localization. The
only exception is the TRB dxy+is-wave SC, where we find
an extra gap-closing for y-axis chains, but not for x-axis
chains. We show that the extra gap-closing is not due to
any additional topological phases or phase transitions, but
are the result of flat chiral edge states in the 2D limit. This
demonstrates that sample geometry can, in fact, overshadow
topology in determining the boundary spectrum. It is here
worth mentioning that spin-orbit coupled nanowires on top of
a pure d-wave SC have also recently been studied. However,
the emergence of a topologically nontrival superconducting
phase was in that setup predicted to be strongly dependent
on the relative orientation of the nanowire and d-wave order
[28] and the MBS localization to be reduced compared to
a s-wave substrate [29]. By using a combination of d- and
s-wave orders, we are able to circumvent both of these issues.
In summary, our results for magnetic impurity chains demon-
strates that a high-temperature d-wave SC can dramatically
enhance the properties of MBSs, including both significantly
increased minigaps and shorter MBS localization lengths, as
soon as a small coexisting s-wave state is present. Notably,
this result does not depend on the relative phase between
the d- and s-wave components, making our results generally
applicable, independent of details of the superconducting
state.

The reminder of this paper is organized as follows. In
Sec. II, we introduce the numerical tight-binding lattice model
used to study d- and s-wave substrates with magnetic im-
purity chains. In Sec. III, we present our results where we
focus on how d-wave pairing affects the MBSs at the impu-
rity chain end points. We explain both how different chain
orientations and different d-wave order parameter rotations
influence the results. We present complementary discussions
and a short comparison to the pure d-wave and nanowire
platform in Sec. IV and, finally, in Sec. V we summarize our
results.

II. MODEL

A. Superconducting substrate

To model impurity chains with emergent MBSs, we con-
sider a system with a spin-orbit coupled superconducting
substrate. To easily incorporate different superconducting
pairing symmetries while still keeping the model as simple

as possible, we consider a mean-field Bogoliubov-de Gennes
(BdG) Hamiltonian given by

Hsub = −t
∑
〈i,j〉σ

c
†
iσ cjσ − μ

∑
iσ

c
†
iσ ciσ

− λR

∑
i,η=±

ηc
†
i↑(ci−ηx̂↓ − ici−ηŷ↓) + H.c.

+
∑

ij

[
�s (i)δij + 1

4�d (i, j)
]
c
†
i↑c

†
j↓ + H.c., (1)

where ci(c
†
i ) is creation (annihilation) operator at i = (ix, iy ),

which represents a site in a square lattice, with the lattice
spacing a set to be 1. Here μ represents the chemical po-
tential, while t is the hopping matrix element to the nearest
neighbors. We also add Rashba spin-orbit interaction in the
substrate set by λR , which is always present due to inversion
symmetry breaking at the SC surface. For superconductivity,
we assume both d-wave and s-wave pairing. The dx2−y2 -
wave (dxy-wave) order can be modeled to exist on nearest-
(next-nearest) neighboring bonds, while the conventional s-
wave order is an on-site parameter. In most calculations, we
keep the order parameter constant, i.e., non-self-consistent
calculations, where we enforce dx2−y2 -wave order by setting
�d ((ix, iy ), (ix ± 1, iy )) = −�d ((ix, iy ), (ix, iy ± 1)) for all
sites. For the dxy-wave order, we follow the same procedure
but on the diagonal bonds instead. The coexistence of d-wave
and s-wave order parameters has been observed in several
materials and for generality we consider � = �d + eiα�s ,
where α is set to be either α = 0 or π/2. This captures both all
fully real condensates (α = 0) and TRB cases (α = π/2). The
latter is generally favored if external factors do not prevent a
full relaxation of the superconducting order since it has a fully
gapped spectrum.

B. Gap function nodal lines and Fermi surfaces

All TRB superconducting substrates, dx2−y2+is- and
dxy+is-wave SCs, have a full energy gap in the spectrum
and thus the order parameter does not have any nodal lines.
However, for the TRI solutions, the gap structure depends in
more detail on the parameters. We start with exploring the TRI
dx2−y2+s-wave superconducting substrate. After performing
a Fourier transform, the superconducting order parameter in
reciprocal space reads �(k) = �d (cos ky − cos kx )/2 + �s ,
where we assume both �s and �d are positive definite without
loss of generality. This order parameter contains an isotropic
s-wave and a sign-changing anisotropic d-wave order param-
eters. As long as the s-wave component is the dominant order,
i.e., �s > �d , the gap function does not have any nodes and
the spectrum must be fully gapped. However, as shown in
Fig. 1(a), when the d-wave order is dominating, �s < �d , the
gap function in the first Brillouin zone changes sign and nodal
lines appear in the gap function (�(k) = 0 curves in black and
green). In fact, the figure illustrates the anisotropy of the order
parameter, which will explain the MBS’s dependence on the
impurity chain orientation as found in the numerical results.
Next, we focus on the dxy+s-wave SC and, in this case,
where the Fourier-transformed order parameter reads �(k) =
�d (sin kx sin ky ) + �s . Similar analysis as above gives the

