
PHYSICAL REVIEW B 99, 024501 (2019)

Skyrmion formation due to unconventional magnetic modes in
anisotropic multiband superconductors

Thomas Winyard,1,2 Mihail Silaev,3 and Egor Babaev1

1Department of Physics, KTH-Royal Institute of Technology, Stockholm, SE-10691 Sweden
2School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

3Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland

(Received 14 February 2018; revised manuscript received 24 October 2018; published 2 January 2019)

Multiband superconductors have a sufficient number of degrees of freedom to allow topological excitations
characterized by skyrmionic topological invariants. In the most common, clean s-wave multiband systems, the
interband Josephson and magnetic couplings favor composite vortex solutions, without a skyrmionic topological
charge. It was discussed recently that certain kinds of anisotropies lead to hybridization of the interband
phase difference (Leggett) mode with magnetic modes, dramatically changing the hydromagnetostatics of the
system. Here we report this effect for a range of parameters that substantially alter the nature of the topological
excitations, leading to solutions characterized by a nontrivial skyrmionic topological charge. The solutions have
a form of a coreless texture formed of spatially separated but bound excitations in each band, namely fractional
vortices, each carrying a fraction of the flux quantum. We demonstrate that in this regime there is a rich spectrum
of skyrmion solutions, with various topological charges, that are robust with respect to changes of parameters of
the system and present for a wide range of anisotropies.
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I. INTRODUCTION

Superconducting materials are in general multiband [1–3]
and anisotropic [4–6]. One of the questions that was discussed
recently is how multiple coherence lengths (that can have
unconventional hierarchies in isotropic multicomponent the-
ories [7–10]) change when anisotropy is included [11]. Im-
portantly, besides coherence lengths, when there are unequal
anisotropies in multiple bands |ψα|eiθα (where α is the band
index) the electrodynamics is principally different from the
London’s massive vector field theory [12] and its description
requires several length scales [13]. The new electrodynamical
effects that arise include the phase difference mode (θα − θβ )
[14] hybridizing with the magnetic mode [13]. This leads
to multiple magnetic field penetration lengths, which in turn
allows magnetic field inversion for particular parameters. The
additional penetration lengths affect the vortex solutions of
such systems. The effect of such anisotropies on the multi-
quanta vortex solutions in the full nonlinear Ginzburg-Landau
model has also recently been investigated [11,13].

In this paper, we demonstrate that, the unconventional hy-
dromagnetostatics that were shown to stem from anisotropies,
lead to substantial changes in the nature of the topological
excitations in certain regimes. Namely we demonstrate that
when anisotropies are sufficiently strong, the lowest energy
topological excitations are skyrmions, while composite vor-
tices by contrast are not stable. Moreover, we find that in the
skyrmionic regime, the spectrum of solutions is very rich, with
stable high-topological-charge solutions.

Recently, many multiband superconductors have been dis-
covered and most of them are anisotropic. Most importantly,

they can have distinct anisotropies in different bands, which
is crucial for the magnetic field hybridization with the inter-
band phase difference mode. For example, in the two-band
superconductor MgB2, one of the Fermi surfaces is mostly
isotropic, while the other is almost cylindrical, with the Fermi
velocity anisotropy vFab/vFc ≈ 8.6 [15]. The other exam-
ple of a multiband anisotropic superconductor is Sr2RuO4

[16,17], characterized by strong London length anisotropy,
although the anisotropy of each band contribution is not
known.

The pronounced anisotropy is characteristic also to the
iron-based superconductors. For example, upper critical fields
in the 122-compounds can differ several times [18,19] when
applied along the c axis or in the ab plane. For superconduc-
tors where there is no frustration in phase-locking couplings,
like those considered in the present paper, the most restricting
condition for the observation of proposed effects comes from
the requirement that the interband pairing should be much
smaller than the intraband ones. This condition is needed
to have several distinct coherence lengths in the multiband
model [20]. Besides that, all relevant modes should have
approximately the same characteristic lengths for the coupling
of magnetic field and the order parameter degrees of freedom
to be effective. In particular that means the system has to be
only weakly type II in the limit of temperatures very close to
the critical one.

A. The model

The Ginzburg-Landau free energy for a clean
anisotropic n-band superconducting system is
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where Di = ∂i + ieAi is the covariant derivative and ψα =
|ψα|eiθα represents the different superconducting components
in different bands. The first two terms are kinetic and magnetic
energy, while the third and fourth terms are the potential and
Josephson terms, where θαβ = θα − θβ and γα , ψ0

α

2, and ηαβ

are positive constants that determine the ground state of the
system. Note that we will scale our system such that e = 1
and ψ0

α = 1 for simplicity.
Greek indices will always be used to denote superconduct-

ing components and latin indices will be spatial, with the sum-
mation principle applied for repeated latin indices only. The
anisotropy of the system is given by γijα , which represents a
two-dimensional diagonal matrix for each component,

γijα =
⎛
⎝γxα

γyα

γzα

⎞
⎠. (2)

In the potential terms, ψ0
α , �α , and η12 are positive real

constants. The anisotropy does not necessarily have to have
the above symmetry and indeed we will consider rotating the
anisotropy axis later in the paper to see what effect it has
on our solutions. The final term above is the Josephson in-
terband coupling, where θαβ = θα − θβ is the interband phase
difference between components α and β. We focus on the case
where it breaks the U(1)n symmetry to a U(1) symmetry.

