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Nonuniform superconductivity and Josephson effect in a conical ferromagnet
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Using the Gorkov equations, we provide an exact solution for a one-dimensional model of superconductivity
in the presence of a conical helicoidal exchange field. Due to the special type of symmetry of the system,
the superconducting transition always occurs into a nonuniform superconducting phase (in contrast with the
Fulde-Ferrell-Larkin-Ovchinnikov state, which appears only at low temperatures). We directly demonstrate that
the uniform superconducting state in our model carries a current and thus does not correspond to the ground state.
We study in the framework of the Bogoliubov–de Gennes approach the properties of the Josephson junction with
a conical ferromagnet as a weak link. In our numerical calculations, we do not use any approximations (such
as, e.g., a quasiclassical approach), and we show a realization of an anomalous φ0 junction (with a spontaneous
phase difference φ0 in the ground state). The spontaneous phase difference φ0 strongly increases at high values
of the exchange field near the borderline with a half-metal, and it exists also in the half-metal regime.
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I. INTRODUCTION

The interest in superconductor-ferromagnet (SF) structures
has been stimulated by the unusual SF proximity effect,
leading to the fabrication of the Josephson junctions with
unique properties (see, e.g., [1–5]), which paved the way
for superconducting spintronics. Moreover, the combination
of spin-orbit coupling and a Zeeman field may lead to the
anomalous Josephson effect—the so-called φ0 junction with
a spontaneous phase difference at the ground state [6–9].
This is related to an emergence of topological nonuniform
superconducting phases [10]. In [11] it has been noted that
a superconductor with a conical helical magnet structure is
described by the same Hamiltonian as a topological super-
conducting phase appearing in systems with spin-orbit and
Zeeman interactions.

The problem of a superconducting uniform phase in the
presence of the helicoidal exchange field has a complete ana-
lytical solution in the framework of the formalism of Gorkov’s
Green functions [12]. In [13] the peculiar properties of the
Josephson junction between two helicoidal superconductors
were considered, while in [14–18] the Josephson junction
with a magnetic helix weak link was studied in the framework
of the quasiclassical approximation.

In Sec. II of this paper, we use Gorkov’s formalism to get
the analytical expressions for Green’s functions in the conical
helical superconducting magnet, taking into account the pos-
sibility of the topological nonuniform superconducting phase
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realization. Further, we perform a detailed analysis of the
one-dimensional (1D) system and demonstrate the emergence
of the nonuniform superconducting phase with a modulation
wave vector q when the helix becomes conical. The modu-
lation vector is proportional to the canting of the helix and
inversely proportional to the helix period. Our conclusion is
based on the analysis of the critical temperature dependence
on the superconductivity modulation vector q, which is ob-
tained from the linear equation for the superconducting order
parameter. The modulated superconducting state corresponds
to the minimum energy of the system and does not carry
current. Complimentarily, we calculate the current at T = 0
in the uniform superconducting phase and show that it is not
equal to zero, which proves that the uniform phase cannot be
a ground state and thus the modulated phase is the most stable
at all temperatures.

The emergence of the modulated superconducting state
may be illustrated by simple arguments in the framework
of Ginzburg-Landau theory. In the standard situation, the
lowest over the gradients of the order parameter � term gives
the following well-known quadratic contribution to the free
energy, δFin hom = γ |∇�|2, while the higher derivative terms
may be neglected. The term that is linear over the gradient is
absent because it is not invariant under the inversion symmetry
operation. In the absence of inversion symmetry, Rashba
spin-orbit interaction (SO) leads to the following additional
contribution to the electron’s energy: ∼[�σ × �p] · �n, where �p
is the momentum, �n is the unit vector along the axis with
broken inversion symmetry, and �σ = (σx, σy, σz) is the vector
of Pauli matrices [19]. In the presence of the exchange field
�h this results in a term that is linear over the gradient of the
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superconducting order parameter � in the Ginzburg-Landau
(GL) free energy ∼[�n × �h] · (∇�) �∗ (see, for example,
[19,20]). In the case of the conical helicoid, the role of the �n
vector is played by the vector [ �h × rot�h ], and the linear-over-
gradient term becomes ∼[ �h × [ �h × rot�h] ] · (∇�) �∗. This
is a manifestation of the equivalence of a model of a conical
superconductor to a model of a topological superconductor
[11]. In the considered case of the conical helicoid with the
exchange field �h = (h cos Qr, h sin Qr, hz) (the wave vector
Q = Qz0 is along the z axis), the normal state is lacking
inversion symmetry and the following additional invariant that
is linear over the gradient is possible:

δFadd = [iλ�(h · roth) · [hz · (∇� )z] + c.c.], (1)

where the parameter λ depends on the strength of the SO
coupling. In the result, the energy contribution due to the
modulation of the order parameter � = �0e

iqz becomes
δFin hom = γ q2�2

0 − 2λqh2hzQ�2
0 , and the minimum energy

(and the maximum of the critical temperature) corresponds
to the nonuniform superconducting state with a modulation
vector q ∼ h2hzQ. Note that there is no threshold on the
value of counting field hz to generate the modulation, which
is in sharp contrast with a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [21,22]. The FFLO modulated state appears
when the usual gradient term in the Ginzburg-Landau func-
tional changes its sign, i.e., the coefficient γ becomes negative
when the exchange field overcomes some threshold [23].

At low temperature for a standard superconductor we may
use the London theory, and the gauge invariance imposes the
following form of the term in the energy, depending on the
vector potential A:

�F = a

(
∇ϕ + 2e

h̄
A

)2

,

where ϕ is the phase of the superconducting order parameter
� = |�| exp (iϕ). As a consequence, the current density j =
−c δF/δA, and in the absence of the magnetic field, choosing
A = 0, we see that the minimum energy corresponds to ∇ϕ =
0 and therefore j = 0. In the considered case of the conical
helicoid, the contribution �F to the energy should have a
linear over (∇ϕ + 2eA/h̄) term:

�F = a

(
∇ϕ + 2e

h̄
A

)2

+ b

(
∇ϕ + 2e

h̄
A

)
. (2)

As a result, the current density reads

j ∼ 2a

(
∇ϕ + 2e

h̄
A

)
+ b,

and in the absence of the field (A = 0) and phase modulation
(∇ϕ = 0) the current is nonzero, j ∼ b. This reflects the fact
that the uniform state is not a ground state of our system.
Indeed, for A = 0 the minimum of the energy (2) corresponds
to ∇ϕ = −b/2a, and for this phase modulation the current
vanishes.