024505-2



MAJORANA BOUND STATES IN MAGNETIC IMPURITY … PHYSICAL REVIEW B 99, 024505 (2019)

FIG. 1. Nodal lines of the order parameter, �(k) = 0, (black,
green) for dx2−y2+s-wave (a) and dxy+s-wave states (b) with Fermi
surfaces of the normal Hamiltonian, ξ±(k) = 0 (blue, red). Here
�s = 0.1 and μ = −3.9. For �1(k) (black) and �2(k) (green), we
set �d to be 0.2 and 0.5, respectively.

modified nodal lines of the order parameter as depicted in
Fig. 1(b) when the dxy-wave order is largest.

In Fig. 1, we also depict the Fermi surfaces of the
normal Hamiltonian (blue and red curves) for lightly
electron doped bands at μ = −3.9. Here, the Rashba
spin-orbit interaction splits up the spin-degenerate bands
into two helical bands, ξ±(k) = −2t (cos kx + cos ky ) − μ ±
2λR

√
sin2 kx + sin2 ky . Being interested in dominant d-wave

superconductivity but still requiring a fully gapped spectrum,
a prerequisite for YSR-states to emerge, we need the Fermi
surfaces to not cross the nodal lines. As a consequence, for
all TRI cases, we have to consider the Fermi level to be at
the bottom or top of the band |μ| ≈ 4 and avoid too large
�d/�s ratios. As an example, for �d/�s = 5 (green) in
Fig. 1, the nodal lines almost touch the Fermi surface and the
excitation spectrum becomes gapless, even at light doping.
Actually, even with these limitations, the spectrum fails to
be gapped if the Rashba spin-orbit interaction λR becomes
the largest energy scale, as that separates the spin degener-
ate Fermi surfaces and thus pushes the outer Fermi surface
toward order-parameter nodal lines. Still, based on physically
relevant parameter regimes, there exist some regions in the
parameter space for which the spectrum is fully gapped for
the TRI solutions and we set spin-orbit coupling and chemical
potential in a way to comply with these restrictions.

C. Impurity chain

To model an impurity chain, we assume the spin of each
impurity to be a classical vector which effectively acts as a
local Zeeman field [20,22]:

Himp =
∑
Rσσ ′

J �SR · c
†
Rσ (�σ )σσ ′cRσ ′ , (2)

where �SR is the impurity spin and J represents the exchange
coupling between each impurity and the superconducting
substrate. The impurity chain can be spatially oriented either
along the x- or y-axis and is always placed in the middle of
the square lattice to avoid any possible influence from the
boundaries. Working in the classical limit, we set | �S| → ∞
while J → 0 in the manner that Umag ≡ J | �S| remains finite.
To drive the chain into the topological phase, we need to
assume either a ferromagnetic impurity chain with Rashba

spin-orbit interaction in the substrate or a spin helical impurity
chain. In this work, we mainly set the impurity chain to be
ferromagnetic and we include Rashba spin-orbit interaction
in the substrate. The only exception is Sec. III F where we
exclude the substrate spin-orbit interaction and instead assume
a helical structure for the local moments of impurities. Since
the hopping t in Hsub is also active between impurity chains, it
can be seen as either the hopping in the substrate or between
the impurities. In this way we capture within a single simple
model qualitatively both the Shiba band and the ferromagnetic
wire limits [52–54].

In this paper, all the energies are scaled by the nearest
neighbor hopping matrix element; t = 1. Moreover, for the
ferromagnetic impurity chain we assume that the spins are
along z direction and we fix the spin-orbit interaction to be
λR = 0.3. The Rashba spin-orbit interaction for an Fe chain
on top of Pb has been estimated to λR = 0.05 eV, while
the hopping to the nearest neighbors for different orbitals
of the Fe atom ranges from 0.1 eV to 0.7 eV [13]. Thus,
the assumption of λR/t = 0.3 is realistic. We have also
verified that our general conclusions are insensitive to the
exact parameter values. In all non-self consistent calcula-
tions the on-site s-wave order parameter is set to �s = 0.1,
while d-wave order is tuned; 0.1 < �d < 2, to allow to
study the impact of varying but dominating d-wave orders. We
obtain the eigenvectors and eigenvalues based on diagonaliza-
tion of Hamiltonian H = Hsub + Himp in real space within the
BdG framework. For the superconducting substrate we choose
a square lattice with dimensions L‖ × L⊥ lattice points where
along the impurity chain 501 � L‖ � 1001 and perpendicular
to it 11 � L⊥ � 51. The impurity chain is 3

5L‖-sites long
and laying in the middle of the substrate. In diagonalizing
the tight-binding Hamiltonian, we utilize the Arnoldi iteration
scheme from TBTK toolkit [55,56].