For a detailed discussion of the microscopic justification
of such models in the clean case see Ref. [20]. Here we use
dimensionless units, normalizing the length by the quantity,
which becomes proportional to the diverging coherence length
in the limit T → Tc, where T is temperature and Tc is the
critical temperature. The order parameter is normalized to
the quantity proportional to its bulk value. Hence the coef-
ficients in Eq. (1) have numerical values ∼1. This includes
interband Josephson coupling |η12| ∼ 1, which means that in
the non-normalized units its value is about the condensation
energy, which becomes small close to Tc. The magnetic field
is normalized by the thermodynamic critical field and the
free energy density is normalized by the condensation energy
at a given temperature. The effective electric charge e in
general regulates the magnetic field localization length around
vortices. Although in the model we consider, the case where
the magnetic field is hybridized with the order parameter
modes and there is no single scale that determines its decay
scale, in the limit T → Tc, the constant e is proportional to
the Ginzburg-Landau parameter, that could be attributed to
the dominant component of the superconducting pairing fields
if other componets are neglected. The effect that we obtain
here takes place when e take not particularly large values,
thus we set e = 1 throughout, but still in the type-II regime
at temperatures very close to the critical one.

In this paper, we consider systems that are homoge-
neous along z axis and therefore can be described by two-
dimensional models. Hence we assume that a magnetic field

has only one component B = (0, 0, B ) and the order parame-
ter fields are defined on the orthogonal x-y plane.

The elementary topological excitations of the model 1 are
fractional vortices. A single fractional vortex is defined where
only one of the phases winds by the minimal amount of 2π ,
i.e., for a fractional vortex in the first component only, the
integral around the core of the vortex

∮ ∇θ1 = 2π,
∮ ∇θβ �=1 =

0. If ηαβ = 0, due to electromagnetic coupling between the
condensates such a vortex carries only a fraction of the flux
quantum and has logarithmically divergent energy (see de-
tailed calculation, e.g., in Refs. [21,22] and for anisotropopic
case in Ref. [13]). Only a bound state of fractional vortices
where all fractions add to an integer have finite energy, which
for equal electric charge coupling, constitutes an equal num-
ber of fractional vortices in all bands

∮ ∇θα = 2πN , where N

is the winding number of the system N ∈ Z (also referred to
as the number of flux quanta).

Let us quickly review the energetics of vortex excitations in
the isotropic London model. In the isotropic limit, the solution
is a logarithmically confined axially symmetric bound state of
fractional vortices that have a common core around which all
phases wind by the same amount

∮ ∇θα = 2π . The reason
why, in the isotropic limit of the model 1, the electromagnetic
coupling favors composite vortex solutions with overlapping
cores, is that the gradients of the phase difference are decou-
pled from the vector potential, i.e., they represent counterflow
of the various components that involves no charge transfer.
Such a neutral flow is energetically much more expensive than
the supercurrent associated with the gradients of the phase
sum, which are instead coupled to the vector potential. Then
the solution with co-centered fractional vortices minimizes the
energy. The Josephson coupling ηαβ �= 0, also favors co-axial
cores of composite topological excitations in the isotropic
case. In particular, it leads to linear interaction between two
well-separated vortices, due to the phase difference gradi-
ents becoming condensed into a string (coined a Josephson
string) with the cross section approximated by a sine-Gordon
kink.

If we now return to the full nonlinear isotropic Ginzburg-
Landau model, there appear new contributions to the magnetic
field energy that are proportional to cross gradients of relative
density and relative phase. These contributions can be cast
in the form of skyrmionic topological charge density [23].
However, the contribution of these terms is not sufficient to
lead to the formation of skyrmions, in the weak-coupling
theory of a clean isotropic s-wave multiband superconductor.

Below we demonstrate that the situation is very different in
the anisotropic case, due to the new effect: anisotropy-driven
hybridization of the Leggett mode and the magnetic mode
[13]. We demonstrated that it becomes energetically favor-
able to split composite vortices into complicated extended
bound states of fractional vortices. These in turn lead to the
classification of the various vortex excitations by skyrmionic
topological invariants.
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B. Skyrmions

As will be clear from the discussion below, the splitting of
integer-flux vortices into fractional flux constituents leads to
a new energetically conserved property: nontrivial skyrmionic
topological charge [24–26]. In the case of n components, the
solutions are CP n−1 skyrmions.