In Sec. III we calculate the Josephson current for the 1D
model of the weak link made of the conical helix. Our numer-
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FIG. 1. The sketch of a superconductor with a conical magnetic
texture. The green thick arrow indicates the direction of the exchange
field.

ical calculations use the exact solutions of the Bogoliubov–de
Gennes (BdG) equations and we demonstrate the realization
of the anomalous φ0 junction. The spontaneous phase shift φ0

strongly increases when we approach the half-metal regime
or when we are completely in the half-metal state. In this
case, the current-phase relation for the supercurrent is I (φ) =
Ic sin(φ − φ0) and the additional phase shift φ0 is proportional
to the ferromagnetic component of exchange field hz. We
provide a detailed study of the properties of the φ0 junction as
a function of conical helix parameters. The conical helicoidal
phase exists, for example, in antiferromagnetic Ho, and the
Ho/Nb structure has attracted a lot of attention [24–28]. In
these systems, the electron mean free path is of the same order
as the period of the helix, and we believe that qualitatively
the results of our work may be applicable to these structures.
The possibility to use the conical helix as a building block
of the φ0 junction may be important for the design of the
superconducting spintronics devices.

II. SUPERCONDUCTING CONICAL HELICOIDAL
PHASE—GORKOV’S GREEN FUNCTIONS

We study a clean s-wave magnetic superconductor with
conical magnetic order. The conical magnetism and the spa-
tially modulated order parameter can be characterized by �h =
(h cos Q · r, h sin Q · r, hz) and �(r) = �eiq·r, respectively
(see Fig. 1). Using the mean-field approximation, we may
write the Hamiltonian of the system as [29]

Ĥ =
∑
αβ

∫
d3r{ψ̂†

α (r)ξpψ̂α (r) + ψ̂†
α (r)(�h · �σ )αβψ̂β (r)

+ 1

2
[(iσy )αβ�(r)ψ̂†

α (r)ψ̂†
β (r) + H.c.]}, (3)

where ξp = p2

2m
− EF , and ψ̂†

α (r) and ψ̂α (r) represent cre-
ation and annihilation operators with spin α. The spa-
tially modulated superconducting order parameter is de-
scribed by 〈ψ̂†

α (r)ψ̂†
β (r)〉 = (iσy )

αβ
�eiq·r. The Gorkov equa-

tions of the system of the Green’s functions Gα,β (r, r′) =
−〈T ψ̂α (r)ψ̂†

β (r′)〉 and F
†
α,β (r, r′) = 〈T ψ̂†

α (r)ψ̂†
β (r′)〉 have the
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form

(iωn − ξp − V̂ )Ĝ(r, r′) + �eiq·r · Î F̂ †(r, r′) = δ(r − r′),
(4)

(iωn + ξp + Ṽ )F̂ †(r, r′) − �∗e−iq·r · Î Ĝ(r, r′) = 0, (5)

where the matrix Î is written as

Î = iσy =
(

0 1
−1 0

)
. (6)

The wave vectors Q and q are along the z axis, and the
potential of the conical magnetic order is given by

V̂ (r) = �h · �σ =
(

hz he−iQz

heiQz −hz

)
(7)

while

Ṽ (r) =
(

hz heiQz

he−iQz −hz

)
. (8)

Using the Fourier transform, we obtain the exact solution
of (4) and (5) described in Appendix A and get the Green
functions (below only F̂

†
21 and Ĝ11 are presented)

F̂
†
21

(
p − Q

2
− q

2
, p′

)

= −δ

(
p − Q

2
+ q

2
− p′

)

× [(iωn − ξ2 + hz)(iωn + ξ3 + hz) + h2 − |�|2]�
∗

D(ωn)
,

(9)

Ĝ11

(
p − Q

2
+ q

2
, p′

)
= δ

(
p − Q

2
+ q

2
− p′

)

×
[

(iωn − ξ2 + hz)(iωn + ξ3 + hz)(iωn + ξ4 − hz)

D(ωn)

− (iωn − ξ2 + hz)h2 + (iωn + ξ4 − hz)|�|2
D(ωn)

]
,

(10)

where

D(ωn) = [(iωn − ξ1 − hz)(iωn + ξ4 − hz) + h2 − |�|2]

× [(iωn − ξ2 + hz)(iωn + ξ3 + hz) + h2 − |�|2]

− (2iωn − ξ1 + ξ3)(2iωn − ξ2 + ξ4)h2 (11)

and

ξ1 = ξp− Q

2 + q

2
, ξ2 = ξp+ Q

2 + q

2
, (12)

ξ3 = ξp+ Q

2 − q

2
, ξ4 = ξp− Q

2 − q

2
. (13)

Note that we have obtained the exact solution of the 1D
model, which is readily generalized to the 3D case: indeed we
start from the Hamiltonian (3) describing the 3D system, and
the corresponding Gorkov equations (4) and (5) are readily
applied to the 3D case provided that we consider all vectors
as 3D vectors �p, �Q, and �q. The superconducting conical

ferromagnet is one of the rare examples when it is possible
to get explicitly the complete solution in the framework of the
microscopic Gorkov equations.

A. The energy spectrum of the conical ferromagnet

Let us first consider the normal conical ferromagnet
without superconducting coupling (� = 0 and q = 0). The
Green’s function Ĝ11 in such a case reads

Ĝ11

(
p − Q

2
, p′

)

= δ

(
p − Q

2
− p′

)

×
iωn − ξp+ Q

2
+ hz(

iωn − ξp− Q

2
− hz

)(
iωn − ξp+ Q

2
+ hz

) − h2
.