III. RESULTS

Having defined a general model to study the influence of
d-wave pairing in the previous section, we here report the
results. In Secs. III A and III B, we study a ferromagnetic im-
purity chain on a general TRI SC substrate and describe how
the properties of MBSs, such as localization length scale and
mini-gap energy, are affected by the additional d-wave order
parameter and compare it with pure s-wave case. Considering
the symmetry of d-wave component of the order parameter,
we discuss dx2−y2 -wave and dxy-wave state in two different
subsections.

In Secs. III C and III D, we instead consider the opposite
type of coexistence of d- and s-wave order, by allowing the
SC to break time-reversal symmetry. Finally, in Sec. III E, we
discuss the effect of self-consistent calculations for the order
parameters and also consider spin helical impurity chains in
Sec. III F.

A. dx2− y2+s-wave substrate

To understand the overall behavior of a TRI dx2−y2+s-wave
substrate, we use Fig. 1(a) and perform dimensional reduction
by temporarily setting ky = 0(kx = 0) for an impurity chain
oriented along the x-axis (y-axis) [57,58]. Consequently,
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FIG. 2. Energy of lowest subgap states for dx2−y2+s-wave SC
with impurity chain oriented along x-axis (a) and magnitude squared
wave function of MBSs along impurity chain in logarithmic scale
(b). Blue curve represents a reference with only s-wave order. Here
λR = 0.3 and μ = −4.0.

for an x-axis impurity chain on a dx2−y2+s-wave SC, the
order parameter reads �(kx ) = �d (1 − cos kx )/2 + �s and,
clearly, �s � �(kx ) � 2�d + �s , which means that the
d-wave order enhances the total order parameter along the
impurity chain. On the other hand, for a y-axis impurity chain,
the total order parameter reads �(ky ) = �d (cos ky − 1)/2 +
�s , which leads to −2�d + �s � �(ky ) � �s . Obviously,
in this latter case the total order parameter has nodal points,
�(ky ) = 0, where the superconducting order parameter will
be strongly suppressed anywhere near these nodes. Therefore,
we anticipate very different behavior for x- and y-axis impu-
rity chains in dx2−y2+s-wave SCs.

In Fig. 2(a), we plot the energy of the lowest energy
subgap states for an x-axis impurity chain embedded in a 2D
dx2−y2+s-wave SC as a function of Umag, the strength of mag-
netic interaction between the impurities and SC. Given that
each magnetic impurity induces a pair of YSR-subgap states,
for the impurity chain many subgap states emerge. By increas-
ing Umag from very small values to a critical U (1)

mag, these YSR
states move deeper inside the gap and eventually touch each
other at the Fermi level. This gap closing is the topological
phase transition in the system and a pair of MBSs emerges
at the impurity chain end points. In this particular case, we
see that the MBSs emerge for U (1)

mag ≈ 0.5 and disappear for
U (2)

mag ≈ 5.8, thus, the system is in topological nontrivial phase
in between. Thermal hybridization of the MBSs with other
states is protected by the mini-gap �m, the energy barrier
between MBSs and the first excited state [6,59]. Having the
impurity chain oriented along the x-axis, the coexistence of
d-wave and s-wave order parameters turns out to be highly
beneficial. As seen in Fig. 2(a), the minigap �m increases with

1 2 3 4 5
Umag

−0.5

0

0.5

E

×10−1

(a) Δd = 0 Δd = 0.2 Δd = 0.4

200 350 500
y

10−1

10−3

10−5∫
d
x
|Ψ

|2 (
x
,y

)

(b)
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FIG. 3. Same as Fig. 2 but for impurity chain oriented along y-
axis.