One can formulate the skyrmionic topological invariant by
combining our n complex fields ψα into the complex n-vector
� : R2 → Cn. Note that if we restrict to configurations where
there is no fractional vortex core overlap, namely � �= 0
anywhere, we can consider this to be the map � : R2 →
Cn\{0}(where \ denotes the relative complement). We also
define the map π : Cn\{0} → CP n−1 as the canonical pro-
jection to the complex line through the origin 0 that contains
the mapped point. The composition of these maps � = π ◦ �

then takes each point p ∈ R2 in our physical space to the
equivalence class [�(p)] = π (�(p)) ∈ CP n−1. Namely, all
points on the same line through the origin in the space Cn\{0}
are equivalent under the map π .

For physical reasons, the field � must take its vacuum
value on the boundary of the space (easily found to be a
constant by substituting into the energy functional) as |x| →
∞. The magnetic field can be defined by utilizing the one-
form

ν = −Im
X†dX

|X|2 , (3)

where X are the global coordinates on Cn\{0}. This leads to
the following formulation for the magnetic field two-form and
supercurrent:

J = e�†�(eA − ��ν), (4)

B = dA = 1

e

(
d(��ν) − 1

e
d

(
J

�†�

))
, (5)

where ��ν is the pullback of ν to R2 by the map � : R2 →
Ck\{0}. Finally, due to rewriting the exterior differential
d(��ν) = 1

2��ω, where ω is the Kahler form for the Fubini-
Study metric on CP n−1, in case if there are no zeros of the
total density, the quantised magnetic flux can be derived from
the above to be∫

R2
B = 1

2e

∫
R2

��ω = 2π

e
Q(�), (6)

which is determined by the homotopy class of the map �

as ω is closed, which is equivalent to an integer value. For
numerical work it is most convenient to be able to calculate Q

in integral form, hence it can be shown that

��ω = 2

i|�|4 (|�|2d�† ∧ d� + �†d� ∧ d�†�), (7)

which leads to a formulation for the skyrmion charge [27],

Q(�) =
∫
R2

iεji

2π |�|4 [|�|2∂i�
†∂j� + �†∂i�∂j�

†�]d2x.

(8)

This means we now have a set of distinct separate solution
spaces, each characterized by a given skyrmion charge or
integer.

For the simplest case in this paper n = 2, Q(�) gives the
winding number of the map � : R2 → S2, where the target
space CP 1 is identified with the 2-sphere S2. For n > 2, this
is still an integer as required, however, the map is no longer a
sphere and the image of Q is homologous to Q copies of the
generator of H2(CP n−1).

Finally, it is important to stress that this is not a standard
(in the mathematical sense) topological charge becaue it is
not universally conserved for all parameters. The above maps
all depend on the zero being removed from the target space
of �, hence, if � vanishes, then the topological arguments
collapse and Q = 0. Hence the system has a finite rather than
infinite potential barrier for changing the topological charge
(or moving between the distinct solution spaces). That is, a
configuration with a given magnetic flux can be deformed at
finite energy cost to a configuration with lower topological
charge by forcing the cores of the fractional vortices to
coincide. Yet such “reduced charge” configurations are not
energetically stable for the regimes considered below and are
excluded from the ground state. Moreover, they are obviously
zero-measure configurations which also are entropically disfa-
vored at finite temperature and therefore, in practice, the above
quantities can be regarded as topological invariants.

II. NUMERICAL RESULTS

Due to the highly nonlinear nature of the model, the only
way to discover the lowest energy topological excitations is
to consider accurate numerical simulations of various kinds.
This is still a challenging problem due to the number of
length scales that are involved in the interactions between
vortices leading to increased chance of many local minima
existing. All numerical solutions in this paper were found
using the FREEFEM++ library on a finite element space.
A conjugate gradient flow method was applied to find the
local minima from a given initial condition. Multiple initial
configurations were used for any given solution, taking the
form of perturbed spherically symmetric vortices either with
higher winding number or well separated. We have simulated
many more parameters than shown in this paper, confirming
that the effects are present in a very wide range of parameters.
The most representative values were chosen to display our
results. For all the simulations of isolated skyrmions, the
numerical grid is much larger than the skyrmion size, such that
the skyrmions experience no boundary interactions. Finally,
note that in this section and the following one the boundary
conditions are such that ∇ × A = 0 and n · Dψα = 0, where
n is orthogonal to the boundary. Hence there is no external
magnetic field being applied, this will be changed later in Sec.
IV.