(14)

To find the electron spectrum ε, we should perform the analyt-
ical continuation iωn → ε in the denominator of Eq. (14), and
then its zeros give us the equation for the energy spectrum,(

ε − ξp− Q

2
− hz

)(
ε − ξp+ Q

2
+ hz

) − h2 = 0. (15)

In the result, we obtain two branches of the energy spectrum,

ε1(2) = 1

2

[
ξp− Q

2
+ ξp+ Q

2

∓
√(

ξp+ Q

2
− ξp− Q

2
− 2hz

)2 + 4h2
]
. (16)

As illustrated in Fig. 2(a), two branches (ε1 and ε2) of the
energy spectrum are not symmetric with respect to p = 0, and
they also do not contain the gaps. It is a peculiar property of
the periodic helicoidal exchange field—it does not create the
gap band structure in contrast to the usual case of the periodic
potential field.

According to the formula v = 1
h̄

dE
dk

, we can compute the
velocity of quasiparticles [see Fig. 2(b)]. It is known that in
the normal metal, the Fermi velocities of two quasiparticles
(at ±kF0) have the same absolute values vF0 of the Fermi
velocities. However, in the conical ferromagnet, the absolute
values of Fermi velocities of the quasiparticles are different
in the same branches, for instance in the ε1 branch (va

F1 =
1.102vF0 and va

F2 = 0.9057vF0) and in the ε2 branch (vb
F1 =

0.6467vF0 and vb
F2 = 0.7397vF0) for chosen parameters of

the conical ferromagnet. Namely, this property is character-
istic of the systems with a spin-orbit interaction and leads to
the appearance of the modulated superconducting states.

B. Superconducting transition temperature
in the modulated phase

The critical temperature of the system is determined by the
linearized self-consistency equation (taking in the limit � →
0)

�∗ = |g|T
∑
ωn

∫ +∞

−∞
F̂

†
21

dp

2π
, (17)
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FIG. 2. (a) Energy spectra (ε1 and ε2) for the conical ferromagnet
(h/EF = 0.25, hz/EF = 0.2, and Q/kF = π/2) and the normal
metal (h/EF = 0, hz/EF = 0, and Q/kF = 0); (b) the velocity of a
quasiparticle as a function of the wave vector p. Here the quantities
of the velocity are normalized to the value of the Fermi velocity vF0

of the quasiparticle in the normal metal.

where g is the electron-phonon coupling constant. It is more
convenient to write it in the following form:

ln

(
Tc

Tc0

)
= 2Tc

∑
ωn�0

[
Re

∫ +∞

−∞

F̂
†
21

�∗ dξ − π

ωn

]
, (18)

where Tc is the critical temperature and Tc0 is the critical
temperature in the absence of exchange field �h. Introducing
�Tc = Tc − Tc0, and performing the expansion over the mod-
ulation vector q of the superconducting phase in the limit hz,
h � Tc, we finally obtain (see Appendix B for details)

�Tc

Tc0
= 2πTc

∑
ωn�0

[
− h2

z

ω3
n

− 4h2(
4ω2

n + v2Q2
)
ωn

− 4Qh2hzq

m
(
4ω2

n + v2Q2
)
ω3

n

− v2q2

4ω3
n

]
. (19)

The very important point is the presence of a linear-over-q
term, which means that the maximum of the critical tem-
perature always occurs at finite q. The linear dependence

of the critical temperature Tc over q (which describes the
modulation of the superconducting order parameter) is the
direct consequence of the linear-over-gradient term ∇� in GL
free energy (1). In accordance with the form of the GL term,
the coefficient on q dependence is proportional to the product
h2hzQ. At the same time, the presence of a linear-over-q term
guarantees that the modulated state corresponds to the absence
of the current, while the uniform one (q = 0) does not.

For vQ � Tc0, the above equation can be simplified as

�Tc

Tc0
= 2πTc

∑
ωn�0

[
−h2

z + h2

ω3
n

− Qh2hz

mω5
n

q − v2

4ω3
n

q2

]
. (20)

The maximum of the transition temperature is reached at the
modulation wave vector,

q0 = − 31Qh2hz

28π2T 2
c0EF

ζ (5)

ζ (3)
. (21)

Here ζ (s) is the Euler-Riemann zeta function and EF = mv2

2 .
In the opposite limit, vQ  Tc0, the above equation will

change to

�Tc

Tc0
= 2πTc

∑
ωn�0

[
−

(
h2

z

ω2
n

+ 4h2

v2Q2

)
1

ωn

− 4h2hz

mv2Qω3
n

q − v2

4ω3
n

q2

]
(22)

and the modulation vector of the superconducting phase will
be q0 = − 4h2hz

v2QEF
. Note that in both cases, the expression for

the modulation vector q0 contains a small factor hz

EF
, and this

circumstance explains why the emergence of the modulated
superconducting phase cannot be described in the framework
of Eilenberger or Usadel quasiclassical equations, where such
effects are simply neglected.

C. Current in a uniform superconducting phase with
the conical magnetic order

We now derive the expression for supercurrent in uniform
(q = 0) superconductors with the conical spiral magnetic
order. The spiral magnetic order is characterized by the wave
vector Q along the z axis, Q = χQez, and by the helicity χ =
±1. In the limit hz � |�|, the Green function Ĝ11(p − Q

2 , p′)
reads

Ĝ11

(
p − Q

2
, p′

)
= Ĝ

(0)
11

(
p − Q

2
, p′

)

+hzĜ
(1)
11

(
p − Q

2
, p′

)
, (23)

where

Ĝ
(0)
11

(
p − Q

2
, p′

)

= δ

(
p − Q

2
− p′

)

×
−ξp− Q

2

(
ω2

n + ξ 2
p+ Q

2

+ |�|2) − ξp+ Q

2
h2[

ω2
n + E2

1

][
ω2

n + E2
2

] , (24)
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Ĝ
(1)
11

(
p − Q

2
, p′

)

= δ

(
p − Q

2
− p′

)⎧⎨
⎩

ξ 2
p+ Q

2

− ω2
n − h2 + |�|2[

ω2
n + E2

1

][
ω2

n + E2
2

]

−2ω2
n

(
ξ 2
p+ Q

2

− ξ 2
p− Q

2

)(
ω2

n + ξ 2
p+ Q

2

+ |�|2 + h2
)

[
ω2

n + E2
1

]2[
ω2

n + E2
2

]2

⎫⎬
⎭,

(25)

E2
1,2 = ζ̃ 2 + η̃2 + |�|2 + h2

± 2
√

ζ̃ 2(η̃2 + h2) + |�|2h2, (26)

ζ̃ = (ξp− Q

2
+ ξp+ Q

2
)/2, and η̃ = (ξp− Q

2
− ξp+ Q

2
)/2.