increasing dx2−y2 -wave component (green and red), compared
to pure s-wave (blue). We also see that the critical couplings
U (1)

mag and U (2)
mag for the topological phase transitions do not

show any significant change when increasing �d .
Another important impact of the d-wave order parameter

on the MBSs is an increase in the MBSs localization as
depicted in Fig. 2(b). In this figure, we plot the magnitude
squared wave function of the lowest energy states, the MBS,
as a function of the x coordinate along the chain from the
chain end point in a logarithmic scale. The exponential decay
of MBSs is obvious, with an additional oscillatory envelop
related to Fermi wave vector kF [22–24]. Thus the localization
of MBSs is strongly enhanced due to the presence of d-wave
order parameter compared to pure s-wave SC. The reason
behind this localization enhancement is that the nodal lines
of the dx2−y2+s-wave state do not to cross the kx axis in the
first Brillouin zone, which results in an overall larger energy
gap along kx and thus more isolated MBSs. However, if we
increase �d a lot more beyond �d/�s ∼ 5, the energy gap
starts to shrink as the order parameter nodal lines eventually
approach the Fermi surfaces and, consequently, the size of
minigap is reduced. Therefore, to have reasonably robust and
localized MBSs, there is an upper limit to the enhancement
produced by a d-wave order in the dx2−y2+s-wave substrate.

Next we consider a y-axis impurity chain for the same
dx2−y2+s-wave substrate. As shown in Fig. 3(a), the coex-
istence of d-wave and s-wave pairing now leads to a much
smaller minigap in major regions of the topological phase.
As for the localization of MBSs, we show in Fig. 3(b) that
the localization is also strongly suppressed with increasing
d-wave order parameter. Following the same way of reasoning
as for the impurity chain along the x-axis, the suppression of
minigap for the y-axis impurity chain is easily attributed to the
nodal gap of the order parameter along the chain orientation,
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FIG. 4. Same as Fig. 2 but when also including next-nearest-
neighbor hopping t ′ = 0.1.

as seen in Fig. 1(a). We find, thus, that the coexistence of
dx2−y2 -wave and s-wave pairing suppresses or enhances the
minigap and localization length scale of MBSs, depending
on the impurity chain orientation with respect to anisotropic
d-wave order parameter.

One might tend to naively directly relate the enhancement
(suppression) of MBSs localization to having larger (smaller)
minigap. However, we find that this is not always true, as il-
lustrated in Fig. 4. Taking into account next-nearest-neighbor
hopping t ′ = 0.1 for a dx2−y2+s-wave SC substrate, we show
in Fig. 4(a) that for a x-axis impurity chain, increasing the
d-wave order parameter can also lead to a smaller minigap
than that for a pure s-wave SC. Still in the same parameter
regime, the localization of MBSs is enhanced with increasing
d-wave order. In fact, the localization of MBSs for finite t ′ as
depicted in Fig. 4(b) gives a very similar result to the t ′ = 0
case, as seen in Fig. 2(b), while the minigap energies are
very different. Therefore, we find that the localization length
of MBSs is more determined by the superconducting order
parameter itself and the impurity chain orientation rather than
the minigap.

B. dx y+s-wave substrate

Moving on to the other TRI d-wave substrate, dxy+s,
we use the same dimensional reduction scheme presented in
Sec. III A and thus temporarily set ky = 0 (kx = 0) for an
impurity chain oriented along the x-axis (y-axis). For both
chain orientations, the reduced order parameter reads �(k) =
�s . This means that for the dxy+s-wave substrate, whether
the chain is along the x or y-axis, the order parameter is
always finite. Another way to see this is to look at the nodal
lines of the order parameter in Fig. 1(b), where we can see
that the kx = 0 and ky = 0 lines do not cross the nodal lines.
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FIG. 5. Same as Fig. 2 but dxy+s-wave SC for impurity chain
oriented along x or y-axis.

Of course, the dimensional reduction analysis does not capture
the changes in the order parameter due to the presence of
d-wave order parameter and that is the main weakness of
this analysis. However, this simple analysis has the benefit
of predicting the invariance in chain orientation, which is
remarkable.

We present the energy of the lowest energy states for
an impurity chain embedded in a dxy+s-wave substrate in
Fig. 5(a), where we see the coexistence of dxy-wave order
with s-wave order leads to an increase in the minigap. As
predicted by the dimensional reduction, we find the same
subgap states for x- and y-axis impurity chains. Moreover,
as shown in Fig. 5(b), we find an enhancement in the MBSs
localization due to the presence of dxy-wave order compared
to pure s-wave SCs. We also notice that this coexistence does
not change the critical coupling for the topological phase
transition.