A. Two component n = 2

We start with the simplest case of considering the two-band
case (n = 2). Note that for this band number the skyrmion
charge Q is a winding number and has an intuitive form in
terms of the SU(2) generators, the Pauli matrices. We first
define the projection vector

n = �†σ�

�†�
, (9)
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FIG. 1. N = 1, Q = 0 single-quanta numerical solution for anisotropy in both bands in opposite directions, γx1 = γy2 = 2, γy1 = γx2 =
0.2, η12 = 0.5, and �1 = �2 = 1. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, and
(d) |ψ1|2 (e)|ψ2|2, and (f) θ12 phase difference.

where σ is the vector of Pauli matrices. n can be thought of
as a unit vector, representing the point on the target sphere
S2 by its normal vector at that point. Hence for the texture
n : R2 → S2 to wind around the target sphere, all possible
directions of n must exist in the physical space in a localised
area. This intuitive projection leads to a simple formulation
for the topological charge as

Q(n) = 1

4π

∫
R2

n · ∂xn × ∂yn dxdy. (10)

This quantity is zero for vortex solutions in the isotropic limit
of the model. For the solutions shown below, a numerical
calculation of that topological charge gives an integer number
with a numerically good accuracy. We now consider taking
similar anisotropies in each band but in opposite directions.
This gives the energy functional a spatial D4 symmetry, which
is exhibited in the (N = 1) single winding number solution
shown in Fig. 1. Note that for the single-quanta (N = 1) case
above, there is no skyrmion (Q = 0) and hence no separation
of the fractional vortices, which form a composite vortex
with properties similar to those discussed in Refs. [11,13].
However, there is a nontrivial dependence of solutions on the
number of flux quanta. If we then consider the two-quanta
(N = 2) solution for these parameters, shown in Fig. 2, we
see that we now have a bound state in the form of a skyrmion
solution with Q = 2. Observe that the fractional vortices are
split, hence forming a skyrmion solution. If we now consider
the three-quanta (N = 3) solution in Fig. 3 we notice that
while a skyrmion with Q = 2 is formed, the skyrmionic
topological charge does not coincide with the number of
flux quanta carried by that solution. This is because there is
a composite vortex in the center of the configuration. This
leads to the conclusion that, while this trend continues, odd
winding configurations have Q = N − 1 with a single com-

posite vortex in the center and for even winding configurations
Q = N . The evidence supporting that prediction comes from
considering the next quanta solution N = 4, Q = 4 in Fig. 4.
In both plots, Figs. 2 and 3, one can see that the magnetic
field behaves nonmonotonically and has a small inverted tail
far away from skyrmion. This is shown in the plot of the
negative magnetic field density (Bneg = |Bz| − Bz), where | · |
denotes the absolute value, hence Bz > 0 ⇒ Bneg = 0 and
Bz � 0 ⇒ Bneg = 2Bz.

This is analogous to the field inversion around composite
vortices in multiband anisotropic superconductors [13]. How-
ever, it is not the reason for the skyrmion formation considered
in the present paper. This can be seen by considering the
magnetic field profiles in Figs. 2(b) and 3(b), where it is clear
that the field inversion takes place very far from skyrmions.
This emphasizes that the skyrmion bound states are very
different and occur at very different length scales than the
vortex bound states that were found in different regimes in
Ref. [13].

We have also plotted the spin n for the first four-quanta
solutions in Fig. 5. The color of the plots shows the nz

component, where nz = 1 (yellow) for |ψ1|2 = 0 and nz =
−1 (black) for |ψ2|2 = 0, which can be seen by substituting
the zeros into Eq. (9). These zeros can be interpreted as
the locations of the fractional vortex cores in the relevant
condensates. nz = ±1 can be thought of as the north/south
pole of the target space, hence to cover the target space (and
hence wind around it) they must be distinct and separate.
Hence we can think of Fig. 5(a) having N = 1 and Q = 0 as
bringing the north and south pole of the target space together
in physical space (leading to nz being ill defined at that point
in the physical space) and n does not wind around the target S2

space. However, in Fig. 5(b) with N = 2 and Q = 2, we can
see the separate locations of the fractional vortices at the light
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FIG. 2. N = 2, Q = 2 two-quanta numerical solution for anisotropy in both bands in opposite directions, γx1 = γy2 = 2, γy1 = γx2 = 0.2,
η12 = 0.5, and �1 = �2 = 1. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, and
(d) |ψ1|2, (e)|ψ2|2, and (f) θ12 phase difference.

and dark spots leading to winding for the map n : R2 → S2

covering the target space twice.
The obtained solutions clearly show that forces be-

tween fractional vortices are much more complicated in the
anisotropic model, compared to the isotropic limit (outlined
in the introduction). The physical origin of this is the strong
anisotropy, which affects the strength of the coupling between
the magnetic field and phase difference. This was shown in
Ref. [13] and can be seen easiest by considering the Amperes
equation in the London model (taking the limit �α → ∞ and
hence assuming the magnitudes of the condensates take their
vacuum value everywhere |ψα| = ψ0

α). In the two-component
model this leads to

B = −∇ × (
γ̂ 2

L j
) + 1

2

∑
α>β

∇ × [
γ̂ 2

L

(
γ̂ −2

α − γ̂ −2
β

)∇θαβ

]
,

(11)

where γ̂ −2
α = |ψα|2γ −2

α , where γα is the spatial matrix defined
in (2) and γ̂ 2

L = (
∑

α γ̂ −2
α )−1, where the spatial matrix indices

are suppressed for γ̂ . It can easily be seen that the coefficient
for the gradient of the phase difference is dependent on the
strength of the anisotropy in the system.