We may write for the current [30]

J = ie

m
(∇r ′ − ∇r )[Ĝ11(r, r ′) + Ĝ22(r, r ′)]|r ′→r

= 2e

m

∫∫
dp dω[pĜ11(p, hz) + pĜ22(p, hz)]

= 4ehz

m

{
Qπ

m

∫
dp

p2ξQ(p)

E2
1E2 + E1E

2
2

+ Qπ

2

∫
dp

2h2 − (E1 − E2)2/2

E2
1E2 + E1E

2
2

+ Qπ

m

∫
dp

p2ξQ(p)
[

Q2

m
ξQ(p) − (E1 + E2)2

]
E1E2(E1 + E2)3

}
, (27)

where ξQ(p) = ξ (p) + Q2

8m
. The details of these calculations

are presented in Appendix C. From the above formula (27), we
can obtain the dependence of supercurrent J on the strength
of the helical field h/EF and the helix wave vector Q/kF

(see Fig. 3). We see that the current in the uniform state is
proportional to hzh

2 and the spiral wave vector Q in accor-
dance with the results of Sec. II B. Therefore, the uniform
superconducting phase is not a ground state, which should be
a nonuniform superconducting phase at any temperatures.

III. THE BOGOLIUBOV–DE GENNES APPROACH
FOR A CONICAL JOSEPHSON JUNCTION

It is known that the effects related to the spin-orbit in-
teraction often cannot be adequately described by the usual
quasiclassical approach [31,32]. As mentioned before, the
superconductor with a conical helical magnetic structure is
similar to the topological superconducting phase appearing in
the systems with spin-orbit and Zeeman interactions. So the
anomalous supercurrent in the Josephson junction with coni-
cal magnetization should be calculated using exact solutions
of the BdG approach but not the quasiclassical one.

We consider the SFS Josephson junction made of two
BCS superconductors (S) and a normal-state metal barrier
(F) with conical magnetic spiral ordering; see Fig. 4. The z

axis is chosen to be perpendicular to the layer interfaces with
the origin located at the center of the ferromagnetic layer.
The superconducting gap is supposed to be constant in the

FIG. 3. The supercurrent J vs (a) the magnetic order h and (b)
the spiral wave vector Q. We choose EF = 100� and hz/EF = 0.05.
Here the supercurrent unit is J0 = 2e

m
.

leads (|z| > L/2) and absent inside the conical ferromagnet
(|z| < L/2):

�(r) =
⎧⎨
⎩

�eiφ/2, z < −L/2,

0, |z| � L/2,

�e−iφ/2, z > L/2,

(28)

where � is the magnitude of the gap and φ is the phase
difference between the two leads. As before, the spiral is char-
acterized by the wave vector Q along the z axis, Q = χQez,

FIG. 4. The SFS Josephson junction consists of two s-wave su-
perconductors and a conical ferromagnet. The green thick arrow in-
dicates the direction of the exchange field in the conical ferromagnet.
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and by the helicity χ = Qz/Q = ±1. The BCS mean-field
effective Hamiltonian of the considered system is described
by the expression (3) [2,29] with a steplike �(z) (28).

To diagonalize the effective Hamiltonian, we use the Bo-
goliubov transformation ψ̂α (r) = ∑

n[unα (r)γ̂n + v∗
nα (r)γ̂ †

n ]
and take into account the anticommutation relations of the
quasiparticle annihilation operator γ̂n and creation operator
γ̂
†
n . Using the presentation unα (r) = uα

peipz, vnα (r) = vα
peipz,

the resulting Bogoliubov–de Gennes (BdG) equations can be
expressed as [29](

Ĥ1 iσ̂y�(z)
−iσ̂y�

∗(z) −Ĥ2

)(
û(z)
v̂(z)

)
= ε

(
û(z)
v̂(z)

)
, (29)

where

Ĥ1(2) =
(

ξp∓Q/2 + hz h

h ξp±Q/2 − hz

)
.

Moreover, û(z) = [u↑
p−Q/2(z), u↓

p+Q/2(z)]T and v̂(z) =
[v↑

p+Q/2(z), v↓
p−Q/2(z)]T are quasiparticle and quasihole wave

functions, respectively.
The solutions of the BdG equation (29) can be found in

each layer separately and then matched with the boundary
conditions. For a given energy ε inside the superconducting
gap, we find the following plane-wave solutions in the left
superconducting electrode:

ψS
L(z) = C1ρ̂1e

−ik+
S z + C2ρ̂2e

ik−
S z

+C3ρ̂3e
−ik+

S z + C2ρ̂4e
ik−

S z, (30)

where k±
S = kF

√
1 ± i

√
�2 − ε2/EF are the wave

vectors for quasiparticles. ρ̂1 = [1, 0, 0, R1e
−iφ/2]T ,

ρ̂2 = [1, 0, 0, R2e
−iφ/2]T , ρ̂3 = [0, 1,−R1e

−iφ/2, 0]T ,
and ρ̂4 = [0, 1,−R2e

−iφ/2, 0]T are the four basis
wave functions of the left superconductor, in which
R1(2) = (ε ∓ i

√
�2 − ε2)/�. The corresponding wave

function in the right superconducting electrode is

ψS
R (z) = D1η̂1e

ik+
S z + D2η̂2e

−ik−
S z

+D3η̂3e
ik+

S z + D4η̂4e
−ik−

S z, (31)

where η̂1 = [1, 0, 0, R1e
iφ/2]T , η̂2 = [1, 0, 0, R2e

iφ/2]T , η̂3 =
[0, 1,−R1e

iφ/2, 0]T , and η̂4 = [0, 1,−R2e
iφ/2, 0]T .