C. dx2− y2+i s-wave substrate

We next turn to the TRB cases, where the order parameter
develops a π/2 phase shift between the s- and d-wave parts.
We start by studying the dx2−y2+is-wave substrate. Just as
before, we consider impurity chains orientated both along
the x or y-axis. As we calculate the energy of the lowest
energy states for the TRB dx2−y2+is-wave SC, we find the
spectrum to be exactly the same for both chain orientations,
see Fig. 6(a). We can relate this orientation independence to
the fact that the dx2−y2+is-wave symmetry opens a hard gap
in the spectrum due to the imaginary s-wave order parame-
ter. Furthermore, the anisotropy does not make a difference
between the x and y direction in terms of the magnitude of
the gap, and thus x- and y-axis chains should both experience
the same effective gap along the chain. The subgap state
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FIG. 6. Same as Fig. 2 but for dx2−y2+is-wave SC impurity chain
oriented along x- or y-axis.

spectrum also reveals that adding the d-wave order param-
eter gives a larger minigap as well as much more localized
MBSs, see Fig. 6. Interestingly, in this TRB case, increas-
ing �d significantly increases �m in the topological phase
and therefore provides MBSs that survive at much higher
temperatures.

It is also important to notice that for the TRB dx2−y2+is-
wave state we do not have to fine-tune the chemical potential
to bottom of the band μ = −4 for the MBSs to emerge as
the topological phase transition occurs for a wide range of
chemical potentials. For example, Fig. 7(a), where we plot the
lowest energy states for μ = −3 (green) and μ = −4 (red),
shows that the MBSs also appear for high doping where the
minigap is also increased notably by an increasing d-wave
component. The physical origin of this tunability stems from
the imaginary s-wave order parameter that, independent of
any other normal state parameter, always opens a full energy
gap. Therefore, the strong restriction on the �d/�s ratio,
chemical potential, and also Rashba spin-orbit coupling found
for TRI substrate is lifted for TRB substrates.

In Fig. 7(b), we present the full topological phase diagram
for an impurity chain in a dx2−y2+is-wave SC, where the
black regions represent the topologically trivial phase of the
chain without any MBSs, while the triangular-shaped region
shows the topologically nontrivial phase and its minigap. As
is clearly seen, for all chemical potentials μ ∈ [−4, 0] there
exists a range of impurity strengths for which the system is
in the topological phase. Due to the particle-hole symmetry
of BdG Hamiltonian, the phase diagram for positive chemical
potential μ ∈ [0, 4] is given by simply flipping Fig. 7(b) with
respect to horizontal axis. Tuning the Rashba-spin orbit affects
the minigap only slightly but does not change the shape of the
phase diagram.
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FIG. 7. (a) Energy of lowest subgap states for dx2−y2+is-wave
SC with impurity chain oriented along x- or y-axis for μ = −3
(green) and μ = −4 (red). (b) Topological phase diagram for im-
purity chain in dx2−y2+is-wave SC as a function of μ and Umag.
Black region shows trivial phase; color scale represents minigap �m

in topologically nontrivial phase. Here �d = 1 and �s = 0.1.

D. dx y+i s-wave substrate

We also consider the TRB order parameter of dxy+is-wave
symmetry with the impurity chain oriented along the x- or
y-axis. Surprisingly, the orientation of the impurity chain
in this case significantly affects the spectrum, in spite of
the fact of having a hard gap and same magnitude of the
order parameter along x and y directions. More precisely, the
minigap for an impurity chain along the x-axis is different
from a chain along the y-axis as depicted in Fig. 8, where we
plot the lowest energy states (red) for both chain directions.
For the x-axis chain, we have also verified that the MBSs lo-
calization is enhanced due to the dxy-wave order parameter in
comparison to pure s-wave SC. However, when the impurity
chain is along the y-axis, the energy spectrum exhibits more
complexity. In this case, extra zero-energy states appear in
an extra gap-closing in the middle of topological phase for
intermediate coupling, 3 � Umag � 4. We have verified that
the chain end point MBSs exist independently of this extra
gap-closing and when we introduce the next-nearest hopping,
the coupling strength for which this extra gap-closing also
changes, showing a model dependence.

To assess the nature of these extra zero-energy states and
extra gap-closing, we evaluate the Berry phase for the Fourier-
transformed Hamiltonian along the chain using the Wilson
loop formalism [60,61]. As the blue curve in Fig. 8 illustrates,
we observe an abrupt change in the Berry phase between π
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FIG. 8. Spectrum of lowest subgap states (red, left axis) for

dxy+is-wave SC as a function of Umag for impurity chains along x (a)
and y-axis (b) as well as Berry phase (blue, right axis). Here t ′ = 0.1,
μ = −4, and �d ′ = 1.

and −π at U (1)
mag and U (2)

mag. However, the Berry phase does
not show any extra topological transition for 3 � Umag � 4,
which implies that the extra gap-closing in this region has a
different origin rather than a topological phase transition.