The formation of skyrmions is indeed a direct result of
the introduction of anisotropy. This is supported numerically
by considering the isotropic model with our chosen potential
terms, for which skyrmion solutions do not form. When a
particularly strong anisotropy is introduced, however, they
become energetically favorable solutions for degree (quanta)
N � 2. The anisotropy creates hybridization of the phase
difference and magnetic modes [13]. That means that in the
presence of a magnetic field, the system creates phase differ-
ence gradients. When the anisotropy is sufficiently strong, it
becomes energetically preferred to split integer vortices into

fractional ones. In the examples we have plotted, we have
considered anisotropy that is equal and opposite in terms
of the x and y directions. This means the two different
components want their fractional vortices to split and repel
from a composite vortex along different axis. Ultimately, this
leads to a bound state of a skyrmion as long as the anisotropy
is strong enough.

We emphasize that solutions we observe in this paper
require strong anisotropy such that we enter a regime where
the hybridization of the Leggett’s (phase difference) mode
with the magnetic mode becomes strong. This new mode
introduces additional length scales and affects the interactions
of the fractional vortices as shown in Ref. [13]. It should be
noted that the skyrmion bound states are not the result of the
field inversion effect that leads to the formation of the vortex
bound states considered in Ref. [13]. The skyrmion splitting
occurs on a shorter range and is strongly affected by nonlin-
earities. This makes it hard to estimate analytically for which
parameter values splitting will occur, beyond the requirement
for strong hybridization of the phase difference and magnetic
field. However, it can be straightforwardly seen that the length
scales are different for skyrmion formation compared to the
bound states formed by long-range interactions by consid-
ering the plots 1–4, where it can be seen that the negative
magnetic field occurs on a far longer-range length scale than
the fractional vortex splitting. The solutions are also different
from bound states of vortices due to attractive density-density
interactions that occur in a different regime [28].

The main point of the numerical solutions of this work is
the demonstration of, in contrast to the isotropic case, under
strong anisotropy, the interaction between fractional vortices
changing from short-range attractive to short-range repulsive.
This makes it energetically favorable to split fractional vor-
tices into skyrmions.
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FIG. 3. N = 3, Q = 2 three-quanta numerical solution for anisotropy in both bands in opposite directions, γx1 = γy2 = 2, γy1 = γx2 = 0.2,
η12 = 0.5, and �1 = �2 = 1. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, and (d)
|ψ1|2, (e)|ψ2|2, and (f) θ12 phase difference.

It is also interesting how the solutions change with fur-
ther increased topological charge. There should be nontrivial
scaling with increased flux quanta since the larger separation
of fractional vortices should result in the appearance of a
linear energy penalty from the Josephson term. Thus we are
interested in the high quanta solutions, the N = 12 twelve-
quanta solution of which is plotted in Fig. 6. If we start with
an initial configuration similar to what you may expect, that is,

one of fractional vortices separated in the x/y direction, like
for small N solutions, it will collapse into the plotted solution,
with fractional vortices breaking out of the line.

B. CP2 skyrmions in three band model

We will briefly touch on higher component solutions here,
specifically n = 3. skyrmions still exist in this regime but are
characterized by a CP 2 topological invariant [see Eq. (8)].

FIG. 4. N = 4, Q = 4 four-quanta numerical solution for anisotropy in both bands in opposite directions, γx1 = γy2 = 2, γy1 = γx2 = 0.2,
η12 = 0.5, and �1 = �2 = 1. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, and (d)
|ψ1|2, (e)|ψ2|2, and (f) θ12 phase difference.
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FIG. 5. Plots of the SU(2) projection n, given in Eq. (9), for, N = 1 − 4, one- to four-quanta numerical solutions for anisotropy in both
bands in opposite directions, γ −1

x1 = γ −1
y2 = 2, γ −1

y1 = γ −1
x2 = 0.2, η12 = 0.5, and �1 = �2 = 1. The arrows are colored based on the value of

z-component nz.

This topological invariant Q is still an integer, but cannot be
interpreted as a winding number around a target sphere any
more.

First we add a band with no anisotropy. We are interested in
the parameters γ −1

1x = γ −1
2y = 2, γ −1

1y = γ −1
2x = 0.2 similar to

previous simulations, while γ −1
3x = γ −1

3y = 1, with the param-
eters �1 = �2 = 0.5 and η12 = η23 = η13 = 0.5 such that the
third component zeros attract to form a higher winding frac-
tional vortex at the center of the skyrmion, surrounded by the
fractional vortices in the other components as shown in Fig. 7.