A. The eigenenergy spectrum and eigenfunction
of the conical ferromagnet

From Eq. (29) we obtain four eigenvalues and four eigen-
functions for our system. The first eigenfunction is determined
by the expression

û1(z) = M1

(
ei(p1− Q

2 )z

T1e
i(p1+ Q

2 )z

)
+ M2

(
ei(p2− Q

2 )z

T2e
i(p2+ Q

2 )z

)
, (32)

where T1(2) = −h/(ξp1(2)+ Q

2
− hz − ε). The wave vectors

p1 and p2 can be found numerically from the equation
ε1(p1(2)) = ε, where the branches of the energy spectrum
ε1(2)(p) are determined by the relation (16).

The second eigenfunction reads

û2(z) = M3

(
T3e

i(p3− Q

2 )z

ei(p3+ Q

2 )z

)
+ M4

(
T4e

i(p4− Q

2 )z

ei(p4+ Q

2 )z

)
, (33)

where T3(4) = −h/(ξp3(4)− Q

2
+ hz − ε) and the wave vectors

p3 and p4 are the solutions of the equation ε2(p3(4)) = ε.
The third eigenfunction may be written as

v̂1(z) = M5

(
ei(p5+ Q

2 )z

T5e
i(p5− Q

2 )z

)
+ M6

(
ei(p6+ Q

2 )z

T6e
i(p6− Q

2 )z

)
, (34)

where T5(6) = −h/(ξp5(6)− Q

2
− hz + ε) and the wave vectors

p5 and p6 arise from the equation ε1(p5(6)) = −ε.
The fourth eigenfunction can be described as

v̂2(z) = M7

(
T7e

i(p7+ Q

2 )z

ei(p7− Q

2 )z

)
+ M8

(
T8e

i(p8+ Q

2 )z

ei(p8− Q

2 )z

)
, (35)

where T7(8) = −h/(ξp7(8)+ Q

2
+ hz + ε). The corresponding

wave vectors p7 and p8 satisfy the equation ε2(p7(8)) = −ε.
As a result, the total wave function in the ferromagnetic region
can be described as

ψF (z) = I1 ⊗ û1(z) + I1 ⊗ û2(z) + I2 ⊗ v̂1(z) + I2 ⊗ v̂2(z),
(36)

where I1 = [1, 0]T and I2 = [0, 1]T .

B. Josephson current of the system

The wave functions [ψS
L(z), ψF (z), and ψS

R (z)] and their
first derivatives should satisfy the continuity conditions at the
S/F and F/S interfaces,

ψS
L

(
−L

2

)
= ψF

(
−L

2

)
,

∂ψS
L

∂z

∣∣∣z=− L
2

= ∂ψF

∂z

∣∣∣z=− L
2
, (37)

ψF

(
L

2

)
= ψS

R

(
L

2

)
,

∂ψF

∂z

∣∣∣z= L
2

= ∂ψS
R

∂z

∣∣∣z= L
2
. (38)

From these boundary conditions, we can set up 16 linear
equations in the following form:

ÂX = B̂, (39)

where X contains 16 scattering coefficients and Â is a 16 × 16
matrix. The solution of the characteristic equation

det Â = 0 (40)

allows one to identify two Andreev bound-state solutions
for energies EAσ (σ = 1, 2). The Josephson current can be
calculated as

I (φ) = 2e

h̄

∂�

∂φ
, (41)

where � is the phase-dependent thermodynamic potential.
This potential can be obtained from the excitation spectrum
by using the formula [33,34]

� = −2T
∑

σ

ln

[
2 cosh

EAσ (φ)

2T

]
, (42)
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FIG. 5. (a) Energy spectrum of the helical ferromagnet, (b)
Andreev bound-state energies vs the superconducting phase dif-
ference φ, and (c) current-phase relation for the helical ferromag-
netic junction when h/EF takes three different values. The re-
sults plotted are for EF = 1000�, hz/EF = 0, Q/kF = π/2, and
kF L = 60. The horizontal dash-dotted line in (a) denotes the Fermi
level.

where �, h, hz, and Q are assumed to be the equilibrium
values, which minimize the free energy of the SFS struc-
ture and depend on microscopic parameters [35]. The sum-
mation in (42) is taken over all positive Andreev energies
[0 < EAσ (φ) < �]. For each value of φ, we solve Eq. (40)
numerically to obtain the two spin-polarized Andreev levels.
Since the Andreev energy spectra are doubled as they include
the Bogoliubov redundancy, and only half of the energy states
should be taken into account, we can acquire the Josephson
current via Eqs. (41) and (42).
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Δ
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0.25
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0.75
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I
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FIG. 6. (a) Andreev bound-state energies vs the superconducting
phase difference φ and (b) current-phase relation for a conical
ferromagnetic junction when hz/EF takes three different values.
The right inset shows the dependence of I (φ = 0) on the exchange
field hz/EF . The results plotted are for EF = 1000�, h/EF = 0.15,
kF L = 60, and Q/kF = π/2.

C. Results and discussions

In this section, we present our results for the energy
spectrum, the Andreev bound-state spectrum, and the current-
phase relation. Unless otherwise stated, we use the super-
conducting gap � as the unit of energy. All lengths and the
exchange field strengths are measured in units of the inverse
Fermi wave vector kF and the Fermi energy EF , respectively.
The current-phase relations are calculated at T = 0 and the
current is presented in units of I0 = 2e�/h̄ as a function of
the parameters of the ferromagnetic barrier L, h, hz, and Q,
which are supposed to be equilibrium values. Note that the
different components of the exchange field produce different
effects on the current-phase relations, and should be analyzed
separately.