In what follows, we perform a detailed analysis of the
extra zero-energy states for the y-axis impurity chain but
the lack thereof for an x-axis chain. For this purpose, we
first study a 2D spin-orbit coupled SC with dxy+is-wave
symmetry where the whole system is covered with magnetic
impurities. The topological phase transition in similar systems
has been studied previously for SCs with s-wave or d±id ′-
wave symmetries in the presence of external magnetic field
[62]. In principle, a system composed of a 2D SC covered
with magnetic impurities can be seen as a parent model for the
1D impurity chain, since shrinking the magnetic cover only in
one direction leads to the impurity chain embedded in a 2D
SC. In the same fashion, the chiral edge states that appear at
the edges of parent topological 2D SC become the MBSs that
appear at the ends of the chain when shrinking the 2D impurity
coverage to a 1D impurity chain. Notice how shrinking the
impurity region in x or y directions gives an impurity chain
along the y or x-axis, respectively.

To study the parent 2D model, we consider a supercon-
ducting nanoribbon (width 51 lattice points) fully covered
with a layer of magnetic impurities. We Fourier transform
the Hamiltonian along the nanoribbon and observe that the
system exhibits a topological phase transition with increasing
Umag into a topological phase with chiral edge modes, plotted
in Fig. 9. Since the behavior of the low-energy states of the
impurity chain depends on the chain orientation, we expect
the chiral edge states in the parent 2D model to also show
different dispersion relations on different edges. Remarkably,
we find the Majorana chiral edge modes for the (10) edge
(parallel to the x-axis) disperse differently from edge modes
on the (01) edge (parallel to the y-axis). Close to the �-point
where band crossing takes place, the former has a linear, rather
steep, dispersion relation, see Figs. 9(a) and 9(c), while the
latter displays a quadratic dispersion or even flatter as clearly
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FIG. 9. Chiral edge modes for nanoribbon of dxy+is-wave SC
covered with a complete layer of magnetic impurities, with edge in x

direction (a), (c) and y direction (b), (d). Here �s = �d ′ = 0.5 and
Umag = 1.4 (a), (b) and Umag = 2.1 (c), (d).

seen in Figs. 9(b) and 9(d). With increasing Umag, the edge
states propagating along the x-axis have only one crossing at
� point while, for the modes propagating along the y-axis,
several crossings appear and the edge states experience a very
flat dispersion.

To relate the 2D magnetic layer to the 1D impurity chain,
we shrink the magnetic layer in one direction, which leads
to discretization of the chiral edge states. One pair of these
discrete energy levels sticks to zero energy, giving the MBSs,
while the remaining nonzero energy levels are the YSR states.
Therefore, when the chiral edge states along the y-axis be-
come very flat, it means that, in addition to MBSs, there exist
extra states in the middle of energy gap. These extra midgap
states are not topologically protected but can still appear close
to or even at zero energy. As a result, different dispersion re-
lations for the 2D case gives very different low-energy spectra
for x- and y-axis chains in the dxy+is-wave SC, although
both belong to the same topological class. This phenomena
is connected to the way the chiral edge state’s dispersion
relation depends on the relation between the geometry of the
boundary and the superconducting order parameter. Similar
edge sensitivity has been seen in a chiral p-wave SC on
the square lattice, where edge states disperse very different
along the straight (10) and the zigzag (11) directions [63].
For the dx2−y2+is-wave SC, there is no difference in 2D edge
states, and thus x- and y-axis chains have the same low-energy
spectrum.

E. Self-consistent analysis

So far, we have assumed constant order parameter and
neglected any depletion of the order parameter in the vicinity
of the impurity chain and its consequences. To assess impu-
rity chains while relaxing this constraint, we also perform
reference self-consistent calculations for the superconduct-
ing order parameter. Here, we only have to assume a finite
and constant pair potential V in each pairing channel but
then calculate the order parameter(s) explicitly everywhere
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in the lattice. For a d-wave state, we use the self-consistent
condition �d (i, j) = −Vd/2〈ci↓cj↑ − ci↑cj↓〉, where i, j are
nearest-neighbor sites. In the self-consistent calculation, we
start by guessing a value for �d on each bond, solve Eq. (1),
evaluate a new �d on each bond using the self-consistent
condition, and repeat until �d does not change between two
subsequent iterations. We emphasize that the order parameter
on vertical and horizontal bonds is solved independently to
also allow for the system to chose the competing extended
s-wave symmetry. We also assume a finite Vs in addition
to Vd and separately calculate �s = −Vs/2〈ci↓ci↑ − ci↑ci↓〉
self-consistently. The phase difference between �d and �s is
also found self-consistently, i.e., we only start with a specific
phase difference, but then let the system evolve without any
constraints.