A different solution is possible if the vortices in the third
band are also caused to split. This happens for the cases
where the potential is stronger in the third band and hence the
fractional vortices in this band repel each other in a stronger
fashion, alternately, it happens when there is anisotropy in the
band to cause the vortices to repel in a particular direction.
This leads to the fractional vortices splitting in this band
and attempting to form a composite vortex with the other
bands (in particular the band that is closest in anisotropy).
This leads to the results plotted in Fig. 8, where we observe
overlapping fractional vortices. This causes it to be more
energetically favorable for the vortices to be at a higher
separation in this particular direction (the type-2 nature of the
third band pushing the composite vortices apart) due to the
higher magnetic field compared with the orthogonal direction
giving a warped shape to the magnetic field profile. We find

therefore that skyrmions do exist and are quite stable in the
three-component generalization and the trend should persist
with increased number of bands.

III. ROTATED ANISOTROPIES

In Sec. II, we discussed the basic model with anisotropies
entering the model in the form of purely diagonal matrices γα .
This can be thought of as the anisotropies being orthogonal
to each other. In this section, we inspect whether or not
this effect is related to one particular kind of anisotropy
and how robust the skyrmionic solutions are to altering this
anisotropic symmetry. To that end, we consider the following
extended model: a slight extension of the current model by
applying rotations, independently to each band. Hence, in two
dimensions,

γijα =
(

cos ϕα − sin ϕα

sin ϕα cos ϕα

)(
γxα

γyα

)
, (12)

where ϕα are now parameters of the model, giving the rotation
angle of the band α. This leads to cross terms between Dx

and Dy , which could normally be removed should we be in
the isotropic case, as the fields could be rewritten as a linear
combination, canceling the cross terms.

The symmetry of the model will now heavily depend on the
choice of ϕα and will not have the familiar fourfold symmetry
from above. In Fig. 9, we have plotted the effect of rotating
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FIG. 6. N = 12 twelve-quanta numerical solution for anisotropy in both bands in opposite directions, γx1 = γy2 = 2, γy1 = γx2 = 0.2,
η12 = 0.5, and �1 = �2 = 1. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, and (d)
|ψ1|2, (e)|ψ2|2, and (f) θ12 phase difference.

the previous model with ϕ1 = 0, ϕ2 = π/4. Here, we see
the loss of the D4 symmetry we previously had, however,
the skyrmion solutions are stable and the familiar skyrmion
structure remains. This means the skyrmions do not rely on
the spatial symmetry of the anisotropies and should exist for
all choices of ϕα .

Further extension of the anisotropies considered in
Ref. [13] is now possible. For example, a D6 dihedral or
hexagonal symmetry can be formed in the three-component
model for ϕ1 = 0, ϕ2 = 2π/3, and ϕ3 = 4π/3 and equal
anisotropy in each band γ1x = γ2x = γ3x , γ1y = γ2y = γ3y as
plotted in Fig. 10.

FIG. 7. N = 2, Q = 2 two-quanta numerical solution for anisotropy in two bands in opposite directions and no anisotropy in the third,
γ −1

x1 = γ −1
y2 = 2, γ −1

y1 = γ −1
x2 = 0.2, γ −1

3x = γ −1
3y = 1, η12 = η23 = η13 = 0.5, and �1 = �2 = �3 = 0.5. The contour plots are (a) Bz magnetic

field, (b) |Bz| − Bz negative magnetic field, (c) E energy density, and (d) |ψ1|2, (e)|ψ2|2, and (f) θ12 phase difference.
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FIG. 8. N = 2, Q = 2 two-quanta numerical solution for anisotropy in two bands in opposite directions and no anisotropy in the third,
γ −1

x1 = γ −1
y2 = 2, γ −1

y1 = γ −1
x2 = 0.2, γ −1

3x = γ −1
3y = 1, η12 = η23 = η13 = 0.5, and �1 = �2 = �3 = 2.0. The contour plots are (a) Bz magnetic

field, (b) |Bz| − Bz negative magnetic fild, (c) E energy density, and (d) |ψ1|2, (e)|ψ2|2, and (f) θ12 phase difference.

IV. MAGNETIZATION

The above sections considered isolated skyrmion solutions
in the absence of an external magnetic field. We are now inter-
ested in how skyrmions act when entering into a magnetized
sample. To model the magnetization of a finite domain or
sample, we must introduce the external field H .