We start our numerical solutions of the BdG equation (29)
from the case of the helical exchange fields h without canting,
i.e., for hz = 0. In Fig. 5, we present the results of calcula-
tions of electron energy spectra, Andreev bound-state spectra,
and the current-phase relations for the three different values
of the exchange field h  � to demonstrate the transition
from the polarized metal ferromagnet to the half-metal. For
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FIG. 7. (a) Andreev bound-state energies vs the superconducting
phase difference φ and (b) current-phase relation for a conical
ferromagnetic junction when kF L = 10. The inset in (a) shows the
dependence of I (φ = 0) on the thickness kF L. The top and bottom
insets in (b) illustrate the sum of the Andreev bound-state energies
and the zoom of the current-phase relation near φ = 0, respectively.
The results plotted are for EF = 100�, h/EF = 0.15, and Q/kF =
0.3.

chosen parameters of the F layer, the junction under consid-
eration satisfies the short Josephson junction condition L �
ξ0 = h̄vF /�. For a metal interlayer, the current-phase relation
is strongly nonsinusoidal and looks like the current-phase
relation of short clean SNS [1] and SFS [34] junctions. In
the case of the half-metal (h/EF = 0.55), the current-phase
relation approaches a sinusoidal one, and as expected the
critical current is strongly decreased. Note that contrary to
[34], we do not see the complete vanishing of the Josephson
current in the half-metal state. As we can see in Fig. 5, the
Josephson current always goes to zero for φ = 0 and we have
the standard Josephson junction behaviors in this regime.

The situation changes drastically if the ferromagnetic com-
ponent of the exchange field along the z axis exists (hz �= 0).
Figure 6 shows the Andreev spectrum and the current-phase
relation of a short Josephson junction with polarized ferro-
magnetic metal as a barrier. Small deformation of the energy
spectrum due to the exchange field canting results in the qual-
itative modification of the Andreev spectrum and the current-
phase relation: a small nonzero Josephson current I (φ =
0) appears in the absence of the phase difference φ = 0.

FIG. 8. (a) Andreev bound-state energies vs the superconducting
phase difference φ and (b) current-phase relation for a conical
half-metallic junction when hz/EF takes several different values.
The right inset shows the dependence of I (φ = 0) on the exchange
field hz/EF . The results plotted are for EF = 1000�, h/EF = 0.55,
kF L = 60, and Q/kF = π/2.

Hence, the φ0 Josephson junction [6–8] is obtained with a
finite phase difference |φ0| � π in the ground state. For the
exchange field h/EF < 0.1, the spontaneous current seems
to be very small and the precision of our numerical analysis
is not enough to study this regime. Starting at h/EF > 0.1,
we clearly observe the emergence of the spontaneous current
and its amplitude increase when we approach the half-metal
case. The current I (φ = 0) oscillates and changes sign as
the canting field hz/EF increases. For � � hz � h, the
value I (φ = 0) remains small in comparison with the critical
current. So, the particularities of the electron spectra in the
conical ferromagnet as a weak link lead to the appearance of
the spontaneous Josephson current in the absence of the phase
difference. Such behavior can be understood as a phase accu-
mulation due to the superconducting order-parameter modu-
lation described in Sec. II B. This modulation is proportional
to hz in formula (21) and vanishes at hz = 0.

In Fig. 7 we present the evolution of the Andreev spec-
tra and the spontaneous current when the parameter �/EF

increases. The short Josephson junction condition is valid
for shorter barrier kF L = 10 (L/ξ0 � 0.05). A comparison
of Figs. 6 and 7 shows that the Andreev spectra and the
current-phase relation look similar for close values of hz/�
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FIG. 9. (a) Andreev bound-state energies vs the superconducting
phase difference φ and (b) current-phase relation for a conical half-
metallic junction when kF L varies from 40 to 80 with steps of 10.
The inset shows the dependence of I (φ = 0) on the thickness kF L.
Here we set the parameters EF = 1000�, h/EF = 0.55, hz/EF =
0.084, and Q/kF = π/2.

and L/ξ0. The current I (φ = 0) oscillates with the variation
of the thickness of the ferromagnet L and changes its sign for
negative hz: I (φ = 0,−hz) = −I (φ = 0, hz) (see the inset in
Fig. 7). The amplitude of the spontaneous Josephson current
grows as the factor kF L increases.

Figures 8 and 9 show how the Andreev spectrum and
current-phase relation of the Josephson junction depend on
the canting field hz/EF and the barrier thickness kF L for
the rather large ratio h/EF = 0.55, which corresponds to the
half-metal state of the ferromagnet. We see that the current-
phase relation for a conical half-metallic junction is close to
the sinusoidal one and differs qualitatively from the previous
case of the polarized ferromagnetic metal. The spontaneous
current I (φ = 0) and the spontaneous phase difference φ0

change continuously with the exchange field canting and
the thickness. Hence, we can obtain a finite current at zero

superconducting phase and a continuous change of the phase
difference φ0 from 0 to π by tuning the exchange field canting.
As expected, nonzero hz generates the φ0 junction in this case
too, and the ground phase difference is very sensitive to the
length of the weak link.

IV. CONCLUSION

On the basis of the exact solution in terms of Gorkov’s
Green functions of the 1D model of a superconductor with a
conical exchange field, we demonstrate that the ground states
correspond to the modulated superconducting phase at all
temperatures. The instability of the uniform state is related
to the special symmetry of the system generating the triplet
superconducting correlations. We calculate the wave vector of
the superconducting state modulation near the superconduct-
ing transition temperature, and we show that it is proportional
to the ferromagnetic component of the conical field. These
results of the exact solution are in sharp contrast to the results
of the solution in the framework of the quasiclassical Eilen-
berger or Usadel approach, which always predict the uniform
superconducting state in the case of the weak exchange field.
In the second part of the article, we study the properties
of the S/F/S junction with the F-conical ferromagnet. Our
numerical solutions of full Bogoliubov–de Gennes equations
(without the usual quasiclassical approximation) reveal the
emergence of the φ0 junction with the finite phase difference
at the ground state and nonzero current for φ = 0. We study
how the anomalous current depends on the characteristics of
the conical magnet. The revealed direct coupling between the
exchange field and the Josephson phase difference paves the
way for interesting implementations of the φ0 junctions in
superconducting spintronics.
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APPENDIX A

The Gor’kov equations (4) and (5) can be expressed in
matrix form:

(
iωn − ξp − hz −he−iQz

−heiQz iωn − ξp + hz

)(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
+ �eiqz

(
0 1

−1 0

)(
F̂

†
11 F̂

†
12

F̂
†
21 F̂

†
22

)
= δ(r − r′)

(
1 0
0 1

)
, (A1)

(
iωn + ξp + hz heiQz

he−iQz iωn + ξp − hz

)(
F̂

†
11 F̂

†
12

F̂
†
21 F̂

†
22

)
− �∗e−iqz

(
0 1

−1 0

)(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
= 0. (A2)
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Applying the Fourier transform to (A1) and (A2), we get the following set of equations:

(
iωn − ξp− Q

2 + q

2
− hz

)
Ĝ11

(
p − Q

2
+ q

2
, p′

)
− hĜ21

(
p + Q

2
+ q

2
, p′

)
+ �F̂

†
21

(
p − Q

2
− q

2
, p′

)

= δ

(
p − Q

2
+ q

2
− p′

)
, (A3)

(
iωn − ξp+ Q

2 + q

2
+ hz

)
Ĝ21

(
p + Q

2
+ q

2
, p′

)
− hĜ11

(
p − Q

2
+ q

2
, p′

)
− �F̂

†
11

(
p + Q

2
− q

2
, p′

)
= 0, (A4)

(
iωn + ξp+ Q

2 − q

2
+ hz

)
F̂

†
11

(
p + Q

2
− q

2
, p′

)
+ hF̂

†
21

(
p − Q

2
− q

2
, p′

)
− �∗Ĝ21

(
p + Q

2
+ q

2
, p′

)
= 0, (A5)

(
iωn + ξp− Q

2 − q

2
− hz

)
F̂

†
21

(
p − Q

2
− q

2
, p′

)
+ hF̂

†
11

(
p + Q

2
− q

2
, p′

)
+ �∗Ĝ11

(
p − Q

2
+ q

2
, p′

)
= 0. (A6)

The solutions of (A3)–(A6) provide the expression for F̂
†
11(p + Q

2 − q

2 , p′), F̂
†
21(p − Q

2 − q

2 , p′), Ĝ11(p − Q

2 + q

2 , p′), and
Ĝ21(p + Q

2 + q

2 , p′). Following the same derivation procedure, we can get another set of equations from (A1) and (A2) for Green

functions F̂
†
22(p − Q

2 − q

2 , p′), F̂
†
12(p + Q

2 − q

2 , p′), Ĝ22(p + Q

2 + q

2 , p′), and Ĝ12(p − Q

2 + q

2 , p′). These equations coincide
with (A3)–(A6) provided (F̂11, F̂21, Ĝ11, Ĝ21) are replaced by (−F̂22, −F̂12, Ĝ22, Ĝ12) and (ωn, Q, q, h, hz) are replaced by (ωn,
−Q, q, h, −hz).

APPENDIX B

To obtain F̂
†
21 in a linear-over-� approximation, it is sufficient to neglect the quadratic term |�|2 in Eqs. (9) and (11).

Performing the expansion over h2 and also making the substitutions Q/2 → Q̃ and q/2 → q̃, the expressions of F̂
†
21 can be

simplified into the following form:

F̂
†
21(p − Q̃ − q̃, p′) = −δ(p − Q̃ + q̃ − p′)F̃ †

21, (B1)

F̃
†
21 = − (A3A4 + h2)�∗

A1A2A3A4 − (A1A3 + A2A4)h2
� − �∗

A1A2

(
1 + h2

A3A4
+ h2

A2A4
+ h2

A1A3

)
, (B2)

where A1 ∼ A4 are determined by the expressions

A1 = iωn − ξ (p − Q̃ + q̃ ) − hz � iωn − ξ + X1, A2 = iωn − ξ (p + Q̃ + q̃ ) + hz � iωn + ξ + X2,

A3 = iωn + ξ (p + Q̃ − q̃ ) + hz � iωn − ξ + X3, A4 = iωn + ξ (p − Q̃ − q̃ ) − hz � iωn + ξ + X4.

Here ξ = p2/2m − EF and

X1 = v(Q̃ − q̃ ) + Q̃q̃

m
− hz, X2 = −v(Q̃ + q̃ ) + Q̃q̃

m
− hz,

X3 = −v(Q̃ + q̃ ) − Q̃q̃

m
+ hz, X4 = v(Q̃ − q̃ ) − Q̃q̃

m
+ hz.

As a result, the function F̃
†
21 can be expressed as

F̃
†
21 = −�∗

[
1

(iωn − ξ + X1)(iωn + ξ + X2)
+ 1

(iωn − ξ + X1)(iωn + ξ + X2)

1

(iωn − ξ + X3)(iωn + ξ + X4)

+ 1

(iωn − ξ + X1)(iωn + ξ + X2)2(iωn + ξ + X4)
+ 1

(iωn − ξ + X1)2(iωn + ξ + X2)(iωn − ξ + X3)

]
. (B3)

Performing the integration over ξ in (B3), we find

∫
F̃

†
21

�∗ dξ � 2πi

{
1

2
(
iωn − vq̃ + Q̃q̃

m
− hz

) + h2(iωn − vq̃ )

4
[
(iωn − vq̃ )2 − (

Q̃q̃

m
− hz

)2]
[(iωn − vq̃ )2 − v2Q̃2]

+ h2

8
(
iωn − vq̃ + Q̃q̃

m
− hz

)2
(iωn + vQ̃ − vq̃ )

+ h2

8(iωn − vq̃ + Q̃q̃

m
− hz)2

(
iωn − vQ̃ − vq̃

)
}

. (B4)
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If one performs the Taylor expansion of (B4) to the second power of q̃ in the limit h � Tc0, the equation for the critical
temperature becomes

ln

(
Tc

Tc0

)
= 2πTc

∑
ωn�0

{
ωn

ω2
n + h2

z

− 1

ωn

− ω3
nh

2(
ω2

n + h2
z

)2(
ω2

n + v2Q̃2
) − 4ω3

nQ̃h2hzq̃

m
(
ω2

n + h2
z

)3(
ω2

n + v2Q̃2
) + ωnv

2
(
3h2

z − ω2
n

)
q̃2(

ω2
n + h2

z

)3

}
.