As an example, we take an impurity chain along the x-
axis on the surface of dx2−y2+is-wave SC and find all the
order parameters self-consistently. For μ = −2, we find the
π/2 phase-shift between the s-wave and dx2−y2 -wave order
parameters even in the fully self-consistent solution. We see
that, in this case, the dominant dx2−y2 -wave and subdominant
s-wave order parameters are both heavily depleted in the
vicinity of the impurity chain and a small extended s-wave
order parameter also appears close to the chain, similar to the
situation for a single magnetic impurity [51]. Still, in the topo-
logical phase the minigap and the localization of the MBSs is
enhanced by dx2−y2 -wave order parameter, very similarly to
the non-self-consistent results reported earlier in Sec. III C.
Self-consistency does move the critical coupling for which
the topological phase transition takes place to lower values,
but the size of the topological region, namely the region
between gap-closing and gap-reopening, is not affected by
self-consistency. Therefore, we conclude that self-consistency
does not change the conclusions drawn earlier with non-self-
consistent calculations.

F. Spin helical impurity chain

To assess the generality of the obtained results using ferro-
magnetic chains, we also study a spin helical impurity chain.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  25  50  75  100

Umag/t = 3

|Ψ
(x

)|

X

Δd/Δs = 0.0
Δd/Δs = 1.0
Δd/Δs = 2.0
Δd/Δs = 5.0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  25  50  75  100

Umag/t = 4

|Ψ
(x

)|

X

FIG. 10. Absolute value of MBS’s wave function for a spin
helix structure without any Rashba spin-orbit coupling in substrate.
Spin helix lay in the x − y plane and spins rotates with a pitch of
kha = 2π/3 along the chain.

Here we exclude Rashba spin-orbit interaction in the substrate
and instead assume an in-plane spin-helix structure for the
local moments of the impurities [18–21]. We choose a pitch
of kha = 2π/3 along an x-axis impurity chain and no out-of-
plane spin component, but the results are not sensitive to this
particular choice. In Fig. 10, we plot the absolute value of the
MBS’s wave function, assuming a dx2−y2+is-wave substrate.
We notice that increasing the ratio of �d/�s leads to more
localized MBSs, similar to the effect for the ferromagnetic
impurity chain. The outcome of this calculation, thus, reveals
that our results are also generally applicable to spin-helix
structures.

IV. DISCUSSION

Having, in detail, analyzed the different combinations of
d- and s-wave orders in the preceding sections and especially
how a d-wave state can enhance the robustness of the MBSs,
we summarize the results in Fig. 11. Here we plot the minigap
for all studied condensates and chain directions as a function
of the ratio �d/�s . For x-axis chains and TRI SC, we see in
Fig. 11(a) that the minigap is enhanced by increasing the d-
wave order all the way to �d/�s � 5. However, for very large
values of �d/�s the minigap is suppressed and eventually
vanishes due to nodes in the energy spectrum then appearing
in the vicinity of the chain. In contrast, as shown in Fig. 11(b),
for any TRB substrate the minigap is enhanced monotonously
with an increasing d-wave component, eventually saturating
at �m = �s , i.e., much larger than the minigap in the pure s-
wave case. Consequently, a d-wave order parameter enhances
the minigap and thus the robustness of the MBSs for x-axis
chains over a wide range of �d/�s ratios for all types of
condensates.

Turning to y-axis chains embedded in TRI SC as shown
in Fig. 11(c), we see that the minigap for dxy+s-wave SC is
orientation independent and exactly similar to x-axis chain in
Fig. 11(a). On the other hand, for the TRI dx2−y2+s-wave SC,
the d-wave order does not enhance the minigap since the chain
orientation crosses the nodal lines of order parameter. For
y-axis impurity chains in a TRB substrate, we see in Fig. 11(d)
that when the substrate has dx2−y2 + is-wave symmetry, the
minigap behaves exactly similar to the x-oriented chain in
Fig. 11(c). When the substrate is a dxy+is-wave SC, we,
in addition, find the exotic minigap closing explained in
Sec. III D, which for a small range of �d/�s ratios suppresses
the minigap that is otherwise notably enhanced over the pure
s-wave case. Considering the topological classification of the
superconducting states, impurity chains embedded in a pure
s-wave SC and in combinations of d- and s-wave SCs belong
to the same topological class and thus the emerged MBSs
possess the same overall properties and non-Abelian statis-
tics. Here, spin-polarized scanning tunneling spectroscopy
can provide a suitable experimental tool to detect the
MBSs and differentiate it from other (near) zero-energy
states [64].