Hence we are now modeling the free energy Fmag = F −
2

∫
R2 H · B d2x. Note that this does not affect the field equa-

tions in the bulk of the theory, as the additions are constants
(due to the integral of the magnetic field density being fixed
through the topology of the map). It does, however, have an
effect on the boundary conditions of the problem, such that
we now have ∇ × A = H on the boundary of our space, as

FIG. 9. N = 2 two-quanta numerical solution for anisotropy rotated differently in each band, γx1 = γx2 = 2, γy1 = γy2 = 0.2, ϕ1 = 0,
ϕ2 = π/4, η12 = 0.5, and �1 = �2 = 2. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative magnetic field, (c) E energy
density, and (d) |ψ1|2, (e)|ψ2|2, and (f) θ12 phase difference.
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FIG. 10. N = 2, 3, 4-quanta numerical solution for similar anisotropy in all the bands but with rotations, ϕ1 = 0, ϕ2 = 2π/3, ϕ3 =
4π/3 γx1 = γx2 = γx3 = 2, γy1 = γy2 = γy3 = 0.2, ηαβ = 0.5, and �1 = �2 = �3 = 2. The contour plots are (a) Bz magnetic field, (b)
|Bz| − Bz negative magnetic field, and (c) |ψ1|2, (d)|ψ2|2, and (e)|ψ3|3.

well as the other conditions previously used. If we then slowly
increase the external field value in steps of 10−2, we can
simulate the turning up of an external field and the subsequent
magnetization of the theory over our finite domain.

We will only consider the two-band system here as the
three-band case can be extrapolated from this. We start with
considering the parameters that we have considered in the
previous sections in Fig. 11. We observe two chains of
fractional vortices forming in alternate directions for each
condensate. Hence we get skyrmion solutions, similar to those
considered in the multiquanta solutions in Sec. II. While for
an isolated solution, the chain pattern tends to fracture, as with
the N = 12 solution plotted in Fig. 6, it does not happen in an
applied external field here. This is because of the finite size
of the system and interaction with the Meissner current near
boundaries increasing the stability of this form of solution.
In this situation, the system tries to form a large skyrmion
that minimizes intervortex forces and interaction with the
boundaries.

One of the key properties of the magnetization is the
potential barrier to the vortex entry being different for the in-
dividual boundaries due to the anisotropy. Namely, for the
boundaries in Figs. 11 and 12, the boundaries in the x and y

directions will have different potential barriers for the vortex
entry for each condensate. In these examples, the barrier is
lower on different boundaries for each of the condensates.
Hence this leads to fractional vortices entering into the domain
on different boundaries for each condensate and hence are
completely separated, stabilized by boundary interactions.
Once they do enter into the sample, they enter as a pair of

fractional vortices from orthogonal directions. Once in the
bulk (together with a fractional vortex from the orthogonal
direction), they are pulled into the chain solution emanating
from the center of the space. Due to this peculiar form
for the energy potential barrier, we see fractional vortices
entering predominantly from the corners of the space. This
helps to break the chain apart at this point as the fractional
vortices on the boundary and those already in the chain
avoid to be aligned in the direction orthogonal to the chain
length. This points towards the pronounced effect of sample
geometry on the vortex entry into the strongly anisotropic
system.

If we now consider a set of parameters that do not produce
isolated skyrmion multiquanta states, a peculiar situation still
occurs. In Fig. 12, we have plotted the magnetization for the
parameters �1 = �2 = 10, γ −1

1x = γ −1
2y = 0.8, γ −1

1y = γ −1
2x =

0.3, and η12 = 0.7. In this regime skyrmion mutiquanta states
are not produced, as can be seen in Fig. 13 which demonstrates
the behaviour of two-quanta states. We note that the minimal
energy multiquanta solutions for this systems are similar to
those found in Ref. [13], with the composite vortices posi-
tioning themselves in the negative magnetic field pocket of the
other. This means that the form of this multiquanta solution,
and importantly the separation distance of the composite
vortices that form it, is mediated by the second penetration
length of the magnetic field, which is longer range than the
other length scales. In Fig. 12, we have considered the magne-
tization of a sample that is smaller than this negative magnetic
field length scale, leading to this penetration length having a
minimal effect. This leads to very different behavior and we
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FIG. 11. Successive plots of magnetizing a sample with increasing external field H running from left to right with parameters γx1 = γy2 =
2, γy1 = γx2 = 0.2, ηαβ = 0.5, and �1 = �2 = 1. The different quantities that are plotted from top to bottom are (a) Bz magnetic field, (b)
|ψ1|2, (c)|ψ2|2, and (d) θ12 phase difference. One an see that the cores of fractional vortices are not superimposed and thus the solution forming
in an external field represents a large-charge skyrmion.
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FIG. 12. Successive plots of magnetizing a sample with increasing external field H running from left to right with parameters γx1 = γy2 =
0.8, γy1 = γx2 = 0.3, ηαβ = 0.5, and �1 = �2 = 10. The different quantities that are plotted from top to bottom are (a) Bz magnetic field, (b)
|ψ1|2, (c)|ψ2|2, and (d) θ12 phase difference. The length scale of the negative magnetic field mode, which mediates the global minima bound
states for the multiquanta solutions is too long range to have a significant effect on this domain. Hence the rest of the hierarchy is important
and this leads to skyrmion formation on this short length scale.
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FIG. 13. N = 2 two-quanta numerical solution with no skyrmion solutions Q = 0 for anisotropy in both bands in opposite directions
γ −1

x1 = γ −1
y2 = 0.8, γ −1

y1 = γ −1
x2 = 0.3, η12 = 0.5, and �1 = �2 = 10. The contour plots are (a) Bz magnetic field, (b) |Bz| − Bz negative

magnetic field, (c) E energy density, and (d) |ψ1|2, (e)|ψ2|2, and (f) θ12 phase difference.

see skyrmions beginning to form as different intervortex and
vortex-boundary forces dominate at these shorter ranges.