(B5)

Using the definition �Tc = Tc − Tc0 and the relation ln ( Tc

Tc0
) ≈ �Tc

Tc0
, in the limit hz � Tc0 we have

�Tc

Tc0
= 2πTc

∑
ωn�0

[
− h2

z

ω3
n

− h2(
ω2

n + v2Q̃2
)
ωn

− 4Q̃h2hzq̃

m
(
ω2

n + v2Q̃2
)
ω3

n

− v2q̃2

ω3
n

]
. (B6)

Finally, by the opposite substitutions Q̃ → Q

2 and q̃ → q

2 we obtain

�Tc

Tc0
= 2πTc

∑
ωn�0

[
− h2

z

ω3
n

− 4h2(
4ω2

n + v2Q2
)
ωn

− 4Qh2hzq

m
(
4ω2

n + v2Q2
)
ω3

n

− v2q2

4ω3
n

]
. (B7)

APPENDIX C

From (A3)–(A6) we get the Green’s function Ĝ11(p, p′) for the uniform superconductor (q = 0) with a conical magnetic
order

Ĝ11(p, p′) = δ(p − p′)
[

(iω − ξp+Q + hz)(iω + ξp+Q + hz)(iω + ξp − hz)

D1(ω)

− (iω − ξp+Q + hz)h2 + (iω + ξp − hz)|�|2
D1(ω)

]
, (C1)

where

D1(ω) = [(iω − ξp − hz)(iω + ξp − hz) + h2 − |�|2][(iω − ξp+Q + hz)(iω + ξp+Q + hz) + h2 − |�|2]

− (2iω − ξp + ξp+Q)(2iω − ξp+Q + ξp )h2, (C2)

ξp = ξ (p) = p2/2m − EF , and we use ω instead of ωn for
short. The solutions for the Green function Ĝ22 are described
by the same expressions (C1) and (C2) by replacing Q → −Q

and hz → −hz. Taking into account the symmetry relation
between the Green functions

Ĝ11(−p,−hz) = Ĝ22(p, hz),

the supercurrent in a magnetic superconductor with spiral
magnetic order,

J = ie

m
(∇r ′ − ∇r )[Ĝ11(r, r ′) + Ĝ22(r, r ′)]|r ′→r , (C3)

can be written via the Green function Ĝ11 (C1) as follows:

J = 2e

m

∫∫
dp dω[p Ĝ11(p, hz) − p Ĝ11(p,−hz)]. (C4)

Although it is possible to carry out these calculations for
arbitrary hz, we restrict our consideration to only terms linear
on hz in Ĝ11. In this case the expression (C1) can be expanded
into the following form:

Ĝ11(p, p′) = Ĝ
(0)
11 (p, p′) + hzĜ

(1)
11 (p, p′) + �Ĝ11(p, p′),

(C5)

where

Ĝ
(0)
11 (p, p′) = δ(p − p′)

−ξp(ω2 + ξ 2
p+Q + |�|2) − ξp+Qh2[

ω2 + E2
1

][
ω2 + E2

2

]
(C6)

and

Ĝ
(1)
11 (p, p′)

= δ(p − p′)

[
ξ 2
p+Q − ω2 − h2 + |�|2[
ω2 + E2

1

][
ω2 + E2

2

]
−2ω2

(
ξ 2
p+Q − ξ 2

p

)(
ω2 + ξ 2

p+Q + |�|2 + h2
)

[
ω2 + E2

1

]2[
ω2 + E2

2

]2

]
. (C7)

The last item �Ĝ11(p, p′) in (C5) includes terms that are
odd in frequency ω, which does not contribute to the integral∫

dω . . . , and/or terms containing a higher power of hz.
The significant components Ĝ

(0)
11 (p, p′) and Ĝ

(1)
11 (p, p′) are

described by the energy spectra

E2
1,2 = ζ 2 + η2 + |�|2 + h2

± 2
√

ζ 2(η2 + h2) + |�|2h2, (C8)

where ζ = (ξp + ξp+Q)/2 and η = (ξp − ξp+Q)/2.
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FIG. 10. (a) Andreev bound-state energies vs the superconduct-
ing phase difference φ and (b) current-phase relation for the conical
ferromagnetic junction when h/EF takes three different values. The
results plotted are for kF L = 60, EF = 1000�, hz/EF = 0.084, and
Q/kF = π/2.

Substituting expansion (C5) into Eq. (C4), we get

J = 4ehz

m

∫∫
dp dω

[
(p − Q/2)Ĝ(1)

11 (p − Q/2, p′)
]
.

(C9)

Performing long but straightforward calculations, we find the
following analytical expression for supercurrent (C9),

FIG. 11. Current-phase relation for the conical ferromagnetic
junction when Q takes three different values. We set the parameters
EF = 1000�, h/EF = 0.55, hz/EF = 0.084, and kF L = 60.

J = 8eπQ̃h̃z

m

{∫
dp̃

p̃2ξ̃Q(p̃)

e2
1e2 + e1e

2
2

+ 1

4

∫
dp̃

2h̃2 − (e1 − e2)2/2

e2
1e2 + e1e

2
2

+
∫

dp̃
p̃2ξ̃Q(p̃)

[
2Q̃2ξ̃Q(p̃) − (

e2
1 + e2

2

)]
e1e2(e1 + e2)3

}
, (C10)

where e1,2 = E1,2/EF and ξ̃Q(p̃) = p̃2 + Q̃2/4 − 1. Here we
use the dimensionless variables h̃, h̃z, and �̃ in units of
Fermi energy EF = p2

F /2m, as well as Q̃, p̃ in units of Fermi
momentum pF .

APPENDIX D

In Fig. 10 we plot the Andreev spectrum and the current-
phase relation for increasing exchange fields h/EF when
the energy band structure changes from ferromagnet to half-
metal. We note that with an increase of h/EF , the asymmetry
of the Andreev spectrum structure is enhanced and the phase
shift φ0 increases accordingly.

In Fig. 11 it is shown how the transition from ferromagnet
to half-metal with the increase of the helical modulation
vector Q changes the spontaneous current.
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