The results summarized in Fig. 11 show how a d-wave
order parameter is often highly beneficial for MBS robustness.
Still, if the d-wave order becomes extremely dominant and
has nodes crossing close to a poorly chosen chain direction,
the minigap is reduced and the MBS eventually disappears.
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chains embedded in different superconducting substrates as a func-
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One might argue that the virtually bound resonance states
in pure d-wave SCs, which can appear at zero energy [65],
are spin polarized, and can thus substitute the YSR states
that ultimately produce the MBSs in the topological phase.
Although zero-energy end states theoretically appear in even
the pure d-wave case, our calculations reveals that in the ab-
sence of an s-wave order and even for very large d-wave order
parameter, the minigap is extremely small �m/�dx2−y2 �10−3

and �m/�dxy
� 10−8. Thus, even if these zero-energy modes

are technically zero-energy states, they are empirically hy-
bridized even at very low temperatures and can hardly be
utilized as MBSs.

Considering the experimental realization of an impurity
chain platform in d-wave SCs, cuprate surfaces with its pro-
posed TRB phase is an interesting alternative. For example,
the d + is-wave state has been identified in nanoislands of
YBa2Cu3O7−δ . Alternatively, a hybrid structure of unconven-
tional d-wave SC and a thin layer of a conventional s-wave
SC can produce a superconducting state where d-wave state
coexists with a required additional s-wave component. In this
case, the impurity chain can, e.g., be located on the surface
of the d-wave SC and the tunneling probe measurement can
be done on the outer s-wave layer. A version of such a setup
has been recently used to study the impurity Co islands under
a single layer of Pb SC [15]. Note also that the reflection
symmetry is broken at surfaces/interfaces, which then auto-
matically provide the Rashba spin-orbit coupling which is
essential for the MBSs to emerge.

Finally, let us compare our results with the case of a
semiconductor nanowire in proximity to a spin-orbit-coupled
d-wave SC. In Refs. [28,29], superconductivity is proximity
induced into the nanowire and with the electronic bands in
the wire being spin-polarized, the pairing is actually in the
spin-triplet channel. The model employed in this paper and the

one used in Refs. [28,29] are thus aimed to explain different
experimental setups and the results for these two models
are thus not always similar. For instance, both works predict
that the properties of MBSs can be direction dependent [28].
However, in modeling the nanowire, the localization of MBSs
was shown to be reduced due to the angular asymmetry of
the d-wave order in large regions of topological phase when
compared to a nanowire on top of a conventional s-wave SC
using �d = �s [29]. In contrast, for the emergence of MBSs
in an impurity chain in a d-wave SC, we show that we need co-
existence of s-wave and d-wave order parameters and actually
observe much more localized MBSs for dx2−y2+is-wave SC
than in the conventional s-wave case.

V. CONCLUSIONS

In this paper, we study a chain of magnetic impurities
located on the surface of a d-wave SC with a subdominant
s-wave order parameter and in the presence of Rashba spin-
orbit coupling from inversion-breaking surface. This setup is
a promising platform for realizing MBSs and exploiting their
non-Abelian statistics in high-temperature SCs. Performing
numerical tight-binding lattice calculations, we investigate the
effect of d-wave pairing on the topological phase transition
and the associated MBSs. We show that a pair of MBSs
emerge at the two end points of the impurity chain for a
wide range of physical parameters and for both TRI and TRB
condensates. The presence of the d-wave order parameter
provides the advantage of larger order parameter thanks to
higher superconducting transition temperature. Remarkably,
as long as the chain orientation does not cross any remaining
nodal lines of the order parameter, the presence of the d-
wave order gives rise to dramatically more localized MBSs
than the pure s-wave case. This we attribute to the large
enhancement of the effective order parameter along the im-
purity chain. We also show that the d-wave order parameter
can strongly enhance the minigap energy which protects
the MBSs from thermal hybridization. Larger minigap of-
fers a promising way to increase the robustness of MBSs
specially for a TRB substrate. This property should not be
confused with the localization of MBSs since we bring an
example where more localized MBSs emerge with smaller
minigap.

Furthermore, we report on an exotic feature for an impurity
chain along the y-axis and embedded in a dxy+is-wave SC,
where an extra gap-closing occurs within the topologically
nontrivial phase. Evaluating the Berry phase, we do not find
any signature for a topological phase transition at this extra
gap-closing point. Instead, we trace the extra gap-closing
back to a flat dispersion of the topological edge state of
the equivalent 2D system. This result shows that even 1D
topological phases can exhibit a low-energy spectrum not
determined by topology alone. To conclude, this paper shows
that using a d-wave SC with any subdominant s-wave order
can strongly enhance the thermal robustness and localization
of MBSs. This paves the way for topological quantum compu-
tation at much higher temperatures and will hopefully inspire
both future experimental and theoretical investigation in this
direction.
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