Initially, the magnetization in Fig. 12 produces similar
results to those in the previous case with fractional vortices
entering from orthogonal directions due to differing energy
barriers. However, this time, the anisotropy is smaller and the
chain form breaks easily as in Fig. 6. Eventually, the magnetic
field becomes strong enough that the condensates begin to
blend into a saturated domain. However, due to the markedly
different interactions with the boundaries in different direc-
tions, the edges of these domains do not correspond to the
different condensates.

This means there are two different forms of solution,
dependent on the length scale of the vortex separation. We
predict that for a larger space one would observe the vortices
in a distinct pattern similar to those shown in Ref. [13] for the
multiquanta solutions, mediated by the long-range negative
magnetic field. However, as the external field is increased
and hence the density of vortices increases, there will be a
shift in the solution as the repulsive part of the magnetic
field dominates at the smaller length scale. This would lead
to a fractional vortex separation, similar to the form shown in
Fig. 12. This suggests that when considering length scales that
mediate very different multiquanta vortex solutions, there can
be a transition in the form of the bound states as the vortex
separation changes its scale from one of the length scales to
the other. Namely, if the external magnetic field is increased,
causing the magnetic field density to increase, the shorter
length scales will start to dominate and the bound states can
change.

It is important to note that these structures cannot be inter-
preted as a superposition of two single-component anisotropic
lattices. This is because the components are strongly coupled
by Josephson coupling and we essentially deal with a large

skyrmion, i.e., a bound state of fractional vortices but not two
independent sublattices. That is, in the absence of an external
field and away from system boundaries, it will remain a bound
state of vortices similar to that shown in Fig. 6

Finally, we comment on the comparison of these solutions
to other cases of fractional, non-axially-symmetric vortices,
and skyrmions (see, e.g., Refs. [27,29–33]). In contrast to
superfluids, in isotropic superconductors, the electromagnetic
coupling and Josephson coupling strongly disfavor formation
of skyrmions and fractional vortices (see detailed discussion
in, e.g., Ref. [21]).

Previously, skyrmions have been identified in several types
of superconducting systems, which include either the terms
that counteract the Josephson and electromagnetic interac-
tions (such as strong density-density interaction) or rely on a
complex interplay with other topological excitations coming
from higher broken symmetry (such as fractionalization of
vortices pinned by domain walls). By contrast, the anisotropic
systems provide a new mechanism for skyrmion formation
that comes from hybridization of magnetic and Leggett modes
leading to Josephson and electromagnetic coupling favoring
skyrmion formation, in contrast to their role in the isotropic
case.

V. CONCLUSIONS

In conclusion, in the most common s-wave case of multi-
band superconductors, in the bulk samples in the absence of
thermal fluctuations, the vorticity in different bands is con-
fined into a composite vortex due to intercomponent Joseph-
son and electromagnetic coupling. The recently demonstrated
hybridization of Leggett and London modes in the anisotropic
case [13] raised the question of whether the system can
instead favor deconfinement of fractional vortices by favoring
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interband phase difference gradients when a magnetic field is
present.

We have demonstrated that unconventional electrodynam-
ics of anisotropic multicomponent superconductors, indeed,
leads, under certain conditions, to a change of the topological
structure of vortex excitations. Namely, when anisotropy is
sufficiently strong, the fractional vortices in the various bands
repel each other in different ways (depending on the band).
This leads to the constituents of an integer flux vortex be-
coming misaligned for N > 1. As a result, vortex solutions
become unstable and the system forms extended textures,
characterized by a nontrivial skyrmionic charge. Importantly,
the skyrmions form complicated bound states, which have a
very rich structure and are characterized by two integers: the
number of magnetic flux quanta N (equivalent to the winding
of the phase sum of the superconducting components) and the
Skyrmionic charge Q. In general, these two integers are not
equal.

The skyrmion formation is rather generic at sufficiently
strong anisotropies, i.e., it does not require a particular sym-
metry of the anisotropy and the effect exists also in the pres-
ence of additional components. We studied also the magneti-
zation of a sample in an externally applied magnetic field: we

found this leads to the formation of large-topological-charge
Skyrmons extending through the system.

The skyrmions found here are structurally very differ-
ent from the vortex solutions in the regimes considered in
Refs. [11,13]. One of the key differences is that they are
extended textures that do not have zeros of the total superfluid
density. Although the skyrmion formation requires relatively
strong anisotropies, the effect could also be present locally
when there is strain in the sample.
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